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Introduction

Thus far we have studied in [1], [2] and [4] the possibility of

extension of solutions of linear partial differential equations p(D)u = Q

with constant coefficients to various exceptional sets. There, the ex-

ceptional sets were of those types to which the convex analysis, or the

technique of the Fourier transform based on the growth order estimation,

was applicable. Here we treat a new kind of exceptional set. Let K

= {(0,..., 0, x,,); — 1 <*„<!} be the line segment on the x,raxis of the

n-dimensional Euclidean space R". Let U be an open neighborhood of

K. (This means that U contains K as a closed subset.) Let &p and

jtfp be the hyperfunction and the real analytic solutions of p(D)u = 0

respectively. We give a necessary and sufficient condition on p(D) for

0p(U\K)l&jy) = Q, where 0^) = ̂ (l/)/0p[K], and a sufficient
condition for jtfp(U\K)l<stfp(U) = Q. (See Theorem 1.4 and Corollary

2.4.)

Let L be the closure of K. In the course of proof we must reduce

the support of a hyperfunction from L to L\K under some additional

condition. Since the convex hull of L\K agrees with L, the routine

technique in the Fourier transform based on the growth condition has

no use. Instead, we rely on a new tool for non-convex Fourier analy-

sis developed in [6]. (See Lemma 2.2 below.)
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to the members of RIMS and Kyoto University, especially to Professor
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§1. Continuation of Hyperfunetion Solutions to Linear

Exceptional Sets

We fix a system of coordinates (xl9...9 x K _ l 9 xn) in RW
0 As in the

introduction we put

without loss of generality. Let 17 be an open neighborhood of K.

This means that 17 is an open set in Rn containing K as a closed

subset. Let L be the closure of K in R". The set L\K consists of
the two points P±=(0,...50, ±1). Let p(D) be a linear partial differen-

tial operator with constant coefficients corresponding to the polynomial

XQ, where D = (Dl9...9 Dn_1? Dn) and Dj = y/=ldldxj9j=l9...9n. Let
&p be the sheaf of hyperfunction solutions of p(D)u = Q. By the Harvey-

Komatsu theorem (see [9]) we have the flabby resolution of &p by the

sheaf of hyperfunctions :

and the isomorphisms:

Thus, from the fundamental exact sequence

0 - > H$(U, 0p) - > H°(U, 0J - , H°(U\K,

we obtain
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where we have put

Since H%(U, &p) does not depend on U, the last notation is reasonable.

From the cochain complex of section modules

we obtain

(1.1)

where S8\K\ = H%(U ', SS) also does not depend on U. Further, to the

triple of the open sets X = R«, Y=R"\(L\X), Z = RB\L, we apply the
fundamental exact sequence with the sheaf 38 r By way of the excision

theorem we thus obtain

0 - > H^

The last term vanishes because 38 p is of flabby dimension ^1. Thus,

with the above definition of the mapping 1, we have

Note that

Since L and P* are convex compact sets in R", we can apply the

Fundamental Principle ([2], Theorem 3.8). Namely, we have the fol-

lowing exact sequences of homomorphisms :
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Here ^[L] denotes the Fourier image of ^[L]. The symbol d denotes
a normal noetherian operator; we can employ the restriction to each
irreducible component of the associated algebraic variety N(p) = {p(£)

= 0} composed with the derivatives to a transversal direction of the

order up to the corresponding multiplicity minus one. &[L]{p, d}

denotes the space of vectors of holomorphic functions on the irreducible

components of N(p) such that they are locally in the image of d and

globally satisfy the growth condition of the type &[L~\. Written ex-

plicitly, this growth condition is: given e>0, there exists Ce>0 such that

There are similar meanings for ^[P*] {p, d}. By the isomorphisms
similar to (1.1) and by the Fundamental Principle we have

{p, d} ,

Combining all these isomorphisms we finally obtain

Theorem 1.1. <

] {p, d}0[P-] {p, d}-} .

By chasing the above isomorphisms we can give the definite cor-
respondence: Take ue^p(U\K). Let [u]e&(U) be one of the ex-

tensions, which exists because & is flabby. Then p(D)\u] e&[K\.

