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§1. Introduction

Let Q be a domain in R* with the smooth boundary 0Q.
We consider the following mixed problem

02 n.o 92 .
Our, 0=(-g = 3, ger o 0=z, inQ=2x(, T),
(1.1) !

u(5,0)=uo(x), L (x, 0)=uy () on Q,

with a mixed boundary condition

Communicated by S. Matsuura, August 29, 1974.

* Department of Mathematics, Faculty of Science, Hiroshima University, Hiro-
shima.

1) The essential part of this paper was done at R.I. M.S. when the author was

a visiting member there and this work is partly supported by Fijukai Founda-
tion,



340 ATsusHI INOUE
(1.2) a(Z, t)g—ﬁ(a?, H+(1—alX, )u(X, t)=0 onX=0Qx[0, T],

where ¥=(vq, v,,..., ,) is the unit exterior normal of 02 and T is an
arbitrary fixed positive number. (We represent the points in @ and 0Q
by x and X, respectively.)

We suppose always that 0Za(X, )1 for (X,t)eX and I'p={(%,
NeX; X, )=0}%#¢ and I'y={(%, 1)eX; X, t)#0}#¢ where A° stands
for the interior of the set A.

Our problems to the equation (1.1) with (1.2) read as follows:

(I) Under what condition on (X, t), can we prove the existence
of a solution (1.1) with (1.2) for a given data {uy(x), u,(x), f(x, )}?

(II) How about the ‘well-posedness’ of this problem? i.e. regularity
theorem, existence of the dependence domain and &«~-well posedness.

am If f(x,)=0 and «X, t) converges to «*(X) in a suitable
sense as t tends to +oco, then does there exist functions u*(x, t), solu-
tion of [Ju*(x, f)=0 in Qx(—o0, 0) with the boundary condition

ai(x)%i(x, D+ —at(®)ut(X, =0 onoQx(—w, ),

such that the solution u(x, f) of (1.1) with (1.2) (in 2x(—o0, c0) and
0RQ x (—o0, ), respectively) converges to u®(x,t) in the ‘energy’ norm
as t tends to +o00?

We give affirmative answers to the problems (I) and (II) under the
assumptions below:

Assumption (a). «(%, 1)eC®(2) and 0Ip(=the boundary of Ip)
forms a submanifold of codimension 1 in X.

Assumption (b). For each point (X°, t°)edl’p, there exist a neigh-
borhood V00, and a transformation @00 of the class (E), such that
the Jacobian of ®;0,0, does not vanish on V ;0,0 and that the function
6(P, s)=a(P b, 10)(F, 5)) is independent of s for (J, s)€ Pz0,0)(V(50.0) N 2).

Remark. The assumption (b) implies that oI, is ‘time-like’, i.e.
the movement of oI, with respect to ¢t is not so rapid and ‘of the
class (E)) means that the hyperbolicity of the transformed operator
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by P00, is preserved. Precise definitions will be given in §2 and
there, we will consider some examples of «(X, t) satisfying above assump-
tions.

Theorem A. Under the assumptions (a) and (b), the phenomenon
governed by (1.1) and (1.2) has the same dependence domain as that
of the Cauchy problem for [ in the whole space R".

Theorem B. We suppose (a) and (b). Let the data {uy(x), u,(x),
flx, O} of (1.1) belong to the space C*(Q)x C*(Q)xC>Q). If they
are compatible? of order oo at t=0, then there exists a solution u(x,
e C*(Q) of (1.1) with (1.2).

Theorem C. If the assumptions (a) and (b) are satisfied, then the
problem (1.1) with (1.2) is well posed in &= (or &®-well posed). That
is, for any compact set K in Q, an integer m=0 and an arbitrary
small number €>0, there exist a compact set K, an integer N>0
and a constant >0 such that if the data satisfy

IMO’€N+2(K0)+IulllN*"(Ko)-l-IfIa'N* 1(11{)§‘S
then we have

[ulgmigxy<e where Ko=Kn(@x{0}).
(6 depends only on ¢ and KnX.)

Summary. In §2, we give the definitions of ‘time-like’ and ‘of the
class (E)) and some examples. And we show that the assumption (b)
asserts that at least locally, the problem (1.1) with (1.2) is reduced to
the following problem.

9 .2 N P
W-I-al(ys s, )—a_s—‘l'az(ys s, D) “(y,s)—f(YaS)

in @ z0,40)(V50,10)) 5
(1.3) §d(y, 0)=io(y), #(y, 0) =i, (y)
on @(go,tO)(V(go’IO) n (Q X {to})),

(802 + 1= [17, =0 on Beeo,p0(Fiso,0y D)

2) The definition of compatibility will be given in §7. See also §4 and §6.
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where a,(y, s; D) is an elliptic operator and m, is the conormal vector
associated with a,(y, s; D).

By extending the data suitably, we may consider the problem above
in the domain wx (0, T'), where @ is a domain in R" with the smooth
boundary. That is, we consider the following problem in §3~§6.

o2 .y . _
[ or a0y 53 D)Ltar(y, 55 D) oy, ) =g (7.9)
(1.4) in wx(0,7T),

(y, 0)=vo(y), vy, 0)=0,(») on w,

(15 [a( =000+ 0205, 9)+ 1=50) | v(5, 5)=0.
on dw x [0, T].

As usual, we want to treat this problem (1.4) in the form of an evolu-
tion equation.

d (u(t)) <u(t) ( 0 1 )
(1.6) —— = (1) where &/ (¢)= .
dt U(t) U(t)> _az(y,S;D) —al(y’ s, D)

With the boundary condition (1.5), the operator «7(f) considered in
H'(w)x L*(w) has the domain D(w/(f)), changing with t. For the time
being, it seems not so easy to apply the work of T. Kato [16], [17]
to our problem (1.6). So, we follow the idea of M. Ikawa [7], [&].

In §§3 and 4, we consider the problem (1.4) with (1.5) under the
condition that there exists a constant ¢>0 such that

(L.7), 010, 95 3 G )~z on dwx[0, T1,

where ¥=(¥,, ¥,,..., ¥,) is the unit exterior normal of w at § and hy(y,
s) are given by a,(y, s; D)=2 Z hi(y, S)T-l"
In §§5 and 6, we consider the problem (1 4) with (1.5) assuming that

(1.8) (. 95 T b9y on dwx[0, T1,

by approximating the solution satisfying the boundary condition with
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(1.7),. In these sections, we follow exactly the idea of [7], [8]. But,
we must pay careful attentions near the point where &(j) changes from
zero, and especially, we use the estimate of A. Melin [19] in the form
of A. Kaji [15], [15], K. Taira [24].

In §7, we prove Theorems A, B and C by using the devise of
A. Inoue [13].

In the appendix, we give an example of the system of elliptic opera-
tors with the boundary condition changes its order on the boundary.

Remark. The mixed problem (1.1) with the boundary condition of
the Neumann type was studied fully by R. Agemi [1], M. Ikawa [&]
and S. Miyatake [21]. Moreover, if the oblique boundary condition
is given, then there exist interesting papers of M. Ikawa [9], [10], [11].
But, the boundary condition of the type (1.2) is not studied quite re-
cently. In A. Inoue [14], he suggests that this problem will be useful
to consider the problem with the discontinuous boundary condition.
This is the main motivation of studying this problem. And concerning
this, we will study in the forth-coming paper.

Finally, we express our thanks to the referee for his kind advices.

§2. Time-like Hypersurface and Change of Variables

Definition 2.1. Let I' be a submanifold of codimension 1 of the
lateral boundary X(=0Q2x[0, T]) such that I'(t)=I'nP(t) is a sub-
manifold of 0Q and I'(f) are diffeomorphic to each other where P(t°)
={(x, )eR"*1; t=¢}. We say that I' is time-like if it satisfies the
following: For any t°e[0, T], there exists a positive number ¢; depend-
ing on t° such that

2.1 U I't)e U {(x,)eR*!; |x—x°12L|t—1°2}n 2
|t0—z| Se Tfoe—l::(f;g

for any g 0<e=<e, where we put I'(t)=¢ for t<0 and t>T.

The condition (2.1) means that the movement of I'(f) near t=1°
is limited by the ‘wave front’ set starting from I'(¢°).

For the future use, we represent the condition (2.1) in geometrical
terms.
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Let »(x°) be the unit exterior normal of 9Q at x°edQ. As I'(t%)
is codimension 2 in R”, there exists another vector mn(x°, t°) such that
¥(x%) and m(x°, t°) are orthogonal to each other and they are orthogonal
to I'(%) at x°edQ, i.e. the space spanned by v»(x°) and m(x°, t°) forms
the normal bundle of I'(t°) at x°. Then, we have the following.

Remark 2.2. Let us consider the trajectory of the point of the
intersection of I'(f) with the normal bundle of I'(¢°) at x°. Then the
condition (2.1) implies that (2.2) the speed of the trajectory at t=t°
is smaller than 1 for each x°eI'(t°). (The propagation speed of [J
equals to 1).

Moreover, if 0Q is compact, then (2.2) implies (2.1).

Let (%%, t°) be an arbitrary point of I. We may suppose that
(%°, t9)=(0, 0) without loss of generality because [] is invariant with
respect to the translation of (x, f)-axis. By the rotation of the x-axis,
we may take the x,-axe as the direction of the interior normal of 0Q
at x°=0. Other axis x'=(x;, X,,..., X,—;) give the coordinates tangent
to 0Q at X°=0. So, in some neighborhood of x°=0, dQ is represented
by x,=f(x") with a C®-function f(x') satisfying f(0)=0 and f,(0)=0
for j=1,2,...,n—1. Rotating the x'-axis if necessary, we may suppose
also that in some neighborhood of (X9, 1°)=(0,0), say Vo) I' is re-
presented by x,_,=g(x", ) and x,=f(x", x,_,) with another C=®-function
g(x", 1) satisfying g(0,0)=0 and g,(0,0)=0 for j=1,2,..,n—2 where
X" =(X1y X505 Xy—2)-

Now, we calculate concretely the condition (2.2).

Lemma 2.3. The condition (2.2) implies the inequality
(2.3) 1940, 0)| <1.

Proof. At %°=0, we have »(0)=(0, 0,..., 0, 1) and =(0; 0)=(0, 0,..., 1, 0).
The trajectory of I'(f) near t°=0 at ¥°=0 on the space spanned by the
vectors ¥(0) and n(0; 0) is represented by (0,..., 0, g(0, #), (0, g(0, #))). So
the speed of this trajectory at t©=0 is given by /(1+f2,_,(0,9(0, 0)))g2(0, 0).
By the choice of the x-axis and the condition (2.2),we have (2.3).

Q.E.D.
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Let us consider a level preserving transformation @, (y, s)=®(x, t).
More precisely, @ is given by y;=¢;(x,1),j=1,2,..,n and s=t. By
this transformation @, [] is transformed to

(2.4) L=L(y, s: D, D,)

_ 02 % 0¢; 0° (90 095§ 09 0¢;) 0F
"~ 0s? +21§’1 ot 0y ;0s + i,j‘/";( at o k=1 0xy 6x,: /0y:0y

n 62¢j_ n 82¢\ 0
+j§1< ot? k§1 6x,%l/8yj )

Definition 2.4 ([4], [13]). If a transformation ¢ satisfies that

(2.5) the matrix(ki1 gf?’ gf:f - a(;’; i 6‘;?‘,- ) is positive definite for (x, f)e
= K 0%y

dom ¢(=the domain of @),

then we say that @ belongs to the class (E) (or @ is of the class (E)).

Proposition 2.5. Suppose that I is time like. Then for each
(%°, t%) eI, there exists a neighborhood Vi, and a transformation
@ (z0,00€(E) which transform Vs, to a neighborhood Vio.0y of (0,0)
such that (1) Do 0\(Vizo400N Q)= V0,0 N {¥ =15 V2o ¥a); Vu>0}, (i)
D z0,00)(Vizo,00 N 0= Vio,0)N {¥5 ¥,=0} and (iii)  Pzo0)(Vz0.0) N [(1°))=
I7'(0,0) N{Y; Yn=Yu-1=0}.

Proof. Without losing the generality, we may suppose that (%¥°, t°)
=(0,0)el’. Moreover, we may suppose that 0Q 1is represented by
X,=f(x') and I is represented by x,_,=g(", 1), x,=f(x') in some
neighborhood Vi o, of (0, 0) satisfying the properties enumerated before.
Define a transformation @ as

y”=x” where y”=(y1, yz,--"yn—z)’
yn—1=xn-1_g(x”7 t)’

(2.6) ®:
Ya=x,~f(x) and

s=t.

