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Cohomologies of Lie Algebras of Vector Fields
with Coeflicients in Adjoint Representations
Case of Classical Type

By

Yukihiro KANIE*

Introduction

Let M be a smooth manifold, and (M) the Lie algebra of all
smooth vector fields on M. Assume that M admits a volume form
7, a symplectic form w or a contact form 6. Then we have natural Lie
subalgebras of (M) as WA (M), AW(M), A, (M), A(M), W,(M) (see §1.1).
These Lie algebras including (M) itself are called of classical type.
Here we are interested in the cohomology H*(U; A) of the Lie algebra
A with coefficients in its adjoint representation.

Calculations of them are not easy in general. But the first coho-
mology can be calculated rather easily since HY(; A) is interpreted
in terms of derivations of U. From this point of view F. Takens [5]
calculated H!'(UA(M); A(M)) in 1973. Later A. Avez-A. Lichnerowicz-
A. Diaz-Miranda [2] and the author [3] calculated H!(U (M); A, (M))
of Lie algebra A, (M) of hamiltonian vector fields by different methods.
In the present paper, we will calculate H'(2(; %) for all A of classical
type. Our results can be summarized as follows.

Main Theorem.

a) Let M be a smooth manifold with a volume element 1, a sym-
plectic structure ® or a contact structure 0, and let W be one of
AM), A(M), A (M) and Wg(M). Then
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H(30; A)=0.

b) Let M be a connected smooth manifold with a volume element
T or a symplectic structure w, and A=W (M) or W, (M) respectively.
Then

HY(UA; W=R or O.

Moreover, H'(U; W)=R if and only if © or w is an exact form
on M respectively.

We can reduce the study of derivations of U to the case where

M is flat. Here the notion of localizability of derivations (see §1.2)

is essential. A Euclidean space is furnished with the natural structure:

the volume form t=dx, ---"dx,, the symplectic form w=znj dx;dx;

or the contact form O=dx,— anlx,-”dxi. Then we have ljtllle main
=

theorem for flat case:
a) Let A=AR"), A(R"), AL (R2") or U(R2"1), Then
HY(U; A=0.
b) Let A=A (R") or AU, (R2"). Then
HY(YU; W=R.

The contents of the paper are arranged as follows. In §1, we
explain the notion of Lie algebras of vector fields of classical type,
and the localizability of derivations of 2. We also explain the general
scheme to prove the main theorem for flat case.

In §2, the properties of W,(M) and its derivations are studied.
In §3, the main theorem for WA(R2#*1), the flat case, is proved.

In §4, the properties of WU (M), A(M) and their derivations are
studied. In §5, the main theorems for A (R*) and AY(R?), the flat
case, are proved.

In §6, we reproduce briefly the main theorems for A, (R2?") and
A/ (R2%) in this direction.

In §7, we prove Main Theorem for all Lie algebras of vector
fields of classical type.
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§1. Lie Algebras of Vector Fields of Classical Type, and Their
Derivation Algebras

1.1. Definition of the Lie Algebras. All manifolds, vector fields,
forms etc. are assumed to be of C«-class. Denote by U(M) the Lie
algebra of all vector fields on a manifold M.

Let © be a volume element on M. A vector field X is called
volume preserving or conformally volume preserving if Lyt=0 or Lyt
=ct for some constant ¢ respectively, where Ly denotes the Lie deriva-
tion corresponding to X. We get two natural Lie subalgebras A (M)
and (M) of A(M) defined as

A(M)={X eUM); Lyr=0},
WAW/(M)={X e A(M); Lyt=ct for some constant c}.

Then A, (M)c=U(M) obviously.

Assume that a manifold M of even dimension is furnished with the
symplectic structure w. Here the symplectic structure w is by definition
a non-degenerate closed 2-form on M. A vector field X is called hamil-
tonian or conformally hamiltonian if Lyw=0 or Lyw=cw for some

constant c¢ respectively. Thus we have the following two natural Lie
subalgebras of A(M):

A,(M)={X € U(M); Lxw=0},
A (M)={X e A(M); Lyw=cw for some constant c}.

Then A, (M)A (M) too.

Assume that a manifold M of odd dimension 2n+1 is furnished
with the contact structure 6, where 6 is by definition a 1-form on M
such that OA(df)" is a volume form on M. A vector field X is called
contact if LyO=f0 for some function f on M. We denote by U,(M)
the Lie subalgebra consisting of all contact vector fields on M.

Let A be a Lie algebra of vector fields on a manifold M. We
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call A of classical type if it is isomorphic to one of the above six Lie
algebras: AM), A(M), A(M), A (M), W, (M) or WUy (M). The formal
algebras corresponding to them are isomorphic to the classical infinite
dimensional Lie algebras of E. Cartan (see Singer-Sternberg [4]).

Let U be an open submanifold of M. Then, replacing M by U,
we have naturally the Lie algebra %A, according to U. For instance,
WUy =W (V) for A=A, (M). Let r, be the restriction map on U, then
rg(AW)<=WUy,, but they do not coincide with each other in general. We
say that U has the property (4) if ry(W=ry(Wy) for any two open
subsets UcU’ of M such that UcU'’.

Proposition 1.1. The Lie algebras (M), A (M), U (M) and W (M)
have the property (A).

Proof. Let A be any one of the above Lie algebras. Then for
any open subset U of M, the Lie algebra U, is a module over C*(U).
Q.E.D.

1.2. Derivations of 2. Let A be a Lie subalgebra of AM). A
mapping D:UA—-A is called a derivation of U if D is R-linear and
D([X, Y])=[D(X), Y]+[X, D(Y)] for all X, YeU(M). A derivation D
is called inner if D=adW for some W in UA. Denote by D(A) the
algebra of all derivations of A, and by DA) its ideal of all inner
derivations of 2A. Then we know [3, §1] that the first cohomology
HY(A; A) of the Lie algebra A with coefficients in its adjoint represen-
tation is realized as

HY(A; W= D(W)/DI(A).

