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§ 1. Introduction

Let Q be a domain in R" with the smooth boundary dQ,

We consider the following mixed problem

3, r),

(1.1)
a-.

on Q9

with a mixed boundary condition
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(1.2) a(S, /)|j(xf /) + (l-a(x, t))u(x, 0 = 0 on Z=dQ x [0, T] ,

where v = (vl5 v 2 , . - -» O is the unit exterior normal of 3O and T is an
arbitrary fixed positive number. (We represent the points in Q and dQ

by x and jc, respectively.)

We suppose always that 0^a(Jc, f ) ^ l for (jc, t)eZ and rD = {(x,

OeZ; a(x, 0 = 0}°^^ and rN = {(x, t)el; a(jc, f)^0}^0 where ,4° stands
for the interior of the set A.

Our problems to the equation (1.1) with (1.2) read as follows:

(I) Under what condition on a(x, t), can we prove the existence

of a solution (1.1) with (1.2) for a given data {uQ(x)9 u1(x)9f(x, f)}l

(II) How about the 'well-posedness' of this problem? i.e. regularity

theorem, existence of the dependence domain and <f°°-well posedness.

(Ill) If f(x9 i) = Q and a(5c, i) converges to a^jc) in a suitable

sense as t tends to ±00, then does there exist functions u±(x9 i), solu-

tion of Ou±(x, i) = Q in Qx(— oo, oo) with the boundary condition

ondOx(-oo, oo) ,

such that the solution u(x9 t) of (1.1) with (1.2) (in Ox (-00, oo) and

dQx(— oo, oo), respectively) converges to M±(X, i) in the 'energy9 norm

as t tends to ±00?

We give affirmative answers to the problems (I) and (II) under the

assumptions below:

Assumption (a). a(x, 0 e C*>(Z) and drD( = thc boundary of rD)

forms a submanifold of codimension 1 in 2.

Assumption (b). For each point (x°, t°)edFD, there exist a neigh-

borhood F(jEojfo) and a transformation <P(jEosro) of the class (E), such that

the Jacobian of ^o^o) does not vanish on F(jEojf0) and that the function

&(y, s) = <x,($l£>tto)(y, s)) is independent of s for (y, s) e ^jeo^F^o^o) f) 2).

Remark, The assumption (b) implies that dFD is 'time-like9, i.e.

the movement of SFD with respect to t is not so rapid and 6of the

class (£)' means that the hyperbolicity of the transformed operator
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by $(£0^0) is preserved. Precise definitions will be given in §2 and

there, we will consider some examples of a(x, t) satisfying above assump-

tions.

Theorem A. Under the assumptions (a) and (b), the phenomenon

governed by (1.1) and (1.2) has the same dependence domain as that

of the Cauchy problem for D in the whole space R".

Theorem B. We suppose (a) and (b). Let the data {UQ(X), u^x),

f ( x , t ) } of (1.1) belong to the space C°°(D) x C°°(D) x C°°(5). If they

are compatible2^ of order oo at t = Q, then there exists a solution u(x,

OeC°°(a) o/(l.l) with (1.2).

Theorem C. // the assumptions (a) and (b) are satisfied, then the

problem (1.1) with (1.2) is well posed in £™ (or tf^-well posed). That

is, for any compact set K in Q, an integer m^O and an arbitrary

small number e>0, there exist a compact set K, an integer N>Q

and a constant 5>0 such that if the data satisfy

+ 1(£) = ^

then we have

N/«<K)^fi where K0 = K n (Ox {0}).

(d depends only on e and K n I".)

Summary. In §2, we give the definitions of 'time-like' and 'of the

class (£)' and some examples. And we show that the assumption (b)

asserts that at least locally, the problem (1.1) with (1.2) is reduced to

the following problem.

(1.3)

n

u(y, O) = WQ(> ;)J ws(j, 0) = fii(y)
OH (P fgQ fO) (^K/ j^O fO\ fl \al X

on

2) The definition of compatibility will bs given in §7. See also §4 and §6.
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where a2(y, s; D) is an elliptic operator and ns is the conormal vector

associated with a2(y, s; D).

By extending the data suitably, we may consider the problem above

in the domain cox(0, T), where a* is a domain in R" with the smooth

boundary. That is, we consider the following problem in § 3 ~ § 6.

s) = 9(y*s)
(1.4) { in cox(0, f)9

on co,

on 3co x [0, T] .

As usual, we want to treat this problem (1.4) in the form of an evolu-

tion equation.

fu(i)\ fu(0\ I 0
(1.6) -^-[ \ = stf(i)\ where j^(r) =

\.v(t)J \-a2(y,s;D) -

With the boundary condition (1.5), the operator j/(£) considered in

H1(co)xL2(cD) has the domain D(ja^(r)), changing with t. For the time

being, it seems not so easy to apply the work of T. Kato [16], [17]

to our problem (1.6). So, we follow the idea of M. Ikawa [7], [8].

In §§3 and 4, we consider the problem (1.4) with (1.5) under the

condition that there exists a constant s>0 such that

(1.7). fftf, s) g £ hj(y, s)vj -B on dco x [0, T] ,
j— i

where 5 = (vl9 v2v-5 $n) i§ the unit exterior normal of co at j? and
n Q

S)SLIQ given by a^j, s; D)=2 ̂ hj(y, j) -g— + — .

In §§5 and 6, we consider the problem (1.4) with (1.5) assuming that

(1.8) ai(y, s)g £ fc/y» s)v,. on 5co x [0, T ] ,

by approximating the solution satisfying the boundary condition with
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(1.7)£. In these sections, we follow exactly the idea of [7], [8]. But,

we must pay careful attentions near the point where a(y) changes from

zero, and especially, we use the estimate of A. Melin [19] in the form

of A. Kaji [15], [15]', K. Taira [24].

In § 7, we prove Theorems A, B and C by using the devise of

A. Inoue [13].

In the appendix, we give an example of the system of elliptic opera-

tors with the boundary condition changes its order on the boundary.

Remark. The mixed problem (1.1) with the boundary condition of

the Neumann type was studied fully by R. Agemi [1], M. Ikawa [8]

and S. Miyatake [21]. Moreover, if the oblique boundary condition

is given, then there exist interesting papers of M. Ikawa [9], [10], [11].

But, the boundary condition of the type (1.2) is not studied quite re-

cently. In A. Inoue [14], he suggests that this problem will be useful

to consider the problem with the discontinuous boundary condition.

This is the main motivation of studying this problem. And concerning

this, we will study in the forth-coming paper.

Finally, we express our thanks to the referee for his kind advices.

§2. Time-like Hypersurface and Change of Variables

Definition 2.1. Let F be a submanifold of codimension 1 of the

lateral boundary Z( = dQx[Q, T]) such that F(0 = FnP(0 is a sub-

manifold of dQ and F(t) are diffeomorphic to each other where P(t°)

= {(x9t)ERn+1;t = t°}. We say that F is time-like if it satisfies the

following: For any £°e[0, T], there exists a positive number s^ depend-

ing on t° such that

(2.1) w r(T)c \j {(x, t)eR»+1; |x-x°|2^|T-*°|2} n I

for any s, Ogergej where we put r(f) = $ for £<0 and t>T.

The condition (2.1) means that the movement of F(f) near t=t°

is limited by the 'wave front' set starting from F(t°).

For the future use, we represent the condition (2.1) in geometrical

terms.
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Let p(x°) be the unit exterior normal of dQ at x° e dQ. As F(r°)

is codimension 2 in R", there exists another vector ia(x°, t°) such that

v(x°) and n(xQ, tQ) are orthogonal to each other and they are orthogonal

to F(r°) at x° e dQ9 i.e. the space spanned by ^(x°) and n(x°, t°) forms

the normal bundle of F(r°) at x°. Then, we have the following.

Remark 2.2. Let us consider the trajectory of the point of the

intersection of r(i) with the normal bundle of F(*°) at x°. Then the

condition (2.1) implies that (2.2) the speed of the trajectory at t = t°

is smaller than 1 for each x°eF(£°). (The propagation speed of Q

equals to 1).

Moreover, if dQ is compact, then (2.2) implies (2.1).

Let (x°, t°) be an arbitrary point of F. We may suppose that

(x°, *°) = (0, 0) without loss of generality because Q is invariant with

respect to the translation of (x, i)-axis. By the rotation of the x-axis,

we may take the xn-axe as the direction of the interior normal of dQ

at x°=0. Other axis x' = (xl5 x2,..., x M _i ) give the coordinates tangent

to dQ at Jc°=0. So, in some neighborhood of x°=0, dQ is represented

by *„ =/(*') with a C°°-function /(*') satisfying /(0) = 0 and /Xj(0) = 0

for j = l, 2,..., n — 1. Rotating the x'-axis if necessary, we may suppose

also that in some neighborhood of (x°, *°) = (0, 0), say F(0,o)5 F ^ re°
presented by xn-1=g(x"9i) and xn=f(x", x M _ t ) with another C°°-f unction

g(x", t) satisfying 0(0, 0) = 0 and 0Xj.(0, 0) = 0 for j=l , 2,..., n-2 where

x" = (xi9 x2,-->, xn-2)>

Now, we calculate concretely the condition (2.2).

Lemma 2.3. The condition (2.2) implies the inequality

(2.3) \gt(Q,

Proof. Atx°=0,wehave^(0) = (0, 0,...,0, l)andn(0; 0) = (0, 0,..., 1, 0).

The trajectory of F(t) near ^°=0 at x°=0 on the space spanned by the

vectors i<0) and n(0; 0) is represented by (0,..., 0, 0(0, t), /(O, 0(0, 0))- So

the speed of this trajectory at t° =0 is given by V(1+/i-i(0>0(0» 0)))0?(0, 0).
By the choice of the x-axis and the condition (2.2),we have (2.3).