Then we have
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(2.7 O-2L=L(y,s: D, D)

02 0?2 i 9 0
S 2 (09 o 3 (a0, 955

+ 3 b, )

Vs §)—=—),
= Y ayj
where the coefficients are given by

(hn— l(ya s)= _gt(x”’ t)l(x,t)=¢‘1(y,s) ’

a;i(y, )=96;; 1=i,j<n-2,

n—2
Ayt a-1(y;8)=1+ '21 gJ%j(x”, )—gi(x", t)[(x,t)=<b"1(y,s) >
j=

n—1
am.(y, s) =1+ jgl fgj(x,)l(x,t)=¢“(.v,s) s

IIA

ajn(y, $)=a,/y, $)= _ij(x’)l(x,t)=d>'1(y,s) 1=jsn-2,
aj n— l(ya S) =0y-1 j(y, S) = ""ng(x”, t)l(x,t)=¢‘1(y,s) 1 é]é n —-2,
(2.8) ann—l(y’ s)=a,,_1,,(y, S)

n—2
= jgl ng(x"y t)ij(x,) _fxn_ 1(x’)|(x,t)=<b'1(y,S)

n—2
b,(y, 8)=—g,(x", )+ jgl ngxj(x”, t)l(x,t) =0~ 1(y,s)

LI
+
El 0y,
0

ajn(y’s)

n

n-1
bn-—l(y! S)= Z ijxj(x’)I(x,t)=¢b‘1(y,s)+ Z a
j=1 =1 0);

ajn—l(y’s) 3

n 0 .
. = —a;; <ji<n-—
(05075 5) ,-‘:"1 3, ai;(y,8) 15jsn-2
with @~ !=the inverse transformation of &. (From (2.6), & is a dif-

feomorphism with its Jacobian=1.) Calculate {a;;(y, s)¢;¢;3 for any
E=(&,, &, E)eR?. Then from (2.3), we have

2 a0, 06¢,2(1-620,0) 3, &.

This means that if we consider the matrix {a;;(y, s)} in some neighbor-
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hood 17'(0,0) smaller than 17(0,0)=<15(V’(0,0)), then the matrix is positive
definite in Vo). Putting D.0,=P, Vi0,0)=P ' (V00), We have the
desired result. Q.E.D.

The following proposition is proved by easy calculation. See also
the remark in §4 of J. Cooper-C. Bardos [4]. p. 54.

Proposition 2.6. Let a transformation @ be of the class (E).
Moreover, we assume that ® has an inverse transformation ¥ given
by (x,)=Y(y,s), x,=¥(y, s) k=1,2,....n and s=t. Then we have
always

(2.9) il h(5, )%,=0  on (5, s)edndomd),
~

where $=(¥,, V,,...,V,) is the unit exterior normal of &(Xndom @)
~ 0¢;
and hj(y’ s)='—g;l =¥ (,5)"

In the following, we consider some examples of the function «(X, t)
satisfying the assumptions (a) and (b) of §1.

Example 1. Let Q be given by Q=R2={(x;, x,): x,>0} and let I'
be represented by I'={(x;, 0, #); x,=y(t)} with a C>-function p(t). It
is clear that I' is time-like if tdity(t)l <1 for all 0<t<T. Consider

a function a,(x,, t) (¢ is a positive constant) given by
aa(xl,t)ﬂ-lgm,,(%s__l)ds
0

where p(s) is the function satisfying p(s)=p(—s)e Cg(R), Sw p(s)ds=1
p(s)go and SuPp p= [— 1: 1] Then Cleal'ly, {(xla t)’ ae(xls t) = 0} = {(xls
0, x;=y(0)—¢e},  so I={(xy, 0); x,=p()—e} =0{(xy, 1); x(x;, D=0} s

time-like. The transformation & given by

y1=x1—¥()
(2.10) ¢: y2=x2
s=t

satisfies the conditions of the assumption (b).
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Example 2. Q={(x,, x,); x?+x3<1} or {(x, x); x?+x3>1}. I'=
ryur, where I;={(x,,x,);x;=cosy(t), x,=siny ()} i=1.2. If each
7:(t) satisfies

@1) 1-%®*> 37e*

x (sin2y;(#)?,

then I'; is time-like. A sufficient

condition of (2.11) is 0=Zyi(¥)*<
2

3 Now, we define a function o,(X,

t) by

(2.12) o %, t)=0a,(cosb, sinb, t)

0 y2()+es0=y,()—e
&t S:p<_0——z"1§(£)_—£—)ds 11()—eS0=5y,(H)+¢

1 Y1) +eS0=7y,()—¢

e gimp(y—z(‘)%"if—)ds 72(8)—eSO0=y, (O +e.

Clearly, a (X, ) is a C~-function on dQ2x[0, T] if ¢ is taken sufficiently
small. We define the transformations &; as the rotation of axis, that
is,

Y1=2%; €08 7{t) +x, siny ) =1 cos (6 —y(?))
(2.13) B;: ¢ yo=—xsiny(t)+x, cos p(t) =rsin (0 — (1)

s=t

where r=./x}+x3, 0=arctan—;2—.
1

Then, by easy calculation, we have &;e(E) when
(2.14) 1—(x2+x32)0i(®)2>0.

By (2.11) and (2.14), the transformation '®, is of the class (E) in each
neighborhood V; of I';. It is clear that I'*=I% UI'%, where I'{=/{(cosb,
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sin@, t); O=y,(t)—&e}'5={(cos 0, sinb, t); 0=y,(f)+¢&} equals to O{(ZX, 1);
a %, 1)=0} and I* is time-like. Moreover, by this transformation,
the function &, s)=a (P 1(J,s)) is independent of s in P(V;nZX), 2
=0Qx[0, T].

More generally, we have the following proposition.

Proposition 2.7. Let Q be a domain in R™ with the smooth boun-
dary 0Q. (For the sake of simplicity, we assume that 0Q is compact).
Let I' by time-like in Q. Then, there exists a function ayX,t) on
X satisfying the assumptions (a) and (b) of §1.

Proof. As I' is a submanifold of
2 of codimension 1, there exists a
‘collar’ neighborhood W, of I in Z.
We denote W (t)= W, n P(t). Moreover,
as I'(t) is a submanifold of 092 of
codimension 1, I'(f) divides 02 into
0pQ(t) and 0yQ(f). For the point
(%, 1) in Wy, we define

d(%, ty= tdis((%, 1), I'(t))

where dis((%, ), I'(f)) represents the length of the shortest curve on
0Q from (%, t) to I'(t), and the sign +(—) is taken when (X, f) belongs
to OyQ(t) (0pR2(f)). We define a function «(X, t) as

0 (Séa t) € aDQ(t) - {(iy t):
d(z, I <e}
@19 9= 167 ("p(AED= a3, 9e (7 95 4G 1 <el,
1 (JE’ t) € aN‘Q(t) - {(55: t)a
\ [d(X, 1) Ze}.

Clearly, 0{(%, t); a (%X, )=0}={(%, 1); d(%, )= —¢} is time-like. For each
point (%X°,t°)el’, we consider the transformation @00, constructed in
Proposition 2.5. Then in the neighborhood Vs, of (X9, t9), dis((%, ),
I'(Y)) equals to x,_,—g(x", f) where the axis x and the point (%°, t%)
are chosen as in Proposition 2.5. This means that the function «(X, ?)
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defined as above is transformed by this transformation @00 in ¥ z0,0,
to the function &y, s) independent of s when (J, s)€ Do 0)(Viz0,0) N ).
Q.E.D.

§3. Energy Inequalities (I)

Let w be a domain in R" with smooth compact boundary Jw,
i.e. o is the interior or exterior domain of dw.
We consider the following mixed problem

L) [u(x, 1= ( Dty o, 1 D)-—+a2(x t; D))u(x 7)

(3.1) ¢ =f(x,1) in wx(,7),
u(x, 0)=uo(x),
ulx, 0)=u,(x),

1,

. _ n a
al(x! t: D)—2j§1 hj(x9 t) axj

1,

aste, ;D)= = £ 2(ay0 055 )+ £ 0,0 055
- - J

with a mixed boundary condition

3.2) aX)B(u(x, )+ (1 —a(X))u(x, t)=a(X)p(X, t) on Jwx[0, T],
BO)= o =04(x, ) +02(x,0)

a,-j(x, t)VJ'—a-i—l— s

n
on, i,jz=1

v=(vy, V5,..., V,): Unit exterior normal of w at dw

where all coefficients belong to #=(w x (0, T)) or to Z*(dw x [0, T]).

We assume that

(@ 0=s«(X)=1,

(b) {Xedw; a(X)=0}#¢ and {Xedw; a(X)#0}+#4,

(c) the boundary of the set {Xedw; «(X)=0} forms a submanifold
of dw of codimension 1,
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(d) ay(x,t; D) is an uniformly elliptic operator ie. there exists
a constant d>0 satisfying

T ayx, 0GE2d 3 &2
(3.3) b=t ik
aij(x: t)=aji(xs 1)

for all (x, )ewx [0, T1, £=(&4, &,s..., E) eR™, and
() hj(x,t) and o,(x,t) are real valued functions and for some
constant g,>0, we have

3.4 o.(x, )<<k, ¥)—¢ on Jdwx[0, T]
where <h, ¥)>= i hi(x, H)viloe-
=1
For the future use, we introduce the following formulation.

d -
WUG) =L U®@)

(3.5)
U0)=U,
(3.6) Z,(OU)=a(X)P(X, t)
where
[u (x, t) 0 9 52
U= , F@)= =0 el 02
® Lu' (x, t)} {f(x, z)} < ¢ or* )
- 0 1
()= }
| —a,(x, t: D) —ay(x, t; D)
B(t)= _a(x)<—a%t— +o,(%, z))+ l—a(®)  —a(@)oy(F, t)} .

Here, we introduce some function spaces attached to the operators
(1) and Z(1).

We denote by E, (m=1,2,...), the space H™(w)x H* Y(w) whose
the norm ||-||,, is given by

Ullz= ”ulllzl’"(w)-l' ol m- )
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for U={u, v} e H"(w) x H" Y(w) (H{(w) is the Sobolev space of order
I with the norm |- | gy,). For brevity, we write | -|| instead of |- L2(e))-
Remarking that the form

(£ ds g2

gives an equivalent norm in H!(w), we denote by #(t) the space H!(w)
x L?(w) (=E,) equipped with the following norm,

n

0 0
013 0= 3 (@00 D S )4 (0, )+, )

i,j=1
for U={u, v} e H'(0)x L¥(@). ((u, v)=S u(x)p(X)dx) .

We denote by V,(w), the completion of all u each of which belongs
to C*(@) and satisfies u(x)=0 on «(X)=0 and [u]y (,<oco where the
norm ||y, is defined by

1—a(X - -
4= Nlscor + |, L2 w120
where dX is a measure on dw induced from dx and dyw={Xedw; u(X)
#0}.
v (t) stands for the space V(w)x L?*(w) equipped with the following
norm.
1010 = 1013+ {, 22O fu() | 2dx
«(t) (1) oo 0U(X)
for U={u, v} € V(w)x L*(w).
Moreover, we denote by 2,t), the set of all elements belonging
to H*(w) x V(w) such that #,()U=0.
First of all, we consider the following elliptic problem

(asx(x, t; D)+ Hu(x)=f(x) in o,

6D :
a(i)—m+(1—a(i))u=a(i)¢(i)+(1-—oc(i))lk(x) on dw

where 1 is a parameter and ¢ is also considered as a parameter.
Then, we have
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Proposition 3.1. Let m be a non-negative integer. Let f(x)e H™(w),
¢(x) e H ™t 1/2(9yw) and Y(x) € H"3/2(0w).

Assuming that there exists a function u(x)e H"2(w) satisfying
(3.7), we have

(3-8)  Nullfm+2(0) = CUS N fimay + 14l + < DD Fm+ 172050y F YD Fim+ 312 0a)

where C is a constant independent of u and t, and {)p,) is the
norm of the Sobolev space of order | on Jw.

Moreover, if A is sufficiently large, then there exists a function
u(x) e H"*2(w) satisfying (3.7).

Proof. Assume that u(x)e H™*2(w) satisfies (3.7). For sufficiently
large A, there exists a function v(x)e H™*2?(w) satisfying

(a8(x, t; D)+ A)v=f—(a,—au+ (A, —Au,

3.9 v

?;it— 60)'—'6

where a%(x, t; D)= — i ?%(a”(x’ t)—ai—> and geHm™*1/2(dw) is an
i,j=1 i i

extension of ¢ such that <<$>Hm+1,z(am)§CJ<¢>H,,,+uz(an). Putting w(x)

=u(x)—v(x), we have

(a%(x, t; D)+ Aw=0,
(3.10) o dw 3 N
a(X) Tn +(=aE)w=1—-a(X) (W —1],,) .

We may assume that A; is chosen large enough such that the following
Dirichlet problem is uniquely solvable:

(a3(x, t; D)+2,)x=0,
(3.11) [

Xow=9.

