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Cohomologies of Lie Algebras of Vector Fields
with Coefficients in Adjoint Representations

Case of Classical Type

By

Yukihiro KANIE*

Introduction

Let M be a smooth manifold, and 2l(M) the Lie algebra of all

smooth vector fields on M. Assume that M admits a volume form

T, a symplectic form CD or a contact form 9. Then we have natural Lie

subalgebras of 2l(M) as 21T(M), 2l;(M), 9IW(M), 2l;o(M), 210(M) (see §1.1).

These Lie algebras including 2l(M) itself are called of classical type.

Here we are interested in the cohomology ff*(2l; 21) of the Lie algebra

21 with coefficients in its adjoint representation.

Calculations of them are not easy in general. But the first coho-

mology can be calculated rather easily since H *(2J; 21) is interpreted

in terms of derivations of 21. From this point of view F. Takens [5]

calculated ff ^(M); $l(M)) in 1973. Later A. Avez-A. Lichnerowicz-

A. Diaz-Miranda [2] and the author [3] calculated H\Wm(M)\ 2IW(M))

of Lie algebra 2IW(M) of hamiltonian vector fields by different methods.

In the present paper, we will calculate H1(2l; 21) for all 21 of classical

type. Our results can be summarized as follows.

Main Theorem.

a) Let M be a smooth manifold with a volume element T, a sym-

plectic structure CD or a contact structure 9, and let 21 be one of

2t(M), 2I;(M), 2l^(M) and 2T0(M). Then
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b) Let M be a connected smooth manifold with a volume element

T or a symplectic structure co, and 5l = $lT(M) or *&m(M) respectively.

Then

O^R or 0.

Moreover ', Hl($l\ 51) = R if and only if T or co is an exact form

on M respectively.

We can reduce the study of derivations of 51 to the case where

M is flat. Here the notion of localizability of derivations (see §1.2)

is essential. A Euclidean space is furnished with the natural structure:
n

the volume form -c = dx1--~'dxn, the symplectic form co= X dxtdxi+n
n f=1

or the contact form 9 = dx0— £ xi+ndxt. Then we have the main

theorem for flat case:

a) Let 5I = 5l(R"), 5l;(R»), 5^(R2n) or 510(R
2«+1).

b) Le^ 5I = 5tt(R
w) or 5lw(R2w). Tfcen

The contents of the paper are arranged as follows. In § 1, we

explain the notion of Lie algebras of vector fields of classical type,

and the localizability of derivations of 21. We also explain the general

scheme to prove the main theorem for flat case.

In §2, the properties of $lfl(M) and its derivations are studied.

In §3, the main theorem for 5I0(R
2n+1), the flat case, is proved.

In § 4, the properties of $1T(M), 2t^(M) and their derivations are

studied. In §5, the main theorems for 51T(RM) and 9I;(R"), the flat

case, are proved.

In §6, we reproduce briefly the main theorems for Sl^CR2") and

$l;(R2n) in this direction.

In §7, we prove Main Theorem for all Lie algebras of vector
fields of classical type.
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§1. Lie Algebras of Vector Fields of Classical Type, and Their

Derivation Algebras

1.1. Definition of the Lie Algebras. All manifolds, vector fields,

forms etc. are assumed to be of C°°-class. Denote by 2I(M) the Lie

algebra of all vector fields on a manifold M.

Let T be a volume element on M. A vector field X is called

volume preserving or conformally volume preserving if LXT = 0 or LXT

= CT for some constant c respectively, where Lx denotes the Lie deriva-

tion corresponding to X. We get two natural Lie subalgebras 9IT(M)

and 3l;(M) of 9l(M) defined as

= {X e 9I(M) ; Lxi = cx for some constant c} .

Then 9It(Af) c 3I;(M) obviously.

Assume that a manifold M of even dimension is furnished with the

symplectic structure CD. Here the symplectic structure co is by definition

a non-degenerate closed 2-form on M. A vector field X is called hamil-

tonian or conformally hamiltonian if Lxco = 0 or Lxa) = cco for some

constant c respectively. Thus we have the following two natural Lie

subalgebras of 2l(M):

= {X e S21(M) ; Lxco = ceo for some constant c} .

Then ai^M) c 9I^(M) too.

Assume that a manifold M of odd dimension 2n + l is furnished

with the contact structure 6, where 9 is by definition a 1-form on M

such that 6/\(d9)n is a volume form on M. A vector field X is called

contact if Lx6=fO for some function / on M. We denote by 9Ie(M)

the Lie subalgebra consisting of all contact vector fields on M.

Let 51 be a Lie algebra of vector fields on a manifold M. We
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call $1 of classical type if it is isomorphic to one of the above six Lie

algebras: 2l(M), 21T(M), 91{(M), 9ltt>(M), 9lJ,(M) or 2le(M). The formal
algebras corresponding to them are isomorphic to the classical infinite

dimensional Lie algebras of E. Cartan (see Singer-Sternberg [4]).

Let U be an open submanifold of M. Then, replacing M by U,

we have naturally the Lie algebra 21^ according to 21. For instance,

2lt/ = 2It(lO for 2l = 2IT(M). Let r^ be the restriction map on 17, then

rv(2l) c 21 ,̂ but they do not coincide with each other in general. We

say that 21 has the property (A) if (̂21) = ̂ (21^) for any two open

subsets UcU' of M such that U^U'.