Take an extension of p(D)[u] to R" with the smallest support, say

[[p(D)[t*]]]e#[L], Applying the Fourier transform and the operator
d, we obtain an element

Obviously this element is determined with the ambiguity modulo

{p, d}~], where 1 is the mapping naturally induced
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from A.

In our present case ^^K\ does not necessarily vanish even though

we treat a non-trivial single equation.

Proposition 1.2. In order that &p[K]^Q, it is necessary and suf-

ficient that XO has an irreducible component whose principal part

consists only of fn.

Remark, This condition depends on the lower order terms. See,

e.g, CiC»+l.

Proof. Assume that there exists a non-trivial element UE

By applying the irreducible factors of p(D) one by one, the result re-

duces to zero first at some step. Considering exactly this factor, we

can show that its principal part contains only £w. Thus we can assume

that XO itself is irreducible. Let [[w]] e ^[L] be one of the extensions

of u. Then we can write

(1.2)

where v± e SS\_P-~\. Thus applying Fourier transform we can write

XO CM] =

where J±(Q are entire functions of infra-exponential growth, namely the

Fourier images of some hyperf unctions with support at the origin.

Taking the restriction to the algebraic variety N(p), we have

(1-3) ^C"J+(OUP) = -e-^^J~(Q\N(p} .

Now assume that the principal part of XQ contains a variable other

than £B. Then the both sides of (1.3) must vanish identically. In fact,

let pm be the principal part of the operator p of m-th order. The

assumption implies that we can choose a suitable system of coordinates

in (xlv..,xn_1)-space such that j>m(0 = Cfo«-*(0, where 2»-k(0 is an
(m — k)-th order homogeneous polynomial satisfying qm-k(l, 0,..., 0)^0.

Thus for each fixed C* = (C2,..., C»-i) the equation p(Q = 0 in Ci has a

root holomorphic in £» and with the asymptotic of the form
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(1-4) £1 = a(C*)

on Re £B^ £(£*), where a((*)eC and !*(£*) >0 are constants depending

on f*. This fact is proved in Lemma 1.3 below. Taking this root

into (1.3) we obtain

(1.5) eJ=K»J+(a(t*KH + *(U C*, Q

Let F((n) be the function holomorphic on Re£,,^J?(C*) defined by the

both sides of (1.5). Then, considering the left respectively right hand

side of (1.5) for ±Im(n^O, we see that F(C«) satisfies for every e>0,

(1.6) |F(O|^CEexp(8|CJ-|Img).

By Carlson's theorem (see [11]) applied on ReC^i^C*), F(Q must

vanish identically because of this estimate. Since £* is arbitrary, we

see that the both sides of (1.3) vanish on an open subset of the variety

N(p). Since N(p) is irreducible, the unique continuation holds and we

conclude that the both sides of (1.3) vanish identically.

Now by the Fundamental Principle we conclude that there exist

such that

<n J±(Q = (f) =

Thus (1.2) can be rewirtten as

hence

This implies that u is trivial as an element of ggp[K]. This is a con-

tradiction, and the necessity is proved.

Conversely, assuming the condition on p we can esaily show a

non-trivial element of &P[K~] based on the result of [7] concerning the

fundamental solutions of hyperbolic equations. But we give here a direct

proof. We can assume that p itself is irreducible and its principal part

is equal to (™. It suffices to give infra-exponential entire functions



LINEAR EXCEPTIONAL SETS OF SOLUTIONS 447

such that they cannot be divided by p(0 though
ienjr-(Q can. put J+(Q = 1 and

The latter is the remainder of g2V-ic» divided by jp(Q. Since

— £™ is a polynomial of order less than m, we can easily show employ-

ing the method of majorant that this series defines an infra-exponential

entire function. Q.E. D.

