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§0. Introduction and Statement of Results

Let X2n be an oriented closed differentiable 2n-manifold. Let CP"

be the complex projective n-space.

Definition. X2n is a cohomology CP" (X is a cohCP") if there is

an element %eH2(Xi Z) such that H**(Z; Z) is isomorphic to the

truncated polynomial ring of a, Z[oc]/(a"+1) (here Z denotes the ring

of the rational integers).

We may assume that the Kronecker pairing <a", [X]> equals 1

where [Jf] is the fundamental class. We call a a cohomology generator

of X. Let j/(X) be the total j/-class of X defined by

j*(X) = n(xjl2fcmhxjl2rl £#**(*; Q),

where the elementary symmetric functions of the (Xj)2 give the Pontrjagin

classes of X, and Q denotes the field of the rational numbers.

A circle group action is called semifree if it is free outside the fixed

point set. Now our result is as follows.

Theorem 0.1. Let X be a cohCP" with a cohomology generator

a. // X admits a non-trivial smooth semifree circle group action, then

Corollary 0.2. Let f be an orientation preserving homotopy equiva-
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lence from an oriented closed differ entiab I e manifold X to CPn. If

X admits a non-trivial smooth semifree circle group action, then

In the case with n = 3, Corollary 0.2 implies that X is diffeomorphic

to CP3 by the result of D. Montgomery and C. T. Yang [3]. The

motivation of this paper is the conjecture of T. Petrie which asserts

that the conclusion of Corollary 0.2 holds even if we miss the condition

'semifree'.

Theorem 0.1 will be proved by the use of the Atiy ah- Singer-Segal

index formula which is formulated by T. Petrie for spinc-manifold in

[4]. In §1, we will state some results of G. E. Bredon and J. C. Su on

circle group actions on cohomology complex projective spaces. In §2.

some properties of the fixed point set will be given in the semifree case.

In §3, the index formula will be given in a special form for our pur-

pose. In §4, Theorem 0.1 and Corollary 0.2 will be proved.

Notation. 1) S1 denotes the circle group which is identified with

the group of the complex number with determinant 1. 2) For a Lie

group G, if X is a right G-space and 7 is a left G-space, XxGY denotes

the space obtained from XxY by identifying (xg, g~l y) with (x, y)

for x E X, y e 7, g e G.

§ 1. Preliminaries

Let X be a cohCP" with a cohomology generator a (see §0). Let

( j ) i S 1 x X - ^ X be a smooth S1 action on X. Let F= UF/ be the fixed

point set of $, where {Fj} are its connected components. Each Fj

is an orientable smooth submanifold of X.

Proposition 1.1 (G. E. Bredon [2], J. C. Su [5]). Each Fj is a

cohCPhJ for some hj and Z(hj + i) = n+l. If Oy is the restriction of

a to Fp then a,- is a generator of H2(Fji Z).

Let q be the complex line bundle over X whose first Chern class

CI(YJ) is a. We call rj the line bundle associated to a. As Hl(X\ Z) = 0,

there is an S1 action $ on rj which is a lifting of 0 (Su [5]). This
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means that there is a smooth S1 action on E(r\\ the total space of Y\,

$: S1 xE(rf)-*E(ri), such that $(s, ) is a bundle map for each fixed

seS1 and the diagram

commutes where q is the projection. If PJ is a point of FJ9 $ induces

a 1-dimensional complex representation of S1 in the fibre q~i(pj). Let

t denote the canonical representation t:S1 = U(l). Then the above

representation may be written as ta* for some integer ar We will write

this situation as (j)\pj = taj. Thus we have a set of integers {a,-}. Let

ZfcdS1 be the subgroup of the /c-th roots of unity. F(Zfc) denotes the

set of the points of X fixed by the whole group Zfc. Clearly F(Zk)

Proposition 1.2 (T. Petrie [4]). {Oj} has the following properties

1) for each i^=j, the difference ai — aj is not zero and it depends only

on 4> and rj, and does not depend on the choice of $, and

2) for a prime power pr, Ft and Fj are contained in a same connected

component of F(Z,pt) if the difference a t-— ^- = 0 (mod pr)-

§ 2. Properties of Fixed Point Set

Let 0 be a non-trivial semifree smooth S1 action on X which is

a cohCP" with a cohomology generator a. Let F be the fixed point

set of (/). The main purpose of this section is to prove Proposition

2.5.