Proposition 1.1. The Lie algebras 2T(M), 2It(M), 9lm(Af) and 2I0(M)

/te property (A).

Proof. Let 21 be any one of the above Lie algebras. Then for

any open subset U of M, the Lie algebra 21^ is a module over C°°(l/).

Q.E.D.

1.2. Derivations of 91. Let 21 be a Lie subalgebra of 2l(M). A

mapping D: 2l-»2l is called a derivation of 21 if D is R-linear and

D([X9r\) = [D(X),r\ + [X,D(Yy] for all X, Ye2I(M). A derivation D

is called inner if D = adW for some W in 91. Denote by D(2l) the

algebra of all derivations of 91, and by D*(2l) its ideal of all inner

derivations of 21. Then we know [3, § 1] that the first cohomology

I/1 (21; 21) of the Lie algebra 21 with coefficients in its adjoint represen-
tation is realized as

A derivation D of 21 is called local if D(X) vanishes on U for any

vector field X e2l, zero on an open subset U of M. Moreover a local

derivation D is called localizable if for any open subset U of M5 there

is a derivation Dv of 21^ compatible with the restriction map rv, that

is, Du°ru = ru°D. Then we have the following.

Proposition 1.2. // £/?e subalgebra 21 of 2l(M) /ias the property

(A), then any local derivation of 21 is localizable.
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Proof. Let D be a local derivation of 21 and U an open subset

of M. For any point p of U and XeSly, by the property (A), there

is Xe2l such that X = A" on some neighbourhood U' of p. Define the

derivation Dv of 21^ by Dv(X)(p) = D(X)(p), then D^/POO?) is well-

defined because D is local. Q.E.D.

If all derivations of 21 are localizable, the study of T)(2I) is reduced

in a certain extent to the case where M is flat, that is, M is the Euclidean

space F=R".

1.3. The Flat Case. Let 21 be a Lie algebra of classical type of

vector fields on the Euclidean space K The main part of our study of

the derivation algebra £>(2l) of 2lcz2l(K) is to find the vector field
VFe2l(F) such that D = adW on 21, and to clarify the property of W.

This will be done according to the following three steps:

(I) To find a good finite-dimensional subalgebra 93 of 21 for

which the following differential equation

(E) \

has a unique solution

(II) Let 210 be the subalgebra of 21 consisting of all elements

in 21 whose coefficients are polynomials with respect to the coordi-

nates in K We wish to show that \_W,X'\ = D(X) for all Ze2l0.

(III) To show the fact that D(X)(0) = 0 if a vector field Xe 21
satisfies /pf)(0) = 0 for some integer r, independent of X.

Here we apply the following lemma.

Proposition 1.3. Suppose that (/), (//) and (III) are established

for a DeD(2l), and that adW(2l)c2l where W is the vector field

obtained in (I). Then D = adW on 21.

Proof. Put D' = D-adW, then D' is a derivation of 21, zero on 210.

A vector field Xe21 is decomposed for any point peV as X = X{ + X2

such that X^E^-Q and jr(X^(p) = Q, because there exists a coordinate

transformation cp with polynomial coefficients such that <p(p) = 0 and

2L By (II) and (III), we get



218 YUKIHIRO KANIE

D'(X) (p) = D'(XJ (p) + D'(X2) (p) = 0 + 0 = 0 (peV).

Hence D = ad W on 51. Q. E. D.

We also apply the following.

Proposition 1.4. It is sufficient for (III) to prove the following:

(III') // a vector field XE& satisfies ;r(Z)(0) = 0 for some

fixed integer rgrO, then there exist a finite number of vector fields

yl5..., Y2qe$t such that

X=EilYi,Yi+q] and

Proof. We get

Yi9 D(Yi+qy](Q)}

= 0 + 0 = 0.

Q.E.D.

1.4. In §2, we shall prove that any DeD(5l0(M)) is localizable

(Corollary 2.5), and show (IIF), Proposition 2.6, for 9Ifl(M). In §3,
we pass through the steps (I) and (II) in §1.3 above for ^(w) = 5I0(R

2n+1),

Proposition 3.2 and Lemma 3.4. Moreover we obtain the main theorem

for $l0(n), Theorem 3.3.

In §4, we clarify the relations between $IT(M) and 2l£(M), and

prove that any DeX)(5l;(M)) is local (Proposition 4.4), and any D

eD(9It(M)) is localizable (Proposition 4.5). In §4.4, (III') for UIT(M),

Proposition 4.6, is proved. In §5, the steps (I) and (II) for $l;(ra) =

3l;(Rn), Proposition 5.6 and Lemma 5.9, are proved. Moreover we

obtain the main theorems for ^(n) and $IT(n), Theorem 5.7 and 5.8

respectively.

In §6, we describe the outline of the proof of the main theorems

for Sl^R2"), 2^(R2n) and 9I(R") in this direction.
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§2. Contact Vector Fields

2.1. Properties of Contact Vector Fields. Let (M2ll+1,0) be a contact

manifold of dimension 2?i + l. Here we do not need the geometrical

meaning of the contact vector fields except the following well-known

two lemmata.

Lemma 2.1. Let * be a mapping from $J0(M) to C°°(M), which

assigns X* = ix9 to X e $10(M), where ix9 is the interior product of

X and 6. Then the linear mapping * is bijective.

