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of Hyperbolic Mixed Problems
in a Quarter-Space
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Seiichiro WAKABAYASHI*

1. Introduction

Singularities of Riemann functions of hyperbolic mixed problems
with constant coefficients in a quarter-space have been investigated, for
example, by Duff [3], Deakin [2], Matsumura [5] and others. In his
pioneering work [3], Duff studied the location and structures of singulari-
ties of reflected Riemann functions making use of the stationary phase
method. Deakin [2] treated first order hyperbolic systems by the same
method. However, it seems that it is difficult to apply the stationary
phase method to the study of Riemann functions of more general hyper-
bolic mixed problems. Matsumura [S] gave an inner estimate of the
location of singularities of reflected Riemann functions which correspond
to reflected waves making use of the localization method developed by
Atiyah, Bott and Garding [1] and Ho6rmander [4]. A localization
theorem describing the location of singularities of reflected Riemann func-
tions which correspond to lateral waves was obtained by the author
[8] under some restrictive assumptions.

In this paper we shall deal with hyperbolic mixed problems in a
quarter-space under more general assumptions and prove a localization
theorem describing the location of singularities of reflected Riemann
functions which correspond to reflected waves, lateral waves and boun-
dary waves. Tsuji [7] studied the same problem in the cases where
P(&), B{(¢) are homogeneous and obtained similar results. We originally
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formulated and proved our localization theorem making use of the
representations of reflected Riemann functions given in [5], [8]. How-
ever we can give a simpler proof if we use the representation of re-
flected Riemann functions given in Tsuji [7]. So we shall give our
proof using the representation.

Now let us state our problems, assumptions and main results.
Let R” denote the n-dimensional Euclidean space and Z" its real dual
space and write Xx'=(Xy,..., X,—1), X"=(X5,..., X,) for the coordinate
x=(xy,...,x,) in R" and &'=(Cy,.., uop)s &"=(E0seo5 &), &7 =(E2s s
¢,—1) for the dual coordinate &=(&,,...,¢&,). The variable x; will play
the role of ‘‘time”, the variables x,,..., x, will play the role of ‘‘space”.
We shall also denote by R the half-space {x=(x', x,) eR"; x,>0}.
For differentiation we will use the symbol D=i"1(d/0x,..., 0/0x,). Let
P=P(£) be a hyperbolic polynomial of order m of n variables ¢ with
respect to 9=(1,0,...,0)eE" in the sense of Gdrding, i.e. P°(3)#0
and P(¢é+s53)#0 when & is real and Ims<—v, where P° denotes the
principal part of P. We consider the mixed initial-boundary value
problem for the hyperbolic operator P(D) in a quarter-space

(1.0 P(Dyu(x)=f(x), xeRzi, x;>0,
(1.2) (D%u)(0, x)=0, 0<k<m—1, x,>0,
(13) Bj(D)u(x)lx,.=0=Os lé.léla x1>0‘

Here the B;(D) are boundary operators with constant coefficients. The
number | of boundary conditions will be determined later on. We
assume that the hyperplane x,=0 is non-characteristic for P(D).

Let us denote by Red be the real hypersurface {&eZ="; PO(¢)=0}
and by I'=I'(P, ) (cE") the component of Z"\ReA which contains
9. When ¢ eBZr1—iy,9'—ilh,, we can denote the roots of P(¢, 1)=0
with respect to A by A(&"),..., AF(&), A1(&),..., A,— (&), which are enumer-
ated so that

(1.4) ImAH(E)>0, 1<k<lI,

Im 4;(€) <0, 1fk=m—1,
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Here I'y denotes the set {n'eZ""1;(#’,0)el'}. The number I in (1.4)
determines that of boundary conditions. Put

1.5 P (&, D=ITj=1(A-25(&)), &€& —iyod' —il,.

We now define the Lopatinski determinant for the system {P, B;} by

( k-1
(1.6) R(&)= det(%%%ﬂdl)j,k=l,...,b

EeBr 1 —iyyd —il,.
We remark that
1.7 R(&)=det(B{(&', A€M T sj<k <i(AF(€) = 2A(E)s
¢ eE1—iy, 9 —il,.
We state the assumptions that we impose on {P, B;}:
(A.1) PQ)=p1(O)"*...p0)s,

where the p;({) are distinct strictly hyperbolic polynomials with respect
to 9 and irreducible over the complex number field C.

(A.2) The system {P, B;} is &-well posed, i.e.
R(¢'+59)#0 for &eZ*! and Ims<-—vy,,
Ro(9)#0,

where R,(¢") denotes the principal part of R(¢') defined by (2.6) (see
Sakamoto [6]).

Now we can construct the Riemann function G(x, y) for {P, B;}
which describes the propagation of waves produced by unit impulse
given at position y=(0, y,,..., y,)€RZ (see [6], [7]). Write

(1.8) G(x, y)=E(x—y)—F(x, y), xeR%, x>0,
y=(03 yz""a yn)eR-'ll-a

where E(x) is the fundamental solution represented by
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(19)  E@=@o{_ explix(€+mIPE+inde, ne—yod—T.