Proposition 2.1. F has just two connected components.

Proof. By Proposition 1.1, F has necessarily at least two connected

components. Assume that F has at least three connected components.

Let F15 F2 and F3 be three ones different from each other. Let Y\ be

the line bundle associated to a. Choose a lifting $ of $ in r\. Then we

have a set of integers {aly a2, a3} (see §1). By Proposition 1.2 a^a^
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if IT£J. Hence for some l:g i<j^3, at — a^ is divisible by some prime

number p^2. By Proposition 1.2, 2), Ft and Fj are contained in a

same connected component of F(Zp). Therefore F(Zp) ^ F and 0 is

not semifree. This is a contradiction. Q.E. D.

Now let FQ and F1 be the two connected components of F. By

Proposition 1.1, F0 is a cohCPp and Fx is a cohCP^ for some non-

negative integers p, q such that p + q = n — 1. The restriction of a to

FpOij, is a generator of Jf2(FJ-; Z) (j = 0, 1). Let ?? be the line bundle

associated to a. Let $ be a lifting of $ in /?. If 4>\pj = tai for 7 = 0, 1,

then al—a0=+l by Proposition 1.2 and the semifreeness. We may

make the following assumption with no loss of generality.

Assumption (*) a1 — a0=+l.

Let X be the sphere bundle of r\. Let q:X-+X be the projection.

Then q:X-»X is a principal Sl bundle over X. For A^X, denote

q-*(A) by A.

Now throughout this section, the cohomology groups will be under-

stood with integer coefficients.

Lemma 2.2. X, FQ and F1 are Z-cohomology spheres, that is

and

Proof. This follows from the Gysin cohomology exact sequences

associated to the S1 bundles

X - >X, Fj - >Fj (7 = 0,1). Q.E.D.

The following lemma is a preparation for the next Lemma 2.4.

Lemma 2.3. Let K be a finite dimensional locally finite CW-

complex on which S1 acts semifreely with fixed point set L. We assume

that L is a subcomplex of K. If both K and L have the same integral

cohomology rings as the m~sphere Sm, then j*: Hm(K)-»Hm(L) is an

isomorphism, where j'.Lc^K is the inclusion map.

Proof. Let (ES1, p, BS1) be the universal S1 principal bundle. As

S1 acts on K — L freely, (K — L)xsiESl is homotopically equivalent to
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the orbit space K-L/S1. Let

> Hl(LxBSl)

be the exact sequence of the Cech cohomology rings. This is an exact

sequence of H*(BS ^-modules. As K — L/S1 is a finite dimensional space,

H^K-L/S1) is a H*(BS1)-torsion module. Let s be a generator of

H2(BSl) and let s"1 be the formal inverse. Tensoring the above exact

sequence with ZJV"1], we have an isomorphism

(j x 1)* : H*(K x sJSSOIX"1] ̂ #*(L x BS1)^"1] .

Now the right hand side is (Hm(L)®H°(L))®H*(BS1)[s-1'], hence the

left hand side must be isomorphic to (Hm(K)@H°(KJ)®H*(BSl)[s-1]

and j*: Hm(K)-*Hm(L) must be an isomorphism. Q.E. D.

Lemma 2.4. The linking number of F0 and F1 in X equals +1.

Proof. By assumption (*), there exists a lifting of 4>, $0, in rj such

that 4>o\po = l and $0\p1 = t for p/eF,- (j = 0, 1). $0 induces a semifree

S1 action on X. F1 is invariant under this action and the restricted

action on X — F1 is semifree with the fixed point set F0. By the Alex-

ander duality and Lemma 2.3, H*(X-Fl)^H*(S2P+1). Hence by Lemma

2.2 and Lemma 2.3, J*: H^+^X-F^H2^1 (F0) is an isomorphism

where J:F0<^X — F1 is the inclusion map. Q.E. D.

Let Nj be the normal bundle of Fj in X. The dimension of the

fibre of A/o is 2(^ + 1) and that of N1 is 2(p + l). S1 acts on Nj by

bundle automorphisms. This action is free in each fibres outside the

zero-section. Hence N0 and JVt have complex structures such that the

S1 action in each fibres are the complex representations H ----- M and
' — «+i — '

H ----- \-t respectively. From now on, we consider N,- as a complex
* — P+I — '
vector bundle with this complex structure.