By this lemma, the inverse b: C°°(M)-» $10(M) can be defined, and

we can introduce the generalized Poisson bracket (( , )) in C°°(M)
as follows:

In this way, C°°(M) becomes a Lie algebra isomorphic to 9lfl(M) under
#

Lemma 2.2 (Darboux). Around any point p of a contact manifold

(M2n+1, 0), there exists a coordinate system (z, x ls..., xn, yi9...9 yn)
n

such that 0 is expressed as 6 = dz— X JV^r

The mapping b and the generalized Poisson bracket are written

in this contact coordinate system as

i=i l yi z 1=1 yi Xi j=i Xi l z yi'

and

(2.2) ((/, g)) = {/, g } X t y -fz(g - £ ^ ) + ̂ z(/- £ y/)
j j

for any /, g e C°°(M), where { , ^ is the usual Poisson bracket in

Xj,...^,,, y^...,yn variables, that is,
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Here we have the following.

Proposition 2.3. Let X be a contact vector field on M, and U any

open subset of M. Assume that \_X, F] = 0 on U for any 7e5l0(M)

with support contained in U. Then X = Q on U.

Proof. Suppose X(p)^Q for some point p of U. Let V be a

coordinate neighbourhood of p with contact coordinates (z9 xl9...9xn,

yi9...9 yn) around p. Since X is contact, for the function f=X*, one

of /(p),/,,(P) o T f y i ( p ) ( l £ i £ n ) is not zero by (2.1).

Case 1. The case where /(RMO. Let g be a function whose sup-
port is contained in Ur, and equal to z in a smaller neighbourhood

U" of p. Then we have

((f,9»=-zfz+f-yjfyj in U"
J=l

and so ((/, #)) G?) =/(]?) T^ 0. Hence we have by (2.1)

This contracts our assumption that [X, 0b]=0.

Case 28 The case where fXl(p)^Q or fyi(p)¥^§. The same arguments
as above are also valid here if we take into account the following
equalities :

Q.E.D.

Proposition 2.4. Any derivation of $le(M) is local.

Proof. Suppose that Xe2l0(M) is identically zero on an open subset
U of M. For any Ye 210(M) with support contained in U9

[D(X\ F] = D(IX9 YD - [X, D( 7)] = 0 - 0 = 0 on U .

By Proposition 2.3, we get D(X) = Q on U. Q.E.D.
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Corollary 2.5. Any derivation of 5I0(M) is localizable.

Proof. This follows directly from Lemmata 1.1 and 1.2. Q. E. D.

2.2. Proposition 2.6. Let X be a contact vector field on M such

that j4(X)(p) = Q at a point peM. Then there are a finite number

of contact vector fields Yls..., Y2q on M, and a neighbourhood U of p

in M such that

and

Proof. By means of a contact coordinate system (z, Xj , . . . , xn,

)>i , . . . , yn) around p, the vector field X and f=X* are written as

xi + h*+*dyt),

We assume that j4(7?)(0) = 0 and j3(/z*)(0) = 0 for all /. Then the as-
sertion follows from the next proposition. Q.E.D.

Proposition 2.7. Let f be a function on R2n+1 with J4(/)(0) = 0.

Then there are a finite number of functions gi,-..,g2q such that

q

/=£ ((0* &+«)),

and

Proof. Case 1. The case where /z=0. Assume that 73(/)(0) = 0.

Then by Proposition 2 in [3], there are functions gl,...,g2t such that
)=0 (lg/^2«), and /=
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Case 2. The case where / is written as f=z2h. Assume that
j3(/)(0) = 0, that is, j1(/i)(0) = 0. Put

then J2(0)(0) = 0, and

By the above arguments, we may assume that / is expressed as

with

Case 3. The case where

a) The case where Pj^2 for some j. We may assume that / is
f yi

written as f=zx\h(x,y). Put g = \ h(x, y)dyly then ./2(0)(0) = 0, and
Jo

V) Assume that p1=p2 = l. Then by means of the following contact

transformation cp, this case is reduced to a):

Case 4 The case where r^rgl, that is, Zqi'^3.

a) The case where ^-^3 for some j. We may assume that / is

written as f=zy\h(x,y). Put # = \ Ih(x9y)dxl9 then ;1(fif)(0) = 0J and
Jo
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b) The case where q^ = 2 for some j. We may assume that / is

written as f=zyly2h(x, y). By means of the above transformation cp,

this case is reduced to a), because 3yly2 = ̂ /2 yl —<^2y\ + y\

c) Assume that ql = q2 = l. Then by means of cp, this case is

reduced to b). Q.E.D.

We have a corollary of Proposition 2.6.

Corollary 2.8. Let D be a derivation of 9le(M). If X is a contact

vector field on M such that j4(X)(p) = Q for a point p of M, then

Proof. This follows directly from Proposition 1.4. Q.E.D.

§3. Derivations of 9I0(i»)

3.1. Structure of 2Ifl(n). We consider the natural contact structure

6 = dz—^yidxi in the Euclidean space R2n+1. In this section, we will
i

study derivations of the Lie algebra ^le(n) = ̂ le(R
2n+i) of contact vector

fields on R2?l+1. At first, we note the following.

Lemma 3.1. A vector field X = h°ds+ £, (hidXi + hi+adyt) on R2n+1

is contact, if and only if it satisfies the following equalities:

(*)i h^t^jhit (l

- t yJh$=hi

coefficient functions hi+n ( l ^ fgn ) arg determined by /i°, ft1,..., /i".

Proof. Since Jf is contact, Lx6 = g6 for some function 0. The

assertion follows easily from this. Q.E.D.