Lemma 1.3. Let p(Ci> Q be a polynomial of two variables. As-

sume that the principal part (the collection of the highest order terms)

has a factor d — a£w, where aeC. Then the equation p(Ci5 O = 0

in Ci has a root £i=T(Cn) multivalued holomorphic in £„ on \£n\>R

and with the asymptotic of the form ?(£„) = a

Proof (suggested by Professor K. Saito). Since (d — a£«) is a factor

of the principal part of some irreducible component of p, we can assume

that p itself is irreducible. Assume that the principal part of p has
m—k

the form (J O (Ci~ ajC«X where a1 = a and some of the other a,- may

also agree with a. Put A = Cx/Cn and /* =!/£„. Then we obtain an

irreducible polynomial

1 w-k
?(A,n) = -7^p(Ci, U= II (A-fly) + Wl(A, M).

s « j= i

Thus (a, 0) is a regular or at most an isolated singular point of the

algebraic curve g(A, /z) = 0. As is well known, we have a parametrization

of the form

r=l

1*=?°,

with r0>0 (see, e.g., [12]). Thus we obtain a multi-valued holomorphic
oo

root A = a+ X br^
r/r° on |^|<l/jR. Back to the initial notation, we

r=l
have proved the assertion, Q.E.D.
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Theorem 1.4. &p(U\K)/&p(U) = Q if and only if the principal part

of XO contains only £n.

Proof. This condition on p is clearly equivalent to the same con-

dition posed on every irreducible component of p. If the principal part

of p consists only of £„, then on the variety N(p) the three growth con-

ditions corresponding to ^[L], ̂ [P*] reduce to the same. Therefore

from the last isomorphism in Theorem 1.1 we obtain &p(U\K)/&p(U)

= 0.

Conversely, assuming &p(U\K)/&p(U) = Q, we see from the same

isomorphism that &q(U\K)/&q(U) = Q for every irreducible component

q of p. Thus we can treat each irreducible component independently.

Therefore we assume that p itself is irreducible. Let £ be a solution

of p(D)E = S in ^(R")- Then Ee&p(U\K), hence by the assumption,

with a suitable element UE^IK] we have p(D) (E — u) = 0. Then, taking

an extension [[w]]e^[L] we have

(1.7) p(DK[un = 6 + v+ + v-9

with some v±e&[P±~], Applying the Fourier transform and taking

the restriction to N(p), we have

(1.8) ev"3?^+(OU(P, = (-l-e-^^J-(OU(P, •

Now assume that the principal part of p contains a variable other

than £„. By the same reason as in the proof of Proposition 1.2, we can

assume the existence of a root (1.4). This time we can apply Carlson's

theorem to the function G(£B) which is obtained from (1.8) after sub-

stituting (1.4) and multiplying by e~^~l^nl2. Thus by the same argu-

ment we conclude that both sides of (1.8) vanish identically. By

the Fundamental Principle there exists w+e^[P+] such that

= XOw*(0» hence v+ = p(D)w+. Similarly there exists

satisfying v~ = p(D}w~. Thus from (1.7) we have

This gives a contradiction, by applying the Fourier transform and sub-

stituting X0 = 0. Q.E.D.
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Remark. Referring to Proposition 1.2, we see that there are no

case where the hyperfunction solutions on U\K can be extended u-

niquely to U.

§2. Continuation of Real Analytic Solutions

Now we consider the real analytic solutions &t 'p of p(D)u = Q. For

the sake of simplicity we give the result first for a fixed system of co-

ordinates. We somewhat extend the situation.

Theorem 2.1. Let L be a compact convex subset of R" with

contained in the hyperplane {x1=0}. Put K = L n {— 1 <xn<\.}. Let

U be an open neighborhood of K. Let p(D) be an m-th order linear

partial differential operator with constant coefficients, which is ir-

reducible and Kowalevskian with respect to D^. Put £' = (C2,-.., O and

£" = (C3,..., Cn-i)- Assume that the roots T/(('), j = l3...? m of the equation

= 0 with respect to fi satisfy

(2.1) |ImT/

for C'eC""1, where q<{ and a, b, c are real constants. Then the

image of the natural mapping

(2.2) tfp(U\K)lj*p(V) - >0p(V\K)lap(U)

is zero.

Remark. We assume that L agrees with the closure of K in R",

because the part in |xn| > I is of no use for us. Then L\K consists of

(at most) two convex connected components contained in the hyper-

planes {*„=+!}. They may be denoted by P± without any confusion.