Q.E.D.
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Let us consider a level preserving transformation <&, (y, s) = 4>(x, i).

More precisely, 0 is given by ^• = (^J.(x, f), j=l, 2,..., n and s = f. By

this transformation $, n is transformed to

(2.4) L = L(y,s:Dy,Ds)

2 +2± d(t)j

ds2 j=i dt dyds i,j^i\ 8t dt

_
8t2 A dx2

k

Definition 2.4 ([4], [13]). If a transformation <i> satisfies that

(2.5) t h e matrix L _ ) i s positive definite f o r ( x , t ) e
\k=i dxk dxk dt dt ) * ^

[ = the domain of (P),

then we say that <£ belongs to the class (E) (or $ is of the class (E)).

Proposition 2.5. Suppose that F is time like. Then for each

(x°, *°)er, there exists a neighborhood V^Q^ and a transformation

$(x°,t°)e (E) which transform F(jEosfo) to a neighborhood F(0 0> of (0,0)

such that (i) ^^(F^o) H O)= F(0>0) n {^ = (^1, ^2v-., J/,); J;«>0}? (ii)

^(jc°frO)(^(«o,rO) H 3Q) = F(o,o) n {yi ^,, = 0] and (iii) ^(jeo,fO)(F(jEoffo) n T(r°)) =

Proof. Without losing the generality, we may suppose that (jc°, f°)

= (0,0)er. Moreover, we may suppose that dQ is represented by

xn=f(xr) and F is represented by xn_1=g(x", i), xn=f(xf) in some

neighborhood F'(0j0) of (0, 0) satisfying the properties enumerated before.

Define a transformation $ as

//' = *'' where /'K.V1, y2,»., yn-2),

(2.6)
and

Then we have
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(2.7) D^UL

where the coefficients are given by

(hn..i(y, s) = -gt(x", t)\(Xit}=0.

(2.8)

n-l

ann(y, s) = l+ 2; /^(x')l(*,o=<i>-'(y,s)»
J~ 1

a/,.0% s) = aBjCK, s) = -fXJ(x')\(Xtt}=0 - 1(yjS) 1 g j ^ n - 2,

n-2

J=l :

bn(y,s)=-gtt(x", 0+"S i
J=l

' , , .

with $~1=the inverse transformation of $. (From (2.6), <P is a dif-
feomorphism with its Jacobian=l.) Calculate {ay(y, s)^ .̂} for any

€=«i, «2,-. WeK"- Then from (2.3), we have

( 1 a,XO, 0)«^(1 -ff?(0, 0)) _S {? .

This means that if we consider the matrix {a^y, s)} in some neighbor-
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hood V(oto) smaller than ^(o,o) = ^(^(o,o)X then the matrix is positive

definite in F(0>0). Putting <P(0i0) = #, F(0>0) = ^~1(^(o,o))5 we have the
desired result. Q.E. D.

The following proposition is proved by easy calculation. See also

the remark in §4 of J. Cooper-C. Bardos [4]. p. 54.

Proposition 2.6. Let a transformation $ be of the class (E).

Moreover, we assume that $ has an inverse transformation W given

by (x, i)=W(y, s), xk = \l/k(y, s) fc=l, 2,..., n and s = t. Then we have

always

(2.9) £ hj(y, s)Vj = 0 on (y, s) E 0(1 n dom <f>) ,
j=i

where j3 = (vl9 v 2 > - - - » vn) is the unit exterior normal of

In the following, we consider some examples of the function a(x, 0

satisfying the assumptions (a) and (b) of § 1.

Example 1. Let Q be given by ^2 = R| = {(x1, x2): x2>0} and let F

be represented by F = {(xl9 0, f); x1=y(t)} with a C°°-function y(f). It

is clear that F is time-like if
dt

a function ae(xl5 t) (e is a positive constant) given by

for all 0<*<T. Consider

Too
where p(s) is the function satisfying p(s) = p(-s)eCg>(R)5 \ p(s)ds = l*

p(s)^0 and suppp = [-l, 1]. Then clearly, {(x±9 t); <*J(xl9 0 = 0} = {(x1,

0; jc^yco-e}, so r.={(xlf 0; *i=y(0-e}=d{(xi, 0; ««(^i, 0=0} is
time-like. The transformation 3> given by

(2.10)

satisfies the conditions of the assumption (b).
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Example 2, Q={(xl9 *2); x? + x%<l} or {(xl5 x2); x? + x%>l}. F=

rl{jr2 where /"^{(jCi, *2); x1=cosyf(0, x2 = sin^(0> ^' = 1.2. If each
yt(t) satisfies

(2.ii) i-yj(02>4-yJ(04 ^———^_T2

_ ^
x(sin27^(r))2,

then Ft is time-like. A sufficient

condition of (2.11) is Ogy-(02^
2

-=-. Now, we define a function OCB(X,

0 by

(2.12) a£(x, 0=«£(cos0, sin0, ()

0

if° J y2W-0 + s \
J~oo \ £ /

ds

Clearly, afi(x, 0 is a C°°-function on 5O x [05 T] if 8 is taken sufficiently

small. We define the transformations ^ as the rotation of axis, that

is,

(2.13)

j>! = Xj cos ̂ (0 + x2 sin yXO = r cos (0 - y

y2 = - Xl sin yt(t) + x2 cos ytf) = r sin (0 - yt(t))

where r =

Then, by easy calculation, we have ^e(E) when

(2.14) l

By (2.11) and (2.14), the transformation 'd^ is of the class (E) in each

neighborhood Vi of /V It is clear that re=r|UF£
2, where r\ = {(cos99
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sin 0, 0 ; 0 = 7i(0 - £}r2 = {(cos 0> sin 0, 0 ; 0 = 72(0 + 4 equals to d{(x, f) ;
ae(jc, 0 = 0} and ^£ is time-like. Moreover, by this transformation,

the function &E(y, s) = a£(<P""1(j;, s)) is independent of s in ^(F^ n £)> £

More generally, we have the following proposition.

Proposition 2.7. Let Q be a domain in R" with the smooth boun-

dary dQ. (For the sake of simplicity, we assume that 8Q is compact).

Let F by time-like in QT. Then, there exists a function OCE(X, f) on

I satisfying the assumptions (a) and (b) of §1.

Proof. As r is a submanifold of

I of codimension 1, there exists a ^ ^<^>r-V^K
'collar' neighborhood Wr of F in I.

We denote Wr(i)= Wr n P(t). Moreover,

as F(f) is a submanifold of dQ of

codimension 1, F(f) divides dQ into

dDQ(t) and dNQ(f). For the point

(x, f) in Pfr(f), we define

where dis((x, t)9 F(t)) represents the length of the shortest curve on

dQ from (jc, f) to F(t), and the sign + (—) is taken when (x9 f) belongs

to dNQ(t)(dDQ(t)). We define a function a£(Jc, t) as

(0 (X, t)edDQ(t)-{(x, r);

(2.15) a£(x, 0 =

Clearly, d{(x, f); oce(x, i) = Q} = {(x, f); d(x, t)=-s} is time-like. For each

point (x°, ̂ °)er, we consider the transformation ^0,^0) constructed in

Proposition 2.5. Then in the neighborhood F(jeojt0) of (x°, t°), dis((jc, f),

T(0) equals to xn.1-g(x", f) where the axis x and the point (x°, t°)

are chosen as in Proposition 2.5. This means that the function a£(x, f)
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defined as above is transformed by this transformation <&(xoito) in

to the function ag(j9 s) independent of s when (y, s) e ^(^^(F^o^o) n £).

Q.E.D.

§30 Energy Inequalities (I)

Let co be a domain in Rn with smooth compact boundary dco,

i.e. co is the interior or exterior domain of dco.

We consider the following mixed problem

' L(t) [«(*, /)]

(3j) =/(*,*) in o>x(0 5 r ) 5

u(x, 0) = n0(x),

a^x, t; D) = 2 hj(x9 t)-— +h(x, f) ,j=i

a2(x,t;D)=- ± df(^t)d
j=l OXj \ J OXi

with a mixed boundary condition

(3.2) <x(x)B(t)u(x, 0 + (1 - a(3c))w(5c, 0 = a(5c)0(5c, t) on dco x [0, T] ,

-a—= Z aux> v,--~dnt i,j^i IJ^ J dxt

= (vly v2,...5 vn): unit exterior normal of co at

where all coefficients belong to ^°°(cox(0, T)) or to ^°°(3cox[0s T]).

We assume that

(a) 0^<x(x)^l,

(b) {xedco; a(x) = 0}^(^ and {JceSco; a(x)^0}^^,

(c) the boundary of the set {xedco; a(jc)=0} forms a submanifold

of dco of codimension 1,
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(d) a2(x, t\ D) is an uniformly elliptic operator i.e. there exists

a constant d>0 satisfying

(3.3)

atj(x9 t) = aji(x,

for all (x, f)ecox[0, T], £ = (£i, £2,..., OeR", and
(e) hj(x, f) and <TI(X, i) are real valued functions and for some

constant e0>0, we have

(3.4) ai(x,t)^<h,vy-£0 on dcox[0, T]

where <fc, v>= |) fc/x, Ovj|S(0.

For the future use, we introduce the following formulation.

(3.5)

u(0)=l/0

(3.6) a

where

« (x, 0
J7(0= /r*.