We introduce an operator P/(4,) (or, simply P,) as

_ 0x
(3.12) Pg= o

where y is the solution of (3.11). We know that P, is a positive elliptic
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pseudo-differential operator of order 1 on Jw. See, Fujiwara-Uchiyama
[5], Inoue [12], Visik [25]. Using this operator, we reduce (3.10)
to the problem

(3.13) (X)P,+ 1 — a(X)W] o= (1 — (X)) (¥ —1]50) -

Remarking that «(X) vanishes at least of second order near {Xe€dw;
a(X)=0}, we may apply the theory of Melin [19] to the operator
A2 3(a(x)P,+1—a(x)), A=(1—4")1/2, A’: Laplace-Beltrami operator on
0w. (This was proved in Kaji [15] and Taira [24]). And, we have

(3.14) Wlau) fim+3/2(00) = C{A — (X)) (Y =0 50)) frm+ 372 (500) + (W02}, Where

C is a constant independent of t. (here, we use {-) instead if {*}12(54))-
More precisely, see the estimate (4.1) of Lemma 4.1, [24].
On the other hand, w must satisfy that

(a%(x, t: D)+ )w=0 in o,

(3.15)

wW=w|5, on Jw.
So, we have
(3.16) ”W”%Im*'z(m)éc(<wlaw>12{"‘+3/2(6w)+||W”2)

where C is a constant and it may be chosen independently of t. (See,
Miranda [20]).
Remarking that v in (3.9) satisfies

B.17) vl fm+ 20y = C(I f—(az—aDu+ g — D]l fmewy + 012+ < P> Fm- 172(30))

where the constant C is independent of ¢ (see also Miranda [20]),
we have the desired inequality (3.8).

The existence part of this proposition follows from considering the
adjoint operator. More precisely, see [15], [15], [24]. Q.E.D.

Remark 3.2. (a) From the proof above, it is obvious that the
problem (3.7) is ‘stable’ with respect to suitable lower order perturba-
tions, i.e. adding the operator of order less than one to the equation in
o or adding the operator of the type «(X)o(%)I to the boundary operator
where (%) € Z°(0w).
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(b) Taking A sufficiently large in (3.7), we have the inequality
(3.8) without the term |u|? in the right hand side when ® is bounded.
(See, Agmon-Douglis-Nirenberg [3].)

Using this proposition, we have

Lemma 3.3. There exists a constant C>0 such that for all U
e HX(w) x V(w) satisfying A, () U=o(X)p with ¢eH!2(0yw), we have

(3.18) NUNE=CULOUNZ @+ 11Ul % o)+ < P> F1r2(0nw)

Proof. Let us put (H)U=F={{, g}, i.e.

v=f
[ —a,(x, t; Dyu—aq(x, t; Dyv=g.
Rewriting the above relation and Z(f)U=a(X)¢, we have
ay(x, t; Dyu=—g—a,(x, t; D)f.

(3.19) o
2 (DG +02( Du )+ (1 —aE)u=a(D) G +01(201)

So applying Proposition 3.1 to (3.19), we have
lullfzmy<const.(g+ay(x, t: D)fII>+ ul|?+<D+0, floywr fi1r2(onw))
§C0n5t-(||F”,;2r(:)+||U||f=e’(z)+<¢>%11/2(alvw))-

On the other hand,
0l s (0y= /10y =const.|Fl| %)
Combining these estimates, we have the desired inequality.

Lemma 3.4. There exists a constant Co>0 such that for any U
e HX(w)x V(w) satisfying BU=a(X)p with S |p(%)|2dxX< o0, we
INO
have

(320 (FOU, Uy o+ U, SOV 0= Col U+ | 18012a5).

Proof. (L (U, U)y iy +(U. L()U)y
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=2Re { _i1<aij(x, t)—(%%, —au—)+(v, u)

i,j= axi

+(—ay(x,t; D)u—a,(x,t; D)v, v)+gaw l—;—g.;?()—i)-v(i)‘ﬁ(—x”)di}

by integration by parts,

_ 61,4 6u - _ 2
_Sawva—ntdx+gaw 2 5 zgaw<h, > |v|2dx

1—a(X)

i R CLI O

+2ReS
+2Rel:(u, v) _<,§'1 bj—gg-; +cu, v>+< jgn:l % -—h)v, v)]

=IB+IV

_ ou _ ~ ou I
IB—-Sawv an, le+62u)dx+gaw(6n, alv+02u>vdx

+2Sa (01— <h, v3)|v] za’i—ZReSa o, ubd3

+2Regaw_17;(‘§)—x~)u(x)m)dx

since o,(x, t)—<h, ¥)< —g, and v(X)=0 on a(%)=0,

<2Re S u(ﬁdx-zsog lvlzdi—ZReS o qubdx
oNw INW INw
§80S |v|2d§+——l—g I¢|2d56—ZsOS |v|2d)?+sog lv]2d%
oNw &g Jono oNw Inw

+—1—S |0 ,u|2d%
8() 31\10)

<const. (Sa . [pl2dx+ | U”fr(r))

On the other hand, we have

[Ty £2]ju o]l +const. [[u]l g1(llv] +const. ]| 2
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<const. [U[|% .
Combining these estimate, we have (3.20).
Corollary 3.5. For all Ue 2,(t), we have
(3.21) 1A=L O)VUl5 0y 24— Ullypiy I A>co.

Lemma 3.6. There exists a constant 1o>0 such that for any
A>Ag, Al— () is a bijective mapping from 2,(t) onto ¥ [(1).

Proof. Consider an equation in U

(3.22) (AI-2(H)U=F with Uea f), Fev (1.
That is,
Au—v=f
{ ay(x, t; Dyu+(A+a,(x, t; D))v=g

where fe V(w), g e L?(w). Substituting the first relation into the second,
we have
(3.23) a;(x, t; Dyu=(ay(x, t; D)+ Aa,(x, t; D)+ A%)u

=(A+a,(x, t; D))f+g e L*(w)

with the boundary condition given by
(3.24) a(i)(%——/lalu+ozu>+(l—tx(i))u=—rx()”c)alf on dw.
t

Conversely, if ueH?(w) satisfies (3.23) and (3.24) with fe V(w),
then by defining v=Au—f, we see that U={u, v} satisfies (3.22). (It
is clear that if ue H?(w) satisfies (3.24) with fe H'(w), then u e V(w)).

Hence, the solvability of (3.22) is equivalent to that of (3.23) with
(3.24). Calculating as we have done in Proposition 3.1, we prove the
desired result.

Lemma 3.7. Let to be any fixed point in [0, T]. Suppose that
F(t)e 2,t;) for all te[0, T] and F(t), &(t,)F(t) are continuous in
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¥ (to), then for any Uye 9,(t,), there exists uniquely a solution U(f)
of the equation

55 LU= t) U@ + FO)

U©0)="U,

such that U(f)e D(t;) for all te[0, T] and U(t)e &L, T); ¥ ts))? .

Proof. Let us denote by «7(t,), the operator Z(t,) with domain
2,t,). Then, the closedness of the operator .7 (t,) in ¥ ,(to) follows
from the inequality (3.8). In order to prove the denseness of 2,(t,)
in 77 (t,), it is sufficient to prove that the set H2(t,) is dense in V (),
where

Ou
on,

H2(1,) = {ueHZ(w); oc(:'i)( +0,(%, to)u>+(1 —(®)u=0 on aw}D

o]

And the denseness of H2(t,) in V(w) is proved by integration by parts
and by Proposition 3.1. Moreover, from (3.21) and Lemma 3.6, we
have the estimate of

1AL = 7 (80)) ™ |3ty < (A—20) ™ for A>4,.

So, we may apply the theorem of Hille-Yosida (for example, K. Yosida
[26]) to the operator <7 (t,). Q.E.D.

Now, we derive the energy inequalities for the solution with non-
homogeneous boundary condition. As 2,f) changes with ¢t and we will
use the method of Cauchy’s polygonal line, these inequalities play an
essential role in the existence proof of the solution for (3.1) with (3.2).

Lemma 3.8. Let u(x,t) belong to &£°(H?*(w))n &L(V(w))n &2(L*(w))
and satisfy
Llu(x, )]=f(x, 1),

ou

(3.26)
1) gL~ 01 -G +au [+ (1 —a(D)u=a@( ),

3) ¢1((0, T); X) denotes the set of functions in #, /times continuously differenti-
able as X-valued function on (0, 7). For the sake of brevity, we denote it
only by #}X) abbreviating to write down explicitly the definition domain.
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then we have

G2 VOIS (IVOI 0+ | 17C, D2

+ cog;gaww(x, r)|2d>zdr)
where U(t)={u(x, 1), u'(x, 1)}.
Proof.
—;t—HU(t) 13.cy=ReU’' @), U®)) g1y + U@, U®)) 2,
= 2Re (LOU), UM))yr_ o+ 2Re (F®), U+ (UD, UD) 300
where

NN RN
W, Dz0= 3 (a5, a—;‘J) for U= {u, v} €2(1) .

Evidently, we have
I(U®, U1)z | <const. [UD) %),
(U@, FO)sr | S IFDI3- 0y + IUDN- 1) -

Using the inequality (3.20) and the above estimates, we have
Tdt”U(t)”gm(t)éco(”U(t)ng,(:)'*‘ Sa ml‘ﬁ(fs t)|2di>+”F(t)||72qu)-

Since [[F)lZ,cy=1f(-, OI?, we have (3.27) by applying Gronwall’s
lemma to the differential inequality above.

We prove now the second energy inequality.

Proposition 3.9. Let u(x,t) belong to &E2(H*(w)NELV(w)n
S (L%(w)) for te[0, T+30](00>0). If wu(x,t) satisfies (3.26) with
f(x, Decl(L*(w)) and ¢(X, 1)e&P(H?(0,w)) n £H(L2(0,w)), then the
second energy inequality

(3.28) luC, Dllf2(wy+ 1w’ Cy D1y + 1u"C, D2

+SanL;TO;()§‘)‘(|u(f, D2+ |u' (X, 0)|?)d%
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gc(r)[uu(-, )1 &3y + 12/C-, O) 11wy + 1227 (-, 0)12
1—a(X)
+§an - (uG0)?
+lu'E 0)|2)d%+ £ 0)||2+S;(uf(-, D2+ 11, DI2)de

t t
(0 0, O +18E, DRdzde DO, D]
N
holds for any te[0, T] where ¢(T) is independent of u(x, t).
Proof. Putting u,(x, )=h"*(u(x, t+ h)—u(x, t)), we have

LLuy(x, 1=(x, )= Ly[u(x, t+h)]

(.29) | %% )[au,, —0, aa’j +02uh]+(l—a(x))u,,
=a(£){¢h(i’ t)~l:<7f—t?>h_61h6it +02h]u(f, t+h)}
where

Julx, t)':h—l(f(x: t+h)—f(x, 1),...,

Ly[0Gx, t+B)]= —az,(x, : D)o(x, t+h)—ay,(%, : D)-2v(x, 1+),

T % 0 —1(,. . 6)
an(nt: D)=~ 3 T (h @l 1+ —ayx 0) )+

0 & - -
(an, = i,,Z=1h Yai;(X, t+h)—a;;(X, t))vfaLx,-"" etc.
By applying Lemma 3.8 to the equation (3.29), we get
t
1013 .S e { 10O o+ | IAC D= LiluC-, -+ B17de

+CoS Saw‘q&h(x T)— |:( 6n,) O1p 661 +02,,:|u(x T+h)| dxdt}

As all functions in the above inequality are sufficiently regular, we may
make h tend vers 0 and we have
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10O S e {IUO N30+ || 157C, D= LTuC-, D)2

t
+cog S
0Jonw

(3.30)

’ 2
&' (, t)—[(%;) —0’1%— +a'2]u(az, 9] didr}
where

L'fu]l=a’(x, t: D)u’'+a’%(x, t: D)u,

gy e D)+

ay(x,t: D)= — i
i,j=1

o \V_ & 5
<—(§I_>— Z aij(X,t)vj_a?i_.

i,j=1
Remark that

[L'[u]l* <const. U3,

SaN(o

((‘afT,) ~oy L+ a'2>u(>z, 9| ? d% < const. |U®) I3
and
U (0) %0y =const. (|UO)IZ+1f(:, 0)]?).

Combining these estimates to (3.30), we have
(3.31) IIU’(t)lIazq(,)écle”{IIIU(O)III%+Ilf(',O)II"'

1—a(X)

(> 2 ~
+gaw——_0t(55) |u'(X, 0)]|%2d%

[ aueus+1rC amd [ g oz

t
0Jo
On the other hand, by Lemma 3.3, we have

IOU3+IT O o+, LZEED fu, 11243

2l LOUDNZ 0+ IUDN3- 0y +KD( s DX E1r200w0) +IU' D13, 00)

SclUONF.cr HIUDNZ- .y 1S C5 DIZ+LEC5 DX E1r200m))»
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by putting the estimates (3.27) and (3.31) into the above,

gc{mUm) 3 +17C 0)”“5@”0,%%()2) |u'(%, 0)| 2d%

[ @ nz+1rc, i
#1018 DIdEd VO o+ | 1, Dl de

+{1f 16, DRdzds+1CL D12+ 0, Dhnsone)

Remarking the obvious estimates below
2 2 ¢ ’
17C5 0122111, 012+ 71, Dldr),

(s t))fl(aNm)ézT(<¢(', 0))1242(an)+§;<¢'(', T)>IZ‘2(0Nm)dT)5

and applying Gronwall’s lemma to the above inequality, we have the
desired inequality (3.28).