Then the reflected Riemann function F(x, y) is written in the form

(1.10) F(x,y)=(2n)-<"+1>g Ayt expli{(x' =) (€ +in)

Entil l

R (& +in) B (E+imAit déda,

+/1x"_y"(€"+ir’")}]R(§’+iﬂ')P+(él+il1', /'L)P(6+lﬂ)

where ne —p,9—I and n'e —y,9'—I, Here R;(&)=(k, j)-cofactor of

(E -1
(21”. %B,}f (’fﬁ)g di)j,k=1,...,l' F(x, y) has to be interpreted in the

sense of distribution with respect to (x, y)eR% x R%.

Let pi(&)se-» u1(€), u1(&)se- o> pm—i(¢") be the roots of PO(¢', u)=0.
Since

(1.11) P, tw) — PO(E, ) as t—— o0,
it follows that,

(1.12) ) — pp)  as t— o,

if the u's are labelled suitably. Then our main result is stated as
follows:

Theorem 1.1. Let £9e¢Z" and u° be real. Then we have
(1.13) tpoexp [—it{(x"— ") - &% + x,u® — yER}1F (%, y)
~ 22 oF (x, ik,

where po, is a rational number and L is a positive integer. Here
(1.13) implies that

(1.14)  N1E{gpoexp [ —it{(x'— y") - £% + X0 — yulR}IF (%, y)
— Y NZ3F(x, pt7i/t} — Fy(x, y) as t— 00, N=0,1,2,.,

in the sense of distribution with respect to (x, y)eR%:xR%. Moreover,
for €90 we have
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(1.15) U%osupp F (x, y)=singsupp F(x, y)
and
(1.16)  suppF,(x, )= {(x, y) eRE xRY;

(x"=y)-n"—y,+x,A20 for all (n, A) el 0},

where I'so 0 Will be defined by (4.4).

Remark 1. The corresponding result for the fundamental solution
E(x) was obtained in [1], i.e.

(1.17) tmPexp [ —itx - £°]E(x) — Eox) as t—— o0

b

(1L18)  Ee(9)=@ny|_ explix. (+inPelE+imd

ne _'))0'9_['5

where the localization P,o of P at {0 is defined by

(1.19) VmP(y1EC + 1) =VPPoo(1) + Q(vPHY) as v—> 0.
Remark 2.
(1.20) {(x, ) eRIXRE; (X' =y) 1" —ym,+x,4=20  for

all (1, 2) € Lyo, 0}

=g ttorg=11(% Y) EREXRY; [(x'—)")

015000307520
+x,(0, grad p3(£°) + -+ + 6, grad p7 (EO)] -1’

—Va1n20  for all nel(Py, )N (Z.go, x E)},

where pf(¢), 1=k<r,, are the simple roots of p%(’, u)=0 for [&
—E£%|<e such that wpf(£°)=p° and iéo' will be defined by (3.5).
Using the representations of reflected Riemann functions given in [8],
we originally obtained

(.21 supp Fi(x, ¥) S \Ug 4mtrg=11(%> ¥) ERL X RY;
0110es0r2 0
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(%"= y")+x,(0, grad p{(E%) + -+ +0,, grad p7 (£ )] o'

—Ya20  for all nel(Peo, 9) N (Zw0 x E)}.

Remark 3. Tsuji [7] also proved (1.13)-(1.15) in the cases where
P(&), Bj(¢) are homogeneous.

The remainder of this paper is organized as follows. In §2 we shall
study some properties of the roots A;¢). In §3 the localization of
the Lopatinski determinant will be defined and its properties will be
studied. In §4 we shall prove the localization theorem (Theorem 1.1).
Some examples will be given in §5.

The author would like to express his sincere gratitude to Professor
M. Matsumura for many valuable suggestions.

§2. Algebraic Considerations and Lopatinski Determinant

Put
@D o(¢")=maxpogy-o &,  for & eEn 1,
2-2) §(¢")=infyes0(")  for £"eEm?
(2.3) F={&e51; & >5EM)}

Then it is obvious that
(2.4) r={¢es"; ¢,>0(l")},
(2.5) Tocl.
Lemma 2.1 ([6]). R(&¢) is holomorphic in E"‘l—iyOS’—if.

Lemma 2.2 ([6]). Let K be a compact set in En=1_iI", then
there exists Tg>0 such that

(2.6) R@)= t""{R_o('f') +IAR(E)+ 2R (E) + )
whose convergence is uniform in K x {t> Ty}, where

() {(Ri(&)} are holomorphic in I'=\U, ¢\0,2(E* 1 —il),



RieMANN FuncTioNs oF HyPERBOLIC MIXED' PROBLEMS 423
(i) Rjee)=to-iR(&) for &el, teC\{0},

(i) Ro(&)#0 and h, is an integer.

Put
&(E™) it Ry(&)#0 for &eT,
(2-7) O"(é’”) — { .
SUP & (snol1  Otherwise,
§’ef
(2.8) j:{é’egn—l; £1>d.(£m)}.