Let 93 = 5B0(n) be the Lie subalgebra of 9I = 9lfl(n) spanned by
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There hold the following relations among them:

[Z, X,] = [Z, yj = [jf (, x,.] = [7;, Yd = o, [*„ y/j = §uz ,

[z,/]=2z, K, /]=*,, [y,,/] = y, (ig

where <5y is Kronecker's delta.

For an integer p, we define the subspace 21> of 51 as follows:

where 910 is defined in §1.3. We have immediately that [8P,

and that 9I0 is an algebraic direct sum of 3lp's. We remark the fol-

lowing facts which will be applied later:

ii)

3.2. Now we will solve the equation (E) for (9I^n

Proposition 3.2. Lef D be a derivation of %ld(n). Then there exists

a unique vector field W in $MX) such that

(E) D(X) =[W,X] for all

The proof of this proposition will be given in §3.3. Here we deduce

from this proposition the following theorem, a local theorem for contact

case.

Theorem 3.3. Let D be a derivation of 5I0(n). Then there exists

a unique vector field W in 3I0(w) such that

D(X) = IW9 X"] for all XE 2I0(n) .
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In other words, any derivation of ^0(n) is inner.

Proof. To prove this theorem, it is sufficient to show that if D

is zero on the subalgebra 250(w), then D vanishes on the whole UI0(?i).

Its proof is reduced to the next lemma by Proposition 1.3 and Corollary

2.8. Q.E.D.

Lemma 3.4. // the derivation D of 9I = $10(X) is zero on ?B = 5

then D is zero on 210 f
or W.

Proof. Assume that XE^P, p^O, defined in §3.1. The proof is

carried out by induction on p. Let hl (Ogi^2n) be functions on R2/l+1

defined as

Apply D to [Z, X] e ^~2 and [Xh X~\ e Wp~ l (1 ̂  / g w). Then

by the assumption of induction, [Z, D(Xy] = [Xl9 D(X)] = 0, so that

/4 = /ziJ = 0 (Og/g2w, 1 gj^?i). Hence, by the equalities (S)2 in Lemma

3.1, we get that

/i'+« = 0

Apply D to [y;., A'leSr*"1, then

o=[y,,

so that hl = h°. and ftjf=0 for Ig f , j'^n. Hence, by the equalities
(*)! in Lemma 3.1, we get that

and so /z° is a constant.

Apply D to the both sides of pX = [I, X], then
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Since p^O by assumption, we get /i°=0. Hence D(X) = Q. Q.E.D.

3.3. Proof of Proposition 3.2. We consider the equation (E) for

(2l8(n), 930(n)). Let us construct the vector field W as a sum of Wt,
W2, W3, W4e%(n) as follows:

a)

b) D(X^ = lWl + W2,Xl~], [_W2, Z] = 0

c) Z)(19 = [FFi + W2 + W3, YJ, IW3> Z] = IW3, X,-] = 0

d)

where

Then D=ad W on »e(n).

Step I. Construction of W^ Define the functions hl on R2n+1 by

D(Z) = h°dz+ ± (h'dxi + ht+»dyi).
i=l

Put the functions cp\ and define the vector field Wl on R2n+1 as

O, x, y)- yjh\0, x, y))
o j= i

Then Wl satisfies a). Moreover,

Lemma 3.5. WL is a contact vector field, or W1

Proof. Let us prove for Wl the equalities (#)i and (S)2 in Lemma
3.1.
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(if)!. Put ^i = q>^l-f.yj9Jiri- Then ^(0, x, y)=0 and

= 9?,,,- t yjVij^l^- t yjhi,=Q

7=1 7=1

by the equalities ($)i for D(Z). Hence ^ = 0 for l^ ign.

(*)2. Put & = ̂ ( J>j<piz-??z)-^ + <P\+n + ^U • Then

7=1 7=1
, x, j;) = 0. Moreover taking into account (p{z = hj (Ogj^2n)5 we get

Xfa = ̂ i( ^-fc?)-^ +fcl+»+ ^f = 0
7=1 7=1

from the equalities (*)2 for D(Z). Hence Xf = 0 for 1^/^n. Q.E.D.

Step II. Construction of ^F2. Put D1=D-ad»^1, then D,(Z) = 0.
Define the functions // on R 2 w + 1 as

Apply D! to [Z, X;]=0 and [X,, X4]=0, then we have

y - -/&-)aw} = o .

Hence

Therefore we see easily that there exist functions <p{ (Q^j£2ri) satisfying

<7>L=0, <p{xi=fj
t

We put

<pi(0, 0, y)=0

and

, 0, y) =/J(0, 0, y) - S yJJ(°. °' ^) (1 ̂ J ̂  »),
fe— 1
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Then the vector field W2 satisfies b). Furthermore,

Lemma 3.6. W2 is a contact vector field, or W2

Proof. Let us check (#)l and (#)2 for W2.

(tt)i. Put ^ = <p8,,- Z )Y?2yi (l^i^n), then i^(0, 0, j;) = 0; tfrte = 0,
7=1

>/W = V8,,»t - f^jViyit* =/?„ - t^^,, = 0

by the equalities (*)! for Dt(Xk). Hence ^=0 for l^z^n .

(#)2. Put Xi = fl»!s+"-vL,+ t ^»,- Then
7=1

/;(0,0, y)=0; /fz = 0,

Xi* =/i+" -/?„ + E ^/i,, = 0 (1 ̂  i, k £ »)
7=1

by the equalities (S)2 for Di(Xk) because fj
kz = 0. Hence Xt=Q for

Q.E.D.