-a2(x,t:D) -ai(x,t;

Here, we introduce some function spaces attached to the operators

and ^a(0-
We denote by Em (m = 1 , 2, . . .), the space Hm(co) x Hm~ 1 (co) whose

the norm ||| • |||m is given by
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for U={u, v}EHm(o})xHm~1(o}) (Hl(a>) is the Sobolev space of order

I with the norm IH|H*(w). For brevity, we write || • || instead of || • ||L2(<B)).
Remarking that the form

gives an equivalent norm in H^co), we denote by <%?(i) the space H1(co)

xL2(co)( = E1) equipped with the following norm,

11^(0= t
i,j=l

for U = {u, v} eHl(co) x L2(co). ((u, v)= ( u(x)v(x)dx) .
J(0

We denote by Fa(co), the completion of all u each of which belongs

to C°°(G;) and satisfies w(x) = 0 on a(jc) = 0 and ||w||Fa6(a,)<oo where the

norm || • ||Fof is defined by

JdN(o

where dx is a measure on 8co induced from dx and dNo} = {xEBco;

stands for the space Fa(co) x L2(co) equipped with the following

norm.

for 17= {M, i;} e Fa(co) x L2(a)).

Moreover, we denote by ^a(0> the set of all elements belonging

to H2(co) x 7a(o>) such that ^a(0£/ = 0.

First of all, we consider the following elliptic problem

on

(a2(x, t;D) + A)w(x) =/(x) in

where A is a parameter and t is also considered as a parameter.

Then, we have
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Proposition 3.1. Let m be a non-negative integer. Let f(x) e Hm(aj),
+1!2(dN(o) and \l/(x)EHm+3t2(dco).

Assuming that there exists a function u(x)eHm+2(oji) satisfying

(3.7), we have

(3.8) ||ll||Jm+2(tt)£C(||/||£^

where C is a constant independent of u and t, and <->/j*(0w) is the

norm of the Sobolev space of order I on dco.

Moreover, if 1 is sufficiently large, then there exists a function

u(x)EHm+2(co) satisfying (3.7).

Proof. Assume that u(x)EHm+2(co) satisfies (3.7). For sufficiently

large Al5 there exists a function v(x)eHm+2(co) satisfying

<3'9> dv
dnt

where a§(x, *;!>)=- ~-au(x,t)— and $eHm+1l2(do>) is an
i,i=i °xi V vxj J

extension of (f> such that <<?>««,+ i/2(a(u)^C<(/>>Hm+i/a(Sj,(0). Putting w(x)

= u(x)— v(x), we have

We may assume that Aj is chosen large enough such that the following

Dirichlet problem is uniquely solvable:

[ (a°2(x, t; D) + A1)X = 0,
(3.11)

I K\S<a = 9-

We introduce an operator P^Aj) (or, simply P,) as

(3.12) dnt dot

where x is the solution of (3.11). We know that Pt is a positive elliptic
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pseudo-differential operator of order 1 on da*. See, Fujiwara-Uchiyama

[5], Inoue [12], Visik [25]. Using this operator, we reduce (3.10)

to the problem

(3.13) (x(x)Pt + 1 -a(x))w|5co = (l -«(*)) W-v\dJ .

Remarking that a(x) vanishes at least of second order near {Jcedco;

a(x) = 0}, we may apply the theory of Melin [19] to the operator

A2m+3(a(x)Pt+l-a(x)l ^ = (1- j')1/2
5 A1 \ Laplace-Beltrami operator on

da>. (This was proved in Kaji [15] and Taira [24]). And, we have

(3.14) <w|aw>2m+3/2(aro)^C{<(l-a^ where

C is a constant independent of t, (here, we use < • > instead if < • >L2(eo))).

More precisely, see the estimate (4.1) of Lemma 4.1, [24].

On the other hand, w must satisfy that

n co,
(3.15)

on

So, we have

(3.16)

where C is a constant and it may be chosen independently of t. (See,

Miranda [20]).

Remarking that v in (3.9) satisfies

(3.17) IMIi«+2(w)^C(||/-(fl2^^

where the constant C is independent of t (see also Miranda [20]),

we have the desired inequality (3.8).

The existence part of this proposition follows from considering the

adjoint operator. More precisely, see [15], [15]', [24]. Q.E.D.

Remark 3.2e (a) From the proof above, it is obvious that the

problem (3.7) is 'stable9 with respect to suitable lower order perturba-

tions, i.e. adding the operator of order less than one to the equation in

a> or adding the operator of the type a(Jc)cr(Jc)J to the boundary operator

where a(x)e &™(d(D).
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(b) Taking A sufficiently large in (3.7), we have the inequality

(3.8) without the term \\u\\2 in the right hand side when co is bounded.

(See, Agmon-Douglis-Nirenberg [3].)

Using this proposition, we have

Lemma 3.3. There exists a constant C>0 such that for all U

e H2((o) x Vx(ct}) satisfying ^a(0^ = a(x)0 with (f)EH1^2(dNCD)9 we have

(3.18) HI I/HI I ^ C(|| j/(0l/||^(0 +

Proof. Let us put j*(t)U = F={f, g}9 i.e.

[ -az(x, t; D^u-a^x, t; D)v = g.

Rewriting the above relation and &g[(t)U = <x,(x)<l)9 we have

a2(x, t; D)u= -g-a^x, t\ D)f.

So applying Proposition 3.1 to (3.19), we have

^

On the other hand,

Combining these estimates, we have the desired inequality.

Lemma 3.4. There exists a constant C0>0 such that for any U

eH2(co)xV(X(oS) satisfying ^a(f)l/ = a(x)0 with \ |0(x)|2dJc<oo, we
J dnco

have

(3.20) (*®U, V)r.

Proof. (j*(tW, U
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by integration by parts,

+ 2Re[(W) v)-(±bj^

= - - — 1 2 -- — 1 2 vdxdnt

+ 2\ (ff1-<,h,vy)\v\2dx-2RG\ a2uvdx
Jl<a Jt<a

u(x)v(x)dx
dNO>

since er^x, i) — (h, P>^~ e0
 an<i K^) = 0 on a(x) = 0,

\ t;^rfjc-2e0\ |t;|2rfjc--2Re\ a2uvdx
JdNto Jd^M JdffW

{ \(j>\2dx-2e0( \v\2dx + e0( \v\2dx
£Q J^NCD JdifC) Jdffa)

+ J_( \a2u\2dx

On the other hand, we have

|/K| g2||u|| ||t;|| 4- const. ||tt||Hi(<0)||i;|| +const. ||t;||2
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:gconst.||l/||i,(f).

Combining these estimate, we have (3.20).

Corollary 3.5. For all l/e^a(f), we have

(3.21) 11(^-^(0)^11^(0^(^-^)111/11^,) if A>c0.

Lemma 3.6. There exists a constant /10>0 such that for any

/1>/10, U — jtf(t) is a bijective mapping from ^a(0 onto

Proof. Consider an equation in U

(3.22) (U-j*(t))U=F with Ue&u(t),

That is,

a2(x9 t; Dyu + V + a^x, t; D))v = g

where /e Fa(co), g e L2(co). Substituting the first relation into the second,

we have

(3.23) aA(x, t; D)tt = (a2(x, t;

with the boundary condition given by

(3.24) a ( x / - - A ( T 1 w + (T2wV(l-a(x))w=-a(x)o-1/ on

Conversely, if ueH2(co) satisfies (3.23) and (3.24) with /e Fa(co),

then by defining v = hu—f, we see that U={u,v} satisfies (3.22). (It
is clear that if ueH2(co) satisfies (3.24) with feHl(cD\ then weFa(<y)).

Hence, the solvability of (3.22) is equivalent to that of (3.23) with

(3.24). Calculating as we have done in Proposition 3.1, we prove the

desired result.

Lemma 3.7. Let to be any fixed point in [0, T]. Suppose that

F(f)E^a(t0) for all *e[0, T] and F(t\ ^(tQ)F(t) are continuous in
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fo)> then for any l/0e^a(?0), there exists uniquely a solution U(i)

of the equation

(3.25)

17(0) =C70

such that U(i)E&a(t0) for all *e[0, T] and U(t)e £}(($, T);

Proof. Let us denote by J^(£0), the operator ^(tQ) with domain

^a(*0). Then, the closedness of the operator ^(t0) in ^"a00) follows

from the inequality (3.8). In order to prove the denseness of ^a(t0)

in ^aOoX it is sufficient to prove that the set Hl(t0) is dense in Fa(co),

where

And the denseness of H2(t0) in Fa(a>) is proved by integration by parts

and by Proposition 3.1. Moreover, from (3.21) and Lemma 3.6, we

have the estimate of

IKAJ-.rffoOr'llr-.po^-Ao)-1 ^ A>A0.

So, we may apply the theorem of Hille-Yosida (for example, K. Yosida

[26]) to the operator J^(t0). Q.E.D.

Now, we derive the energy inequalities for the solution with non-

homogeneous boundary condition. As ^a(0 changes with t and we will

use the method of Cauchy's polygonal line, these inequalities play an

essential role in the existence proof of the solution for (3.1) with (3.2).

Lemma 3.8. Let u(x, i) belong to <??(H2(oj)) n ^l(V^(o)) n <r?(L2(ft>))

and satisfy

^^

3) <^K(0» T)\ X} denotes the set of functions in t, /-times continuously differenti-
able as ^-valued function on (0, T). For the sake of brevity, we denote it
only by £\(X) abbreviating to write down explicitly the definition domain.
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then we have

(3.27)

where U(i) = {u(x, t\ u'(x, t)}.

Proof.

where

(U, C/)^(r)= . 1 4j(x, t ) ~ , -- for U= {u, »} 6 jf (r) .

Evidently, we have

1(17(0, f (OV.wl

Using the inequality (3.20) and the above estimates, we have

Since ||F(Ollf .(O =!!/(•, Oil2 , we have (3.27) by applying Gronwall's
lemma to the differential inequality above.

We prove now the second energy inequality.

Proposition 3.9. Let u(x, t) belong to <?°(H2(co)) n &t(VJ&)) n
^?(L2(G))) for te[Q, T+d0](d0>Q). If u(x, i) satisfies (3.26) with

f(x, 0 e ffi}(L2(co)) and ^(jc, 0 e ̂ (tf1/2^®)) n ̂ (L2(dNco))9 then the

second energy inequality

(3.28) ||«(-, /)||i»((D)+ ||«'C, Ol l i« („>+ ll«"(-, Oi l 2
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,(<D)+ 1|«"(-, o)p

+L -I3p-(iJdNw y.\x)

OJdftca

/or awy fe[0, T] w/iere c(T) is independent of u(x, t).