Then it follows from (A.2) that el

Lemma 2.3 ([6]). There exists a positive constant 7y, such that
(2.9) R(EN#0  for EeBv1—iy 9 —i3.

Moreover, for any compact set K in y19’+2-7 there exist positive con-
stants cg and ag such that

(2.10) [RENZ ekl for &eZr!—idy,

where Ag={t&', &' eK, t=1}.
Let p(¢) be a strictly hyperbolic polynomial with respect to 3 and
assume that p°(0, 1)#£0, p(&)#0 for éeZr—iy,3—il'. We consider the

real roots of p(&’, A)=0 in a neighborhood of & =¢&°, where £0'eZn~1\
{0} is arbitrarily fixed. Put

.11  p(&, 4;v)=p%&, H+vp'(, D+ +vipH(=vTp(v=1E, v1A)

where degp=m. We can assume without loss of generality that A=0
is an [-ple root of pOo(&°, A)=0. Therefore we have

(2.12) P&, A v)=A+a (&5 AT+ +a(l; v, 45 v)
for |&'—¢&%|<e and |v|<eg,

where the a;(¢’;v) and q(¢’, 4;v) are holomorphic for |{'—&%|<e and
[vl<e and ai(&%; 0)=0 and q(&', A; v)#0 for [&'—&%[<e, |v]<e and
|A|]<e. Then
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(2.13) a &' V)= itjaz 1€ =), l<e, |E—E%|<e,

and, therefore,

(2.14) ai(E% +vy'; V)= 22 au(n vk,
where
(2.15) ai (M) =2 ix|a)=kBjil""

Lemma 2.4. Let 7(&") be a root of p°(t, £")=0 such that 7(£°”, 0)
=&9. Then

(2.16) a1y (1) = 2@ @+ v’ V)] e

=const.1>(§v—p°(é°'+vnu 0)ly=0+2' (%, 0))

=const.l:const< -zl 0)11,)+p v, 0)]

Moreover if 1>1,

(2.17) ajy(n")=const. pzor,0)(1) ,

where p. o0y is the localization of p at (£%, 0) defined by (1.19). There-
Jfore

(2.18) ay(nN#0  for x eE""l—iyoS’—if.

Proof. (2.16) is obvious. Since p(¢) is a strictly hyperbolic poly-
nomial,

_~sn Op° o 1720’
Peeor,0)(M)=2%= o, &%, 0n;+p' (2%, 0).
J

If A=0 is a multiple root of p°(&°, A)=0 (60’ 0)=0. This proves

’ aén

(2.17). Since I'<I'(peo,0) ), (2.18) can be obtained (see [1]). Q.E.D.

1) Here and in sequal const. denotes a non-zero constant.
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Let {(&';v) be a root of p(&, 2; v)=0 such that {(£°'; 0)=0. Then
we have the following

Lemma 2.5. For any compact set K in E"“—iyOS'—if and any
positive integer N there exists ¢>0 such that

(2.19) LE +vn's v) =T sc,(n Wil + QN+ D1t

if "eK and |vl<e. If I=1, the c{n’) are polynomials of n', and if
I>1, the cjn’) are equal to (polynomial of n')xcy(n')™", where the
n; are integers. In particular,

(2.20) ci(n)={—auM@)}'/"

Remark. We can also prove the following assertion: For any
compact set K' in y09'+f and any positive integer N there exist positive
constants oy, fy, ¢ and d such that

22D L(EO +vn's )= T A=y ¢;(n)vI/ 4+ O(yN/1+Ew)

if eEr1—iK', |n'|Sd|v|™* and |v|<e.

Proof.2> (i) If I=1, then ((&';v)=—a,(&;Vv)=—2% a,;(n)W.
Thus the assertions of Lemma 2.5 are obvious.

(ii) Let us prove Lemma 2.5 when [>1. From (2.14) and (2.18)
(% +vy'; v) can be represented for fixed e K by a development in
a Puiseux series of the form

L0 +vn's v)=T s i,

Then we have

e ={—an}'", do=le,(),

2) It is possible to simplify this part, according to the referee’s remark: w(y’; v)=
v~ (6% +vy’; v) is a root of the equation
Atay (8% +vy’; v)u A 0 (EY vy v)r~1=0.
On the other hand the b;(y’; p)=a;(§% +uty’; pY)p~7 are holomorphic in (3, )€
Kx{|x|<e’} and bi(n’; 0)=0,1<j</—1 and b(n’; 0)#0 for »'K. Thus we

see that w(y’; ¢}) is holomorphic in (3/, p)eKx{|p¢|<e’} and that {(&"+
vy’s v)=25=4¢;(n")v!/t is convergent if (77, v)eKx{|v|<e}.
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(2'22) ch(n’)l éd_]s ]= 15 2’ .