Let D(Nj) and S(Nj) be the disk and the sphere bundles of Nj

respectively. By introducing some invariant Riemannian metric on X,

we may consider D(Nj) as an equivariant tubular neighborhood of Fj

in X such that D(N0) n D(Nl) = <j). Put 7= the closure of (X-(D(N0)

UD(Nl)J) and Y=q~l(Y). The boundary of 7 is S(N^\jS^). Let
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c^Y be the inclusion. 7 is homotopically equivalent to X — (FQ

U jF\). Hence from the Alexander duality and Lemma 2.4, it follows

that iJ:H*(Y) = H*(!^j)) = H*(S2p+1xS2q+l) as rings.

Now the restriction of <p to Y is free and we denote the orbit space

7/0 by Y. The following diagram commutes

F

where the horizontal maps are the orbit maps and the vertical ones are

the inclusions. Since f,- induces an isomorphism of the cohomology rings,

the Gysin exact sequence associated to the orbit maps show that i*j:

H*(Y)-+H*(S(Nj)) and rf: H*(7)->H*(P(Nj)) are both isomorphisms.
Let Tiji P(Nj)->Fj be the projection. We denote (ij)~l(n*aij) also by

Ufa. Then (7rga0)p+1=0 and (nfoL^+1=0 in H*(Y).

Proposition 2.5a Let c(Nj) be the total Chern class of the normal

bundle Nj of Fj. Then

= (l-a0)9+1 and

where a,- fs the restriction of a to Fj.

Proof. Let y be the first Chern class of the S1 principal bundle

7->F. First we show that y= —n^a0 + n:foc1 in H2(F).

Let $0 and $1 be two liftings of 0 in Y\ such that 00|Po = l» 0olPi = ̂

and 4>i\po = t~1> <?ilPi = l f°r PjEFj- Then $,- induces a semifree S1

action on X with the fixed point set Fj. The diagram

i— X"
9o

commutes, where p and C^ denote the inclusions and the other maps
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are the orbit maps and /$0 denotes the orbit spaces. As was shown

before, H*(X — F0) = H*(F1) via the inclusion. Hence the Gysin sequence

shows that k%: H*(X — F0/<^0) = //*(F1). The restriction of $0 to FL

coincides with the bundle S1 action, so that the right hand square of

the above diagram shows that the first Chern class of the S1 bundle

X — FQ^X — F0/(j)0 is (/c*)~la1. Now k*(k*)"1oni = q*n*((xl)
 and it is

the first Chern class of the S1 bundle Y-»Y/$0. But qfy is also the

first Chern class of the same bundle. Therefore q*y = q*n*((x,1). Now

S(NQ) is a sphere bundle over F0. Let n'0: S(No)-+F0 be the projection.

Each fibre of n'Q may be assumed to be invariant under $0. Let nQ:

? °* -+FQ be the map induced by n'0. The bundle S1 action on X

induces free S1 actions on -~—, —\ ° and F0, and fi0 is equivariant
([)Q <p0

with respect to these actions. There is a commutative diagram

_t- 73 ^Si *° >. ^o
00 ^0

Y p P(N0)

Hence the first Chern class of the S1 bundle ^i y/00-> F is 7iga0? and

7ija0 generates the kernel of q^\H2(Y). Therefore we see that y = n^QLl

modn*tt0. By replacing 00 by $l and carrying a similar argument, we

see that y= — n$aQmodn*ai (we note that the restriction of $j on F0

is the conjugation of the bundle S1 action). Consequently we have

Now ((-7)-7rga0)9+1=0 and ((-y) + nfocl)
p+l =0. By the Grothen-

dieck's definition of the Chern classes, we obtain the result. Q. E. D.

§3. Index Formula for Semlfree S1 Action on cofaCPra

Let Spin(m) be the spinor-group (the simply connected double fold

covering of SO(m)). Let A: Spin(m)-»SO(m) be the covering map. The

inverse image of the unit of S0(m), A~1(l), is a cyclic group of order 2.

Thus Z2(cS'1) acts on Spin(m) by the right multiplication of A""1(l).

The complex spinor group Spinc(m) is defined by Spinc(m) = Spin (m)



490 TOMOYOSHI YOSHIDA

x^S1. Let [0, t] denote an equivalence class in Spinc(m) determined

by geSpin(m) and ^eS1. There are two fibre maps A1? A2,

A! : Spinc(m) > S0(m)

A2:Spinc(m) > S1

such that AiGjr, r]) = A(0) and A2([0, f)) = *2. The fibre of Ax is S1 and

that of A2 is Spin(m). Thus Spinc(m) acts on Rm and C from the left

by A! and A2 respectively.