The isomorphisms in Theorem 1.1 hold for our present situation, as

long as we employ the growth conditions corresponding to the sets

under consideration. Since our conditions on p imply ^p[K] = 0 due to

Theorem 2 in [10], we have &p(U) = &p(U) and the mapping corre-

sponding to 1 in § 1 is injective.

Proof. Take ue&Sp(U\K) arbitrarily. We consider it as an ele-
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ment of &p(U\K). Then, in the same way as in the explanation after

Theorem 1.1, we can take a representative F(^ = {j[p(D)\ju]J]\N(py of

the image of u in S[L] {p, d}/[^[P+] {p, d}®S[P-~\ {p, J}]9 where

[u\e38(U) and [[p(D)[w]]]e^[L] are some of the extensions. Let

#(x) be a function of Gevrey class on U such that supp% is contained

in the e-neighborhood of K, % is identically equal to one on a smaller

neighborhood of K, and suppx n dUc:L\K. Here supp denotes the

support of a hyperfunction, the upper bar denotes the closure operator

and 8U denotes the boundary of 17 in R11. We specialize the regularity

of x 'm later step. Let [(1— ^(X))M]O denote an extended function of
Gevrey class on C7, which is defined to be identically equal to zero

on a neighborhood of K. Then we have obviously

«]]] mod aiL\K] ,

where [[ ]] denotes an extension from (̂17) to ^(R") with the

smallest support. Thus we have

modtfJT*] {p, die^L?1] {p, d} .

Now let J(D) be a local operator with constant coefficients. (For this

concept of differential operator of infinite order we refer to a survey in

§1 of [3].) Then we have J(D}uEs/p(U\K), hence the above represen-

tation is applicable to J(D)u. Let J(Q be the total symbol of J(D),

namely, the Fourier image of J(D)d. Since J(QF(Q is obviously one

of the representatives of J(D)u, we have

mod ̂ [P+] {p, d}®S{f-'} {p, d] .

Next, let <p(x) be a function of Gevrey class such that suppcp is con-

tained in the e-neighborhood of L\K and <p is identically equal to one

on the (s/2)-neighborhood of L\K. Put
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where suppv± is contained in the s-neighborhood of P±, and w(x) is

considered to be zero on the (e/2)-neighborhood of L\K. Note that

w(x) is in Gevrey class corresponding to %, 9- Thus we have

(2.3) J(QF(Q = ff (OUao +^(OI*(J,, +^(OUP)

mod 5[P+] {p, d}®S\P~~\ {p, d} .

By the Fundamental Principle we can adjust the elements of ^[P+] {p,

d}@&[P~~]{p, d} modifying v±. Therefore we can assume that (2.3)

is a true identity if we will. We must deduce from this relation the

necessary information. Since the convex hull of supp (v+ + IT) may cover

the whole set L, the usual analysis based on the growth conditions

fails to work. Instead, we employ the following tool. (For the concept

of Fourier hyperfunctions we refer to a survey in § 1 of [3].)

Lemma 2.2. In order that a Fourier hyper/unction u(x) is real

analytic in a neighborhood of the origin, it is necessary and sufficient

that every derivative J(D)u(x) has the finite value at the origin. Here

J(D) runs over the local operators. The value is defined by

lim (2*)-" J(£)fi({) exp ( - c
E 4 0 J n »

For the proof see [6], Theorem 3.8.

In order to apply this lemma, we need to introduce entire functions

instead of holomorphic functions on N(p). The method employing

symmetric polynomials developed in [4] badly twists the information.

Therefore we introduce here a technique from the boundary value theory.