Step III. Construction of IF3. Put D2 = Dl-adW29 then D2(Z) =
0 = 0 for l^i^n. Define the functions g{(Q<^j<^2n) on R2"+1 as

Apply D2 to [Z, 7J=0 and [Xk9 Y^] = dikZ9 then

Apply D2 to [Y;, lfc] = 0, then we have

(0S,t + 0t-0i-0?,Jdi + t,(0]

Hence,
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By (#)i for D2(^)> we get from the second equalities above that

9kyi=
 J= =

and so

By the above equalities, there are unique functions (p{(\.^j^2n) such
that

and

Finally there is a unique function cp% such that

and (jog(0) = 0. Put

then the vector field W3 satisfies c). Moreover,

Lemma 3.7. W3 is a contact vector field, or W3e$le(n).

Proof. W3 satisfies trivially the equalities (S)2 in Lemma 3.1. Let

us prove the equalities (tt)^ Put

i J=l

then
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and by (fl^ for I>2(Ti)» we §et

Hence ^ = 0 for l^i^n. Q.E.D.

Step IV. Construction of W4. Put D3 = D2-adW3, then D3(9ll>) = 0

for p^ — 1. Apply D3 to the both sides of the equalities

then by the same arguments as in the proof of Lemma 3.4, we get

D3(I) = adz for some constant a.

Put W4 = 2~iadz. Then W4 is a contact vector field and satisfies

d), or

Lemma 3.8. W4 = 2~1adz is a unique solution of the equations

above.

Proof. As in the proof of Lemma 3.4, we see from the fact [W49

$K] = 0(p=-l) that W4<=Me(n) must be a constant multiple of dz.

Put W4 = cdz for some constant c, then £3(/) = [^4, /] = 2cdz. Hence

a = 2c. Q.E.D.

The vector field W= W1 + W2 + W3-\- W4 is a required one, and the

uniqueness of W is guaranteed by the lemma above. This completes

the proof of Proposition 3.2.

§4. Volume Preserving Vector Fields

4.1. Lie Algebras $lt(M) and 2I;(M). Let M be a connected

manifold of dimension n, and t a volume element on M. Then we get
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immediately from the definitions of S21T(M) and S21£(M),

and 31T(M) is an ideal of codimension 5g 1 in S21^(M). Moreover

Lemma 4.1B 2lt(M) is of codimension 1 in ^(M), if and only if

the volume form i is exact, that is, -c = da for some (n — i)-form a on

M.

Proof. Let T be exact, that is, i = do- for some (n — l)-form a.

Then the equality iwi = a determines a vector field W by the non-
degeneracy of T. Hence,

Lwi = diwt = da = i ,

so that W lies in 2I;(M), but not in
Let 2lt(M) be of codimension i in 2l£(M). Then there is a vector

field X such that LA/C = T. Put O-=/XT, then i = d(r. Q.E.D.

4.2. Properties of Volume Preserving Vector Fields. Let X be a
volume preserving vector field on a manifold (M, T). Then IXT is a

closed (n — l)-form on M, and so the restriction rv(ixi) is exact by

Poincare's lemma for a sufficiently small open subsets U of M, that is

ru(ixt) = du, for some (n — 2)-form a on 17. In global, any (n — 2)-form
a on M uniquely determines the vector fields X = X[(x] in 2It(M) by
the formula ixT = da.

In a coordinate neighbourhood (7 with coordinates (x1?...,xw) such
that t = dxi/\~- f \ d x n in I/, any (n — 2)-form a is written as

where d0- = dx^ A • • • A dxt A • • • A dx7- A • • • A dxn, and /0- are functions on 17
for l^i<j^n. Then we have the following.

Lemma 4.2. For arcj; ^wo functions f and g on U,

on
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where { , }tj is the Poisson bracket in xt and Xp that is,

{/•> g}ij =fxigxj -fxjgxi (i ^ * <j ^ ») •

Proof. We have

xLfoul = ( - i)i+J'- 7, A, + ( - i)l+7/, A, •

hence,

Q.E.D.

4.38 Derivations of

Proposition 4.3e Let X be a conformally volume preserving vector

field on (M, T), and U any open subset of M. Assume that [X, 7] = 0

on U for all 7e5lT(M) with support contained in U9 then X = Q on U.

Proof. Let p e U and U' a coordinate neighbourhood of p in U

with coordinates (xl9...9xn) around p such that T = dxl A ••• l\dxn in U'.

Denote dXi by ^ ( I g f g n ) . Put X=J^fidi for some functions ft on

I/'. Since the vector fields ^

Ldi9X]=±^j)dj^Q (l£i£ri) in I/',

and so dt(fj) = 0 for all 1,7.

Since jc^eSl^U') (i*j),

lX9Xidj]=ftdj = 0 in [/',

hence all ft are zero in U'. Therefore X(p) = Q for any pell.

Q.E.D.

Proposition 4.4. ,4/ij derivation of 9lt(M) or ^(M) is
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Proof. By the same arguments as in the proof of Proposition 2.4,

the assertions for ^l^(M) and 31T(M) follow from Proposition 4.3.

Q.E.D.

Corollary 4.5. Any derivation of S21T(M) is localizable.

Proof. This follows from Lemmata 1.1 and 1.2. Q.E.D.