Let Xm be an oriented C°°-m-manifokL A Spinc-structure on X

is a principal Spinc(m)-bundle P such that PxSpinC(m)M
m is equivalent

to TX9 the tangent bundle over X. If P is a Spinc-structure on X we

have a complex line bundle over X, co = PxSpinC(m)C0 Let c^co) be the

first Chern class of co. The mod 2 reduction of CI(G>) is w2(X)5 the

second Stiefel-Whitney class of X. It is well known that under the map,

P->C!(CO), the set of the Spinc-structures on X is in one-one corre-

spondence with the set of those elements of H2(X; Z) whose mod 2

reduction is w2(X).

Let Xm be a Spinc-manifold with a Spinc-structure P. We assume

that Hl(X',Z) = Q. Let 0 be an S1 action on Z. Then P has a left

S1 action \j/ which is compatible with the right Spinc(m) action on P

and the diagram

commutes, where q is the projection (T. Petrie [4]). Let K|i(?) be the

equivariant JC-theory. According to T, Petrie ([4]), if H\X\ Z) = 0,

there is an orientation class 8si in Kj±(TX) and the Thorn-isomorphism

K^i(X)-^K^(TX) defined by ii-m3si for ueKfr(X). The index homo-

morphism Id: K|i(TX)->^(S'1) is defined, where ^(S1) denotes the com-

plex representation ring of S1 ([!]). In [4], Part I, T, Petrie has given

the explicit formula of Id(u5si) by the terms of the normal bundles of

the fixed point set and the representations of S1 in its fibres. This

formula is essential for our purpose, but the general formula is needless
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to us. Hence we will write down the formula only for our special case

in the bellow.
We begin with the following lemma.

Lemma 3.1. Let X2n be a cohCP" and lei a be a generator of

H2(X;Z). Then w2(X) = Q if n is odd, and w2(X)-=ai if n is even

where a is the mod 2 reduction of a.

Proof. Let v2(X} be the second Wu class of X. As X is orientable

w1(X) = 0 and w2(X) = v2(X). Now v2(X) U a"'1 = Sq2a»-1 = (n-l)a».

Hence if n is odd w2pO = 0 and if n is even w2(X) = oi. Q.E. D.

Now let X be a cohCP" with a cohomology generator a. Let <£

be a smooth semifree S1 action on X. As was shown in §2, the fixed

point set F has two connected components F^p and F\q with p + q = n — l.

Let r\ be the line bundle associated to oc. Under Assumption (*) in

§2, there is a lifting action $0 of <j> in Y\ such that 4>o\p0 = l and $Q\p1

= t for pj-eFj. In §3 and §4, we consider rj as an S1 vector bundle

by $0. Let Nj be the normal bundle of Fj in X. Then by Proposition

2.5, we have c(N0) = (l-<*Q)q+1 and c(N1) = (l + a1)p+1.
Now we separate our consideration into two cases.

i) The case where n is odd.

As w2(X) = Q by Lemma 3.1, we may take a Spinc-structure on X,

P, such that c^co) is zero. Thus co = PxS p i n C ( 2 w)C is a trivial complex
line bundle. As was mentioned before, there is a left S1 action on P,

\l/ which is a lifting of 0 and compatible with the right Spinc(2n) action

on P. \l/ induces an S1 action ^ on CD which is a lifting of 0. Since

o) is a trivial bundle we have ^\p0 = ip\Pi = tw for p/eF/ and some

integer w. By considering the representations of S1 in the fibres of NJ9

we see that w is odd (even) if p and q are even (odd respectively).

NJ is an oriented bundle by the complex structure given in §2 and

we give an orientation to Fj by the orientations of X and Nj.

Proposition 3.2. Let X2n, Fgp, F%q and rj be as above. If n is

odd, then Id(r\kdsi}eR(Sl) = 'L[t, r1] is given by
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is the total jtf-class of Fj and [F,-] w £/ze homology funda-

mental class of Fj and < , > denotes the evaluation. As was

mentioned above, w = 0(mod2) if p, q ̂  0 (mod 2) and w^0(mod2) if

p, q = Q (mod2). In particular, for 1

where ch denotes the Chern character,

ii) The case where n is even.