§4. Existence of the Solution and its Regularity

This section is devoted to proving the following theorems by tracing
the idea of Ikawa [7] with some modifications.

Theorem 4.1. Given data {uy(x), u,(x), f(x, 1), ¢(%, 1)} € H*(®) x V,(w)
x EH(LA(w)) x (€2(H2(0yw)) N €1 (L*(0yw))). If the data are compatible
of order 0 at t=0, i.e. the data satisfy

0

on,

@D 2@ 52 uo(®)=01(E Ous(®) +0,(%, Du() ) + (1 —a()uo(%)
=a(X)P(X, 0) on Ow,

then there exists one and only one solution u(x,t) of (3.1) with (3.2),
belonging to the space &P(H?*(w))N &LV (w))n &2(L*(w)).

Theorem 4.2, Suppose that the data {uy(x), u,(x), f(x,t), ¢(X, O}
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belong to the space H™2(w)x {H"™1(w)n V (@)} X {'"F\’ é"',"“"‘(H"(w))}
k=0

x{}n\ za';'""(H"“/z(aNa)))né';"*'(Lz(an))} where m is a non-negative
intel;]:e[;'. If they are compatible of order m at t=0, then the solution
u(x, ) of (3.1) with (3.2) exists in the space mf+\1 Ent 2K HY () n V(@)
N EPHHLA(o)).

In order to prove Theorem 4.1, we begin by considering the opera-
tors L(t,) and %,(t,) below.
62

L(to)= TazT'“’l(x’ to; D)_gt— +a,(x,t9; D),

0

on,,

2,(t0) =[ 0D 50— + 023, 10) ) +1=a(®) —a(R)a,(%, 1) |

First of all, we shall treat the existence of the solution for L(t¢,) and
#(to) with non-zero boundary datum.

Proposition 4.3. Let {uy(x), u;(x)} € H3(w) X V(w), f(x, t) e &} (L*(w))
and ¢(%, ) e O(H2(0yw)) N €L (L2(Oyw)) be given. If the condition

(4.2) oc(:?)( 53

4o(®) =04 (F, 1)1, (%) +05(%, 10)uo(3))

+ (I —a(X))uo(X)
=a(X)p(X, 0) on Ow

is satisfied, then there exists one and only one solution u(x, t)e
EA(H2(w)) N &L (Vy(w)) N €2(L*(w)) of the problem below:

L(to) Lu(x, D=1 (x, 1), in @x(0,T)
(4.3) B (1)U =X)$(%, 1), on 0wx[0, T]
u(x, 0)=uo(x), u(x, 0)=u,(x)

where U(t)={u(x, t), u'(x, 1)}.

Proof. When ¢(X, t)=0, the condition (4.2) means that {uy(x), u,(x)}
€ D (t,). So if f(x, )e&}(V(w)), then Lemma 3.7 assures the existence
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of the solution of (3.25). Denoting the first component of U(f) in (3 .25)
as u(x, ), we have a solution of (4.3) in &}(V(w))n &2(L*(w)) and u(x,
e H*(w). That u(x, f)e&?(H?(w)) is prove by applying the inequality
(3.18) to the problem

(U= —5-UW) ~FO) e82(F (1)),

Z(t0)U(H)=0.

Moreover, the additional condition f(x, t)e&L(V (w)) is removed by
using the fact that &}(V/ (w)) is dense in &!(L%(w)) and the second
energy inequality (3.28) holds for (4.3).

When ¢(X, £)#£0, we assume, first of all, that ¢(X, t) is sufficiently
smooth so that we may find a function w(x, t) e &3(H?*(w)) satisfying

a(X)B(to)W(X, 1)+ (1 —a(X)W(X, £)=a(X)P(X, ). on dwx[0, T].
Then, by the above result, we know that there exists a function v(x, f)
e &P(H*(w)) n &1 (Vo(w)) n (L (w)) satisfying
L(tO) [U(xa t)] =f(x, t) - L(to) [W(x1 t)] )
v(x, 0) = uO(x) - W(xa 0) )
vt(x’ 0) = ul(x) - wt(xs 0),
«X)B(t)v(X, 1)+ (1 —a(XNu(%, 1)=0,

since  {ug(x)—w(x, 0), u,(x)—w(x, 0)} € 2,(t,) and f(x, t)—L(ty) [w(x, 1)]
e &1(L*(w)). Putting wu(x, £)=uv(x, t)+w(x, t), we have a solution of
(4.3) belonging to the space &P(H2(w)) N &LV (w)) N &2(L*(w)).

We remark that if there exist a sequence of initial data {u,(x),
u,(x)} e H¥(w) x V(w) and a sufficiently smooth boundary datum ¢(%, 1)
such that the following condition are satisfied, i.e.

4.4) B (to) {tro(x), ur1(0)} =u(X)Pu(%, 0),
4.5) {to(x)s w1 ()} — {uo(x), uy(x)} in H?*(w)x V(w), and
(4.6) ¢uX, ) — (%, 1) in ENH*(Oyw)) N £ (L*(0ym)),

then this proposition is proved. In fact, the solution wu,(x, f) of (4.3)
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for {ugo(x), ux (x)} and ¢ (X, t), exists and the sequence {u,(x,t)} forms
a Cauchy sequence in &2H?*(w)Nn &V (w)nEH(L*(w)) where we
apply the second energy inequality to the function uy(x, t)—uyx, 1).
Then, it is clear that the limit function u(x, t) of the Cauchy sequence
{up(x, t)} is the required solution of (4.3) for {uy(x), u,;(x)} and ¢(X, ¢).

Now, let us construct such {u;o(x), u, (x)} and (X, 1). It is
clear that there exists a sequence ¢, (%, f) of sufficiently smooth functions
in &1(H'/2(0yw)), which tends to ¢(%, t) in £O(H/2(0yw)) N &L(L*(Oyw)).
So we have

(4~7) <¢k(5€, 0)—¢(i, 0)>H1/2(6Nw) — 0 as k—o00.

If w is the interior domain of dw, then by Proposition 3.1, there exists
a function #(x) e H*(w) satisfying

(—ay(x, to; D)+ 2o)ii=0 in o,

(4.8) 30 o 3 N y
3 :‘ + (1 —a®)d=a(X)($(X, 0) - (X, 0))  on do.

(%) =

Moreover, it satisfies, by (b) of Remark 3.2, that
(49) ” ﬁk”Hz(a))§C<¢k(§a 0)—(]5(&, O)>H1/2(51vw)'

Putting  u,o(x) =uo(x)+ G (x), Uy (x)=u,(x), we construct the desired
functions.

If w is the exterior domain of dw, we take a sufficiently smooth
hypersurface dw; containing dw in its interior and we denote by w;
the domain surrounded by dw and dw,. We solve the problem below.

(—ay(x, to; D)+ Ao)ii=0 in wy,

#()—Gak + (1= (D), =D ($4(%, 0= ¢(%,0))  on o,

o (%) g,’fk +(1—a(X))i,=0 on dw, .

to

Let f(x) be a C* function such that f(x)=1 near dw and B(x)=0
near and outside of dw,. Then, putting

Ugo(X) =uo(xX) + B(X)ii(X) ,

Uy () =1,(x),
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we construct the desired functions. Q.E.D.

Proposition 4.4. Let u(x,t) belong to &EP(H*(w)n LV (w)n
EHL*(w)) for t=t,. If it satisfies

L(to) [u(x, )] =1(x, 1) € ¢ (H!(w)),
(4.10) < a(X)B(tu(x, )+ (1 —a(X)Du(X, H)=a(X)P(%, 1),
with  ¢(x, 1) e & (H/?(0yw)),

then for t=1,, the following estimate holds
@1 VN 3mSe ] 1V 00+ | IFEIZ 0
1A Pl 3 odr+2Co|| (B, DY ]
where IOI’(w) is the closure of Cg(w) in HY(w),
WU, c0) =122 (20)Ull % 10) + 1 U1 B (20) + DD 1120wy
+f 12O a4 o) 1)
Joww  (X)
Jor U={u(x), v(x)}, B,to)U=a(X)P(X) and
P, P2 =KP(* s D hi1r20n0y TP (s Di1r2(050) -
Proof. As we have done in Lemma 3.8, we have
412 UOI,00S e IUCI3 00+ || IPO I3 aodt
+cog;gaw 6%, DIdzde |
where t=t, is an initial plane for the problem (4.10). Now, suppose
that u'(x, t) belongs also to £2(H?(w)) n & 1(V,(@)) n &2(L*(w)).

Then, remarking that F(t)e 2,(t,) for all ¢, we have

(1)U () =--U)~ F(t)
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B(t0) (L IV (1) = ,t0)(-2-U®) — F®))

=2 Bt)VUO =)' (3, ).

Calculating %—H%(to)U(t)H;u(,o) as in proving Lemma 3.8, we have,
(4.13) ”M(to)U(t)”%Vm(to)éeCO('—tO)[”&[(tO)U(tO)”%",(ro)

t t
+{ 19 F@I 2ondir ol 1, Dirdsd
where [ L (t)F(D)lly 00y = L (t)F (D) 2,y for any <t because f()e
& 1(H'(w)). Putting the estimates (4.12) and (4.13) into the definition
of [[*lls-,t0)» We have

VO 10y = IV 1oy 1 LU DIZ- 107+ <O+ Drsr2(010)
<ot JUCIIE o+ |, (IFOly
+ 1 (@ o)
+Col [ (96, 02419/, D)

HLP( s D F12on0y—<P( s 'to)>1211/2(aym):\

S o] UG 3o+, IFOIErco
+ 1L () F ()| % (1))
+2cog:o<<¢(-, r)})zd‘c].

We may remove easily the additional condition that u'(x, t) belongs to
space EO(H*(w)) N &LV (w))n €2(L*(w)) by mollifying the function
u(x, t) with respect to t. (Here, we use the fact that the operators in
(4.10) have the coefficients independent of t.) Q.E.D.

It is clear that there exists a constant C;,>0 such that for any
UeE, and t,t'€[0, T], we have
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(4.14) 1U1% @)= +Colt=t'DIUN %)
Moreover, as «(X) is independent of t, we have readily
(4.15)  Ul3,enSA+Colt=t'DIUI3-, ) for any UeH!'xV,
and t,t'e[0, T].

Now, we prove the existence of the solution for zero initial data.
That is,

Lemma 4.5. Let f(x, ))e & (H (@) and ¢, f)e &L (H>(Oyw)). If
¢(X, 0)=0, the mixed problem

L{u(x, n]=f(x, 1),

4.16) ADBOWE, )+(1—a@u(E, H=uDH(, 1),

u(x, 0)=%‘ti(x, 0)=0

has a unique solution u(x, t) in the space
EXH* (@) N € 1(V(w)) n €} LA (@)).

Proof. Let Ay:ity=0<t;<t,<---<t,=T be the subdivision of [0,
T] into k equal parts. wu,x,t) is Cauchy’s polygonal line for this
subdivision, which is constructed as follows: Let wuy(x, t), defined on
[to, t1], be the solution of

L(to) [ugo(x, )]1=f(x, t) in wx[ty, t;]1,
(4.17) ¢ a(X)B(to)uro(X, 1)+ (1 —a(X))uko(X, )=a(X)P(X, £) on dwx [to, 1],
Uo(X, to) =uyo(x, t5)=0,

and for i1, uy(x, t), defined on [, t;,,], be the solution of

L) [ui(x, D]=f(x, ) in @ x(t, ti+4]

DB, )+ —2(Due (%, H=oD]{D(E 1)
(4.18)

+ :Ll_—_:% [(B(#:) — B(ti- 1)) upi-1 (%, t)]t=n} on JwX[t, t;y]
i+1 L

U(%, t)=up (X, 1), upi(x, t)=up;— (X, t).



MIXED PROBLEM FOR D’ALEMBERTIAN 369

The existence of such wu,(x, t) (i=0, 1,..., k—1) is assured by Proposition
4.3, since the condition (4.2) is satisfied at each t=t,. Now, we define
u(x, t) as

uy(x, H=u(x, 1) if telt, t;r].
Then, we have
u(x, e £(H?*(w)) n &€ L(V,(w)) for te[0, T]
and
u,(x, t)e £2(L*(w)) if t#t,.
So, we have
w(x, ) e H¥(w x (0, T)).

Claim 1. The set of functions {uy(x, 1)} k=1, 2,... forms a bounded
set in H%(w x (0, T)).