In fact, from the equation

lcl(rll)l 161(’1)"_21511 ..... ]15_11 10“(’1) Cj.(ﬂ')

etji=l=

+Z Z:1<11 wikSj—-1 cjl(n) cjk(rl')al—k,h(”/)=0,

lh+]1+ +tie=l—-1+

we determine c;(n'), j=2, 3,.... Thus we obtain the estimates (2.22).
Moreover we have

e, =djA+ '), j=1,2,....

where r;=—1/I+1/2 (20), which is used in order to prove (2.21).
Putting

L&Y +vn'; v)= Z 101(’1)VJ/1+CN+1(’1 ),

we shall estimate {y,,(n'; v) in the remainder of this proof. Write A!
+a,(EY 4+’ VAT 4o+ a6 +vy’; v)=0 in the form

(2.23) A==t (X aun W+ Q0N+ 1A,
where N,_;=1+[(N—j—1)/l], 0£j<I—-1. Substitution of A={({”+vy’;

v) into (2.23) gives

CJ;("I') (I rttiafty

<k>{c ' )kvk”+21s“

Jk=N
R

X O aa's T Dy 2w (). (e

Jitetji2i+

i 2 = DY =5 U (N (O WA ()
X {ZM 1R, q(nl)v(jl+"'+jk)/l+q+O(v(j1+"'+jk)/l+Nl—h+1)}

X1 s V) T F = 1<y N le(ﬂ’)---cjh("ll)

Jite +Jh+lII§1
1=9sNi-n

X Ay WUt SN i insnCi (M) ;M)

X O(v(.ix+"‘+.ih)/l+N1—h+ 1) A
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Thus we have

@24)  Sgb( § Jerlr P+ QO (15 Y E OO ) =0,
Substituting Ly, (1'; V)=c,(')v'/'z(y’; v) into (2.24), we have
Shzb(f Hea v +eulrYH00+H}atr's v)~4+ QN =o0.
Therefore,
Shzb(f )+ 00 (' v+ + 00V =0,

Since the roots of

Shzb(f )t =@+ D G D+ 1) =0
are 0, e27ki/l—1 (1£k<1-1), we obtain
In+a('s MIZep|M or  Scy|NFDI,
On the other hand
In+1(n's VIS c(n )y + DI
holds for fixed n’e K and sufficiently small v. Thus we have

Cn+1(n'; VIS | R+ for n”eK and |v|<e.

Q.E.D.

By Lemma 2.5 the following lemma can be easily proved.

Lemma 2.6. For any compact set K in E"'l—iyOS'—if and any
non-negative integer N there exists ¢>0 such that if neK and 0

<v<e,
(2.25) VIR 1) =2 =0 Q(n W/ E+ QO D),

where Qo(n')#£0, L is a positive integer and h, is a rational number.
Moreover the Q;n) are equal to 3 finiie sum(Polynomial of 7’)x
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ITiticy (n')~ " and holomorphic in E"’l——iyoB’—iI.}o,. Here {j},
<k<r, IS the set of suffixes such that p9 (&%, u)=0 has a real mul-
tiple root p;, with multiplicity l; and

(2.26) ¢1;(n")=[const. P pz,) (m]/t,

(2.27) Feox E= N3 L (Pjieoruy, ) 9)-

Remark. f'éo'DI:. Moreover L=the L.C.M. of {l;};<k<s,-

§3. Localization

Definition 3.1. Let 4 be an open connected cone in E” such that
9+4c4d and let f(¢) be a holomorphic function in E”—iy,3—id. Then
we say that fu(y) is the localization of f(£) at £° in Z" if fr(n) does
not vanish identically and is holomorphic in Z"—iy,3—id and

3.1 vhif(v= 1804 ) — fwo(n) as v — +0 for each fixed
neEEr—Iiy,3—id,
where h; is a rational number and depends on &°.
Remark. Ryo(1")=Qo(n").
Lemma 3.1. Qu(n)#0 for n’eE"“—iylS’—iZ'.

Proof. Assume that there exists #® in Z"!—iy,9’'—i% such that
Qo(n®)=0. Since Qy(n)#£0, there exists (% in E""!+4iE»~! such that
Pl +1% € Er1—ip, 9 —i% for |u|<1 and Qu(n® +(%)#0. Thus Qu(n®
+ul®)#£0 in u. Qo(n° +ul°) is holomorphic in g, [u|<1, and vanishes
at u=0. Therefore there exist &(>0), (1=6>0) such that

1Qo(n® +ul®)[>2¢  for |u[=0.
On the other hand, it follows from Lemma 2.6 that
[VE RO LEY 47 + pl0) — Qo(n® +ul®)|<e for 0<v<d and |u|=4.

Rouché’s theorem implies that v*tR(v=1£9" 450" +u®) has zeros within
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li|<d, which is a contradiction to R(&)#0 for &eZr1—iy 9§ — iE' .
/ 1
Q.E.D.