4.4. Proposition 4.6. Let X be a volume preserving vector field

on M such that j2(X)(p) = Q for some point p of M. Then there are

a finite number of volume preserving vector fields Z1,...,Z2g on M and

a neighbourhood U of p such that

<i
%\LJ— S [Zj> Zi+q]\v

and

Proof. Introduce a coordinate system (xl9..., x,,) around p such

that i = dxi A ••• f\dxn. Then, by the arguments in §4.2, the assertion

follows from the next proposition. Q.E.D.

Proposition 4.7. Let a be an (n — 2)-form on R" such that J3(a)(0)

= 0, then there exist a finite number of (n — 2)-forms /?i,. . . ,/?2<? on R"
such that

and

J2(&)(0) = 0 for l^i^2q.

Proof. Clearly it is enough to show the assertion for the case

a=/(x1?...5 xn)dx3 A ••• A dxn=fai2

with J3(/)(0) = 0. Such a function / can be written as a finite sum of

functions of the following type:
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} = xr£xrj...xr
n

nh(Xi,..., xn)

with i; r^4.
i=l

Case 1. The case where r^2 or r2^2. We may assume that

/ is written as /=xf/i(x l9..,, xn). Put

r*2
0 = 3-M h(xl9...,xn)dx2,Jo

then j2(#)(0) = 0, and {*?, g}i,2 = 3xlgX2=f, that is> bv Lemma 4.2,

Case 2, The case where r, and r2^l. Then 2] ^^2. We may
i=3

assume that / is written as f=xixjh(xl,..., xn) for some /, j^3. Put

h(x !,..., xn)dx2, then j2(^)(0) = 0, and {x^^-, g}i2 = xixjgX2 = f.

Then by Lemma 4.2,

-\-\. Q.E.D.

We have a corollary of Proposition 4.6.

Corollary 48. Let D be a derivation of $tT(M). // X is a volume

preserving vector field on M such that j2(X)(p) = Q for a point p of

M, then D(X)(p) = Q.

Proof. This follows directly from Proposition 1.4. Q.E.D.

§5. Derivations of 21T(R") and $I;(Rn)6

5.L Structure of 9Ii(w). We consider the natural volume element

-c = dx1/\-" /\dxn in the Euclidean space R". In this section, we will

study derivations of the Lie algebras 9lt(n) = 9IT(R") and 9I;(n) = 9I;(Rfl)

of volume preserving and conformally volume preserving vector fields on

R" respectively. At first, we note the following.

71

Lemma 5,1, Let X=J^fidi be a vector field on R". Then X is
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volume preserving if and only if X ^(/f) = 0, and is conformally volume
M i= 1

preserving if and only if £ <%/;) =c /or some constant c.
i=l

Proof. This follows from direct calculations. Q. E.D.

Let 33 = 33;0?) be the Lie subalgebra of 5l = 5l;(n) spanned by

There hold the following relations among them:

Here we note that the vector field / is not volume preserving be-

cause LIt = m, and that

For an integer p, we define the subspace $lp of 51 as follows:

where 210 is defined in §1.3. We have immediately that [W, 8I«]c:8li|+«,

and that 210 i
§ an algebraic direct sum of 5lp's. Moreover,

i) 91* = {0} (p^-2),

ii) a-1 =2:^^,.
i= 1

5.2. Relations between D(2lT(n)) and D(9I;(n)). First we refer
the following results of V. I. Arnold [1].

Lemma 5.2. [8lt(n), 9lT(n)] = 2It(w).

Note. This lemma can be also obtained by the analogous arguments

as in the proof of Proposition 4.6.

Now, we have the following two lemmata.

Lemma 5.3. [9J;(n), 2l;(n)] = W^ri).
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Proof. This follows from the inclusion [2l£(w)5 ^(n)] c S2(t(n) and

the lemma above. Q.E.D.

Lemma 5.4. Let D be a derivation of 5l;0), then D(9lT(n)) c 21T0).

Proof. By Lemma 5.33 a vector field ^e$JT(X) is written as

by means of a finite number of Y1,..., Y2qeWr(n). Then we have that

D(X)= E (WYJ, yt+,] + [y,, D(y(+,)]>
i=l

is volume preserving, by Lemma 5.3. Q.E.D*

5.3. Now we will solve the equation (E) for (2l;(n), 93{(n)).

Proposition 5.5. Le? D be a derivation of ^(n). Then there

exists a unique vector field W in 2l^(«) such that

(E) D(X) = [W;Ar] /or all Xe93;(n).

Proposition 5.6. Lei D be a derivation of 2It(n). T/2en t/iere exisfs

a unique vector field W in 2t^(w) such

(E) /)(^) = [^?^] /or a//

n2tT(n)) /or 2J-1 anc/ 21° d^ned m §5.1.

The proof of these two propositions will be given in §5.4. Here

we deduce from these propositions the following theorems, local theorems

for the volume preserving case.

Theorem 5*7. Let D be a derivation of ^(n). Then there exists

a unique vector field W in ^(n) such that D(X) = [W, X~\ for all

X E 2l£(n). In other words, any derivation of ^(n) is inner.

Theorem 5.8. Let D be a derivation of %lT(n). Then there exists

a unique vector field W in 2I^(n) such that
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= [W,X] for all XeWr(n).

In other words, the ideal of inner derivations of $lT(n) is of codi-

mension 1 in the derivation algebra of $lT(w).