In order to prove this, we shall prove the following inequality

102 003 o1+ )| AFO13
(4.19)

I @13 ode+2Co{ <o, 0y ]

for telt, t;4,1(@{=0,1,2,..., k—1) where the constant C; is defined in
the following. For i=0, this is nothing but the inequality (4.11). Sup-
pose that (4.19) holds for i—1, then taking t as t;,, we have

(4.20) Uk ia@N % o ri vy

3(i—-1) ti
geCorf<1 +cl—k—T> B UFON1Z e

0

1 PO g, )7 +2Co € (-, DY |

Remarking that  Z,(t)U,(t)=2,(t)U,;—:(t) and  B,(1;_)Uy;—,(t)=
oX)P(%, t;), we have

4.21) MU e 2o, (14 CTNUe o @3 i -
k
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In fact,
(RO PSS [/
= WUkt ®l3 s+ 1 U111 o0
B )+ B =Bl i 1 Ol v
=(14+ Co )0 - D13 trem i+ 17 i DU i1 0 3

+ 202 (ti- DUk i 10 g0 I (8) = L (- DU - 1 (8D 200 1)
+ (2 (1) = L (e DUk i1 0N % 1 13}
FLC 5 1) 172 onay T 2€PC 5 1D m1r2onany S (B(H)
—B(t;- )ty 1(Dle=e? 172 (0n00)

+L(B(t) =Bt g i—1Dle=e> Fr172 o)
< ’ T b "2 2 2
= 1+COT 1+2C5% T +C z MUk = @GN 5 iz
where we use the estimates below combining with (3.18).

2
I (1) = (1o )Unie 1 1) -y Sc0mst . () Wi i-1 e 13
2
= C5() WUk i1 @D 13 sie
2 T \? 2
<(B(ti)_B(ti-—l))uki—l(t)]t=t¢>H1/2(an)§con5t-<“"k—) Uy -1 @) I3

<an< k) WUk i1 @ W ei 0y

Putting, for example, C,=Cy,+6(Cy+C¢)T)?, we have (421). C; is
independent of i, k and t. Applying (4.20) to (4.21), we have

(4.22) U321

T 3i—-2 ti 2
éecot'(l'l"ClT) [SO(”F(T)”Z’(H-I)

o ) F@ 3, )T+ 2Co| ! B, )t |
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Remarking that [ (OF|% ., =(1+Cilt'—tD|L()F| %y for any ¢t
e[0, T], F={0, f} and using again (4.14), we have

IVkted 3o S o1+ cl%)“‘l
[SLE<IIF(T>II%(Ii>+ |id(ti)F(r)s|}<ti))dr+chS:<<¢ ¢, r)>>2dr]_

On the other hand, applying Proposition 4.4 to (4.18), we have

MU O3 e

< o010 [| U 013 sro + Sj(ﬂF(z)n;ﬂ,,ﬁ I (VP 2o

+2COS CBC D+ (Bl = Bl )it 0o el

Taking some constant C% >0 sufficiently large and independent of
k, i and t, we have

LeColt=ti) (l + —%QQI‘CQQN:[”Uk N30
t
+ g UF@ 3 o+ 1 GDF@] 2 )t
i

+Col, <H(, Dy 1]

combining with (4.22),
" 3i—1
secor(1+ 2588 ) (1, T (7@l 3

1 POl 3 )de+2Co|. <o, 9y2dr |

So, redefining the constant C; suitably and by mathematical induction,
we prove (4.19). Remarking the inequality (3.18), we have, from (4.19),

(4.23) Il Uk(t)lll%éM'S;(IIIF(T)HI%-F(Gﬁ('a 1)»*de  for any te[0, T]
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(4.24) S 1—;;(5‘;&)’“1(|uk<i, D12+ |u4(F, 1)|2)d5

<M [ (IF@I3+ <4, DY) for any 1e[0, T]

where M’ is a constant independent of k, f(x,t) and ¢(X%, t). Combin-
ing (4.23) with (4.25) below,

425) |20, sconst. (IU@I3+IFOND  except for =1,

we prove our claim.
Define the space V,(wx(0, T)) as

V(@ % (0, T))={u(x, HeHYwx(0, T)); u(X, )=0 on a«(X)=0 and

Szga,\,w%&()i_)— |u(%, t)|2dxdt< oo}

with the norm given by

T 1—a(X) ~ ~
2 = 2 L 2
”u"Va(wx(O,T)) Hu”Hl(mx(O,T))-l'SOSan «(%) [u(X, t)|%dx .

By the weak compactness of the bounded set of Hilbert spaces, there
exists a subsequence k,(p=1,2,..) of k,u(x,)eH*(wx(0, T)) and
u'(x, ) e V (wx (0, T)) such that

u, —> u  weakly in H*(wx (0, T)) and
up, — u’ weakly in V(wx(0, T)).
Then, we prove easily that the following equations are satisfied.
(4.26) L[u(x, )]=f(x,1) in 2'(wx(0,T)).
(4.27) aX)B@u(x, )+l —aX)u(X, =a(X)P(X, 1) in HY2(0wx (0, T)).

In fact, (4.26) is proved by integration by parts and we have (4.27)
from the inequality below.

(XY (B(B)uy (X, 1) — ¢(%, 1)) + (1 — (X)) uy D fi1/2(50x (0, 1)) S CONSL . (_kil;>z
P
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where (4.18) and (4.23) are applied.
As in [7], we have, for some constant M">0,

<6x>< )u(x, 1) ? <M"1?.

(4.28) <
L2(wx(0,7))

J+l §2
1

o
Js

Moreover, by (4.24), we have

(4.29) S gawlo‘%‘%’?) \u'(%, 5)|2d%ds < M"z2.

Claim 2. By exchanging the values of u(x,¢) on a set of measure
zero, if necessary, we prove that u(x, f) is a solution of (4.16) belonging
to the space &£2(H*(w))n &LV (w)) n &E(L*(w)).

Mollify u(x, f) with respect to ¢ as in [7], ie. let p(f) be C* func-
tion with support contained in [—2, —1] such that p(#)=0 and
Swwp(t)dt=1. We define p;;y* by

s, = (pscu) (%, D={"_pylt—uCx, s
for u(x, f)e L%(w x (0, T+6,)), where
1t
pi0=—50()-
Then by (4.28), we have

(4.29) ug(x, 0)— 0 in H?*(w).

On the other hand, by (4.29) and (4.28), we have

’ ’ 1—a(x 1 e ~
1450, Ol o= 150 O+, 152 (s, 02

=|fpst=0-Zu, 0as|’

H(w)

1—a(X%) N0 . 2 ..
+gaw——m—— Spa( r)?‘t—u(x, t)dt| dX

s(fes-o|Zuc. 0], @)
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<fpi-ouos-o| Gt o,
+sm<—wf<ss@ e LI
(o

+Saw a&()x) —a—u(x ‘c)’ dx)d'c

< const. d.

2

H(w)

This means that
(4.30) us(x, 0) — 0 in  Vyw)
Applying p;,)" to both sides of (4.26) and (4.27), we have
L[uy(x, D]=f3(x, )—(Csu) (x, 1)
a(X)B(us(X, £)+ (1 —a(X)Dus(X, )=o(X) [P(X, £)—T'5u) (X, 1)]
where the operators I'; and C; are defined by
(o), D)= (Lpscr’s ar(x, £ DTG+ [pace’, @z, 13 DY]u ), ),

a5, 0=({ poce’s 2 Ju=[oscr’s 7%, 015

+[p8s 2% O )5, 1),

for all te[0, T—3d,] if 0<6<—55°— By applying (3.28) to ug(x, t)—usx,

1), we have the desired result assame as [7]. Q.E.D.

By the density argument, we have

Proposition 4.6. Let f(x, 1)e&}(L%(w)) and ¢(X, t)e &A(H/2(0yw))
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N €1(L*(0yw)) with (X, 0)=0. Then the mixed problem (4.16) has a
unique solution belonging to the space &2(H?*(w))nELV(w)n
EHLA ().

Proof of Theorem 4.1. As H2(0) is dense in Vy(w), which was
remarked in proving Lemma 3.7, there exists a sequence of functions

(4} € H2(0)= {u e H: () ac()?)(% +0,(%, O)u>+ (1—a(%))u=0 on aw}
0

converging to u; in V,(w). And also, there exists a sequence of func-
tions {@ (%, 1)} e £L(H3/?(0yw)) converging to ¢(X, 1) in &E2(HY?(0yw))
N &H(L*(0yw)). As in proving Proposition 4.3, there exists a function
U € H3(w) such that it satisfies

() (G0 + 3%, Qo ) + (1 ~(£)uro =21 (%, Oy + (5, 0)

on dw

and it converges to u, in H2(w). Then, by putting wy(x, £)=uy+ tus;,
we solve the following initial-boundary value problem below.
L) [vx, D]=f(x, )—LIwx, )] in wx(0,T)
(4.31) < a(X)B)v(X, )+ 1 —a(X))v (X, )=a(ZW (X, 1) on Jwx[0, T]
ulx, 0)=v(x, 0)=0

where

G 0= 34E 0| (o = 5o i D= (01(E D =045, ()

+(05(%, D) —0,5(%, 0wy, t):l —$(%0) on oyo.

Then, by the fact that f(x, f)—L[wyx, )]e &I (L*(w)) and Y (X, D)e
ELH?2(0yw)) N €2(L%(0yw)) with (X, 0)=0, we may apply Proposition
4.6 to (4.31), ie. there exists a solution wv(x, t)e&2(H*(w))n &LV (w))
n XL (w)).

Putting u,(x, t)=uv(x, 1)+ w(x, ), we may easily deduce from Pro-
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position 3.9 that the functions {u,(x, t)} form a Cauchy sequence in
CUH?*() N €LV (@) n €2(L*(w)). So, the limit function wu(x,t) is
the desired solution of (3.1) with (3.2). Q.E.D.

In order to prove Theorem 4.2, we begin to define the compatibility
condition of order m.

Definition 4.7. For given data {uy(x), u,(x), f(x, 1), ¢(X, 1)} € H" 2(w)
m+ m
x B4 (@)x (7 e K (HH) ) x (A S HH112(030) 0 67+ (20y0) ),
k= k=0
we say that they satisfy the compatibility condition (or simply, they
are compatible) of order m at t=0 for the system {L(t), 2(X)B(t)+1
—a(X)} when the following relations hold on dw.
2w (P 9 \w W (% W (%
a(X) kZ:O (k) [(a_no—> up—k—al (xa O)up—k-l-l +0'2 (xs 0) up—k:]
(4.32) +(1— R, =a(R)p@(F, 0)  for p=0,1,2,..,m, and
U1 (X) €V, (@)

where {u,(x)} p=2, 3,..., m+1 are defined successively by

= _ 5 (P=2\500(x. 0: ®(x. 0:
4.33) u,== T (P77 o, 03 Dty-sr+aPlx, 03 Doy}
+f@2)(x, 0).

We may prove Theorem 4.2 by applying ‘Taylor series expansion in
r’, which is employed in [7] without modifications. So we do not
reproduce his argument here.

§5. Energy Inequalities (II)

We consider in this and next sections the following problem.
(i) LO[ux, 9]=f(x, in wox(0,T),
5.1 (i) u(x, 0)=uy(x), u'(x, 0)=u,(x),
(i) aX)BOu(X, H+(1—aX)u(X, )=0  on Jdwx[0, T],

where the operators L(f), B(t) are defined in §3 but the condition (3.4)
is replaced by
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(5.2) a,(%, 1) S<h(1), v) on Jdwx[0, T].

We remark here that the condition (5.2) and others, ie. (a), (b), (c)
and (d) in §3 are invariant under suitable transformations, for example,
a change of space variables and Holmgren’s transformation.

Our goal of this section is to prove the following theorem.

Theorem 5.1. Let m be a non-negative integer. There exists
a constant C,,>0 depending on T such that for all u(x, t)e H"3(w
x (0, T)) satisfying (5.1), we have the energy inequality

m+2 aju . 2 m+lg I—d(X) a_yu
(5.3) jgo ot (5 ) H™ 2 i (w) + jgo v O((X) 6t1 t)} dx

m diu m+1 l—oc(i) oy .. 2
< T~ 3
=C {_]20 at" ( ’ )‘ Hm+2- j(a))+ jgoga,,w a(i) at" (x’ O)l dx
- O ) Hm-iw) | /=6 —5 (. 8) H"'+1‘J(w)ds .

In order to prove (5.3), we may reduce the problem to the case
when o,(X, t)=0 by taking a sufficiently smooth function f(x,f) on @
x[0, T] such that (i) B(X, H)=1 on 0w x [0, T], (ii)) 2>|B(x, t)|>—~
for all (x,)e@x[0, T] and (iii) ﬁ(x, 1)+0,(%, 1)=0 on Jwx [0, T]
This is the device in [8]. Now, we proceed as Ikawa did in [8].

We denote by Q2 an arbitrary domain in R”. Any function u(x, f)
e HP*1(Qx (0, T)) is regarded to belong to /p\é”‘,""(Hk(Q)) by being
changed its values on a set of measure zero otl" =?2><(0, T) if it is neces-
sary. For simplicity, we denote the space fj\ EVk(H*(Q)) by &(p, Q)
and for u(x, f)e &(p, Q), we define [u(-, z)|||p,QkB°y

2V uc|

and for u(x, )e &1, Q), we define [u(-, Ol by

(5.4) I, DliZa= 3,

HP-i@)’

It Olo= 3 | aute, 02, g,

+luC, 012+ |3,
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Then, clearly, there exists a constant M >0 such that

(5.5) 714— uC, DN e luC, Dlin=MlluC, DIi.q
for all te[0, T] and u(x, 1) e &(1, Q).