To a holomorphic function F(£) on N(p), we make correspond the entire

function of the form

(2.4) /(O =/0(0 + dACD + - + Cr 1L- i(D

on CM. The correspondence /(Q->F(Q is given by the restriction

F(Q=/(C)|jV(p). The inverse correspondence B: F(Q-»/(Q is given by

defining the coefficients //(CO by Cramer's formula;
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(2.5) /y(O = -
i T (t"}---F(T YD D . . .T "(TV"-1
1 ^ m \ ^ y • r v * ' / n v S y s S , / ' ' / w v S /

Ti(C') Tl(Om"]

Tm(D Uc')"-1

Since the correspondence is linear, with the coefficients of rational

growth, the growth conditions are kept. In fact, assume that F(Q

satisfies for any rj>Q,

where HL(ImQ = supRex-C is the supporting function of L. Since L
xeL

is contained in {x1=0}, HL(ImQ in fact contains only Im('. Since p

is Kowalevskian with respect to D1? we have |Tj(C')|^M|£'|,j=l5..., m.

Thus for the coefficients of /=B[F] we obtain from (2.5)

(Precisely speaking, the direct estimate is possible only outside the zeros

of the discriminant A(^) of p(Q = 0 as an equation of Ci- Since p(Q

is irreducible, zl(£')^0. Hence the maximum principle can be applied

and we have the estimate on the whole C"'1.) Conversely the latter

growth condition clearly implies the former for F = B~l\_f], Similar

argument holds with L replaced by P±. Thus the composed correspon-

dence M^-^^O-^^o^'),...,^-!^')) gives the isomorphism

(2.6) ^p(U\K)l^p(U) - > SELl^r^LP+l'^'^EX-]'"] ,

where '^[L] denotes the space of hyperfunctions of (n — l)-variables

^' = (x2,..., xn) with support in L, and similarly for '^[P*]. We apply

the mapping B to (2.3). Put

+ cr 1 ̂ - i(o ,
+ f r x ««- i(f ') -

We have for every

(2.7) |0
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Thus, from (2.5) and the condition on TJ(£') we have

(2.8) |0KOI^C;,exp(C£|Ren+^

Now we specialize the regularity of %(x), cp(x) so that the following

estimate holds:

(2.9) |w(0|^Cexp(e|ImC| + HL(ImQ-^|ReC|«),

with A>a and the given q<l. Thus from (2.5) and the condition on

T C ' ) we have

(2.10)

where we have assumed a' = A — sa>Q. Now in (2.3) we employ those

J(C') containing only £'. Then applying the linear mapping B to both

sides, we obtain

(2.11) J(CU(O = fi/O+^(O + 57(n, 7 = 0, 1,..., m-l.

Here, as remarked above, //(') are the Fourier images of hyperfunctions

with support in L. But #*(£'), ft/C') have the estimates where Re£"

appears with a definite modulus. Hence they cannot be considered as

the Fourier images of hyperfunctions. To overcome the difficulty we

restrict the variables £' to the real £' and multiply by exp ( — 2cs ̂ / 1 £" | 2 + 1 ).

Then we have

(2.12) J(O//<r)exp(-2ceVHTTl)

( - 2cs

From the estimate (2.10) we see that the integral

converges absolutely for any x'eR""1. On the other hand, from the

estimate (2.8) we see that F~J1[^j(c;/)exp( — 2cs%/|^/|2 + l]) are Fourier
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hyperfunctions whose (analytic) singular supports are contained, res-

pectively, in the (l + b + c)e-neighborhood of P± + {x2 = xn = 0}9 where

denotes the (n — l)-dimensional inverse Fourier transform. We check

this assertion in the following

Lemma 2.3. Let L be a compact convex subset of R". Let x

= (X, x") be a partition of the variables, and let £ = (£'., £") be the

corresponding partition of the dual variables. Let f(x) be a Fourier

hyperf unction. Assume that its Fourier image /(£) can be extended

analytically to

and there satisfies the following estimate: Given f?>0, there exists

Cn such that

I/CQI ̂  C, exp fo|C| - e|Re n + HL(Im Q) .

Then f(x) is real analytic outside L+{x' = 0}.

Proof. Assume that x1 is contained in the part x'. We show that

f(x) is real analytic at a point x° on x1^sup{x1; xeL} + 5 for any

<5>0. Then by the linear coordinate transformations we can prove the

general assertion. Let cr = (cr1?...3 <7B), (?j= +1 be a multi-signature.