A derivation D of U is called local if D(X) vanishes on U for any
vector field X €A, zero on an open subset U of M. Moreover a local
derivation D is called localizable if for any open subset U of M, there
is a derivation Dy of U, compatible with the restriction map ry, that
is, Dyory=ryeD. Then we have the following.

Proposition 1.2. If the subalgebra U of WU(M) has the property
(A), then any local derivation of U is localizable.
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Proof. Let D be a local derivation of U and U an open subset
of M. For any point p of U and X e, by the property (A), there
is X eA such that X=X on some neighbourhood U’ of p. Define the
derivation Dy of A, by Dy(X)(p)=D(X)(p), then Dy(X)(p) is well-
defined because D is local. Q.E.D.

If all derivations of 2 are localizable, the study of D(2) is reduced
in a certain extent to the case where M is flat, that is, M is the Euclidean
space V=R".

1.3. The Flat Case. Let U be a Lie algebra of classical type of
vector fields on the Euclidean space V. The main part of our study of
the derivation algebra D(UA) of U<=AWU(V) is to find the vector field
We (V) such that D=ad W on A, and to clarify the property of W.
This will be done according to the following three steps:

(I) To find a good finite-dimensional subalgebra B of U for
which the following differential equation

(E) W, X]=D(X) (Xe9®B)

has a unique solution We A(V).

(II) Let A, be the subalgebra of AU consisting of all elements
in A whose coefficients are polynomials with respect to the coordi-
nates in V. We wish to show that [W, X]=D(X) for all XeU,.

(III) To show the fact that D(X)(0)=0 if a vector field XeU
satisfies j/(X)(0)=0 for some integer r, independent of X.

Here we apply the following lemma.

Proposition 1.3. Suppose that (I), (II) and (III) are established
for a De®DW), and that ad W)U where W is the vector field
obtained in (I). Then D=ad W on U.

Proof. Put D'=D—ad W, then D’ is a derivation of U, zero on U,.
A vector field X e is decomposed for any point peV as X=X,+X,
such that X, e, and j/(X,)(p)=0, because there exists a coordinate
transformation ¢ with polynomial coefficients such that ¢(p)=0 and
o*(W)=U. By (II) and (1II), we get
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D'(X)(p)=D'(X)(p)+D'(X3)(p)=0+0=0  (peV).

Hence D=ad W on . Q.E.D.

We also apply the following.

Proposition 1.4. It is sufficient for (III) to prove the following:

({II') If a vector field XeW satisfies j(X)(0)=0 for some
fixed integer r=0, then there exist a finite number of vector fields
Y,..., Yo, €W such that

X=

]
e

[Y, Yiel and A(HO=0  (1Si<20).
Proof. We get

DX)(©)= ¥, DL, %D (0)
= TAID(Y), Yis JO)+L ¥, DY 1O}

=0+0=0.

Q.E.D.

1.4. In §2, we shall prove that any DeD(U,(M)) is localizable
(Corollary 2.5), and show (III'), Proposition 2.6, for UW(M). In §3,
we pass through the steps (I) and (II) in §1.3 above for Wy(n)=W,(R2"*1),
Proposition 3.2 and Lemma 3.4. Moreover we obtain the main theorem
for WUy(n), Theorem 3.3.

In §4, we clarify the relations between A (M) and AY(M), and
prove that any De®(UY(M)) is local (Proposition 4.4), and any D
€ D(AU,(M)) is localizable (Proposition 4.5). In §4.4, (II') for WA(M),
Proposition 4.6, is proved. In §5, the steps (I) and (II) for AYn)=
A(R"), Proposition 5.6 and Lemma 5.9, are proved. Moreover we
obtain the main theorems for U/(n) and A (n), Theorem 5.7 and 5.8
respectively.

In §6, we describe the outline of the proof of the main theorems
for A, (R27), A/ (R?7) and A(R") in this direction,
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§2. Contact Vector Fields

2.1. Properties of Contact Vector Flelds. Let (M2"*1,6) be a contact
manifold of dimension 2n+1. Here we do not need the geometrical
meaning of the contact vector fields except the following well-known
two lemmata.

Lemma 2.1. Let ¥ be a mapping from W (M) to C*(M), which
assigns X*=iy0 to X eWy (M), where ix0 is the interior product of
X and 6. Then the linear mapping * is bijective.

By this lemma, the inverse ": C*(M)— Uy (M) can be defined, and
we can introduce the generalized Poisson bracket (( , )) in C®(M)
as follows:

(s g)'=Lf"g"1 for f,geC=(M).

In this way, C*(M) becomes a Lie algebra isomorphic to W, (M) under
#

Lemma 2.2 (Darboux). Around any point p of a contact manifold
(M271.0), there exists a coordinate system (Z, Xise..» Xps Viseees V)

such that 0 is expressed as 0=dz— f yidx;.
i=1

The mapping ° and the generalized Poisson bracket are written
in this contact coordinate system as

(21) fb=(f_iz:‘:1yify,-)az_ ié:lfyiaxi_l_ iz:“l(fxi—{_yifz)ayis
and
(22) ((fa g))={f’ g}x,y"fz(g— ; y_]gy,)+gz(f_ 7; nyYJ)

for any f,geC=(M), where { , },, is the usual Poisson bracket in
Xiseees Xy Vis---» ¥y variables, that is,

U 9hey= 3 Uy =Sg)
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Here we have the following.

Proposition 2.3. Let X be a contact vector field on M, and U any
open subset of M. Assume that [X, Y]=0 on U for any Ye Uy (M)
with support contained in U. Then X=0 on U.

Proof. Suppose X(p)#0 for some point p of U. Let U’ be a
coordinate neighbourhood of p with contact coordinates (z, xq,..., Xp,
Vis---» Vy) around p. Since X is contact, for the function f=X¥, one

of f(p), fz(p) or f,(p) 1=i=n) is not zero by (2.1).