By integration by parts, we have

Lemma 52 (Lemma 2.1 of [8]). Let u(x, t)e H2(Qx (0, T)) satisfy
L) [u(x, )]1=f(x, t) in 2% (0, T). Then, we have

5:6) -, Dl S IuC-, Olicor+cof 4, Ilods

+S;u £Cs s)u2ds+2ReS;dsSmB(s)u(x, s)g—;l()?, 5)d%

Jor all te[0, T, where c, is a constant determined by L(f).

By R%, we denote the space {x=(x, x,); x'eR""!, x,>0}.
Slight modification of Lemma 2.2 of [8] gives us the following.

Lemma 53. Let p(x',t) be a real valued function in Z*(R* 1!
x(0, T)). For any u(x, t)e H3(R2 x(0, T)) satisfying u(x", x,—1, 0, £)=0
for x,_,<0, we have the estimate

4 , 02u(x',0,s) ou(x',0,s) ,_,
.7) 2ReSoarsSm"+ 0p(x , 5) U, 2105 4y
Xn-1>

<y {elluCs Ol 3,ag +CENUC, Ol g +luC-, Ol g

-, 9N3npds}

for any te[0, T] and j=1, 2,...,n—1 and

(5.8) 2Reg;dsga :

Xn-1>0

’ 2 ” O’ I9 09 ’
o) 0 u(:;s2 s) 6u(xas s) dx

<ey{olluC, Dllzng +CEIUC, DTy +11uC Ol

n S;mu( -, Ol %,n:ds}
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where ¢, is a constant determined by p(x',t), ¢ is an arbitrary positive
number and C(g) depends only on e.

Lemma 5.4 (Lemma 2.3 of [8]). For any u(x, t)e H3(R% x (0, T)),
v(x, t)e H2(R" x (0, T)), we have

0%u

552 (x', 0, s)v(x’, 0, s)dx’

(5.9) 2Regt dsS
0 R?7!

é%{slllu(', D3, +C@lu-, DIIE,rn +lloC-, DIIF, &

+llu(, O3, +1lv(-, OIF &
t
0l 93wy + 100, DN mpdds}
where ¢, is a constant independent of u and v.

Remarking the estimate (3.8), we have, as same as Lemma 2.4 of
[8], the following lemma.

Lemma 5.5. Let p be an arbitrary integer=1. There exists a
constant M, such that for any function u(x,t)eé&(p+1, o) satisfying
(5.1), the following estimate holds for all te[0, T].

(5-10)  llu(, DIZs 1,0 SM(Nu®(, DT, 0+ Mu-, D50+ 1L DIIZ-1,.)
The following proposition corresponds to Proposition 2.6 of [8].

Proposition 5.6. Let k be a non-negative integer and ¢(x) be a
real-valued function in CZ(R™) with a support contained in an open
set V. Let u(x,t)ye H**2(R2 x(0, T)) satisfy (i) of (5.1) in (VnRY)
x(0, T) and (iii) of (5.1) on (VNR* 1)x[0, T]. Then, we have

S  1@wPC e+, A2 (O, 12z
a(X)#0

éCk{llu(', O)ll e+ 1y + [14'C- > Ollrregoy + ILFC 5 OVl -1 v

+S;lllf’(', M -1y +ellul, Dlls 1,7+ CEMNu(-, DI »
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0 (s Mo+ LoD a0, 5)12a5 s}

LA a(x)
for all te[0, T], where C, depends on L, B, a, ¢ and k and V=V nR2.
Proof. Putting v(x, t)=@(x)u(x, t), we have
(5.12) L(®) [v(x, D]=([L, Ju)(x, )+ @(x)f(x, 1)

(5.13) a(X)B@)v(X, 1)+ (1—a(X))v(X, t)=oc(3?)—g—:f—- u(x,1).
t
Differentiating these equations k-times with respect to t, we have

(5.14)  L(t) [v")(x, H)]= — _g LO(t) [o*=D(x, )]+ ([L, eJu)®(x, 1)
+o(x)f®)(x, 1),
(5.15)  a(R)BEOVE(Z, 1)+(1—a(R)WwE(F, 1)

=o(%) { _k(Tfh—y”(k_”(f, D +ko' (%, Dv®(%, 1)
k
T A

j=2

+ £ () G) v o

Applying Lemma 5.2 to v®)(x, t), we have

K\p(h(p)pt-i)( % _0 g
(j)BJ(t)v D(E, 1)+ o= u®(E, )

(5.16) o™, Dl S 109(-, 0)llﬁ<o>+CoS;|lv”‘)(', 9)l|*ds

+{ 1= 3 LOBE14 AL, ol +r®)ds
o j=1
+2Re§' dsS B, )G, $)d5

0 )

Remarking that @(x)e CH(V) and v satisfies (5.15), we have

2Re$’ dsS B(s)o®(E, s)oI(E, 5)dx
0 v
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=2Regt dsg —rﬂv(")(x', 0, s)v®**D(x", 0, 5)dx’
0 ORI NV a(x’)
a(x')#0

t 0 \ . (- (300
+2Re\ ds {—k v, D kg io® 4+ o y®
0o JorTav on, on,
a(x’)#0

-3 < )Bm(s)v(k—n

Jj=2

+ Z < )( g,(f )(j)u““f)}vm)dx'.

Here, we remark that dX=dx'=dxdx,...dx,_,.
Clearly, we have

o, 0)”121(0)

=const. (Ju®(-, Ol )+ [u® D, 0lE2(p)),

I- 2 > ()Lom -1+ (L o1)®) 2:0s,

Zconst. [lu(:, Ollz+1,»

and

|- £ (Gpoomns £ (G)G) v

=const. [lu-, llZ-1+i,p-

11V

By applying Lemma 5.4, we have

' KK\ kRN 80 \D ..
5 _ \ B (5)p k=) () _2_) k n)
Regoganﬁlnv ( j§2<])B (5)v + j§=:1 J/\ ong “

a(x’)#0

02 .
Wz—v("‘“dx ds

§C<8lllu( s DllEe 1,7+ C@NuC-, DNZp+lluC-, OliE1,»

+ [ 1 ps).
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Hereafter, we use same letter C or ¢ to represent various constants.
From (5.13), we have

ov 1 ne

_ ! . ov LN 0v | 00
0x,  a,,(x,0,) (,-:o 2j(x', 0, 1) ox; +o.(x, t)—at— + om, *

—I_%C—(,xj')—u(x', 0, t)) on 9RZ N VN {x': a(x') £0} .

Differentiating both sides (k—1)-times with respect to ¢, we have

ovk—1) 1 <n—1 Juk—1)

)
= a, +0o U(k)—" u(k"‘l)
6x,, Aup \j=1 " axj t 0

T,

_1=a(x) (k—1)>
OC(X’) v +Bk—1u’

where B,_; is a boundary operator of order less than k—1. So

=2ReSt dsg —<_Q_>’U(k—1).ka+Tde,
o Jerinp ong

a(x’)#0

n—1 . (k—1)

=2Regtdsg 2 (a;lj—a:m aypj )Lv(k+l)dx’

0 ORI NP j=1 a
+2Reydsg [L(_glu(k)+_%u(k~1>+ _IL“('x'_)._v(k_l))

0o Jerinp on o

a(x’)#0
+ By [p O
By applying Lemmas 5.3 and 5.4, we have

t _ ’
éZReS dsg va(k—i)v“(krl)dx'
o Jemrlnp a,, o(x)
a(x’)#0

+C{8HIU(', OlR+ 1,7+ CEMuC-, D2 p+llul:> OllEss,»

[ e}

By integration by parts with respect to ¢, we have
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2Regtdsg ! A:Mv("“”v("“)dx'
0 RNV Ay, a(x")
a(x’)#0

IIA

l—oc(x')< )+ 2, 1 1y

— = g|lv®(x’, 0,8) |2+ = [v*" (X, 0, 2)]| 2

ooy (190G, 0,174 - 10470, 0,1
a(x')#0

+ 10, 0,00+ |06, 0, 0)] 2 )dx

t 1—a(x") , .
+ dsg —— 22 L pk)(x', 0, 5)|2dx" .
cSo AR NV oc(x) I ( )I
a(x')#0

On the other hand, we have

t

2ReS dsS
0 RNV
a(x’)#0

(ka’l vk 4 g<p u"”)u”‘+ Ddx'

§C<8lllu(', M+ 1,9+ CEMul-, DlIZ e+ lluC-, Ol 1,»

t
G Mz o).
Putting these estimates into (5.16), we have

I—a(x) . .

(k)( - 2 (k) 2

(5'17) ”U ( ,t)HH(t)+S6R:nV a(x’) |U (XDO’ t)l dx
a(x’)#0

1—a(x) . .

< (k)(. 2 R SAP N FT102) 2

_”U ( ,O)”H(O)-i_gaRZOV oc(x') lU (x,O, O)I dx
a(x’)#0

t t I—a(x") .
(- 2 ¢ ®(x', 0, 5)|2
el 1rwe, s el sl AZHE o, 0, ) 2ds
a(x’)#0

J.:M-( *) (' 24 L -1y, 5
+cgan:n7 a(x’) elv®(x", 0, H]*+ v (x',0,2)]

a(x')#0
00, 0, 02+ oD (x, 0, O)f )d

+C(8|llu( s DlIRe 1,7+ CENul-, YNE o+ lluC-, OllE1,»

s 92, pds).
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By differentiating (5.13) (k—1)-times with respect to t, we have easily

1—a(x’)

Saninv a(x’)
a(x’)#0

(5.18) [v¢=D(x", 0, 1) | 2dx" Zconst.[[v* = D(-, )| &2(p)

for any t€[0, T].
Remarking that
N5 OMIZs1,v
=const. (u(, Ol fxr 1oy + 14'C5 OllZxy + IS5 OllIZ-1,0),

we have the desired result by taking ¢ sufficiently small.

Proof of Theorem 5.1. Let {p;(x)}}=; be a partition of unity in
a neighborhood of dw, namely, ¢;(x)e C®(R") such that

ﬁ 0¥x)=1 in a neighborhood of dw.
Jji=1

Assume that the support of ¢@; is contained in a sufficiently small
neighborhood U; of some %;edw and there exists a smooth transfor-
mation ¥;=;1(X), ¥;j2(X),..., ¥;s(x)) from U; onto ¥; in R" such that

¥(U;nw)=V;nRY,
¥, (U, néw)=V;nR"1,

For a function w(x) defined in a domain containing some U,;n o,
we denote by Ww;(y), the function defined in V;nR% by w;(y)=w;(¥;(x))
=w(x).

Considering that the equations of (5.1) hold in (U;nw)x(0, T)
or on (U;ndw)x[0, T], we have

(5.19) L, 01=fy, ) in (V;nRHx(, T),
(5200 a)B;® L,y D1+ A —a(y)i,(y', =0
on (V;nR*1)x[0, T],

where
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L;(t)=

o 92
2 (B o gy

— S 3 a'/’]l alrblk
i,k2=1<p,‘j";1a” ox, 0x, )( D Y0y, 6y

+ (first order term),

— (3 Wi OWin\ 0 _ sz o O
Bit)=— % p’qz=1apq ox, ox, J oy, G (y, 1) pral
Applying Proposition 5.6 to (5.19) with (5.20), we have

5 ()i lm 1—a( I) > ' (m+ 1), ’
13,()asme 0, t)||g,(,)+gggm)‘;61_&(y_,y)_ 16,007, 0)am Dy, 0, )| 2dy
@y’

S Cin{ I3 Olims 7, + 15, Ol s

1__°Ly‘_)_. 5.(v Gt (0. 0)|2d v
+gV,an-1 a(y") |<p,(y > o)u.l (y',0,0)|%dy
@(y’)*+0

T OWr, 4§ T I Ep s+ e DMz,
FCONL Oler,o,+ (ML Mo,

1_&(.]),) A qm+1)¢ )’ 2 ’ }
+S’.’(J“,‘)‘;;‘m°~‘(y’) [¢;(y", 0)am+(y’, 0, 5)|2dy )dsy .
a(y

Therefore, we have

(.21 llo,(-)um (-, 1) m%,wﬂaw i;'T";()"—) |0, () utm DR, £)| 2d7

SCon Iy O30y + 10'C s Ol 1)

+Saw 1;(0;()3?) | @ () utm* (%, 0)|2d% + || /(- 0) 2.,

+ S; WFC Ol 0+ elluC, DliZez,0+ CENUC, Dll7s 1,0

0 (s ezt |, LZED (g putmrz, 1245 )as)

a(X)
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On the other hand, we have easily that
N
(5.22) (Id- ,;1 @, () Putm 00, DI,
§Cm<l|u(', O)| Zm+ 2@y + 11'C-, OV Zms 10y + ILFC-5 Ol 0

U C Mo+ s Mz 2,0ds)-

And also, we have for some constant ¢>0,
N N

(5.23) lv(-, DII%,0= ,-Zl lle, (o5 DI, o+ (L — -21 () 20(-, DI,
< =

+elo(-, DII?

for any u(x, t)e&(l, ). Combining these estimates (5.21), (5.22) and
(5.23) with Lemma 5.5, we have

s Olleo+ |, AZHE junen(s, o)) 20

S Cof 14, Ol 20y + 18°C s Ol 1

1—a(R)
onw O((f)

+

lutm* (X, 0)[2d% + /¢, 0) 17,0

0

t

|
{17, oz,
|

[ (s a0t |, A juomenr(z, 5)12a5 Jds

(1] INw Ot(i)

+elluC:, Dllze 2,0+ CElu(:, t)lll,f.ﬂ,m}-

Using the relation
t
G-, D3es, oS const. (-, Ollzes,ot | 1C IlZez,0d5 )

and choosing ¢ sufficiently small, we have the desired result by
Gronwall’s inequality. Here, we use (5.18) to estimate the term

o ( 1=a(%) | onz. 1243
jgogaw a(X) | (X, )| 2dX, Q.E.D.
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§6. Existence and Regularity of the Solution

Our aim is to prove the following theorem.