Now let us define the principal part of Qy(n). Let K be a com-
pact set in E"“—iyoS’—iféo,. Then there exists Tx>0 such that

(3.2) Qo(tn) =tk X 2 o Q) IE,  Q8(n) #£0,

whose convergence is uniform in Kx{t>Tg}. It is easy to see that
the Q}(n) are positively homogeneous and equal to Y inite sum (POlY-
nomial of #7)x [Tt c9;,(n") "%, where

(33) €95 () = {oomst. pY,ceor ., (D} 5%
We can prove the following lemma in the same way as in Lemma 3.1.

Lemma 3.2. Q8(n)#0 for n'e=Zn"1—iX.

Define
. SUP yrei g0, M1 it Q8(—in")#0 for n’ efgo,,
B8 aln)= .
SUp gg(-in')=0 M1 otherwise,
u’el."go’
(3.5) Z§Q,= {,," € Eu— 1 ; ’11 > d.o(nm)} .

Then it follows that I’ éorDE@/Di.
Lemma 3.3.
(3.6) Qu)#0  for neEvl—iy 8 —iZe,
3.7) Q3(nY#0  for 7]’65"—1—1.2':{0/.
Proof. 1t is easily shown that
QUn)=2+Q8(r")  for n', dn' eE"t =il

where A¥e denotes the branch satisfying 1*o=1 if k, is not an integer.
Thus, modifying the proof of Lemma 2.2 in [6], one may prove the
above lemma. Q.E.D,
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We can also prove the following lemma by Seidenberg’s lemma.

Lemma 3.4. For any compact set K in ‘)’19’+i‘§o' there exist positive
constants ax and cg such that

(3.8) Qo) Zexg(1+ )72 for n'eE" ' —idg.

Next let us consider the localization of P.(&’, 1) at (&9, u%), where
£0'eBZn1\{0} and p, is real. We can assume without loss of generality
that the roots with positive imaginary part of P(¢’, )=0 is enumerated
as follows:

(3.9 A +n)=t0+c(n)+0@ ),  1=k=r,,

(B10) A +n) =t () + 11 ke () + Ot 1),
ro+1=5k=sro+rg,

3.11) F (€ +1") —tu0 =((29%), ro+1sk<l,

where n'eZE* 1 —iy,9'—il, and ¢t is large enough, wuf(€%), ro+1=k=r,
+r;, are real and the g, are positive rational numbers. The above
enumeration implies that uf(£°)=u0% 1<k=r, are real simple roots of
p3(Y, W)=0 and that pf(£°), ro+1<k=<ro+r;, are real multiple roots
with multiplicity I, of p%(¢%, p)=0. Then we have the following

Lemma 3.5. Let K be a compact set in (E"‘l-—iyoS’——ifgo')xE.
For any non-negative integer N there exists T>0 such that

(3.12) 742P (18 +1', tp®+ ) =TT72,(A—c;n")S(")

+ 2Pl DEMELQE ML) for (n', )€K and t>T,
where hy=1—ro— X722 (1/1;,
(3.13) SO =TT5ztez o {— ;N  Timrowrpr 1 (00— 15 (E%))

and the P, (n', 2) are polynomials of A whose coefficients are equal to
2 finite sum(Polynomial of #')xTT7% s (¢ (n')Ps. Here we have assumed

3) {ex()}ror1sksresr, IS €qual to {cy;,(9")}i1se=r, defined by (2.26).
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that pf(&®)=p® for 1Zk=ryo+r, and that ui(°)#u® for ro+r,
+1<k=l

Proof. From Lemma 2.5 we have
tul +A— A5 (L% +n")=A—c(n')— X% 0, 1<k=r
where ¢,(n) and the c,;(") are polynomials of #’, and
10+ A— ZE (180" + 1) = 1(u® — i (E°)) + 217ty (n')
+ A= 0m)ti, ro+1ZkZro+ry,

where the c¢,;(n") are equal to (polynomial of #')xcy(y')™"«. Further
we have

o ] Temro ey 41 (B0 + A= 25 (18%" +117))
=ITherotrs+ 1 (=i €N+ 252 19,(n's 7,

where the q,(n’, A) are polynomials of n' and A. This completes the
proof. Q.E.D.

Let {s;}1<x<s denote the set of suffixes such that pi(¢’) are simple
roots of pd,(¢', w=0 for |&'—¢%|<e and pi(E%)=po.

Lemma 3.6. For 1=5k=r,
(3.14) a(n)=grad pf(£°) 'n' + &%),

where

315 w@)=a| oo, %o, 2

lz—pi (£°7)|=6

P, (ror 1 (g0 0 (£O" ,)2
— e (0, P4 (€, D} IPRE, )%z,
Moreover, for 1<k=<r,

(3.16) A—grad pi(E°) 1’ — o (£9") =const. py, eor, o0 (', A) .
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Remark.

3.17) Py o, w0’y )=TT72, const. pg o w0\’ HS(').