Proof of Theorem 5.7. It is sufficient to show that if D is zero

on the subalgebra 33^(rc), then D vanishes on the whole $l;(n). Its

proof is reduced to the next lemma by Proposition 1.3 and Corollary

4.8. Q.E.D.

Lemma 5.9. // a derivation D of 2l = 9l£(n) is zero on 23 = 33^(«),

then D is zero on 310 for 21.

Proof. Assume that Xe^lp, p^Q, where 2lp is defined in §5.1.

The proof is carried out by induction on p. Define the functions ft

on R" as

D ( X ) = f i d i .

Apply D to [_X i, X]e^-J (1^/^n), then we get

Hence all fl are constants, so that D(X) e 2f ~ l .

Apply D to the both sides of pX = [I, X], then we get

Since p^O by assumption, D(X) must be zero. Q.E.D.

Proof of Theorem 5.8. By Proposition 1.4 and Corollary 4.8, it

is sufficient to show that if D is zero on the subalgebra %$T(n)9 then D

vanishes also on 511 (defined in §5.1). Here note that 9I1 consists

of all volume preserving vector fields whose coefficients are homogeneous

polynomials of degree 2.

As in the proof of Lemma 5.9, we get that D(X)E(H~1 for XeSI1.

Moreover we see that [D(X), Y]=D([X, Y]) for all Ye 31° n 2lt(n).

By simple calculations, we get that D(X) = Q for all ZeSl1. Q.E.D.
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5.4. Proof of Proposition 5.5. Let us consider the equation (E)

for (8l;(n), »;(n)). We construct the vector fields Wl and W2 e Sl#i)
as follows:

a)

b)

where ^ = 3, ( l^i^n) and I=flxidi. Put W=Wl + W2 then D =
i=l

on »;(n).

Step I. Construction of IF18 Define the functions ftj on R" as

Apply D to the both sides of [-Yf, JTJ = 0, then we have

.

and so

Therefore there exist unique functions cpj(l^j^n) such that

and

Put Wl = — X ^i^p then the vector field PFj satisfies a). Moreover,
i=l

Lemma 5.10. W1 is a conformally volume preserving vector field,

or W1eW&ri).

Proof. Since Xk is volume preserving, then by Lemma 5.4, D(Xk)

is volume preserving, that is,
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Put \l/= Z d^cpt), then we have
1=1

8M) = 3*( ± fu) = £ dtfu) = 0 (1 g fc g n) ,
i= l i= l

hence i^ is a constant. Then by Lemma 5.1, W1 is a conformally

volume preserving vector field. Q. E.D.

Step II. Construction of W2. Put D' = D-adWl9 then D'(M-l) = Q.

Define the functions gi on R" as

Apply D' to the both sides of \_XJ9I~\ = XJ9 then we see as in the

proof of Lemma 5.9 that all gt are constants.
n n

Put W2= Z 9i^t= 2 0i(P)dr Then PF2 is a volume preserving
i= l i= l

vector field and satisfies b), or

Lemma 5.11. W2= Z ^A 's a unique solution of the equations
i

above.

Proof. As in the proof of Lemma 5.9, we see from [FF2, 5l~1] = 0

that W2 must be a vector field with constant coefficients. Put W2
n

= Z 0A, then

Hence a,- = ̂ f for l^i^n. Q.E.D.

The vector field W=W1 + W2 is a required one, and the uniqueness

of W is guaranteed by the lemma above. This completes the proof of

Proposition 5.6.

Proof of Proposition 5.6. It is sufficient to construct uniquely the
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vector fields Wl9 W2e^(n) as follows:

a) D(X) = \W19X] (

b) D(Y)^\Wl + W29 7], [JF2,*]=0 (

The construction of W1 exactly the same as in the proof of Proposition

5.5. And one can construct easily a unique W2 by the similar way
as in the hamiltonian case [3]. Q.E.D.

§6. Remarks on Derivations of ^l^(M) and 9l£,(n)

6,1, Hamiltonian Vector Fields. Let (M, CD) be a connected sym-
plectic manifold. By the analogous arguments as in §4, we get the
following propositions.

Lemma 6.1- 9lw(M) fs an Ideal of codimension :gl in 9
Moreover the codimension equals to one, if and only if the symplectic

form co is an exact 2-form.

Proposition 6.2. Any derivation of 2l£,C^O is local.

Proposition 6.3. Any derivation of 9IW(M) is hcalizable.

Since Proposition 1 in [3] is nothing but the assertion (IIF) for

, we get by Proposition 1.4 the following

Proposition 6.4. Let D be a derivation of 9lw(M). // X is a

hamiltonian vector field on M such that j2(X)(p) = Q at a point peM,

then D(X)(p) = Q.

6.2. Derivations of W^n) and $J4(w). By the similar method as
for the volume preserving case, one can reproduce Theorem 5 in [3],
a local theorem for the hamiltonian case. Let us sketch it here for

completeness.
We consider the natural symplectic structure co=^dxtdxi+n on the

Euclidean space R2n, then we get the following two lemmata similarly

as in §5.2.
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Lemma 6.5 (cf. [1]).