Theorem 6.1. For any given data {uy(x), u(x), f(x, 1)} € H" %(w)
x H" Y (w) x H"™* Y(w x (0, T)) satisfying the compatibility condition of
order m at t=0, there exists a solution u(x,t) of (5.1) belonging to
the space &(m+2, w)n & Y(V(w)) and it is unique in the space
EHLA(w) N &L (V@) n & (H? ().

We will prove this theorem by following the idea of Ikawa [8].
The modification will be necessary to construct a solution of the boun-
dary value problem for a system of elliptic operators.

We give, first of all, the definition of the compatibility condition.

Definition 6.2. The data {uq(x), u,(x), f(x, £)} € H" %(w) x H™*(w)
x H" (@0 x (0, T)) are said to satisfy the compatibility condition (or
simply, to be compatible) of order m at t=0 for the system {L(f),
a(X)B(t)+1—a(x)} where the following relations hold on dw.
¢ )4 g \*» (3 (5

a(X) k§0 k) (6—no> Up-k— 01 (£, Oty gy +07(X, 0)upy
6.1) +(—a(F)u,=0 for p=0,1,2,..,m,

and

Up l(x) € Va(w)4)
where u,(x)e H"*?"P(w) (p=2, 3,..., m+1) are defined successively by (4.33).
Definition 6.3. S"(L, B) is the space of all data @={ug, uy, f}

€ Hm2(w)x H™Y(w) x H™*Y(wx (0, T)) satisfying the compatibility con-
dition of order m, equipped with the following norm.

62) 1813w n=l#olimr o+ 141l Fm+ i (a
1-a(X) 2V127% . 2
+S6~w «(X) |t 1 (X) | 2dX A/, O 17,0
.ef . 2
+SO ?&—'( 2 S) m’mdS.

4) This condition is more restrictive than the definition of Ikawa.
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Clearly, S”(L, B) forms a Hilbert space and S**!(L, B)=S™(L, B).
For the future use, we consider the following boundary value prob-

lem for a system of elliptic operators.

(—ay(x, 0 DYw,()=f,(x)  in o
I Q) N N
oo | B D) wmets 0w, soti o, ]

+ (1 =a(Z)w, = a(X)P,(X) + (1 — a(XNY (%) on Jw

for p=0,1,2,...,m,

where w,,, (x) is given arbitrary in H!(w).

Proposition 6.4. Assume that  is bounded. Let f,(x)eH™ ?(w),
¢,(X)e H"*1127P(0w) and Y (%) € H™+3/27P(0w). Assuming that there exist
functions wy(x)e H"*2"P(w) (p=0, 1, 2,..., m) satisfying (6.3), we have

m m
64) 5 Dpllimes-siorS C B (Upllhmescor +<@pme 2-s0000
+ <lllp>121"‘+ 3/2-p(30) T I Wp”fz(w)) + [ W 1 ”121‘(111)}

where C is a constant independent of w,.
Moreover, if A is taken sufficiently large, then there exist functions
w,(x) € H"*2P(w) satisfying (6.3).

The proof will be given in the appendix.
The following lemma corresponds to Lemma 3.1 of [8].

Lemma 6.5. Any element of S™L, B) can be approximated by
smooth elements of S7(L, B).

Proof. Let ®={ugy,u,, f} €S™(L, B). There exist sequences of smooth
functions vy, v;; and g; converging to u,, u; and f in H™ *(w), H"*(w)
and H™!Y(wx(0, T)), respectively. We define v;, (p=2, 3,..., m%1) by
(4.33) from vjy, v;; and g;, and we put

= e 0\ = -
?jt(x)= kgo (k) [(m) Ujl—k_a(lk)(x’o)vjl—k+1 +°'(2k)(xs O)th—k]

=0, 1, 2,..., m.
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Then, y;(X) (=0, 1,..., m) are smooth functions and 7y;(X) converges
o 70= 3, ()] (45) = 0P E O + WS, Oy | in Hme 1274
(0w). ®eS™(L, B) means that o(X)y,(X)+ (1 —a(X)u(%)=0 for 1=0, 1,..., m.
Moreover, there exists a sequence of functions #;,,,(x) converging to
Up+1(X) In Vo(w).

Let w be the interior domain of Jw and consider the boundary
value problem (6.3) with putting f,(x)=0, ¢,(X)=7;,(X) and ¥ ,(X)=v;,(X)
for p=0,1,..,m and setting W;,4 (X)=0;,41(X)—D;,+1(x).>> Then,
by Proposition 6.4, for sufficiently large A, there exists functions w;,(x)
€ H"+27p(w) (p=0, 1,..., m) satisfying (6.3) and

m
kgo Ileplllzi"‘+2‘P(w)
m
éc{ Zo (<7jp—7p>121m+ 1/2-p(pw) T <Ujp—up>121m+ 3/2‘1’(60)))
I

+ ”Ujm+1“l~’jm+1 "IZil(m)} .

Here, we use that a(X)y,(X)+(1—a(X)u,(X)=0 for p=0,1,...,m. So,
f [W;pll&m+2-(py tends to O when j tends to co. We put {u;o, u;y, f;} as
k=0

Ujo=0Vjo—Wjo
Ujr=Vj3—Wjy
m+1

fi=g;— > {W~ n 122<l—2>(a(k)(x 0; D)w;
Jj J = Jl o k 2 s Uy Jjl—k—-2

tl—Z
=21

+a®(x, 0; D)le—k—l)}

where W41 =0je1—D0;ms1- Then, u;, (p=2,3,..., m+1) constructed
from @;={ujo, u;;, f;} equal to v;,—w;,. So, the smooth data &;
belong to SW(L, B) and by u;,.,="0;,.1, ®; converges to @ in ST(L, B)
when j tends to oo.

When o is the exterior domain of dw, by the same device of
Proposition 4.3, the existence of an approximating sequence is deduced
to the case with a compact domain. Q.E.D.

We denote by B, the boundary operator defined by

5) In Lemma 3.1 of Ikawa [8], he puts w,,,=0 without mention it clearly.
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0

B.= on,

€

0
—(0,—¢) o +0,
where ¢ is an arbitrary positive constant.

Lemma 6.6. For any element ®={uy, u,, f} €S™(L, B), there exists
a sequence D;={ujy, u;, f;} €SHL, By;;)) (j=1,2,...) such that |®;—®|m

tends to O when j tends to co.

Proof. Replace the function ¢'¥(%, 0) of (6.3) by (al———}—>(k)(i, 0).
When o is the interior domain of dw, we solve the boundary value
problem (6.3) modified as above, for w,,(x)=0,f,(x)=0, ¢,(X)=0
and 1//p(£)=—;,—ul,+1(§). Then by Proposition 6.4, there exist the solution
{Wip}p=0,1,..,m of (6.3) satisfying

m
ZO Ilepllfzivn+2°p(w) —0 when ] — 00,
p=

Ujo=Ug—Wjo

uj1=u1—Wj1

m+1 -2 tl—2

/-2 _
s=1="E ot 5 (0@ w s + e w0}y

1=

then @;e SY(L, By;;) and |®;—®|gm—0 when j—c0. Q.E.D.

Lemma 6.7. S7*1(L, B) is dense in S"(L, B).

We prove this as same as Lemma 3.3 of [8], so the proof is omit-
ted here.

Proposition 6.8. For any ®eS7" (L, B), there exists a solution
u(x, ) of (5.1) in H"2(wx(0, T)) and u™t'(x,t) belongs to V/ (w
x (0, T)).

Proof. By Lemma 6.6, there exists a sequence &;€S7*! (L, By,))
converging to &@. For each @; there exists a unique solution uy(x, ?)
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"IN 3K HXw) 0 V(@) n 73 (LAw)) of P(L, B;,) by Theorem 4.2.
k=0

Here we denote by P(L, By;;) the problem (5.1) with replacing B(?)

by By(1).

Therefore from Theorem 5.1, we have

1—a(X mt1) (s ~
sy Ozt |, AZEE julre (3, 1) 120

1—a(X)

=< Cm(” Ujollfm+ 2oy + il fm+ 100y + Sﬁnw %@ | tjms1(X) | 2d%

2

)
where C, is independent of j. So, {u;(x, )} forms a bounded set in
H™2(wx (0, T)) and {u{"*V(x, 1)} is also bounded in V,(wx(0, T))
with respect to j. By the weak compactness of the bounded set, there
exists a subsequence {u;,(x, )} converging weakly to some u(x,f) in
H™2(wx (0, T)) and {ulm*D(x, )} converging weakly to u(™*1)(x, 1)
in V (wx(0, T)). It is easily proved that the function u(x, tf) so con-
structed satisfies P(L, B). Q.E.D.

F05C Oz |40

Proof of Theorem 6.1. Let & belong to S™(L, B). There exists
a sequence ®;eST*2(L, B) converging to ¢ by Lemma 6.7. Proposition
6.8 assures the existence of the solution uy(x,t)e H"*3(wx (0, T)) of
P(L, B) for the data ®;.

By applying Theorem 5.1 to the function u,—u; we have

1 —oa(X m 5 -
a2 0=, Ozt |, AZEED =iz, o)) 2a
écm|¢k_¢jlg1:'

This means the convergence of uj(x, t) to some element u(x, f) in &(m
+2, o) N & Y(V(w)). This function wu(x,t) is a required solution.
It is clear that the solution u(x, t) satisfies the energy inequality

s Olizeot 73§, L5EE ueos, o123

S Cuf luollimsacor + sl scor+ 3, | Lo uy(2)2a5
= k=0 Jonw  a(X)
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170, OlZe+ | LC0s

12
} ds}.
The uniqueness follows from Lemma 5.2, immediately. Q.E.D.

By the invariance of the condition (5.2) by the Holmgren transfor-
mation, we prove easily that the problem (5.1) has a finite velocity.
More precisely, let A(x, t; €) (i=1, 2) be the roots of the characteristic
equation of L,

Az+2j§1 hyx, 02— 3"::1 a,(x, &L, =0,

for (x, )ew x[0, T] and £eR". Denote

)'maxz sup |/1i(x: t; é)l

and A(xg, to)={(X, 1); |X—Xo| £ Amax(to—1)}. Then we have

Proposition 6.9. Let u(x, t) be C>2-function defined on A(x,, t,)
n(@ %[0, T]) satisfying L[u]l=0 in A(xo, to) N (@ x (0, T)) and o(X)B(H)u
+(1—a(X))u=0 on A(xg, to) NG x[0, T]). If uy(x), u,(x) are zero
in A(xq, to) N (@ % {0}), u(x, 1) is identically zero in A(xy, to)N (@
x [0, TD.

The proof is standard, so omitted here. See, for example [13].

§7. Proofs of Theorems A, B and C
We give another description of Theorem A.

Theorem A. Let (x°, t°) be an arbitrary point of Qp. Let u(x, t)
be a twicely continuously defferentiable function defined on A(x°, t°)
N Qr and satisfying

Ou=0 in A(x%, t°n Qq,

(7.1) ou
o(%, t)7p—+(l—oc(i, ))u=0 on A(x°,t°)nZx,

where A(x°, t°)={(x, )eR"*!; |x—x°|<Zt%—1t, t20}.
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If the assumptions (a) and (b) are satisfied and the initial data
{ug, u,} are zero in A(x°, t°)n(Qx{0}), then u(x, t) vanishes identically
on A(x°, t°)n Q.

Proof. If A(x°, t°)nI'=¢, then the boundary condition satisfied
by u(x,t) on A(x° t% nZX is always of the Neumann type or the Dirichlet
type. So in this case, the above statement was already proved in [6],
[8], for example.

Assume that A(x°, t9)nI'#¢. We define the number 7, as

To=max {t; (%, ) e A(x°, t°)nT}.