Proof. Since p;(£°)=u® is a real simple root of pg (&%, ©)=0

Ai(tE%+n") is a simple root of pg(t&%+n’, A)=0 for t large enough
Thus we have

1)~ () =2y z
lz—ug (50)|=6

X[P&(fo’, z){ n—10%p3,

1= g €7 n+ e, )

6p5k s (¢, z){Zn 1 5p£k (&Y, 2)n;+plL (&Y, z)}]

x pl (&Y, z)~2dz+((t7Y).
This implies (3.14). (3.16) is obvious. Q.E.D.

§4. Proof of Theorem 1.1

From the results in §3 we have the following

Lemma 4.1. Let K be a compact set in (E"—is9)xE, where s is

sufficiently large. Then for any non-negative integer N there exists
T>0 such that
4.1) y

R (6 + 1) B (0 + 1) (tu0 + A) i1
PRV RGET ) PL(E + 0, tp® + D) P(EO+ 1))

=P o F (0, )rI/E+ Q1)

for (n,2) in K and t>T, where the F;n,7) are equal to Y finite sum
(polynomial of (1, 1)) x Qo(n') ~"*T17% 1 Ps,ce0,u0) (s A)7"2 X Pro ()™ I T3

L
{pjk(éo,,‘jk)(n)}" /i, ), py is a rational number, n{, n, and n; are posi-
tive integers and the ng,, are integers

4) The j, and /,, have been defined in §2.
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Proof. The localizations  Qo(n), ps,zo ,u0)(1's A Pro(i) and  pj o,
Mk)(n) do not vanish for (5, 4) in (E"—is§)xE. From Lemmas 2.5,
2.6, 3.5 and 3.6 the asscrtions of Lemma 4.1 follows. Q.E.D.

By Seidenberg’s lemma we have the following

Lemma 4.2. For any positive integer N there exist positive con-
stants a and c such that

(4.2) |tp0+N/L{ o R +n)B 0+ m)epu®+A) !
PRI RGET + 1) P (1 + 1, tu®+ 1) PO+ 1)

— SNz Fyn, D] Salt+nl+ 120
for (n, ) e(E"—isY)x E and t=1, where s is large enough.

Remark. We can also prove the above lemma, making use of (2.21)
without Seidenberg’s lemma.

Put
(4-3) f({“’,uo) = ;c°= 1 {(’7: /1) € E”+1 5 (V[’, /1) € r(psk(éo',uop '9)} H
(4.4) rgu,u(]:(r(P{U, 9) X E) n f(éu'vllo) n (Z.‘g(y X 52) .

Lemma 4.3. Let K be a compact set in y,(9, 0)+ T, 0. Then
there exist positive constants a;z and c;z such that

(4.5) |Fjtn, DISaze(L+nl+12D)e%  for (1, ))e B! —idg,

where Ag={t(n, 2); 1, ) e K, t=1}.

Now we can prove Theorem [.1. In fact, we have
(4.6)  exp[—it{(x"—y") ¢ +x,u0 =y, LR} 1F(x, ¥)

—@ry o P e exp T - ) @+ )+,

okl

—yn(gn-l'ir’n)}]

R (tE% +{ +in" ) B (tE° + L +in)(1u® + 1)1
R@EEC + 0 +in )P (tE0 + 0 +in', tu®+ ) P(tE0 + L +in)

dldA,
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where n=—s3 and s is sufficiently large. From Lemmas 4.1 and 4.2
and (4.6) (1.13) easily follows, putting

@7 Feo=en e el —y) (i)

)

+ 2%, = VoLt in)Y1E L+ in, )dLdA.

(1.15) follows from the Riemann-Lebesgue theorem. From Lemma 4.3
we have (1.16), applying the Paley-Wiener theorem to (4.7). This com-
pletes the proof of Theorem 1.1.

The following theorem shows that the localization of R,(&) at
&9 coincides with Q3(n') under some assumptions.

Theorem 4.1. Assume that each p%(&%, u)=0 has no real multiple
roots. Then the localization Qu(n") of R(&") at £° is a hyperbolic poly-
nomial and fgo:l"(Qo(n’), 9. Moreover Q3(n') is equal to the localiza-
tion of Ry(&) at &, if at least one of the following conditions is
satisfied: (i) The system {P(—D), B{—D)} satisfies the Lopatinski
condition. (i) £ € d5.

Proof. The first assertion is obvious. Since the real roots of p9(¢,
w)=0,1<j=<q, are simple, R(t{’) can be continued analytically to a
neighborhood of &% when ¢>T. Moreover the Rj(f') are holomorphic
in the above neighborhood. If R,(£°") does not vanish, then it follows
that the localization Qu(n’) of R(£') at £°' is equal to R,(£°"). Thus it
suffices to show that Q9(x#") is equal to the localization of Ry(£) at &°
when Ry (£°)=0. Since Ry (&% +vy'+s59')#0, applying Weierstrass, pre-
paration theorem, we have

Ro(8%" + vy’ + 59 ={s' + bE" 4+ viy')s! ™1 4 -+ + bO(EY" +vn')}
x So(E% +v'; 5) for |v|<vg, [s|<So,

where S,(£%"+vn'; 5)#0 for |v|<vy, |s|<sy and b%(&°)=0, 1<j<I, and
n' is fixed in E*~1, Put

st HbY(EY +v)s T e+ DRV + ) =T Th=1 (s +7R(E” + V1))