Proof. Putting uh(x, i) = h~i(u(x, t+h)-u(x, t)), we have

f LK(x, 0] =/*(«, 0 -!«[«(*,

(3.29) ^

where

/ft(x, 0=^1(/(^, « + /i)-/(x, 0),-..,

Lh[v(x, t + h)~]=-a2h(x, t: D)v(x, t + h)-alh(x, t: D)-~v(x, t + h) ,

a2h(x, t:D)=- _

By applying Lemma 3.8 to the equation (3.29), we get

+C«J'.L
As all functions in the above inequality are sufficiently regular, we may

make h tend vers 0 and we have
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Remark that

and

II U'(0)|li.(0) ̂ const. (I l/(0)||| § + 1|/( •, 0)P) .

Combining these estimates to (3.30), we have

(3.31) ||^'(OIIK(0^c1ee'|||y(0)|||i + ||/(-, 0)||2

(3.30)
2dxdn\

where

OJdNa>

On the other hand, by Lemma 3.3, we have

• , Oil
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by putting the estimates (3.27) and (331) into the above,

\u'(x,0)\*dx
dNco

Remarking the obvious estimates below

and applying Gronwall's lemma to the above inequality, we have the

desired inequality (3.28).

§4, Existence of the Solution and its Regularity

This section is devoted to proving the following theorems by tracing

the idea of Ikawa [7] with some modifications.

Theorem 4.1. Given data {uQ(x)9 II^JG), f(x, t\ 0(x, t)} eH2(cD)xVK(co)

x^.HL^^x^o^^^^co^n^KL2^^))). // the data are compatible

of order 0 at t = Q, i.e. the data satisfy

(4.1) a(

= a(x)(j)(x9 0) on Bco9

then there exists one and only one solution u(x, f) of (3.1) with (3.2)?

belonging to the space *?(H2(o)) n ^K^a(^)) n ^f
2

Theorem 4.2. Suppose that the data {u0(x), u1(x)9f(x9 t\ $(x, f)}
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f m + l
belong to the space Hm+2((o)x [Hm+1(co) n V^co)} x \ n ^?

(k=0

xln ^l-k(Hk+^2(dNco))(]^l+}(L2(dNo}))\ where in is a non-negative
U=o )

integer. If they are compatible of order m at t — Q, then the solution
m+ 1

w(x, 0 of (3.1) with (3.2) exists in the space r\ ^^2~k(Hk((o} n Vx(o)))

In order to prove Theorem 4.1, we begin by considering the opera-

tors L(£0) and ^a00) below.

First of all, we shall treat the existence of the solution for L(£0) and

f0) with non-zero boundary datum.

Proposition 43. Let {u0(x), u^x)} e H2(co) x Fa(co), f(x, f) e <f /(L2(co))

and ^(x, Oe^f°(H1/2(ajVco))n^t
1(L2(ajVco)) foe ^/i?e«. // the condition

(4.2) a(x)f ^ t/0(x)-0-1(x, ^0)w1(x) + o'2(x, t0)u0(x)

+ (l-a(Jc))i/0(Jc)

= a(x)^>(x, 0) (9/7 5co

is satisfied, then there exists one and only one solution u(x, t)e

co)) n ^K^«(»)) n <^2(L2(a>)) o/ ffc

*o) ["(̂  01 =/(^9 0, w G> x (0, T)

«(S)0(x, 0, on da> x [0, T](4.3)

w(jc,0) = wo(x), ut(x, 0) = «,(*)

where U(i) = {u(x, f), u'(x, f)}.

Proof. When $(x, i)=Q, the condition (4.2) means that {u0(x), u^x)}

(?0). So if /(x, f)e^/(7a(G>)), then Lemma 3.7 assures the existence
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of the solution of (3.25). Denoting the first component of 17(0 in (3 .25)

as u(x, t\ we have a solution of (4.3) in ^KV^co)) n ^2(L2(co>)) and u(x,

t)eH2(co). That u(x, t)e#?(H2(o))) is prove by applying the inequality

(3.18) to the problem

~

Moreover, the additional condition f(x, t)e&t(Va(a>)) is removed by

using the fact that #}(Va(co)) is dense in <f/(L2(co)) and the second

energy inequality (3.28) holds for (4.3).

When 0(x, 0^0, we assume, first of all, that $(x, t) is sufficiently

smooth so that we may find a function w(x, i)e&?(H2(co)) satisfying

a(Jc)B(r0)w(Jc, 0 + (1 - a(3c))w(jc, 0 = a(x)<£0c, 0- on da* x [0, T] .

Then, by the above result, we know that there exists a function v(x, t)

e <??(H2(co)) n <?}(Va(co)) n <?2(L2(co)) satisfying

( L(t0)tv(x, tj]=f(x, f)-L(

(

<x))t;(Jc, 0 = 0,

since {UQ(X) - w(x, 0), u x(x) - wt(x, 0)} e ̂ a(^0) and f(x, f) - L(t0) [w(x, 01

e#}(L2(ca)). Putting u(x9 t) = v(x9 f) + w(x9 t), we have a solution of

(4.3) belonging to the space ^(H2(coJ) n <?}(Va(a>)) n <T2(L2(c0)).

We remark that if there exist a sequence of initial data [uko(x)9

Uk1(
x)} e H2(co) x Fa(o>) and a sufficiently smooth boundary datum <^(Jc, 0

such that the following condition are satisfied, i.e.

(4.4) @a(to){uko(x), Wfcl(x)} = a(Jc)^(5c, 0),

(4.5) {ukQ(x),ukl(x)} - >{UQ(X),UI(X)} in H2(co) x Fa(o)), and

(4.6) &(x, 0 — > ««, 0 in ^?(H1/2(5JVo>)) n ̂ (L\d^)) ,

then this proposition is proved. In fact, the solution wfe(x, 0 of (4.3)
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for {wfeoW» wkiC*)} an(i $&(*> 0> exists and the sequence {wfc(X 0} forms
a Cauchy sequence in «f °(H2(co)) n ^/C^C®)) H #2(L2(coJ) where we
apply the second energy inequality to the function uk(x, f) — wz(x, r).

Then, it is clear that the limit function u(x, f) of the Cauchy sequence

{uk(x, f)} is the required solution of (4.3) for {u0(x), u^x)} and cj)(x, f).

Now, let us construct such {wk0(XK wfci(X)} and ^ft 0- It is
clear that there exists a sequence 0fc(x, r) of sufficiently smooth functions

in g}(m'2(dNcD)\ which tends to cb(x, 0 in £?(Hl'2(dNai))nf}(L2(dNcGi)).

So we have

(4.7) <0fc(3c, 0)-^(5c, 0)>Hi/2(awa,) - >0 as fc->oo.

If co is the interior domain of BCD, then by Proposition 3.1, there exists

a function iik(x)eH2(a)) satisfying

( - a2(x, t0;D) + A0)Mk = 0 in co,

9 0)-0(Jc,0)) on

Moreover, it satisfies, by (b) of Remark 3.2, that

(4.9) H w f c l l H 2 (

Putting uko(x) = u0(x) + uk(x), uki(x) = u1(x), we construct the desired

functions.

If co is the exterior domain of dco, we take a sufficiently smooth

hyper surf ace da)± containing dco in its interior and we denote by co^

the domain surrounded by dco and dco^ We solve the problem below.

f (-a2(x, tQ; D) + A0)w fe=0 in col9

a(^)(^(^0)- f c(x,0)) on Sco,

on

Let jS(x) be a C°° function such that /?(*)== 1 near 5co and /?(%) = 0

near and outside of 8co^. Then, putting
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we construct the desired functions. Q.E.D.

Proposition 4.4. Let u(x9 f) belong to ^?(H2(w)) n £t(VK(a>)) fl
for t^t0. If it satisfies

(4.10) o(

[

then for t^t0, the following estimate holds

(4.11)

o

Hl(u>) is the closure of Cg>((w) in Hl(w),

/or I/ = {«(*), «<x)}, 0MU = «(x)<Kx) and

<>K-, 0»2 =<<£(• , 0>Si/2(8H

Proof. As we have done in Lemma 3.8, we have

(4.12) || U(t) || !-.(,o) g ec0(.-..)[" in [/(^ o) in 2. + f ' || F(T) ||
L Jt0

+ C0(' {
JtoJdpfO

where t = t0 is an initial plane for the problem (4.10). Now, suppose

that u'(x, 0 belongs also to <f°(H2(co)) n #}(Va(cQ)) n cf2

Then, remarking that F(0 e @ff(t0) for all r, we have
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d
Calculating —r-||e^(£o)^(OIIJ- (±n\ as in proving Lemma 3.8, we have,at BV 0}

(4.13) to)

' \
toJS

where \\Jif(t0)F(-c)^r.n(M=\jf(t0)F(-i:)\\jrlto) for any T because /(f)e

ffl(H*((o)). Putting the estimates (4.12) and (4.13) into the definition

of III ' III *-«(«,)> we have

+ C0 ( ' (
JtaJdno

f o

We may remove easily the additional condition that u'(x, f) belongs to

space ^(H2(co)) n ^KKr(^)) n ^?(L2(co)) by mollifying the function

w(x, f) with respect to r. (Here, we use the fact that the operators in

(4.10) have the coefficients independent of t.) Q. E. D.

It is clear that there exists a constant C'0>0 such that for any

UeEi and t, t' e [0, T], we have
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(4.14) l|tf|IJr(o^(1+colr-

Moreover, as a(Jc) is independent of t, we have readily

(4.15) \\U\\rK(t>)^ + C'0\t-t
r\)\\U\\^a(t}

 for any

and t, t' e [0, T].