Case 1. The case where f(p)#0. Let g be a function whose sup-
port is contained in U’, and equal to z in a smaller neighbourhood
U” of p. Then we have

(f, ==ftf~ £ ify, in U
and so ((f, 9)(p)=f(p)#0. Hence we have by (2.1)
[X, g*1(p)=((f. 9))* (p)#0.
This contracts our assumption that [X, g’]=0.

Case 2. The case where f, (p)#0 or f,(p)#0. The same arguments
as above are also valid here if we take into account the following
equalities:

((f5 yi))zfx.-s ((xia f)) =fyi+xifz .
Q.E.D.
Proposition 2.4. Any derivation of We(M) is local.

Proof. Suppose that X e W (M) is identically zero on an open subset
U of M. For any Ye U, (M) with support contained in U,

[D(X), Y]1=D([X, Y))—[X, D(Y)]=0—0=0 on U.

By Proposition 2.3, we get D(X)=0 on U, Q.E.D.
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Corollary 2.5. Any derivation of W,(M) is localizable.
Proof. This follows directly from Lemmata 1.1 and 1.2. Q.E.D.

2.2. Proposition 2.6. Let X be a contact vector field on M such

that j*(X)(p)=0 at a point peM. Then there are a finite number
of contact vector fields Y,,...,Y,, on M, and a neighbourhood U of p

in M such that

q
X|U= igl[Yi, Yi+q]lU

and
(=0 (A=ig2g).

Proof. By means of a contact coordinate system (z, Xq,..., X,

Visee» Vu) around p, the vector field X and f=X* are written as
X=hd,+ 3 (hid +h*3,),
i=1

X¥=iy0=h— i‘, Vih;.
i=1

Then the as-

We assume that j4(h)(0)=0 and j3(h?)(0)=0 for all i.
Q.E.D.

sertion follows from the next proposition.

Proposition 2.7. Let f be a function on R2"*1 with j*(f)(0)=0.

Then there are a finite number of functions g,,...,g,, such that

BN L

and

JH9) =719 )(0)=j'(9;,)=0  (1=i=s2q, 15j<n).

Proof. Case 1. The case where f,=0. Assume that j3(f)(0)=0.
Then by Proposition 2 in [3], there are functions gy,...,g,, such that

glz=0, ]z(gl)(0)=0 (1§l§2‘1), and f= lZ{gia gq+i}x,y= ;((gu gq+i))'
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Case 2. The case where f is written as f=z2h. Assume that
j3()(0)=0, that is, ji(h)(0)=0. Put

g={"hdy,,
then j2(g)(0)=0, and
((x19, 22)— (9, x:2%))
= —zlegz+22(xlg—x1§ly,-gy,)—{ —z%g,, —x,2%g,+2x,2(g — 2y,9, )}
=z%g, =z*h=f.
By the above arguments, we may assume that f is expressed as
f=zxBt - xpnyqt - yunh(x, y)

with 3% (pi+4)24.

Case 3. The case where ) p;=2.
i
a) The case where p;=2 for some j. We may assume that f is

written as f=zx?h(x, y). Put g=S:1h(x, y)dy,, then j2(g)(0)=0, and
((x19, x12))—((g, x32))=2zx%g,,=zxih=f.

b) Assume that p,=p,=1. Then by means of the following contact
transformation ¢, this case is reduced to a):

)?1=\/7'—1(x1+x2), y1=\/F(Y1+J’2),
22=\/F(x1—x2), }72=\/§__1(J’1_)’2),

Xi=X;, Vi=Yyi (iz3),

Case 4. The case where Xp;<1, that is, Xq;=3.
a) The case where g;=3 for some j. We may assume that f is

written as f=zy3h(x, y). Put g=S:h(x, y)dx;, then ji(g)(0)=0, and
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3((zy19, Yy —2((z9, yD)=2y19.,=f.

b) The case where g;=2 for some j. We may assume that f is
written as f=zy?y,h(x, y). By means of the above transformation ¢,
this case is reduced to a), because 3y?y,=/273 —/273+y3

¢) Assume that ¢g,=q,=1. Then by means of ¢, this case is
reduced to b). Q.E.D.

We have a corollary of Proposition 2.6.

Corollary 2.8. Let D be a derivation of Wy(M). If X is a contact
vector field on M such that j4(X)(p)=0 for a point p of M, then
D(X)(p)=0.

Proof. This follows directly from Proposition 1.4, Q.E.D.

§3. Derivations of UAy(n)

3.1. Structure of U, (m). We consider the natural contact structure
6=dz—3 y,dx; in the Euclidean space R2"*!. In this section, we will
1

study derivations of the Lie algebra y(n)=W,(R2+1) of contact vector
fields on R2?"*!, At first, we note the following.

Lemma 3.1. A vector field X=h°6:+ig(h"axi+h”"6yi) on R2n+!

is contact, if and only if it satisfies the following equalities:

#: h%=3 yhi, (1=i<n).
=1

@ =3 yh)=h—hg+ ¥ yhi,  (1<izn).
j=1 =1

The coefficient functions hi*" (1<i<n) are determined by h°, hl,..., h".

Proof. Since X is contact, Ly0=g0 for some function g. The
assertion follows easily from this. Q.E.D.

Let B=By(n) be the Lie subalgebra of A=W,(n) spanned by



224 Yukmiro Kanig

Z=90

b44

X;=0y, Y;=0,+x0, (1=i=n),

I1=2z0,+ f (xi0x,+ ¥:0,,) -
i=1

There hold the following relations among them:
[Z, Xi]=[z’ Yi]=[Xi> Xj]=[Yi’ Yj]=0’ [Xb Yj]=5ijza
[Z, [1=2Z, [Xia I]=Xis [Yu I]=Y; (1§l,]§n),

where d;; is Kronecker’s delta.
For an integer p, we define the subspace A7 of A as follows:

Ar={XeUy; [I, X]=pX},

where U, is defined in §1.3. We have immediately that [?, AT]c AP+,
and that A, is an algebraic direct sum of WP’s. We remark the fol-
lowing facts which will be applied later:

p w={0} (p=-3),

ii) A 2=R-Z,
i) A 1=3 (R-X,+R-Y).
i=1
3.2. Now we will solve the equation (E) for (Wy(n), By(n)).