Then the r(é% +vn') can be expanded in Puiseux series of the form
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rR(Co +vn )= A v, 1<SkSI

Denote by j(k) a number such that df;=---=dQ;4y)-;=0 and dg;q,#0.
Then j(k)/n, is an integer. In fact, if j(k)/n, is not an integer, a branch
of rQ(&%+vn") has positive imaginary part for some real v. This con-
tradicts the fact that

Ro(E% +vy'+59)#0  for Imv=0 and Ims<O0.
Moreover it follows that j(k)=n, and d9,(n)>0 for n'e 3. In fact,

Ro(89" 4+ v’ +597)#0 for Imv<0 and Ims=<0,
and, therefore, Imr2(¢% +vp’)<0 for Imv<0. Since
(4.8)  VMOR(TIEY 41 +v7159") = Ro(E + v’ +59")

+VR (EY +vy' +59)+--  for |s|<sy, O<v<vy,
we have
VRO R(vTIEY ' +v 159 )={s'+ b, (&Y +vn’; v)si 1 +
o+ B(EY vy’ VIS(EY +vy's v, 5)  for Is|<sg, O<v<vy,

where S(E%+vn'; v, 5)#0 for [s|<so, [vV|<vy and b;(¢%; 0)=0, ISj<1
Here we note that the right hand side of (4.8) can be defined for |s|
<so and |v|<vy. So we can define v*oR(v1E0 4y’ +v~1s9') for [s|<sq,
[vl<ve. Then R(v='¢’) does not always coincide with the analytic con-
tinuation to a neighborhood of v™1£9 of the Lopatinski determinant
for the system {P(D), B(D)}, but with the Lopatinski determinant
R~(]v|~1&’) for the system {P(—D), B(—D)} apart from a constant factor
when —vy<v<0, |£'—£&0%|<e and é’eE"‘l—iyOS’—iF: Now put

s'+ by (8 +vn's Vs A+ BE s V)=TTi=s (s +7(EY + 15 v)).

Then the r(&%+vn’;v) can be also expanded in Puiseux series of the
form

r&% v’ v) =2 5y dy (0 )i/, I<k=L

Denote by j(k) a number such that dy=--=dyj4)-1=0 and dy;(,#0.
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Then j(k)/Ai,=1/2 or =1. This follows from the fact that
v imr (€% +vp'; v) <y, for O<v<v,.

Moreover if j(k)/fi,=1/2, it follows that Im dj;q,=0.
(i) When the system {P(—D), B(—D)} satisfies the Lopatinski con-
dition, i.e.

R=(&Y+#0 for Imé,<y,, &"eEn 2,
it follows that j(k)/Ai,=1. In fact,
v m r (8% +vp"; v) Sy, for —vy<v<O.
(i) When &% €dZ, it follows that j(k)/#,=1. In fact,
R(v=1&9 49"+ v~ 159)#£0 for O<Rev<vy,
[Imv|<dyRev and Im@( 1% +v 1sd)e —9,9' =3,

where J, is sufficiently small. Putting v=7¥(1+id), where 0<V<v,,

we have
VT M [(14i0)"1E0 + (14-i0)~ 1r (8% +F(1 +id)n"; ¥(1 +16))9"]
& —yIS’—-Z.I.
If j(k)/A,=1/2, then it follows that
(1462)~1&£0'+1)2 ﬁl/zdkj(k)9’+o(\71/2)§f for ¥ small
enough and |§|=7¥1/7,

where N is large enough. This implies that d;4,=0, which is a con-
tradiction to dy4)#0. Thus we have j(k)/i,=1. When j(k)/A,z1, it
is easy to see that the localization of R,(¢') at &’ is the principal part
Q3(n") of the localization Qy(n') of R(&') at &9, Q.E.D.

§5. Some examples

Let us visualize Theorem I.1 for some simple examples. supp, Eso(x
—y) is an incident bicharacteristic line emanated from a point y=(0,



RieMANN FunNcTioNs oF HYPERBOLIC MIXED PROBLEMS 437

Vs YW ERL \U%g supp, Fi(x, y) is an reflected bicharacteristic line
corresponding to the above incident bicharacteristic line.

Example 5.1. Consider the following hyperbolic polynomial with
respect to 3=(1, 0, 0):

(5.1 P)=(£1—¢3-¢E3)(E1—¢E3/4—-E3/4).

The roots of the equation P(&', 2)=0 in 4 are

(5.2) () =pH(¢)=sgn(FEDVEI &3, when  [£]2(8,],
A5 =p3)=sgn(F¢) /485 —C3,  when [&;]21E,0/2.

Assume that the Lopatinski determinant R(¢’) for the system {P(D),
B,(D), B,(D)} satisfies the uniform Lopatinski condition, i.e.

(5.3) R(EY=Ry(&)#0  for ¢ e(52\{0})—i09".