Lemma 6.6. Let D be a derivation of Wa(n) = 2l^(R2"). Then

Let S = <B^(n) be the Lie subalgebra of 9l = 9t('0(n) spanned by

Note that LIo} = 2a), then we get

For an integer p, the subspace 9Ip of 91 is defined as

We can solve the equation (E) for (9l^,(«),

Proposition 6.7. Lef D be a derivation of 9l('rJ(/i). 77? en

a unique conform ally hamiltonian vector field W on R2f l SMC//

(E) D(Ar) = WX] for all

Outline of Proof. The proof is almost the same as the proof of

Proposition 5.5. The vector field W is determined by the values of

D at Xi(\^i^2n) up to constant vector fields (Step I). The value

D(J) determines the constant terms of W(Step II). We see similarly

as Lemma 5.10 that W' = W—W1 is hamiltonian, where W{ is the linear

term of W, $l°-component of W. Applying the derivation D — ad W to

\_Xi9 ai^czSI-1 ( l^f^2n) , we see that D - ad W ' = ad ̂  on 91* (p^O)

and that PFt is conformally hamiltonian.

We get from Propositions 6.4 and 6.7 the following theorem analo-

gously as Theorems 5.7 and 5.8.

Theorem 6.8 (Theorem 5 in [3]). Let D be a derivation of

91 ̂ (w) or 9l^(n). T/?e/i there exists a unique conformally hamiltonian
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vector field WeWm(n) on R2" such that D = zdW.

6.3. The results on the derivations of 5I(n) = $l(R") in the paper

[5] of F. Takens can be obtained more simply in this direction. Let

33 = $(n) be the Lie subalgebra of $l = 3l(n) spanned by

For an integer p, define the subspace 3I> of 9t(w) as

Then we get

Theorem 6.9 (Lemma 4 in [5]). Let D be a derivation of

Then there exists a unique vector field W on R" such that D = adPF

on Sl(n).

Key of Proof. The vector field W is determined by the values

D(Xt)(l^i^n) and £>(/).

§7. The Cohomology &(&; 21)

7.1. The Main Theorem for Flat Cases. The following main theo-

rem for flat cases is obtained immediately from Theorems 3.3, 5.7, 5.8,

6.8 and 6.9 for respective Lie algebras of classical type.

Theorem 7.1. a) Let «=«(R»), «I;(R"), «i(R2") or %,(R2n+1).

b) L^ 9l = 8lr(R
B) or 2Iw(R2n). Then

n9 G)=



COHOMOLOGIES OF LlE ALGEBRAS 243

7.2. Main Theorem, a) Let M be a smooth manifold with a

volume element T, a symplectic structure CD or a contact structure 9,

and let 91 be one of 9I(M), 9I;(M), 9^(M) and 9lfl(M).

b) Le* M be a connected smooth manifold with a volume element

T or a symplectic structure co, and 9l = 9It(M) or 9IW(M) respectively.

Then

HK^^R or 0.

Moreover, H1(9I; 9I)^R i/ and on/y i/ T or co is an exact /orm on

M respectively.

7.3. Proof for 9l(Af) and 9lfl(M). Let us prove that any derivation

D of 91 is inner. Take an atlas {Ui9 <pji6j such that each Ut are con-

nected and simply connected. Since D is localizable, the derivation

Dv. of Sip. can be defined for all ie/ in such a way that ru°D = Duo

rVi. Then by Theorems 3.3 and 6.9 in respective cases, there exists

for any ie/ a unique vector field Wie
(HUi such that DUt = ad Wi on

91 .̂ Since DuorUinUj = DUjoru.f]Uj, we get r l / in£/J(W9 = r^n^(W}) by

the uniqueness of Wv. Hence there exists a vector field JFe9l such that

rUi(W)=Wi for all /£/ and that D = a d W K on 91. Q.E.D.

7.4. Proof for 91T(M) and 9l£0(M). Here we denote 91T(M) or

by 91, and 9l;(M) or 9l^(M) by 91' respectively.

Lemma 7.2. For any Xe9T9 adX is a derivation of 91.

Proof. Let a be t or CD, then

L[XjY](j = LxLY(7-LyLxcr = 0 (Ye 91). Q.E.D.

Let D be a derivation of 91. Since D is localizable, for any open

subset U of M, the derivation Dv of 91^ can be defined in such a

way that ru°D = Du°ru. Then by Theorems 5.8 and 6.8 in respective

cases, we get a unique vector field Wv of 9lfr such that Du = adWu

on 91^ for any sufficiently small 17. By the arguments in §7.3, there
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is a vector field WeW such that ru(W)=Wu and that D = adFF on 91.

Hence by Lemma 7.2, we get the isomorphism D(9l)^9T. Therefore
the assertion follows from Lemmata 4.1 and 6.1 in respective cases.

Q.E.D.

7.5. Proof for 9l;(M) and 9l^(M). Here we use the notations 91

and 81' as in §7.4. Let D' be a derivation of 81', then D = D'|sl is

a derivation of 91 with values in 91'. Since D is localizable, for any

open subset U of M, the derivation Dv of 91^ with values in 9lfr can

be defined in such a way that ruoD = Du°ru, as in the proof of Pro-

position 1.2. If U is sufficiently small, Dl/(9ll/) c 9(t/ by the same argu-

ments as in the proof of Lemma 5.4. Then by Theorems 5.8 and 6.8 in

respective cases, we get a unique vector field Wv e 8l{/ such that Dv

= adWu on 91 .̂ By the arguments in §7.3, there is a vector field

WeW such that rv(W)=Wv and that D = adW on 91.

For any 7e9T and all Ze9I, we get

By Proposition 4.3 and the similar proposition for the hamiltonian

case, we see

D'(Y) = [W, 7] (7£9T).

Thus any derivation D' is inner. Q.E.D.
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