Proposition 3.2. Let D be a derivation of Wy(n). Then there exists
a unique vector field W in WUy(n) such that

(E) DX)=[W, X] for all XeByn).

The proof of this proposition will be given in §3.3. Here we deduce
from this proposition the following theorem, a local theorem for contact

case.

Theorem 3.3. Let D be a derivation of Uy(n). Then there exists
a unique vector field W in Uy(n) such that

D(X)=[W, X]  for all XeUyn).
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In other words, any derivation of Wy(n) is inner.

Proof. To prove this theorem, it is sufficient to show that if D
is zero on the subalgebra By(n), then D vanishes on the whole Uy (n).
Its proof is reduced to the next lemma by Proposition 1.3 and Corollary
2.8. Q.E.D.

Lemma 3.4. If the derivation D of U=WUy(n) is zero on B=By(n),
then D is zero on WU, for A.

Proof. Assume that X eUP, p=0, defined in §3.1. The proof is
carried out by induction on p. Let hf (0£i<2n) be functions on R27+!
defined as

D(X)=h°d,+ 3. (h'd,,+h'*"d,).
i=1

Apply D to [Z,X]1eqNr 2 and [X;, X]eWr ' (1Zi<n). Then
by the assumption of induction, [Z, D(X)]=[X;, D(X)]=0, so that
hi=hi =0 (0=i<2n, 1<j<n). Hence, by the equalities (¥), in Lemma
3.1, we get that

hitn=0 (1gign).
Apply D to [Y;,, X]eUr~!, then

0=[Y, D(X)1=[d,,+xd., h°3,+ > hid, ]
j=1
=(h%,— )0, + 3 hi s,
j=1

so that h'=h9, and hj,=0 for 1<i, j<n. Hence, by the equalities
(#); in Lemma 3.1, we get that

hi=h9,=3 yhi =0 (1<i<n),
j=1

and so h° is a constant.
Apply D to the both sides of pX=[I, X], then

ph°8,=[I, D(X)]=[I, h°d,]= —2h°d, .
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Since p=0 by assumption, we get h®=0. Hence D(X)=0. Q.E.D.

3.3. Proof of Proposition 3.2. We consider the equation (E) for
(Wy(n), By(n)). Let us construct the vector field W as a sum of W,
W,, Wi, W, e Uy(n) as follows:

a) D(Z)=[W,, Z];
b) DX)=[W,+W,, X;], [W,, Z]=0 (1gisn);
o DX)=[W+W,+W,, Y1, [W3, Z]1=[W;, X;]1=0 (1=i=n);
d) D()=[W,+W,+W;+W,, I], [W,, Ar]=0 (p=-1),
where
Z=0, X,=0,, Y,=0,,+x0,, [ =220, + gl (XiDei+ Yidy) -
Then D=ad W on By(n).
Step 1. Construction of W ,. Define the functions #* on R27+1 by
D(Z)=hod, + i;z'l (hid,, +hi+d,).

Put the functions ¢% and define the vector field W, on R2"*! as

<p';=§’h*dz ©O<ign),

0

¢a+"=§’h"+"dz+yi(h°<o, X Y)— 3 yhi0, x, y) (1<i<n);
0 j=1

n . .
W= =00, - 2. (¢10x,+¢1"5,).
Then W, satisfies a). Moreover,

Lemma 3.5. W, is a contact vector field, or W, e Uy(n).

Proof. Let us prove for W, the equalities (#); and (¥#), in Lemma
3.1
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n .
(1. Put ¥i=08,,— 3 y;¢1,. Then Y0, x, y)=0 and
=

n . n .
‘piz=(p(1)y,z— Zlyjqjjly‘z = h?n - leyjh.;‘i =0
j= =

by the equalities (¥#), for D(Z). Hence ;=0 for 1<i<n.
(#),. Put xi=yi(j§1y,-<p’i,—<p?z)—<p‘1’x,+¢ﬁ+"+ JZ:Zly,-(p’{xi . Then
%:(0, x, y)=0. Moreover taking into account ¢4,=h/ (0<j<2n), we get

K=Y yhi=h) =, +hi*r+ 3% yhi =0
i= i=1
from the equalities (#), for D(Z). Hence y;=0 for 1<i<n. Q.E.D.

Step II. Construction of W,. Put D,=D-—adW,, then D,(Z)=0.
Define the functions f{ on R2n*! gs

D\(X)=f00,+ ¥ (fid,,+fi*9,)  (1=i=n).
ji=1
Apply D, to [Z, X;]1=0 and [X,, X,]=0, then we have
FR0.+ 3 (flis +1109,) =0,

(Fle=F80+ T A Fhey= PO, + (120~ Fi213,} =0
Hence
fi=0, flo=flx, (0=j=2n,1=i, k=n).
Therefore we see easily that there exist functions ¢4 (0<j<2n) satisfying
03.=0, ob.,=fl (1Zizn).
We put

950,0, »)=0  (0<j<n),

PE0 0. )=150,0. )= X nfi0.0.)  (Sisn,

and
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0 n . .
Wo= =930~ 3 (040, + 957,
i=
Then the vector field W, satisfies b). Furthermore,

Lemma 3.6. W, is a contact vector field, or W, e WUy(n).

Proof. Let us check (#); and (%), for W,.
(#)1 Put lpi:(pgyi— Zlyj(pJZ.yi (lélén)a then wi((), 0’ J’)=0; ‘piz=05
=

I//ixk= (ogyixk—jglyj(pjl'yixk =fl?yi - ngyjfiy. =0

by the equalities (#), for D,(X,;). Hence y;=0 for 1ZiZn.
(#),. Put ;=05"—0%, + j;y,-cp’z’xi- Then

Xi(Oa 0’ y)=0, Xiz=0s
K= ST =St 2 yille =0 (1Si,k=n)

by the equalities (#), for D,(X,) because fi,=0. Hence y;=0 for
15iZn. Q.E.D.