Consider the defining function of f(x) on the <7-th orthant {ajlmzj>0)

7 = 1,..., »}

We are going to deform the path of integration to the complex region

so that the above integral may converge locally uniformly in z even

when almz> — s' for some e'>(X Put

By the assumption we can deform the above integral to that on F.
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When £eF and Rez = x°, we have

and

Therefore if we choose r\ so small that rj < ef = min (sd, e)/2, we have for

^r*«| ̂  C exp (Im z • £ - e'(l«'l + I<H)) .

Thus we conclude that the integral converges locally uniformly in z

on |Imz|<e', hence it is analytic in z there. Q.E. D.

Remark- The above lemma is a modification of Lemma 5.1.2 in

[7]. There a beautiful criterion for sing. supp/(x) c K is given when

K is convex and compact. Lemma 2.3 above is for temporary use

and may be refined to give a necessary and sufficient condition as the

latter. (It seems to the author, however, that the condition |F(Q|

^8exp(fi|C|+Hx(ImO) in the latter is the misprint of |F(Q|g4^ exp
+ e|ImC| + FK(Im0), where ^>0 runs independently of 8.)

End of Proof of Theorem 2.1. Thus by Lemma 2.2 the following

limit exists when x' = (x2,..., xn) does not belong to the

neighborhood of P± + {x2 = xn = Q} in R""1.

Summing up, we conclude that when x' does not belong to the (1

+ b + c)e-neighborhood of (L\K) + {x2 = xn = Q}, the following limit exists

lim (27u)-(
5 4 0

Thus, employing the inverse implication in Lemma 2.2, we conclude

that the Fourier hyperf unction ujtC(x') = F~l 1 [//^)exp ( - 2cs ̂  | £' ' | 2 + 1)]
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is real analytic outside the (1 +fo + c)e-neighborhood of (L\K) + {x2

= x,, = 0}. Since

-l3 [exp ( -

where //x') = F;.11 [//«')], and

supp//x')c:L,

supp {F~13 [exp ( - 2ce VrpTl)]5(x2)^^)} c= {x2 = xn = 0} ,

we have

supp ujiE(xr) dL + {x2 = xn = Q}.

Therefore, by the uniqueness of analytic continuation we conclude

that UJ}E(X') is identically equal to zero outside the (1 + & + c)e-neighbor-

hood of (L\K) + {x2 = xn = Q}.

Now we let s tend to zero. We assert that Wy>e(x') tends to //x')

and the estimate of support is kept through this limit process, thus

obtaining supp//x')c(L\K) + {x2 = xH = 0}. Since the usual topology in
hyperfunction theory cannot be localizable, we must be careful in these

arguments. We proceed as in the proof of Theorem 3.8 in [6], employ-

ing the boundary value theory of Komatsu-Kawai : ujiE(xf) is naturally

considered as a hyperfunction of (e, x') on the real analytic manifold

{s > 0} x RX2 x S^ 3 x RXn, where Sj^ 3 is the one point compactification

of the (n — 3)-dimensional Euclidean space of x" = (x3,..., xn_ t), and it

satisfies the following differential equation there

(2.13) + 4 c + . . . + - - !, . .(,•) - 0 .

In fact, on the finite subdomain {s>0}xR""1 we define uJ}E(xf) by the

defining function given by the inverse Fourier transform. Then ujsE(x')

contains £ as a complex holomorphic parameter on Ree>0 and we can

easily check (2.13) by the defining function. At the infinity of Sj-3,

we employ the system of coordinates y" = xf'l\x"\2, x" = y"l\y"\2 and de-

fine
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Note that the integration is in fact performed on a compact fiber. As is

well known (see [6], the proof of Theorem 3.8), F~J3[exp( — 2ce.N/|£"|2 + l)]

(/Yl/'l2) is uniquely extended as an infinitely differentiable function of
y" to /' = 0, and holomorphic in e on Ree>0. Thus the above integral

defines a natural extension of ujiE(x2, y", xn) to /' = (). In this system

of coordinates (2.13) becomes

(2.14)

and it is also obviously satisfied. Since the hypersurface {e = 0} is every-

where non-characteristic with respect to the equation (2.13)-(2.14), we

can take the boundary value in the sense of Komatsu-Kawai [10].