By Lemma 3.1, we may take a Spinc-structure on X9 P, such that

c1(co) = a. Let ^r be an S1 action on P which is a lifting of 0 and is

compatible with the right Spinc(2n) action on P. Let \p be the S1

action on o> induced by \j/. Since CD is equivalent to r\ as a complex

line bundle, we have ip\po = tw and |̂]?1 = rw+1 for pj^Fj and some

integer w. By considering the S1 representations in the fibres of NJ9

we see that w is odd (even) if p is odd and q is even (p is even and

q is odd respectively).

Proposition 3.3e Let X2n, Fgp, F?« and ^ be as above. If n is

even, then

= 0(mod2) i/ p =

and g = 0(mod2). In particular for

Proposition 3.2 and Proposition 3.3 are obtained by applying Propo-

sition 5.2 and 5.3 in [4], Part I, to our case, but details will be omitted.
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§ 4. Proofs

In this section, we will prove Theorem 0.1 and Corollary 0.2 stated

in §0.

Put A(x) = (x/2)(sinhx/2)-1.

Corollary 0.2 is an consequence of Theorem 0.1 and the fact that

£/(CP") = A(c)n+1 and /*(c) is a cohomology generator of X, where c

is the first Chern class of the canonical Hopf bundle H.

Now we proceed to the proof of Theorem 0.1. Our task is to show

that jtf(X) = A(a)n+1. First we consider the linear semifree S1 action <f>

on CPn defined by the equation

<P(t, [z0,..., zj) = [z0,..., zp9 tzp+1,..., tzn~]

for teS1 and [z0...zj eCP". The fixed point set is F0 = CPP U Fl = CPq.

If we give a complex structure to NJ9 the normal bundle of FJ9 as in

§2, then N0 = H+'~+H and N1=H+ — +H, where H is the conjugate
v - q+1 - > , - p+1 - / ^

bundle of H. Let cj be the restriction of c to F,-. Then lsf(F0) =

and

Lemma 4.1. j*(X) = A(at)n+1 if and only if J/(F0) = ^4(a0)
p+ *

Proof. Assume that j^(X) = A(a)n+i. By Proposition 2.5, we have

= A(ao)9+1 and j/(]V1) = ̂ (a1)
p+1. Let if.F^X be the inclusion.

Then ijjii(X) = jS(Fj)j!i(Nj). Hence we have j/(F0) = ̂ (a0)
p+1 and

Conversely assume that j (F 0) = yl(a0)
p+1 and

Let f:X-+CPa be a map such that /*(c) = a. Then f*H = rf. Now

/d(^fe^si)(l) = limr_>1/^(f;fe(5si), and the right hand side may be calculated

by the formula of Proposition 3.2 or 3.3. Since F0 is a cohCPp and

F! is a cohCP* and a7- is a generator of H2(Fj',Z), the right hand

side of the formula of Proposition 3.2 (or 3.3) formally coincides with

that of the corresponding formula for the linear S1 action $ on CP"

and Id(Hkdsl). Therefore we have Id(if8si)(l) = Id(Hkdsi)(l) for each k.
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But Id(rikdsl)(l) = <chrikj(X)9 [*]> and Id(Hkds,}(i) = {chHk^CPn\ [CPB]>

=/*<c/tHfcj/(CP»), [CPB]> = <cfcfjM(a)B+1, [Z]>. Hence (chrjkj/(X), [X]>
= <e/n?M(a)"+1

9 [X]> for each Jc. Since {chy*, (fc = 0, 1,..., «)} gives an

additive base of H**(X; Q), j/(X» equals 4(<x)"+1. Q.E.D.

Now we will give the proof of Theorem 0.1 only when n is odd,

The proof in the case with n even is almost parallel, and we will omit

it. Thus from now on, we assume that n is odd.

Put S(a) = j/(X)A(a)~(n+i\ S(oc) is a power series of a2 with rational

coefficients and its leading term is 1, that is S(a)=l + fc1a
2 + fc2

a4H — ->
>\

bteQ. Our purpose is to show that S(x) is equal to 1. Now ^(X)

= S(a)A(a)»+l and j/(Fj) = iJj/(X)ji(Nj)-1, so that we have j/(F0)

= S(a0M(a0)
p+1 and j/(F1) = S(ot1)A(a1)

q+\ where S(aJ)

Lemma 4.2. ,S(a) equals 1 (f arcd on/j; f/ ̂ (ao)

equal 1.