Now, we prove the existence of the solution for zero initial data.

That is,

Lemma 4.5a Let f(x, t)e£}(Hl(co)) and </>(*, Oe*,W2(3*<»)). If
, 0)=0, the mixed problem

(4.16) <x(x)B(tyu(x9 0 + (1 - «(x))ii(x, 0 = <x(x)<Kx9 0 f

a unique solution u(x9 t) in the space

a>)) n *\(y&>)) n *?

o Let Ak: t0 = Q<tl<t2<-~<tk=T be the subdivision of [0,

T] into k equal parts. uk(x, t) is Cauchy's polygonal line for this

subdivision, which is constructed as follows: Let uk0(x, i), defined on

[*o? *il be the solution of

o) [Mfco(x, 0] =/(*, 0 in co x [t0, tj ,

a(x)jB(f0Ko(x, 0 + (1 - u(x))ukQ(x, 0 = a(x)0(x, 0 on(4.17)

and for i^l, uki(x, t), defined on [rf, ̂ -+1], be the solution of

5 0] =/(*, 0 in o> x (f,, ti+ J

*» 0
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The existence of such uki(x, t) (i = 0, 1,..., k— 1) is assured by Proposition
4.3, since the condition (4.2) is satisfied at each t = tr Now, we define

uk(x, t) as

uk(x9 f) = uki(x9 0 if t e [ti9 ti+l~\.

Then, we have

uk(x, 0 e <m#2(o?)) n *}(V.(a>)) for t e [0, T]

and

iik(x,Oe*?(L2(o>)) if

So, we have

uk(x, OeH2(cox(0, T)).

Claim 1. The set of functions {wfc(x, 0} fe = l, 2,... forms a bounded
set in H2(co x (0, T)).

In order to prove this, we shall prove the following inequality

(4.19)

for te[ti, r i+1] (i = 0, 1, 2,..., fc— 1) where the constant Cj is defined in
the following. For f = 0, this is nothing but the inequality (4.11). Sup-

pose that (4.19) holds for i-1, then taking t as ti9 we have

(4.20) |||t7Jfcl

Remarking that aMUk^ = aMUkl.M
 and

«,(x)(j)(x, fj), we have

(4.21)
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In fact,

where we use the estimates below combining with (3.18).

Putting, for example, C1 = Co + 6((C'0 + C'o)r)2, we have (4.21). Ct is

independent of i, k and f. Applying (4.20) to (4.21), we have

(4.22)
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Remarking that ||j*(OF||i(og(l + CJf-f|)||j/(OF|li'(,') for any t, t'
e[0, T], F={0, /} and using again (4.14), we have

On the other hand, applying Proposition 4.4 to (4.18), we have

I I I i/*i(OIII !•„(„)

+ 2C [
Jti

Taking some constant C'o>Q sufficiently large and independent of
fc, i and t, we have

combining with (4.22),

So, redefining the constant Ct suitably and by mathematical induction,
we prove (4.19). Remarking the inequality (3.18), we have, from (4.19),

(4.23) | | [ t / t(OIIII^M(| |[F(r) | | | i + «rK-,i)»2WT for any te[0, T]
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(4.24) \ l~*W (\uk(x,t)\*+\u'k(x,t)
JdN(a %(X)

*)Y}dx for any te[0,

where M' is a constant independent of k, f(x, t) and <]>(x, t). Combin-

ing (4.23) with (4.25) below,

(4.25)
dt Uk(t)'* ^ const. (HI Ut(t) Hi i + HI F(t) HI f) except for t = /,,

we prove our claim.

Define the space Fa(cox(09 T)) as

Fa(co x (0, T)) = tt(x, 0 e H HCO x (0, T)) ; M(JC, 0 = 0 on a(Jc) = 0 and

with the norm given by

By the weak compactness of the bounded set of Hilbert spaces, there

exists a subsequence fcp(p = l, 2,...) of /c, w(x, f) e H2(a> x (0, T)) and

, T)) such that

ukp - > M weakly in H2(co x (05 T)) and

u'kp - > u' weakly in Fa(co x (0, T)) .

Then, we prove easily that the following equations are satisfied.

(4.26) L[II(JC, 01 =f(x, f) in &'(& x (0, T)) .

(4.27) a(Jc)5(Ott(Jc, 0 + (l-a(Jc))ii(Jc, 0 = «(Jc)0(Jc, 0 in HV2(d<Qx(Q, T)).

In fact, (4.26) is proved by integration by parts and we have (4.27)

from the inequality below.
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where (4.18) and (4.23) are applied.

As in [7], we have, for some constant M">0,

(4.28)
}ii

Moreover, by (4.24), we have

(4.29)

L 2 ( c o x ( 0 , r ) ) ~

Claim 2. By exchanging the values of u(x, f) on a set of measure

zero, if necessary, we prove that u(x, f) is a solution of (4.16) belonging

to the space <f f°(H2(c0)) n ^(VJicoJ) n ^2(L2(co)).

Mollify M(X, 0 with respect to ^ as in [7], i.e. let p(f) be C°° func-

tion with support contained in [ — 2, —1] such that p(0=0
foo
\ p(t)dt=l. We define p,(0* by

f°°w/x, 0 = (pacr)'") (x, 0 = \
J-Q

for u(x, OeL2(o>x(0, T+50)), where

Then by (4.28), we have

(4.29) «a(x, 0) - >0 in H2(co).

On the other hand, by (4.29) and (4.28), we have

f jL^
JsNM a(x)

(_T) M(-K 4 V



374 ATSUSHI INOUE

^ const. 5.

This means that

(4.30) "i(*,0) - >0 in

Applying pd(O* to both sides of (4.26) and (4.27), we have

, 0-^")(«, 01

where the operators F5 and Q are defined by

for all re[0,T-50] if 0«5<4p-. By applying (3.28) to u^(x, i)-ud(x,

i), we have the desired result as same as [7]. Q.E. D0

By the density argument, we have

Proposition 4B6. Let f(x, f)Bg}(L2(<D)) and </>(x9 t)e£?(Hl!2(dNa)))
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{\£}(L2(dNcai)) with 0(x, 0) = 0. Then the mixed problem (4.16) has a

unique solution belonging to the space <^p(H2(co)) n <f /(^(co)) n

Proof of Theorem 4.1. As H2(G) is dense in Fa(co), which was

remarked in proving Lemma 3.7, there exists a sequence of functions

converging to wx in Fa(co). And also, there exists a sequence of func-

tions {0fc(x, i)}E#}(H3/2(dNa))) converging to $(x, t) in £®(Hll2(dN(D))

n £}(L2(dNcoJ). As in proving Proposition 4.3, there exists a function

wfc0eH3(co) such that it satisfies

oc(x)( ™k° +(72(x, 0)w fc0 ) + (! —a(x))w f c 0 = a(x)(cr1(x, 0)w f e l + 0fe(x, 0))
\ C'Ho /

on dco

and it converges to UQ in H2(oj). Then, by putting wfe(x, 0 = wfeo + ^wfci»
we solve the following initial-boundary value problem below.

L(0 [vk(x9 0] =/(x, 0 - L[wfe(x, 0] in co x (0, T)

(4.31) QL(5c)B(t)vk(x9 f) + (1 - a(x))^(x, 0 = a(x)^k(x, 0 on 5co x [0, T]

y/c(x, 0) = ̂ (x, 0) = 0

where

+ (<72(x, 0-<T2(x, 0))wk(x, Oj~0fc(*3 0) on Sjyco.

Then, by the fact that f(x, t)-L[wk(x, t)]e£}(L2(coy) and \l/k(x,i)e

^f
1(H1/2(5jVco))n^?(L2(ajVco)) with ^fc(3c, 0) = 0, we may apply Proposition

4.6 to (4.31), i.e. there exists a solution vk(x9 t) e <f?(H2(co)) n ^K^«(w))

n <f 2(L2(co)).

Putting wk(x, t) = t;k(x, t) + wfc(x, t), we may easily deduce from Pro-
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position 3.9 that the functions {uk(x, f)} form a Cauchy sequence in

<??(H2(co)) n *}(Va(G))) n <f ? (L2(a>)). So, the limit function K(JC, 0 is
the desired solution of (3.1) with (3.2). Q.E.D.

In order to prove Theorem 4.2, we begin to define the compatibility

condition of order m.

Definition 4,7. For given data {u0(x)9 u1(x)9f(x9 f)9 0(Jc, 0} eHm+2(c»)

r\ *?
\fc=0 / \fc=0

we say that they satisfy the compatibility condition (or simply, they

are compatible) of order m at £ = 0 for the system {L(0, u(x)B(i) + 1

— a(jc)} when the following relations hold on do).

(4J2) - = a(Jc)^)(x, 0) for p = Q, 1, 2,..., m, and

where (wp(x)} p = 2, 3,..., m + 1 are defined successively by

(4.33) Wp(x)= - / ? 2{4 k )(^ 0; D)tt|,.Jk+2 + fl^(x, 0;

We may prove Theorem 4.2 by applying 'Taylor series expansion in

f, which is employed in [7] without modifications. So we do not

reproduce his argument here.

§5. Energy Inequalities (II)

We consider in this and next sections the following problem.

(iii) a(x)B(t)u(x, t) + (1 - a(Jc))ii(Jc, t) = 0 on dco x [0, T],

where the operators L(i), B(t) are defined in § 3 but the condition (3.4)

is replaced by



MIXED PROBLEM FOR D'ALEMBERTIAN 377

(5.2) ffl(x9 0 ^ <fe(0, *>> on da> x [0, T] .

We remark here that the condition (5.2) and others, i.e. (a), (b), (c)

and (d) in § 3 are invariant under suitable transformations, for example,

a change of space variables and Holmgren's transformation.