Step III. Construction of W,. Put D,=D,—adW,, then D,(Z)=
Dy(X))=0 for 1Zi<n. Define the functions g{ (0<j<2n) on R2m*l gs

DA(Y)=gP0.+ 3. (910, +g1*"0,)  (1=isn).
Apply D, to [Z, Y;]=0 and [X,, Y;]=6,Z, then
9:=9%,=0  (0Zj=n, 1Zi, k=n);
gi*"=0 (1=j=n).
Apply D, to [Y;, ¥, ]=0, then we have
(98, + 95 =9L=08,00.+ 32 (9hy = 95,00, =0.

Hence,
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0 — i 0
gkyi+gi _gk+giyk9

gy, =9l (L<i, j, k<n).

By (#), for D,(Y,)), we get from the second equalities above that

9= 2 ViGhy. = J;ng{yfg?yk,
and so

g¥t=gi (1=i, k=Zn).

229

By the above equalities, there are unique functions ¢4 (1<j<2n) such

that
?i.=04,=0, ol, =g/ (=i=n),
and
?0)=—g%0), @i(0)=0 (I1=j<n).
Finally there is a unique function @9 such that
?3:=0%:,=0, 03,,=9%+05 (1=iZn),
and ¢3(0)=0. Put

n

VV3= —(pgaz— Zl(pgaxﬂ
=
then the vector field W; satisfies c). Moreover,

Lemma 3.7. W; is a contact vector field, or W;e Uy(n).

Proof. W, satisfies trivially the equalities (¥), in Lemma 3.1.
us prove the equalities (#),. Put

=03, — _Zl y;9%,, (Igign),
=
then

Y(0)=g9(0)+¢5(0)=0,

Let
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V=V, =0 (124, k=n),
and by (¥#), for D,(Y;), we get also
Wiyk=g?yk+<p§yk—g{-‘—J}";Iy,-g{yk
=gi—9%=0.
Hence ;=0 for 1<i<n. Q.E.D.

Step IV. Construction of W,. Put D;=D,—ad W;, then D;(U?)=0
for p<—1. Apply D; to the both sides of the equalities

[Z,11=2Z, [X,I]=X; [Y,I]1=Y; (1Si<n),
then by the same arguments as in the proof of Lemma 3.4, we get
Di(I)=ad, for some constant a.

Put W,=2"'a0,. Then W, is a contact vector field and satisfies
d), or

[Wa, I1=D5(I), [Wa, AP]=0  (p=-1).

Lemma 3.8. W,=2"1'a0, is a unique solution of the equations

above.

Proof. As in the proof of Lemma 3.4, we see from the fact [W,,
Ar]=0 (p<—1) that W,eUy (n) must be a constant multiple of J,.
Put W,=cd, for some constant ¢, then D;(I)=[W,, []=2c¢d,. Hence
a=2c. Q.E.D.

The vector field W=W,+W,+W;+W, is a required one, and the
uniqueness of W is guaranteed by the lemma above. This completes
the proof of Proposition 3.2.

§4. Volume Preserving Vector Fields

4.1. Lie Algebras A (M) and A(M). Let M be a connected
manifold of dimension n, and 7 a volume element on M. Then we get
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immediately from the definitions of W (M) and WUW(M),
[A(M), U(M)] =AU (M),

and A, (M) is an ideal of codimension =1 in A (M). Moreover

Lemma 4.1. A (M) is of codimension | in W/ (M), if and only if
the volume form 1 is exact, that is, t=do for some (n—1)-form o on
M.

Proof. Let 7 be exact, that is, t=do for some (n—1)-form o.
Then the equality iyt=0 determines a vector field W by the non-
degeneracy of 7. Hence,

Lyt=digt=do=1,

so that W lies in AY(M), but not in A (M).
Let A ,(M) be of codimension 1 in A)(M). Then there is a vector
field X such that Lyt=t. Put o=iyt, then t=do. Q.E.D.

4.2. Properties of Volume Preserving Vector Fields. Let X be a
volume preserving vector field on a manifold (M, 7). Then iyt is a
closed (n—1)-form on M, and so the restriction ry(iyt) is exact by
Poincaré’s lemma for a sufficiently small open subsets U of M, that is
ry(ixt)=da for some (n—2)-form « on U. In global, any (n-—2)-form
o on M uniquely determines the vector fields X=X[«] in A(M) by
the formula iyt=da.

In a coordinate neighbourhood U with coordinates (x,,...,x,) such
that t=dx, A--- Adx, in U, any (n—2)-form o is written as

A= Z_fijaij
i<j

N N\
where o;;=dx; A+ Adx; A+ Adx;A--- Adx,, and f;; are functions on U
for 1Si<j<n. Then we have the following.

Lemma 4.2. For any two functions f and g on U,

[X[fo'ij]’ X[gai,i]]=(“1)i+jx[{f, g}i,_iaij] on U.
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where { , };; is the Poisson bracket in x; and x;, that is,
{f 94ij=fc9x,— 5 ,9x, (1Si<j=n).
Proof. We have
X[ fo,1=(— 1D 0x, + (= D104,
hence,
[XLfoy 1 X090, T1= s 0 —FuBep s P Gs]
=—({/, 9}i)x, 00+ (s 931,005,
=(—=D)™IX[{S, g}ijoi]-
Q.E.D.

4.3. Derivations of A/(M).

Proposition 4.3. Let X be a conformally volume preserving vector
field on (M, 1), and U any open subset of M. Assume that [X, Y]=0
on U for all Ye U (M) with support contained in U, then X=0 on U.