For example we may put

G4 Bi(8)=1. By(Y)=&;+&,+¢s.
Then
(5.5) R(&)=Ry(&)=-1.

It suffices to consider the localizations of P at the points £° such that

9=1,¢9>0 and ¢&°eRed. When ¢9<0, supp,Ex(x—y) does not
intersect the boundary plane x;=0 and, therefore, it is independent of
reflection. In fact, when £3=<0, we have

(56) (Uj'o=osuppx Fj(x’ y)) n R-?— =g.

For £°=(1, &9, u1(1, £9)), 1€81<1, and p0=pi(¢®) we obtain

(5.7) Fgo,uo=(F(P§o, \9) X E) n F(ﬁo'.ﬂo)’
where
(5.8 I(Pp, 9)={neZ3; n;— &, —pu1(£°m;>0},

(5.9) Lo oy ={(n, ) € E4; ny — E3n, — pi(£°)A>0} .
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Thus \U% supp, Fi(x, y) is included in the half-line defined by the
equation

(5.10) Xy = Ya[ui(E%) = —x,/&9 — y3/ui(E%) = — x3/ui(£*),
x>0, x3>0.

Here we have assumed that y=(0, 0, y;). This line intersects the hyper-

plane x3=0 at (x;, x)=(y3/u1(¢%), —&3y3/u1(¢®)). supp;Egp(x—y) is
included in the half-line defined by the equation

G.11) %, =y3/u3(8%) = —x,/88 = ya [u1(£%) = — x3/u7(£*),  x,>0.

This line also intersects the hyperplane x;=0 at (x;, x,)=(ys/u7(&%),
—&9ya/ui(£%)).  For (£°, n0)=(1, &9, ui(1, £9), p3(¢®)), 1€81< 1, and (&9,
1) = (1, &%, u3(1, £9), pf(€o)), 1E%1<1, j=1,2, and (& pO)=(1, &3, u2(3,
D, ui(E9), 1<|€9|<2, we can calculate in the same way. Next we
consider the case where (£°, u®)=(1, 1, u3(1, +1), ui(1, +1)). Then

(5.12) o o= (Pyo, 8)x E) N Feor, 1oy N (0 x 52),
where

(5.13) TP, )={neZ%; n, Fny/d—/313/4>0},
(5.14) Lo oy ={(n, e E*; 1, Fnaf4+/3 2/4>0},
(5.15) Zpo={n'€52; 0, Fn,>0}.

Thus we obtain
(5.16) \USosupp, F(x, y)={x eR3; x; =4(x3+y3)/\/3 +u,

Xy =F(x3+Y3)/\/3 Fu, u20}.
This is related to the lateral waves.

Example 5.2. Next consider the following hyperbolic polynomial
with respect to 3=(1, 0, 0):

(5.17) P(Q)=(¢}—£3/4—- £ (EF-E3— L34
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We assume that the uniform Lopatinski condition is satisfied. The com-
plicated cases are that (£, u®)=(1, £2//5,2/\/5, —2/\/5). Then we
have

(5.18) T'(Pyo, 9)={neE3; £, F&,/(2/5)—2E5/\/5 >0 and
E1F 28,045 —E5/(24/5)>0},
(5.19) [ oo yoy={(n, D) € E*; &, F&/(2/5)+22//5>0 and
£ F28,/\/5 +24/(24/5)>0},
(5.20) Yo =E2.
Thus we obtain
(5:21)  \URosupp, Fi(x, p)={xeR3; x; =/5x;3/2+/5 y3/2+2u,
X;=F(x3/4+y3/4+/5u, 0Su<3/5(xs+y;)/4}
={xeR?; x3=(x;+6./5t—2./5y3)/(2/5 —3./56/2)

=(Fx,+151—-4y;)/[(4—156/4), 0=0=1, 0=1=y,/4}.

Example 5.3. Put

(5.22) P(&)=¢1-¢3-¢3,
(523) B(€)=a€2+£3, a>0.
Then

(5.24) AEE)=pt(E)=sgn(F&)/E3—E3, when [¢1|21¢,],
(5.25) R()=Ro(&)=p*(&)+al,.
Thus {P(D), B(D)} is &-well posed. We have

(5.26) Ry(£1, £1//T+a?)=0.

The interesting cases are that (& u®)=(+1, +1/\/1+a?, +a/\/1+a?,

Fal/\/1+a?). Then
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(5.27) Q0(8)=08(&)=—/T+an,/a+(1+a*n,/a.

Thus we have

(5.28) I(Peo, 9)={neZ3; ny—n,/\/1+a?—ans/\/T+a?>0},
(5.29) Feor o= (1, D) €E%; 11—y TF a2 +ai)\/TFaZ>0},
(5.30) Seo={n€E%; n,—/T+a%n,>0}.

From Theorem 1.1 we obtain

(5.31) USosupp, Fi(x, y)< {x €RE; x, =T+ a2(x;+yp)fa+u,

X;=—(x3+ys)a—/T+au, u20}.

This is related to the boundary waves.
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