Our goal of this section is to prove the following theorem.

Theorem 5.1. Let m be a non-negative integer. There exists

a constant Cm>0 depending on T such that for all u(x, f)eHm+3(co

x(0, T)) satisfying (5.1), we have the energy inequality

(5.3)
m+2

-0,0
2
dx

2
dx

+ z
j=0 W

•,0)
2 m+1 Ct

tfm.J(w)+.?0)0 , -0
2

In order to prove (5.3), we may reduce the problem to the case

when (T2(x, t) = Q by taking a sufficiently smooth function /?(x, t) on co

x[0, T] such that (i) jB(Jc, 0 = 1 on 5cox[0, T], (ii) 2>|j8(x, 01 > i

for all (x, Oecox[0, T] and (iii) -$— P(x, t) + a2(x, 0 = 0 on dcox[Q, T].
Off&f

This is the device in [8]. Now, we proceed as Ikawa did in [8].

We denote by Q an arbitrary domain in R". Any function u(x, i)

eHP+1(Qx(Q,T)) is regarded to belong to r\ £p
t~

k(Hk(Q)) by being
fc=0

changed its values on a set of measure zero of Ox(0, T) if it is neces-
P

sary. For simplicity, we denote the space r\ #p
t~

k(Hk(QJ) by #(p, O)
k=0

and for u(x9 i)e£(p, Q\ we define |||w(-, O l l lpo by

P d V
(5.4) I l l " ( - ,0 l l lp 2 , f l= S

j = 0

and for u(x, i)e#(l, O), we define | |w(-,

i , j= l Jfl t7*i £7^-

+««(•, OP+ 4^-



378 ATSUSHI INOUE

Then, clearly, there exists a constant M>0 such that

(5.5)

for all *e[0, T] and w(x, t)e£(l, Q).

By integration by parts, we have

Lemma 5.2 (Lemma 2.1 of [8]). Let u(x, t)eH2(Qx(Q, T)) satisfy

L(f) [u(x, 01 =/(*, i) in Q x (0, T). Then, we have

(5.6) | |M(. ?OII^)^IIK

II/O,
O Jo JdQ

for all £e[0, T]s w/iere c0 is a constant determined by L(f).

By R£, we denote the space [x = (xf, xj; x'eR""1, xn>0}.

Slight modification of Lemma 2.2 of [8] gives us the following.

Lemma 5.3. Let p(x', t) be a real valued function in ^(R""1

x(0, T)). For any u(x, i)eH3(R"+x(Q9 T)) satisfying u(x", xw_1 ? 0, 0 = 0

for x l j_1<0, we have the estimate

f* n\ OD«\ x/c,i f ' \u~u(x'909s) 8u(x'909(5.7) 2Re\ ds\ p(x, s)— '
)0 JdlCl

-? 0)111 ipH»

for any te[05T] and j=l, 2,..., n-1 and

(5.8) 2Re(f^f p(x',s)-
JO JdR*i
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where CL is a constant determined by p(xr, f)9 e is an arbitrary positive

number and C(e) depends only on £.

Lemma 5.4 (Lemma 2.3 of [8]). For any it(x, t) e H3(R» x (0, T)),

v(x, f)eH2(R£x(0, T)), we have

(5.9) r ds( 4^-(*', 0, j)i>(jc', 0,
o JR^-1 0J

c2 is a constant independent of u and v.

Remarking the estimate (3.8), we have, as same as Lemma 2.4 of

[8], the following lemma.

Lemma 5.5. Let p be an arbitrary integer"^.}. There exists a

constant Mp such that for any function u(x, i)e£(p+\, of) satisfying

(5.1), the following estimate holds for all £e[0, T].

(5.10) |||ii(-, OllllfLca^M^niii^-, 0111?.* + W-, OIII5.«+ll l / (s Olllp2-i,J

The following proposition corresponds to Proposition 2.6 of [8].

Proposition 5.6. Let k be a non-negative integer and cp(x) be a

real-valued function in Cg)(Rn) with a support contained in an open

set V. Let u(x, t)eHk+2(Rl x(0, T)) satisfy (i) of (5.1) in (FnR?)

x(0, T) and (iii) of (5.1) on (V[\ R l l~1)x [0, T]. Then, we have

(5.11)
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/or all fe[0, T], w/iere Ck depends on L, B, a, <p and k and F=FnR?..

Proof. Putting v(x, t) = <p(x)u(x9 t), we have

(5.12) L(0 [i<x, 0] = (\L, <Plu) (x, 0 + v(x)/(xf t)

(5.13) a(x)*(/MS, 0 + (l-a(x))i;(jcf /) = a(x)4j-. i/(Jc, /) .
C/F&j

Diflferentiating these equations fc-times with respect to t, we have

(5. 14) L(f) [t><*>(x, t)] = - £ L0')(f) [»(*-;)(,, ()] + ([L, <p]u)(«(x, 0

/<*)(X, 0,

(5.15) a(x)B(Ouw(x, 0+(l-«(x))f(fc)(x, 0

- &»(t)v (*-J>(Jc, /) + -- ii(*)(S!, *)

Applying Lemma 5.2 to u(fc)(x, f)j we have

(5.16) \\v«\-

o J0F

Remarking that ^(x)eCg)(F) and vw satisfies (5.15), we have

2Re f ds( B(s)vW(x, s)v^k+1\x} s)dx
Jo Jdv
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- * -«(*') vW(x> 0 j)t>(*+1>(jc' f 0, s)dx

j=2

£j=i\j\dm

Here, we remark that dx = dx' = dxidx2-..

Clearly, we have

^ const. (|| M W(-, 0)||i1(r, + ||u(*+1)(-, 0)||£J((?)),

I- S

^ const. HI u ( - ,

and

By applying Lemma 5.4, we have
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Hereafter, we use same letter C or c to represent various constants.

From (5.13), we have

dv I

v(x'9 °9 r) on 8R° n Fn {x' : *(x'

Differentiating both sides (k— l)-times with respect to t, we have

k *

where Bfc_! is a boundary operator of order less than k— 1. So

= 2Re(' rf,f Z1 (a'nj-a'nnJo JaH'>r j=i \ nj ann

By applying Lemmas 5.3 and 5.4, we have

By integration by parts with respect to (, we have
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09 0) | 2 + | v«-V(x'9 09 0) |

On the other hand, we have

-dns

Putting these estimates into (5.16), we have

(5.17) | | i > ( f c ) ( ' , O l l f f ( o + ( l~f^ |u ( f c )(* ' ,0,01

0, 0)|2 + |»<*-1)(x', 0, 0)|2W
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By differentiating (5.13) (k— l)-times with respect to t, we have easily

(5.18)

for any*e[0, T] .

Remarking that

||tt^O)||Jfc+i(^

we have the desired result by taking e sufficiently small.

Proof of Theorem 5.1. Let {<p/(x)}y=1 be a partition of unity in

a neighborhood of da>, namely, (pj(x)eC^CRn) such that

N

Z ^Kx) = ^ *n a neighborhood of da>.

Assume that the support of cpj is contained in a sufficiently small

neighborhood Uj of some XjEdco and there exists a smooth transfor-

mation ¥j = (\l/ji(x), il/j2(x),....> ilsjn(x)) from l/j onto V} in Rw such that

For a function w(x) defined in a domain containing some Uj n c»9

we denote by w/j;), the function defined in Vj n R+ by w/j) = wJ-(!FJ-(x))

Considering that the equations of (5.1) hold in (Uj n co) x (09 T)

or on (C/j n 3o>) x [0, T], we have

(5.19) L/0[fi/*0]=/X)',0 in (V,nR«x(0, 70,

(5.20) a(y')JB/0 [fi/y', OJ + (1 - *(/))fi//, 0 = 0

on (^nR' -^xCO, T],

where
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S2 , „ t

+ (first order term) ,

Bj(t)=-±( ± apq-
dfil d ^ " \ 8 _ , _ dJ i=AP,£i fq dxf 8xqjdyl

 u' ' dt

Applying Proposition 5.6 to (5.19) with (5.20), we have

Therefore, we have

(5.21) |||9X-)«

+ C(e)|||uX-, Ollli+i.

x, 0) I Vx + |||/(-. 0) III Ji
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On the other hand, we have easily that

(5.22) |||(1- £ vX-)2)1 / 2« ("+ 1 )(- ,OIII? i ( 8
7=1

-, 0)111

III/'C", s)IH2.»<fc+f' lll«(', s)|||*+2l<Bds).Jo /

And also, we have for some constant c>0,

(5.23) IK-, oill?.«^ i IWM-, OI I IU+I IKi - i^X' ) 2

for any v(x, f) e &(1, co). Combining these estimates (5.21), (5.22) and

(5.23) with Lemma 5.5, we have

\\\u(' tMll2 4-C I\\\u\ 3 *y m+2 f ca ' \Ja^vto

'' 0) l»

lll/'(-, o)m 2>Bo

Using the relation

and choosing e sufficiently small, we have the desired result by

GronwalFs inequality. Here, we use (5.18) to estimate the term
1 ~ °ffl | iiU>(S, /) 1 2 d x , Q.E. D.

•a, a(x) y| x
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§6. Existence and Regularity of the Solution

Our aim is to prove the following theorem.

Theorem 6.1. For any given data {u0(x), UL(X), /(x, t)} eHm+2(co)

xHm+i(co)xHm+1(Q}x(Q, TJ) satisfying the compatibility condition of

order m at t = Q, there exists a solution u(x, t) of (5.1) belonging to

the space <f(m + 2, co) n ^f+1(Fa(cw)) and it is unique in the space

<f 2(L2(co)) n <r/(F») n <

We will prove this theorem by following the idea of Ikawa [8].

The modification will be necessary to construct a solution of the boun-

dary value problem for a system of elliptic operators.

We give, first of all, the definition of the compatibility condition.