Proof. Let peU and U’ a coordinate neighbourhood of p in U
with coordinates (x,,..., x,) around p such that T=dx; A---Adx, in U’

Denote d,, by 0;(1isn). Put X =f fi0; for some functions f; on
i=1
U’. Since the vector fields 0,e A (U"),

[6» X1= 3 6(/6;=0  (1ism) in U,

and so 0,(f;)=0 for all i, j.
Since x;0;€ U (U") (i =),

[X, x161]=f,aj=0 in U',

hence all f; are zero in U’. Therefore X(p)=0 for any peU.
Q.E.D.

Proposition 4.4. Any derivation of U (M) or U(M) is local.
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Proof. By the same arguments as in the proof of Proposition 2.4,
the assertions for A(M) and A (M) follow from Proposition 4.3.
Q.E.D.

Corollary 4.5. Any derivation of W (M) is localizable.
Proof. This follows from Lemmata 1.1 and 1.2. Q.E.D.

4.4. Proposition 4.6. Let X be a volume preserving vector field
on M such that j2(X)(p)=0 for some point p of M. Then there are
a finite number of volume preserving vector fields Z,,...,Z,, on M and
a neighbourhood U of p such that

q

q
Xy= El [Zi Ziv v
and
iZ)(p)=0 (1=i=29).

Proof. Introduce a coordinate system (xi,...,x,) around p such
that t=dx; A--- Adx,. Then, by the arguments in §4.2, the assertion
follows from the next proposition. Q.E.D.

Proposition 4.7. Let « be an (n—2)-form on R" such that j3(x)(0)
=0, then there exist a finite number of (n—2)-forms ..., B,, on R"
such that

X[e]= ¥ [XIA, X[Bis )]
and
JHBI(O)=0  for 1=5is2q.
Proof. Clearly it is enough to show the assertion for the case
a=f(X(y..0s X )dX3 A+ ANdx,=f0,

with j3(f)(0)=0. Such a function f can be written as a finite sum of
functions of the following type:
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j=x"11x’22...xf,"h(x1,,,., xn)
. n
with ) r,=4.
i=1

Case 1. The case where r;=2 or r,=2. We may assume that
f is written as f=x%i(x,..., x,). Put

g=3-1g’;’h(x1,..., x)dx,

then j2(g)(0)=0, and {x}, g}, ,=3x%g,,=/, that is, by Lemma 4.2,
X[fo,,]1=—[X[x}0,,], X[go,,1].

Case 2. The case where r; and r,<1. Then i r=2. We may
assume that f is written as f=x;x;h(x,..., x,) for ls—c?me i,j=3. Put
g=gzzh(x1,...,x,,)dx2, then j2(9)(0)=0, and {x;x;x}, g}12=XX;9x,=f.
Then by Lemma 4.2,

X[foi]=—[X[xxx;01,], X[go,,1]. Q.E.D.
We have a corollary of Proposition 4.6.

Corollary 4.8. Let D be a derivation of U (M). If X is a volume
preserving vector field on M such that j2(X)(p)=0 for a point p of
M, then D(X)(p)=0.

Proof. This follows directly from Proposition 1.4. Q.E.D.

§5. Derivations of 2_(R"”) and A/(R").

5.1. Structure of WA/(m). We consider the natural volume element
T=dx; A--- Adx, in the Euclidean space R". In this section, we will
study derivations of the Lie algebras U (n)=U (R") and WA(n)=AL(R")
of volume preserving and conformally volume preserving vector fields on
R" respectively. At first, we note the following.

Lemma 5.1. Let X=ifi6i be a vector field on R". Then X is
i=1
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volume preserving if and only if Z 0(f)=0, and is conformally volume
preserving if and only if Z (?,(f)—c for some constant c.

Proof. This follows from direct calculations. Q.E.D.
Let B=B.(n) be the Lie subalgebra of A=A/ (n) spanned by
I= i'z;lx,.ai, X,=6, (l<i<n).
There hold the following relations among them:
[X Xj]=05 [X; I1=X; (I=si, j=n).

Here we note that the vector field 7 is not volume preserving be-
cause L;,7=nt, and that

WA(n)=U(n)+R-1I.
For an integer p, we define the subspace U? of A as follows:
W={XeUy; [I, X]=pX},

where U, is defined in §1.3. We have immediately that [P, A= Ar+4,
and that 2, is an algebraic direct sum of WP’s. Moreover,

 wA={0} (p=-2),
i) at= 3 RX,.

5.2. Relations between DU (z)) and D(UA.(m)). First we refer
the following results of V.I. Arnold [1].

Lemma 5.2. [U(n), U (n)]=U(n).

Note. This lemma can be also obtained by the analogous arguments
as in the proof of Proposition 4.6.

Now, we have the following two lemmata.

Lemma 5.3. [ (n), W(n)]=U(n).
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Proof. This follows from the inclusion [(n), Ai(n)] = AU (n) and
the lemma above. Q.E.D.

Lemma 5.4. Let D be a derivation of Win), then D(UA (n))<=U (n).
Proof. By Lemma 5.3, a vector field X € W (n) is written as

X =

M
i

[Yi’ },i+q]
by means of a finite number of Yi,..., Y,,e W (n). Then we have that
q
D(X)= EI(ED(K), Yii g+ LY, D(Yii D)

is volume preserving, by Lemma 5.3. Q.E.D.

5.3. Now we will solve the equation (E) for (2i(n), Bi(n)).

Proposition 5.5. Let D be a derivation of Ui(n). Then there
exists a unique vector field W in U(n) such that

(E) D(X)=[W, X] for all X eBi(n).

Proposition 5.6. Let D be a derivation of W (n). Then there exists
a unique vector field W in W, (n) such that

(E) D(X)=[W, X] for all XeB.(n),
where B (m)=U"1+A° N A (n)) for U~ and U° defined in §5.1.

The proof of these two propositions will be given in §5.4. Here
we deduce from these propositions the following theorems, local theorems
for the volume preserving case.

Theorem 5.7. Let D be a derivation of WJ(n). Then there exists
a unique vector field W in Win) such that D(X)=[W, X] for all
X eUWUi(n). In other words, any derivation of Wi(n) is inner.