On the other hand, for each fixed e>0, we have w7>£(x')e'^[{0}

xSj~3x{0}], and when we let e | 0, it converges to //x') in this space.

In fact, we can check the weak convergence. Let (p(x') be a real analy-

tic function on a neighborhood of {0} xS;~3 x {0}. Then we have

obviously

and the right hand member in the last inner product converges to <p(xr)

in the space of real analytic functions.

Thus by Corollary 2.6 in [6], we conclude that //x') is the boun-

dary value of ujiE(xr) with respect to (2.13). Since suppM7- j£(x')|{e>0}xRn-i

c={(e, x'); dis[V, (L\K) + {x2 = xn = 0}]^e} and the process of taking the

boundary value to a non-characteristic surface is local, we conclude that

supp/j(x') c (L\K) + {x2 = xn = 0}, hence supp/^x7) c L\K. This means

Returning to F(Q, we have shown that F(Q

, d}. This implies the triviality of the image

of (2.2). Q.E.D.
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Remarka The conclusion of Theorem 2 A Implies that uejtfp(U\K)
can be uniquely extended as a hyperfunction solution to the whole U.
In order that s/p(U\K)lj&p(U) itself is trivial, the propagation of re-
gularity j/(C7\X)n^p(I/)cja/(LO Is further needed. The latter holds,
e.g.9 if p(D) is simply characteristic and every bicharacteristic line Is
transversal to K (Kawai [8]).

Summing up, we have

Corollary 2A Let JC = {(0,...3 0, xn); — 1 <*„<!}. Assume that each
irreducible component q of p satisfies the following two conditions.

1) q satisfies the assumption of Theorem 2.1 for a suitable system

of coordinates in (xlv.., xw-i) space.
2) The propagation of regularity holds, namely,

is injective.
Then we have jtfq(U\K)/^p(U) = Q.

Proof. Let p = PiP2"°Pk be the irreducible decomposition of p,
where the multiple factors are repeated. Take M e ja/p(U\K). We apply
Theorem 2.1 to fl = p2(D)-.pk(D)uejtfpl(U\K) and conclude that It
can be extended to an element of &P1(U). Since the propagation of
regularity is assumed, we conclude that f^ej&CU) as remarked above.
Next we solve the equation

p2(D)-pk(D)v1=fl

and obtain a solution v1ej^(UE), where UE is a convex open neighbor-
hood of KE = {(Q,..., 0, xn); -l + s<xw <!-£}. (For this existence theorem
we refer to [9], Theorem 3.1.) Put u2 = u-vl. Then u2E#?(UE\KE)

and

Thus repeating this argument we obtain vj e £/(UjE), uj+l = u — (vl + -<>-\-
Vj)9j = l,...,k—l, and finally conclude that w f ce j2/(l7(k_1)e). Thus we have
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Since e is arbitrary, we conclude that UE£/(U). Q.E. D.

Example. The ultra-hyperbolic operators

are covered by our result. We can apply Theorem 2.1 taking Cw-i

instead of C2. In fact, put f = £ + V=liy. For ^2

we have

where r = (f2,..., Cw-2) in the present notation. For 3|C"|2^w
2-i

^3(^2_1+/72) we have

Finally if ^_1+£2^max{3|ri2, 3faB
2_,+//*)}, we have

l l m d l ^ v(£"-i+£2)/3 " 1

Since the propagation of regularity holds due to the above remark,

Corollary 2.4 can also be applied. Thus we have strengthened the

result of [4], which corresponds to the case P~ = 0. Note that for

/c = 0 or n the operator is elliptic and has a trivial counter-example.

Finally for k = n — \ the fundamental solution £(xlv.., x w _i ) of the

Laplacian D2H HD 2_i gives a non-trivial element of ^p(U\K)/j^p(U).

Since the propagation of regularity holds, E cannot be extended to

the xw-axis even as a hyperfunction solution.

Though Theorem 2.1 itself is fairly sharp, we expect that there

are milder conditions when we consider only those K contained in the

xM-axis.
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