It is clear from Proposition 6.9 that if wu(x,t) is zero in A(x°, t°)
N(R@x[0, to]), then u(x,?) is zero also in A(x° t°) n(Q x [14, t°]).
To prove that u(x,t) vanishes in A(x°, °)n (2 x [0, 1,]), we prove as
we did in [13]'. Define a subset I of [0, 5] as

Iy={t'€[0, 15]; u(x, )=0 in A(x° t°)n(2 %[0, t']}.

Clearly, Iy#¢. Let (X!, 0) belong to A(x°, t9)n(I'(0)x{0}). By the
assumption (b), there exist a neighborhood V;1 0, and a transformation
@ 51,0y € (E) such that the problem (7.1) in Vs 4, is transformed by @
to the following problem (7.2)

2 ~
—a-i—zﬁ+a1(y,s;D)%ﬁ+a2(y,s;D)ﬁ=0 in 7

(1.2)
ou

Ong

&(¥)

where 4(y, s)=u(PE1,0)(J> 5)), A(F)=a(P5k,0,(J, 5)) and the operators a,(y,
s; D) and a,(y, s; D) are defined in (2.4). By Proposition 2.6, all the
requirements in §3~§6 are satisfied if we consider the equations (7.2)
in a smaller domain than V. Then applying the same argument as in
[13], we prove that I, is an open, closed and connected set in [0, 7,].
So Iy=[0, 14]. Q.E.D.

From this, we have

Corollary 7.1. The solution u(x,t) of (1.1) with (1.2) belonging
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to C*(Qy) is unique.

Before proceeding to prove Theorem B, we give the definition of
compatibility of the problem (1.1) with (1.2).

Definition 7.2. Let the data {uy(x), u,(x), f(x, t)} belong to the
space H™*2(Q)x H™1(Q)x H"*1(Q,). We say that the data {ug, u;, f}
satisfies the condition of compatibility (or simply, they are compatible)
of order m at t=0, when the following condition holds.

& (P = Oup_ N _
kgo (k) {a(k)(x, O)_Bi_;_k-.;. (1—a(x, ()))(k)up_k}_() on 00

for p=0,1,2,..., m
(7.3)
and

1—a(X, 0)
FJo) a(X, 0)

a(%,0)#0

Upr1(X) € Vyz,0)(2) e | ttys1(X)|2d% < 0

where u,(x) is defined by
Uy (x)=1,_,(x)+f*"2)(x, 0) for p=2,3,.,m+1.

Remark 7.3. Let v(x, t) e H""2(Qy) satisfy the boundary condition
o ov =
(X, t)'ﬁ +(1—a(X, 0))r=0 on X.
Then, for any vector field X(X, f) tangential to %, we have
14 X 0a, D20 +(1-a(% ))o}=0 on I for 0SISm.

So, if u(x, f)e H"*2(Q;) is a solution of (1.1) with (1.2), then from
(7.4) for u(x,t) and the equation [u(x, t)=f(x, t), by putting =0,
we have a certain relation between the data. This is the condition of
compatibility. And it is easily proved that the condition of compatibility
is independent of the choice of the vector field X(%, f) provided that
the inner product of X(X, ) and —aat— never vanishes near t=0.

Definition 7.4. We say that the data {uy(x), u.(x), f(x, £)} € C*(Q)
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x C°(Q) x C*(Qr) are compatible of order oo at t=0, if (7.3) is saits-
fied for any m.

Proof of Theorem B. Let (x° 1°) be an arbitrary point in Q.
If A(x° t9nI'=¢, then we can assign uniquely the value u(x9, t°) im-
mediately by Theorem A. Moreover, u(x, t), so defined, is of class C®
in a neighborhood of (x9, t°) provided that A(x,f)nI'=¢. Let us
assume that A(x°, t°)nNI'#¢. Then, by the assumption (a), A(x°, t°)
NIO)x{0})#¢. Let X! be an arbitrary point of A(x°, t°) n(I'(0)
x{0}). Then, by the assumption (b), there exist a neighborhood Vi,
and a transformation @ oy (E) such that the problem (1.1) with (1.2)
in V) is reduced to the following problem.

v(> 8)+a;(y, 53 DYy, 5)+ax(y, s; Dy(y, $)=F(, s),
(75) D(y’ 0)=ﬁ0(y)a vs(ya 0)=ﬁ1(y)’

a(5) -

+(1-a(§))v=0,

where the operators are defined in (2.4) and

io(y)=uo((y, 0), 0),

2,0 =us (0 (2, 0,0+ 3 W (5, 0) Po (5, 0), 0).
k=1 0S8

Xk

By easy calculation, we prove that if {ug, u,, f} are compatible of order
oo at t=0 for {D, (%, t)-a%+] —a(X, t)}, then {ii,, ii,, f} are compatible
of order oo at t=0 for {L(y, s; D,, Dy, o‘c(}”/)—ai—s+1—o?()7)}.

Applying the same argument as we did in §7 of [13], we may
construct a solution u(x, f) satisfying (1.1) with (1.2). Q.E.D.

Proof of Theorem C. As the problem is linear, we have the desired
result by applying Theorem A and the energy inequalities in §5. Q.E.D.
Appendix

Let Q be a bounded domain in R"” with the smooth boundary 09Q.
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We consider here the following problem

(= )U=F n Q.
(A.1)

(D) BU+(1—a(®)U=a(®)b+(1-«F)¥ on 0Q,
where

ao(x; D) 0 20 0o c(®)
o= 9= o . o 0 :

U

I

e () e ()= (5
, F= , &= and Y= ,
Uy Ji N vy

a(x: D) (i=0, 1) are uniformly elliptic operators of order 2 such that
(a(x: D, v)=0 for any veC¥(Q), all coefficients are smooth and
i} d{&)ny;=0 on 0Q. Here, we denote by m;=(n;;, n;,..., ny) (i=0, 1)
tjﬁé conormal vector of a,(x; D). As before, we assume that o(X)e C*(0R2)
satisfying (i) 0=<a(X)<1, (i) {X¥€0Q; «(X)=0} has a non-empty interior,
not equal to 0Q, and (iii) {Xe0Q; «(X)=0} forms a submanifold of
02 of codimension 1.

Lemma A.l. Let U={uy u,}eH3(Q)xH*(Q) satisfy (A.1) for
F={fo, f1} e H(Q)x LX(Q), 2={¢o, ¢1} € H3/*(0Q2) x H'/*(0Q) and ¥ ={y,,
Ve H3/2(0Q)x H3/2(0Q). Then, for sufficiently large A, there exists
a constant C independent of U, F, ® and ¥ such that we have

(A.2) uoll3+luI3=C(l follF+1f1ll5+<Po>3/2+KD 1032
+{Po>% 2+ <Y 032)

where 1= L@y < Sn=<" Yuncaay:
Proof. From (A. 1), u, satisfies
(A—ag(x: DYuo=fo
1@ 5+ bo) Juo+ (1 ~a(E) o =) (b0 — (s | )

+ (1 —aE)Yo(%).
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So, applying the estimate (3.8) to the above problem, we have

luoll3=Cll foll 3+ <do—c(Xu1load3/2+<Wo>%/2+ uoll3) -
Combining this estimate with that of u,, we have
(A3)  lugld+1ulZ=CUfollF+1f1l3+LDo)3/2+K 032+ V002

+<W 132+ luolld+lluglf) .
We define the operator o7, by
L U=toU  for Ue2(sfy),

where 9(of 0)={UeH3(Q)xH*Q); a(X)ZU+(1—-a(X)U=0 on 0Q}.
Then, using the technique of S. Agmon [2], we have, for sufficiently
large 4,

(A.4)  Nluoll3+lluy 3= CIAIT (I(A—ao(x: D)uoll + [(A—ay(x; D)uylI§)
for U={uy, u;} e 2(Z ).

As Q is bounded, applying the method of J. Peetre [23] (see also, J.
Lions-E. Magenes [18]), we have the estimate (A.2). Q.E.D.

Remark A.2. The above estimate (A.2) holds for the operator
0 b,(x, D)

oo+ where M1=< ), bj(x, D) is the operator of

b,(x, D) 0
order j (j=1, 2).

As the same argument as above, we have

Proposition A.3. Let w,e H"*277(Q) (p=0, 1, 2,..., m) satisfy (6.3)
with w,, ., € H(Q). That is,

(A—ay(x, 0: D)w,=f, in Q
- )
63 (e® = (0N(2 IR oy

+ (1 —a(E)w,=uX)p,+ (1 —a(X)Y, on 0Q.

If Q is bounded, then we have, for sufficiently large A,
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A B 10,2y SCLE (S lampt <O phe1s2-p Wphrsia-p)
3

Lemma Ad4. Let F={f,, fi} e HY(Q)x L*(Q), d={¢,, ¢,} € H3/2(0Q)
x HY/2(0Q) and ¥={o, ¥} € H3/2(0Q) x H3/2(0Q). Then, for sufficiently
large A, there exists a function U={uy, u,} € H3(Q)x H*(Q) satisfying
(A. 1).

Proof. As {«y, #} is ‘coercive’ in the sense of [3], there exists
a function V={v,y, v,} € H3(Q) x H*(Q) satisfying

(A —s£,)V=F in @,
(A.6) [

BV=0 on 0Q.
If there exists a function U satisfying (A.1), by putting W=U-Y,
we have
(M - )W=0 in Q,

(A7) [
WX)BW+ (1 —a(XYW=(1-a(X)(P—-V) on 2.

So, the solvability of (A.1) is equivalent to that of (A.7). Moreover,
the problem (A.7) is reduced to the problem on the boundary by in-
troducing the pseudo-differential operators Pj(1) defined as in §3 for
each a(x: D).

WO , wo_ﬁo
(A3) T.() ( ) >=(1—oc(x))( i )
Wy 1~ Vs
Here, we denote w;|,, by W; and
(%) (Po(4) + bo(%)) +1 — (%) x(X)e(X)
T0)= | 2 @(de@PoW+ 3 d,(D)52) aDPD)+b:(3)
i=1 X
+1—a(X)

We define the operator J,(A): 2(T (A)={D={do, ¢,} € H/*(Q)
x H3/2(0Q); T(A\)P e H5/2(092)x H3/2(0Q)}—» H5/2(0Q) x H3/2(0Q) by T ()P
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=T ()P for &e 2(7 (). Then, the solvability of the problem (A. 1)
is derived from that of the problem 5 (1)@=V¥. Using the estimate
(A.2), we have readily that 7 (1) is a 1-1, closed operator with the
closed range in H?3/2(0Q)x H3/2(0Q). (See, [15], [24]). So, it is suf-
ficient to claim that the adjoint operator 7 #(1) is also 1-1. As A.
Kaji did in [15], we consider the following boundary value problem

AM-H)V=0 in Q,
(A.9) [
cv=¥y on 09,
ad(x, D) 0 ¢t (%, D) cfiy(X, D)
where .M’Ok:( ), C= ( ), cf{(%, D)
0 af(x; D) ¢51(X, D) c45(X, D)

is the pseudo-differential operator with parameter u defined by
i1 (%, D)=a(®)( 40+ b5 )+ (D) Po() * 2D PF(+1-a(3).

¢h2(%, D) =a(@do(D) g5 +(2) F, 4,055 )+ @D o) Po(u)*
J= J

—a(X)do(X) P§(1)

¢31(X, D)=a(X)c*(%),

e 5 (%, D) =a(®) 20— +54(E) )+ @(R) Py (1))* — a(®) PH(u) + 1 — (%) .
0y

Here P(x, D)* stands for the formal adjoint of the pseudo-differential
operator P(x, D). P%(1) corresponds to the operator defined by a%(x: D).
As is remarked in [15], there exists a positive constant ¢, independent
of u such that

(X)P(W)* —aXR)PTu)pys=c(p)s  for any ¢eH(9Q).

So, we may treat the problem (A.9) as before. The problem (A.9)
is equivalent to

(A.10) T% ()b="Y

where
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T (M=
a(PE(A) +b8) + (@Po(w)* —aPE(W) +1—a
oc*®

®
2d o P(2) +(a2d,-%) + (ado Po (1)) * — td o PE (1)

a(P(1)+b}) + (P (u)* —aPT() +1—o

Clearly T¥,(A)=T%). We define the operator J % (1): 2(7%.(D)
={0={¢o, ¢1} € H3/2(0Q) x H™3/2(0Q); TF(1)P € H™>/2(0Q) x H™3/2(0Q)} -
H=5120Q)x H3/2(0Q) by JT%,(M)@=T*()® for ®c2(T%,(1). Then,
by repeating the same argument as before to the problem (A.9), we
have that 7%,(1) is a 1-1 operator. Denoting by J*(1) the adjoint
operator of 7 (1) with respect to the pairing H5/2(0Q)x H3/2(0Q) and
H=52(0Q)x H™3/2(0Q), we have J%(A)>J%1). (Here we use the
standard argument of the elliptic boundary value problem. See [15]').
This means that 7 *(4) is 1-1. Q.E.D.

The proof of Proposition 6.4 will be carried out by applying the
same argument as above.
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