Theorem 5.8. Let D be a derivation of W (n). Then there exists
a unique vector field W in W((n) such that
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D(X)=[W, X]  for all XeU(n).

In other words, the ideal of inner derivations of W (n) is of codi-
mension 1 in the derivation algebra of U (n).

Proof of Theorem 5.7. It is sufficient to show that if D is zero
on the subalgebra WB!(n), then D vanishes on the whole U (n). Its
proof is reduced to the next lemma by Proposition 1.3 and Corollary
4.8. Q.E.D.

Lemma 5.9. If a derivation D of =W (n) is zero on B=B(n),
then D is zero on W, for A.

Proof. Assume that XeW?, p=0, where AP is defined in §5.1.
The proof is carried out by induction on p. Define the functions f;
on R” as

D)= 3. fdi-
Apply D to [X;, X]eUr~! (15i<n), then we get
[X,, D)1= 3 0(/)3;=0.

Hence all f; are constants, so that D(X)e A1,
Apply D to the both sides of pX=[I, X], then we get

pD(X)=[I, D(X)]= —D(X).

Since p=0 by assumption, D(X) must be zero. Q.E.D.

Proof of Theorem 5.8. By Proposition 1.4 and Corollary 4.8, it
is sufficient to show that if D is zero on the subalgebra B.(n), then D
vanishes also on A!' (defined in §5.1). Here note that A! consists
of all volume preserving vector fields whose coefficients are homogeneous
polynomials of degree 2.

As in the proof of Lemma 5.9, we get that D(X)eU~! for X e AL
Moreover we see that [D(X), Y]=D([X, Y]) for all YeU°nA(n).
By simple calculations, we get that D(X)=0 for all XeU!. Q.E.D.
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5.4. Proof of Proposition 5.5. Let us consider the equation (E)

for (UAi(n), Bi(n)). We construct the vector fields

W, and W,eUn)
as follows:

a) D(X)=[W,, X,] (I=izn),

b) D(D)=[W,+W,, 11, [W,, X;]=0 (1=sizn),

where X,=0;(1<i<n) and I=3 x,0, Put W=W,+W, then D=ad W
i=1
on Bi(n).

Step I. Construction of W,. Define the functions f;; on R" as

D(X)= 3 fy3;  (1in).

Apply D to the both sides of [X; X,]=0, then we have

jg @ fip—0(f;)0;=0  (1=i, k=n),

and so
o fi))=0(f:)) (1=i, k=n).

Therefore there exist unique functions ¢; (1=<j<n) such that

o) =1i; (1gign)

and

¢0)=0 (I=j=n).

Put W,=— Z”‘, ©;0;, then the vector field W, satisfies a). Moreover,
i=1

Lemma 5.10. W, is a conformally volume preserving vector field,
or W, e W (n).

Proof. Since X, is volume preserving, then by Lemma 5.4, D(X,)
is volume preserving, that is,
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n

_21 0(fi)=0 (1gk=n).

i=

Put ¢ = 2"‘, d(¢p,), then we have
i=1

=3 X )= 2 0f)=0  (1=ksn),

hence  is a constant. Then by Lemma 5.1, W, is a conformally
volume preserving vector field. Q.E.D.

Step II. Construction of W,. Put D'=D—adW,, then D'(A~1)=0.
Define the functions g; on R” as

D'(D)= igl 9:0;.

Apply D’ to the both sides of [X; I1=X;, then we see as in the
proof of Lemma 5.9 that all g; are constants.

Put WwW,= i‘, g4:0;= i g{0)0;, Then W, is a volume preserving
i=1 i=1

vector field and satisfies b), or
[WZs I]=D,(I)7 [WZ’ X1]=0 (lélén)

Lemma 5.11. W,= 3 g,0; is a unique solution of the equations
above. '

Proof. As in the proof of Lemma 5.9, we see from [W,, A~1]=0
that W, must be a vector field with constant coefficients. Put W,

= i a;0;, then
i=1
D(D=[W,, [1= 3. ad;.
i=1
Hence a;=g; for 1<i<n. Q.E.D.

The vector field W=W,+ W, is a required one, and the uniqueness
of W is guaranteed by the lemma above. This completes the proof of
Proposition 5.6.

Proof of Proposition 5.6. It is sufficient to construct uniquely the



240 YukiHiro Kanie
vector fields W,, W, e A/(n) as follows:
a) DX)=[W;, X] (XeuY,
b) D(Y)=[W,+W,, Y], [W,, X]=0 (YeU°nAn)).

The construction of W, exactly the same as in the proof of Proposition
5.5. And one can construct easily a unique W, by the similar way
as in the hamiltonian case [3]. Q.E.D.

§6. Remarks on Derivations of U/ (M) and U (n)

6.1. Hamiltonian Vector Fields. Let (M,®) be a connected sym-
plectic manifold. By the analogous arguments as in §4, we get the
following propositions.

Lemma 6.1. A (M) is an ideal of codimension =<1 in U, (M).
Moreover the codimension equals to one, if and only if the symplectic

form w is an exact 2-form.
Proposition 6.2. Any derivation of U, (M) is local.
Proposition 6.3. Any derivation of U, (M) is localizable.

Since Proposition 1 in [3] is nothing but the assertion (III) for
A (M), we get by Proposition 1.4 the following

Proposition 6.4. Let D be a derivation of U, (M). If X is a
hamiltonian vector field on M such that j?(X)(p)=0 at a point peM,
then D(X)(p)=0.

6.2. Derivations of 2 (r) and A/ (n). By the similar method as
for the volume preserving case, one can reproduce Theorem 5 in [3],
a local theorem for the hamiltonian case. Let us sketch it here for
completeness.

We consider the natural symplectic structure =23 dx;dx;,, on the
Euclidean space R2", then we get the following two llemmata similarly
as in §5.2.
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Lemma 6.5 (cf. [1]).
[205,(m), Wiy(n)]=[A,(n), A, (n)]=A,(n)=A(R?").