Definition 6.2, The data {UQ(X\ u^(x)J(^ f)} EHm+2(co)xHm+1(a))

xHm+l(cox(0, T)) are said to satisfy the compatibility condition (or

simply, to be compatible) of order m at t = Q for the system

a(x)B(i) + 1 — a(x)} where the following relations hold on BCD.

(6.1) for p = Q, 1, 2,..., m,

and

where up(x)eHm+2~p(a)) (p = 2, 3,..., m + 1) are defined successively by (4.33).

Definition 6.3. S£'(L, E) is the space of all data $ = {w0, M l 3 /}
e Hm+2((D)xHm+i(co)xHm+l(cox(Q, T)) satisfying the compatibility con-

dition of order m, equipped with the following norm.

(6.2) i*iS:(L.B)

2
&

ni,oj

4) This condition is more restrictive than the definition of Ikawa,
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Clearly, S"(L, B) forms a Hilbert space and S%+1(L, B)cSy(L, B).

For the future use, we consider the following boundary value prob-

lem for a system of elliptic operators.

((A-a2(x,0;Z)))wp(x)=/p(x) in to

(6.3)

'" " on

for p = Q, 1, 2,..., m,

where wm+L(x) is given arbitrary in //'(co).

Proposition 6.4. Assume that (o is bounded. Let fp(x)eHm~p(oj),

<£p(x)e#m+1<'2-p(dco) and \lip(x)eHm^l2-f(da>). Assuming that there exist

functions wp(x)eHm+2~t'((a) (p = 0, 1, 2,..., m) satisfying (6.3), we /iaue

(6.4) E ||w,||S»+a-,(ai)^
p=0

where C is a constant independent of wp.

Moreover, if A is taken sufficiently large, then there exist functions

wp(x)eHm+2-p(co) satisfying (6.3).

The proof will be given in the appendix.

The following lemma corresponds to Lemma 3.1 of [8].

Lemma 6.5, Any element of S%(L, B) can be approximated by

smooth elements of Sj?(L5 B).

Proof. Let $ = {u09 w1?/} eS^(L, B). There exist sequences of smooth

functions vjo, vjl and gj converging to w0, ul and / in Hm+2(co), Hm+1(co)

and Hm+ 1 (CD x (0, T)), respectively. We define vjp (p = 2, 3, . . . , m ± 1) by

(4.33) from vjo, vjt and gp and we put
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Then, 7j/(x) (/ = 0, 1,..., m) are smooth functions and y//(x) converges

to yt(x) = ZoQ[(^^^

(d(D). <PeS™(L, B) means that a(x)yi(x) + (l -a(x))w/(x) = 0 for 1 = 0, 1,..., m.
Moreover, there exists a sequence of functions vjm+l(x) converging to

um+1(x) in Fa(w).

Let a> be the interior domain of dca and consider the boundary

value problem (6.3) with putting /p(x) = 0, (t)p(x) = yjp(x) and il/p(x) = vjp(x)

for jf? = 0, 1,..., m and setting wJm+1(x) = i;J.m+1(x)-i;J.m+1(x).5> Then,

by Proposition 6.4, for sufficiently large A, there exists functions wjp(x)
2-*(co) (p = 0, 1,..., m) satisfying (6.3) and

Here, we use that a(x)yp(x) + (1 — a(x))wp(;c) = 0 for p = 0, 1,..., m. So,

\\WjP\\H™+2-p(<o) tends to 0 when j tends to co. We put {UJQ, u j l 9 f j } as

0;

, 0;

where w< / m + 1 = i; i /m+1-i3</m+1. Then, ujp (p = 2, 3,..., m + 1) constructed

from 0j = {uj0, Uj^fj} equal to vjp — wjp. So, the smooth data $,-

belong to S%(L, B) and by ujm+1=vjm+l9 <Pj converges to $ in S%(L, B)

when 7 tends to oo.

When c0 is the exterior domain of dco, by the same device of

Proposition 4.3, the existence of an approximating sequence is deduced

to the case with a compact domain. Q.E.D.

We denote by BE the boundary operator defined by

5) In Lemma 3.1 of Ikawa [8], he puts wm+1=0 without mention it clearly.
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where e is an arbitrary positive constant.

Lemma 6=6, For any element <f> = {w0, u l 9 f } eS™(L, B)5 f/iere exisfs

a sequence $j = {uJ09 Uj^fJeSRL, Bw) (j=l,2,...) such that |4>7-^|s«

to 0 w/zen j tends fo oo,

Proof. Replace the function ^(Jc, 0) of (6.3) by (al- 4-Y^Cx, 0).

When o> is the interior domain of dco, we solve the boundary value

problem (6.3) modified as above, for wm+1(x) = 0, /p(x) = 0,

and ^p(x)=-r-wp+1(x). Then by Proposition 6.4, there exist the

{w/p}1,=o,i,..,m of (6.3) satisfying

m
Z lkjpllH-+2-p (a ) ) - > 0 when j — > oo .

p=0

Put &j = {uj09un,fj} as

a o

then *7eSj(L, Biyj) and l^.-^lsj-^O when j-»oo. Q.E.D.

Lemma 6.70 S£+1(£3 B) is dense in ^(L, B).

We prove this as same as Lemma 3.3 of [8], so the proof is omit-

ted here.

Proposition 6.8. For any <l>ES%+l(L, B)9 there exists a solution

u(x,t)of (5.1) in Hm+2(a)x(Q9TJ) and w<w+1)(x, 0 belongs to V^co

x(o,r».

Proof. By Lemma 6.6, there exists a sequence <PjeS %+1 (L, Bi/j)

converging to $. For each <frp there exists a unique solution Uj(x, t)
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m+2
e n /r+3-*(J?*(c») n Vx((o)) n <?r+3(L2(G>)) of P(L, Bw) by Theorem 4.2.

fc=0
Here we denote by P(L, Blfj) the problem (5.1) with replacing B(t)

by B17,(0.
Therefore from Theorem 5.1, we have

I I , . / . f\ IN 2 i l 1— QC(
II "A ' *^ HI m+2, co + \ - 77 \̂

JdNco d{X)

- \Ujm+1(x)\2dx

where Cm is independent of j. So, {wj(x, r)} forms a bounded set in

Hm+2(co x (0, T)) and {ii(/«+1>(x, 0} is also bounded in Fa(cox(0, T))

with respect to j. By the weak compactness of the bounded set, there

exists a subsequence {ujp(x9 i)} converging weakly to some u(x, i) in

#m+2(cox(0, T)) and {w^+1)(x, 0} converging weakly to M (W+I)(X, 0

in Fa(co x (0, T)). It is easily proved that the function u(x, i) so con-

structed satisfies P(L, B). Q.E.D.

Proof of Theorem 6.1. Let $ belong to S%(L, B). There exists

a sequence <&jGS%+2(L, B) converging to 0 by Lemma 6.7. Proposition

6.8 assures the existence of the solution w/x, t)eHm+3(cox(0, T)) of

P(L, B) for the data $,..

By applying Theorem 5.1 to the function uk — up we have

This means the convergence of w/x, 0 to some element u(x, t) in £(m

+ 2, co) n <fyi+1(Ka(o))). This function u(x, i) is a required solution.

It is clear that the solution u(x, t) satisfies the energy inequality

=0 JdNco
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+ 111/0,

The uniqueness follows from Lemma 5.2, immediately. Q.E. D.

By the invariance of the condition (5.2) by the Holmgren transfor-
mation, we prove easily that the problem (5.1) has a finite velocity.

More precisely, let Af(x, t; £) (i = l, 2) be the roots of the characteristic
equation of L,

A2 +2 f hj(x, O^-A- , f i af/x, 0«j = 0 ,

for (x, Oe^x[0, T] and £eR". Denote

and ^(x0, t0) = {(x, 0; |x-*ol^max(*o-0}- Then we have

Proposition 6.9, Le? w(x, 0 be C2 -function defined on A(x0, t0)

n(o>x[0, T]) satisfying L[w] = 0 w I(x0? ^0)n(cox(0, T)) and a,(x)B(t)u

+ (1 - a(Jc))u = 0 on A(x0, t0) n (ao> x [0, T]). // u0(x)9 Ufa) are zero

in A(x0, t0) n (co x {0}), w(x, t) is identically zero in A(x09 t0) n (oj

x[0, T]).

The proof is standard, so omitted here. See, for example [13].

§78 Proofs of Theorems A, B and C

We give another description of Theorem A.

Theorem A, Let (x°, t°) be an arbitrary point of QT. Let u(x, t)

be a twicely continuously defferentiable function defined on A(x°, t°)

n QT and satisfying

(7.1)
oc(x,
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// the assumptions (a) and (b) are satisfied and the initial data

{UQ, wj are zero in A(x°, t°) n (O x {0}), rfterc w(x, f) vanishes identically

on A(x°, f °) fl QT*

Proof. If A(x°, t°) nr = 0, then the boundary condition satisfied

by t/(x, r) on yl(x°, f °) n I is always of the Neumann type or the Dirichlet

type. So in this case, the above statement was already proved in [6],

[8], for example.

Assume that A(x°, ^ 0 )nr^<^ . We define the number TO as

T0 = max{£; (x, t)eA(x°9 t °) n F} .

It is clear from Proposition 6.9 that if u(x, t) is zero in A(x°, t°)

fl (& x [0, TO]), then u(x, t) is zero also in A(x°, t°) n (O x [TO, t0]).

To prove that u(x9 f) vanishes in A(x°, t°) n (Q x [0, TO]), we prove as

we did in [13]'. Define a subset I# of [0, TO] as

/jV = {r /G[0,T0]; u(x, 0 = 0 in yl(x°, t ° )n(f lx[0 , t'])}.