Proof, This is a restatement of Lemma 4.1. Q. E.

If j/(Fo) and j/CFi) are replaced by A(a0)
p+i and A(ai)

q+i respec-

tively in the formula of Proposition 3.2, the resulting formula (denoted

by B(k)(t)) formally coincides with the formula for the linear S1 action

on CP" and Id(Hkdsi), possibly up to a factor tN for some JV. There-

fore this resulting formula is a finite Laurent series of t. On the other
hand Id(rikdsi) is a finite Laurent series, hence K(k)(i) = Id(r]kdsi)-B(k)(t)

is a finite Laurent series. Put S"(a) = S(a) — l = fe1a
2 + fo2°

c4H — and

S'(<xy) = S(a,) - 1 = 6ia J + 62a J + - - - . Then j/(F0) - ^(a0)
p+ J = S'(a0M(a0)

p+ 1

and J/(F1)-A(a1)«
+1=S'(a1)X(a1)«

+1, and X(fc)(0 is obtained by replac-

ing J/(F0) and J/(F!) by S'(a0M(a0)
p+ x and SXaiMCaO^1 respectively

in the formula of Proposition 3.2. Now we slightly deform the formula

of K(/c)(0 as follows;

(3.1)' K(/c)(0 = <S'(oo)G0(a0Xl - te-'T1'* l }
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(k q+l\*Qwhere G0(a0) = el 2 ; A(a0)
p+1

9 and

We separate the proof into the two cases whether p = q or not.

Case 1. p^q-

Let mCr = m!/(m — r)!r! be the binomial coefficient. Using the expan-

sion (1-*)-"= Zm + r-lCm-l* r» WChaVCr=0

p - -
r=0

If prgl and g^l, then Sf(ocQ) = S'((xl) = Q anc* there is nothing to be

proved. Hence we assume that p^2 or q^2. Now we consider K(0)(t).

The possible maximal power of (1 — f)~l occurring in K(Q)(i) is (1 —

,)-<*+«- 1). The term containing it in K(0)(0 is ^(l-O"^^"^ ((-l)p"2

p+,_2Q« + p+,_2Cp^)5 where t/ = p-2+w+ |+1 and p = g-2

Since K(0)(0 is a finite Laurent series, if b^Q, then ((-l)p

+ p+(Z_2CpP) must be divisible by (1 — f). But this is impossible if

Therefore fo1=0. Hence the possible maximal power of (1 — f)"1 oc-

curring in X(0)(f) is (l-0"(p+4~3). If P^3 or ^r^3, then a similar

procedure shows that b2 = ® and so on. Consequently we have S'(ao)

= S/(a1) = 0, hence S(a)=l by Lemma 4.2.

Case 2. ]7 = ^.

If p^l, nothing is to be proved. Assume that p^2. We consider

K(l)(t). The possible maximal power of (1 — t)~l occurring in K(T)(f)

is (l-t)-up-l\ The term containing it in K(l)(0 is &1(1-0~(2I'~1)

2p-2Cp((-ir2t« + t«+1), where u = p-2+ w+?+ l .

First assume that p is even. ((— l)p~2fw + £"+1) is not divisible by

(1 — t). Hence if for is not zero, then K(l)(t) cannot be a finite Laurent

series. Therefore fo1=0 and (1 — 0~(2P~3) is the possible maximal power

of (1 — f)""1- If p^4, a similar procedure shows that l^^* an^ so on-

Next assume that p is odd. Then ((-l)p-2tu + tu+l)=-(l-t)ttt.

The possible maximal power of (1-r)"1 occurring in K(i)(f) is (1-
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f)-(2P-2>. The term containing it in X(l)(f) is

fu — P~ <~* '
V -— ~ 2p-3 V

The factor in the bracket is not divisible by (1~0- Hence if bi is not

zero, then K(l)(t) is not a finite Laurent series. Therefore fo1 = 0. If

p^5, a similar procedure shows that b2 = ̂ , and so on.

This completes the proof of Theorem 0.1 in the case when n is

odd. When n is even, necessarily p¥^q. Using the formula of Propo-

sition 3.3, a similar argument as Case 1 in the above may be carried

out.
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