Lemma 6.6. Let D be a derivation of N,(n)=A(R?"). Then
D(A () =A ().

Let B=%B;(n) be the Lie subalgebra of A=A, (n) spanned by
2n
I=3Y x0, X;=0, (1=Zi<2n).
i=1

Note that L;w=2w, then we get
A ()= ,(n)+R-I.
For an integer p, the subspace AP of A is defined as
Wr={XeWNy; [I, X]=pX}.

We can solve the equation (E) for (2.(n), B.(n)).

Proposition 6.7. Let D be a derivation of W.(n). Then there
exists a unique conformally hamiltonian vector field W on R2?" such
that

(E) D(X)=[W, X] for all X eB(n).

Outline of Proof. The proof is almost the same as the proof of
Proposition 5.5. The vector field W is determined by the values of
D at X;(1<i<2n) up to constant vector fields (Step I). The value
D(I) determines the constant terms of W (Step II). We see similarly
as Lemma 5.10 that W' =W—W, is hamiltonian, where W, is the linear
term of W, A%-component of W. Applying the derivation D—ad W’ to
[X;, AO]<=N~! (1£5i<L2n), we see that D—ad W =ad W, on AP (p=£0)
and that W, is conformally hamiltonian.

We get from Propositions 6.4 and 6.7 the following theorem analo-
gously as Theorems 5.7 and 5.8.

Theorem 6.8 (Theorem 5 in [3]). Let D be a derivation of

A, (n) or Wi (n). Then there exists a unique conformally hamiltonian
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vector field We . (n) on R?" such that D=ad W.

6.3. The results on the derivations of U(n)=A(R") in the paper
[5] of F. Takens can be obtained more simply in this direction. Let
B=VB(n) be the Lie subalgebra of A=A(n) spanned by

I= 3 xd, X;=8 (1<i<n).

i=1
For an integer p, define the subspace AP of A(n) as
W={XeWU,y; [I, X]=pX}.
Then we get

Theorem 6.9 (Lemma 4 in [5]). Let D be a derivation of UA(n).
Then there exists a wunique vector field W on R" such that D=ad W
on U(n).

Key of Proof. The vector field W is determined by the values
D(X,) (1<i<n) and D(I).
§7. The Cohomology H!(; )

7.1, The Main Theorem for Flat Cases. The following main thec-
rem for flat cases is obtained immediately from Theorems 3.3, 5.7, 5.8,
6.8 and 6.9 for respective Lie algebras of classical type.

Theorem 7.1. a) Let UA=AR"), AL(R"), AL (R2") or Wy(R2#+1),
Then

H(A; AW =0.
b) Let A=A (R") or A, (R?"). Then
HY(2; AM=R.

Here

n n
T=dxy...d%X,, 0= D dx,dX;,,, 0=dxo— D X;4,d%;.
i=1 i=1
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7.2. Main Theorem. a) Let M be a smooth manifold with a
volume element 1, a symplectic structure w or a contact structure 0,
and let A be one of WM), A(M), W,(M) and W(M). Then

H(Q1; A)=0.

b) Let M be a connected smooth manifold with a volume element

© or a symplectic structure ®, and W=W (M) or W, (M) respectively.
Then

HY(A; W=~R or 0.

Moreover, HY(W; W)=R if and only if 1 or w is an exact form on
M respectively.

7.3. Proof for A(M) and A, (M). Let us prove that any derivation
D of U is inner. Take an atlas {U,, ¢;};; such that each U; are con-
nected and simply connected. Since D is localizable, the derivation
Dy, of Ay, can be defined for all iel in such a way that ryeD=Dype
ry,. Then by Theorems 3.3 and 6.9 in respective cases, there exists
for any iel a unique vector field W,e¥,, such that Dy =ad W, on
Ay,. Since Dyperyny,=Dyyrynu, we get ryay(W)=ryay (W) by
the uniqueness of Wy. Hence there exists a vector field We U such that
ry(W)=W, for all iel and that D=adW on U. Q.E.D.

7.4. Proof for A M) and U, (M). Here we denote U (M) or
A,(M) by U, and W(M) or A, (M) by A’ respectively.

Lemma 7.2. For any XeU, adX is a derivation of .
Proof. Let o be t or w, then
L[X’y]0'=LxLYo"—LyLXc‘=0 (YG QI) . Q. E. D.

Let D be a derivation of . Since D is localizable, for any open
subset U of M, the derivation D, of A, can be defined in such a
way that ryeD=Dyor,. Then by Theorems 5.8 and 6.8 in respective
cases, we get a unique vector field W, of Ay such that Dy=ad W,
on Uy, for any sufficiently small U. By the arguments in §7.3, there
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is a vector field We®' such that ry(W)=W, and that D=ad W on .
Hence by Lemma 7.2, we get the isomorphism D(U)~A'. Therefore
the assertion follows from Lemmata 4.1 and 6.1 in respective cases.

Q.E.D.

7.5. Proof for A/(M) and A/, (M). Here we use the notations U
and A as in §7.4. Let D' be a derivation of ', then D=D'\y is
a derivation of A with values in A'. Since D is localizable, for any
open subset U of M, the derivation D, of U, with values in AL can
be defined in such a way that rypoD=Dyory, as in the proof of Pro-
position 1.2. If U is sufficiently small, Dy(U,)=W, by the same argu-
ments as in the proof of Lemma 54. Then by Theorems 5.8 and 6.8 in
respective cases, we get a unique vector field W,e Uy such that Dy
=adW; on U,. By the arguments in §7.3, there is a vector field
WeU' such that ry(W)=W, and that D=ad W on U.

For any Ye¥ and all X e, we get

[D'(Y), X]=D(LY, X])—-LY, D(X)]
=[W, [Y, X]]1-LY, [W, X]]
=[[W, Y], X1.

By Proposition 4.3 and the similar proposition for the hamiltonian

case, we see
D()=[W, Y] (Ye¥).

Thus any derivation D’ is inner. Q.E.D.
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