Clearly, I^^0. Let (jc1, 0) belong to A(x°, f°) n (r(0) x {0}). By the

assumption (b), there exist a neighborhood F(jEii0) and a transformation

4>( jEif0)6(E) such that the problem (7.1) in K(jgi(0) is transformed by ^1^)

to the following problem (7.2)

s; D-~-ii + a2y, s'Du = Q n

(7.2)
on

where fi(j;, s) = tt(^1ii0)(y, s)), a(^) = a(0^1i>0)(y, s)) and the operators a^y,

s; D) and «2(y, 5; D) are defined in (2.4). By Proposition 2.6, all the

requirements in §3 ~§6 are satisfied if we consider the equations (7.2)

in a smaller domain than V. Then applying the same argument as in

[13]', we prove that IN is an open, closed and connected set in [0, TO].

So /„ = [<), TO]. Q.E.D.

From this, we have

Corollary 7.1. The solution u(x, t) of (1.1) with (1.2) belonging
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to C2(OT) is unique.

Before proceeding to prove Theorem B, we give the definition of
compatibility of the problem (1.1) with (1.2).

Definition 7.2. Let the data {u0(x)9u1(x)9f(x9t)} belong to the

space Hm+2(Q)xHm+1(Q)xHm+1(QT). We say that the data {u0,ul9f}

satisfies the condition of compatibility (or simply, they are compatible)
of order m at £ = 0, when the following condition holds.

(7.3)
and

0 on dQ

for p=0, 1, 2,... , m

where up(x) is defined by

up(x) = up.2(x)+f^-2\x,0) for p = 2,3,...,

Remark 7.30 Let v(x, f)GHm+2(QT) satisfy the boundary condition

0 on Z0

Then, for any vector field X(x, t) tangential to Z, we have

(7.4) X(x9tyh(x9t)- + (l-a(x9t))v\ = 0 on I for O^l^

So, if u(x, f)eHm+2(QT) is a solution of (1.1) with (1.2), then from

(7.4) for u(x9 t) and the equation Hu(x, i)=f(x9 t), by putting £ = 0,
we have a certain relation between the data. This is the condition of

compatibility. And it is easily proved that the condition of compatibility
is independent of the choice of the vector field X(x, t) provided that

the inner product of X(x, t) and -«— never vanishes near t=Q,

Definition 7A We say that the data {uQ(x)9 ul(x\f(x, f)} eC°°(O)
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x C°°(O) x C°°(Or) are compatible of order oo at f = 0, if (7.3) is saits-

fied for any m.

Proof of Theorem B. Let (x°, 1°) be an arbitrary point in QT.

If A(x°, t°) D r = $9 then we can assign uniquely the value i/(x°, f°) im-

mediately by Theorem A. Moreover, w(x, 0? s° defined, is of class C°°
in a neighborhood of (x°, t°) provided that A(x, OnT=0 . Let us

assume that A(x°, t°) n F^cf). Then, by the assumption (a), A(x°, t°)

n(r(0)x{0})^<£. Let x1 be an arbitrary point of A(x°, t°) n (F(0)

x {0}). Then, by the assumption (b), there exist a neighborhood F(jeij0)

and a transformation (P(jEij0) e (E) such that the problem (1.1) with (1.2)
in F(£if0) is reduced to the following problem.

(7.5)

, s; D)v(y, s)=f(y, s),

), vs(y, 0) =

where the operators are defined in (2.4) and

CiW = «i(^(^ 0), 0)+ (y, 0) ^GhO>, 0) , 0).^=1 (7»y oxk

By easy calculation, we prove that if {w0, w l s /} are compatible of order

oo at r = 0 for JD, a(x, 0-^— + 1— «(x, r ) f > then {^o» w l 9 /} are compatible

of order oo at r = 0 for {L(y, s; Dy9 Ds), oi(y)-~- + l-oi(y)}.

Applying the same argument as we did in §7 of [13]', we may
construct a solution u(x, t) satisfying (1.1) with (1.2). Q. E. D.

Proof of Theorem C. As the problem is linear, we have the desired
result by applying Theorem A and the energy inequalities in §5. Q.E. D.

Appendix

Let Q be a bounded domain in R" with the smooth boundary dQ.
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We consider here the following problem

f (A/-jaf0)l/ = F in 09
(A.I)

- a(5c)) U = a(Jc)<£> + (1 - a(Jc)) V on dQ ,

where

\
(jc; D) 0

0 ai(x;D)

:(x)

i

, F= [ /0 1, * = ( l and W =

at(x: D) (z = 0, 1) are uniformly elliptic operators of order 2 such that

(a^x: D)v, v)^Q for any veC^(Q), all coefficients are smooth and
n

IL dj(x)n0j = Q on dQ. Here, we denote by ni = (nil9 ni2,..., nin) (i = 0, 1)

the conormal vector of at(x; D). As before, we assume that a(x) e C°°(dQ)

satisfying (i) 0^a(x)^l, (ii) {xedQ; a(jc) = 0} has a non-empty interior,

not equal to dQ, and (iii) {xedQ; a(x) = 0} forms a submanifold of

dQ of codimension 1.

Lemma A.l. Lef U={uQ) u1}eH3(Q)xH2(Q) satisfy (A.I) /or

). Tften, /or sufficiently large A,

a constant C independent of 17, F, $ and ?F such that we have

(A.2)

Proof. From (A. 1), w0 satisfies

~c(^)^



MIXED PROBLEM FOR D'ALEMBERTIAN 397

So, applying the estimate (3.8) to the above problem, we have

Klli^C(||/0||? + <0o-^

Combining this estimate with that of ui9 we have

(A.3) ||tt0lli + ll«illl^C(^

We define the operator jtf0 by

jtf0U = jtf0U for

where ^(j/0) = {(7eH3(O)xH2(O); a(Jc)#l7 + (l-a(x))l7 = 0 on dQ}.

Then, using the technique of S. Agmon [2], we have, for sufficiently
large A,

(A.4) ||ttolli + ll«illi^C|A|-W

for U = {u0, uJ

As Q is bounded, applying the method of J. Peetre [23] (see also, J.
Lions-E. Magenes [18]), we have the estimate (A.2). Q.E. D.

Remark A.2. The above estimate (A. 2) holds for the operator
/ 0 b,(x9 D)\

^o + ̂ i where j t f l = \ , b:(x, D) is the operator of
\62(x, D) 0 J

order j (j = l, 2).
As the same argument as above, we have

Proposition A3. Let wpeHm+2~P(Q) (p = 0, 1, 2,..., m) satisfy (6.3)
with wm+1eH1(Q). That is,

'(l-a2(x,Q:DJ)wp=fp in Q

+ (1 — a(x))wp = a(x)0p + (l — oi(xy)\l/p on dQ .

If Q is bounded, then we have, for sufficiently large A,
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(A.5)

+

Lemma A.4. Let F = {/0,/1} eH^^xL2^), <£ = {</>o, <M e#3/2(d<2)
xH1/2^) and f={^0, i/^1}e//5/2(5fl)xH3/2(af2). Then, for sufficiently

large A, f/iere exisfs a function U={u0, uj eH3(Q)xH2(Q) satisfying

(A. 1).

Proof. As {j3f0, ^} is "coercive' in the sense of [3]9 there exists

a function F={y0, t;J eH3(Q)xH2(Q) satisfying

in O,
(A.6)

on 3C.

If there exists a function U satisfying (A.I), by putting W=U—V,

we have

f (AJ-j3f0)FF=0 in Q,
(A.7)

F) on dQ .

Sos the solvability of (A. 1) is equivalent to that of (A. 7). Moreover

the problem (A. 7) is reduced to the problem on the boundary by in-

troducing the pseudo-differential operators P/(A) defined as in §3 for

each dj(x : D).

(A.8)
#1

Here, we denote wt\dQ by w£ and

/ o(Jc) (P0(A) + 60(Jc)) + 1 - a(Jc) oc(x)c(x)

We define the operator eTa(A): ^(^«(A)) = {^ = {(^OJ 0J e H5>2(dO)

by .
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for $ e 0(^a(A)). Then, the solvability of the problem (A. 1)

is derived from that of the problem «^°a(A)^=^. Using the estimate
(A. 2), we have readily that ^~a(A) is a 1-1, closed operator with the

closed range in H5/2(dO)xH3/2(dO). (See, [15]', [24]). So, it is suf-

ficient to claim that the adjoint operator ^~*(A) is also 1-1. As A.

Kaji did in [15], we consider the following boundary value problem

n
(A.9)

CV=W on dQ,

I at(x,D) 0 \ / di,(x9D)
where ^*=( , C= , cf/x, D)

\ 0 af(x;D) / \ d>21(x, D) c»22(x, D) ]

is the pseudo-differential operator with parameter \i defined by

^+(^

Here P(x, D)* stands for the formal adjoint of the pseudo-differential

operator P(x, D). P|(A) corresponds to the operator defined by aj(x: D).

As is remarked in [15], there exists a positive constant cs independent

of fJL such that

<((a(x)P»)*-a(x)P|(M))^>s^cs<^>s for any 06fP(3fl).

So, we may treat the problem (A. 9) as before. The problem (A. 9)

is equivalent to

(A. 10) r

where
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ac

a(Pf (A) + fct) + (aPiGi))* - aPf GO + 1 - a

Clearly T*fA(A) = T*(A). We define the operator

by ^?a(A)(P = r*(A)4> for #e0(^?a(A)). Then,

by repeating the same argument as before to the problem (A. 9), we

have that ^~*a(/l) is a 1-1 operator. Denoting by «^"*(A) the adjoint

operator of «^"a(A) with respect to the pairing H5/2(dQ)xH3/2(dQ) and

H-5/2(dO)xJf-3/2(aO), we have ^fa(A)^eT*(A). (Here we use the

standard argument of the elliptic boundary value problem. See [15]').

This means that f*(X) is 1-1. Q.E.D.

The proof of Proposition 6.4 will be carried out by applying the

same argument as above.
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