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1. Introduction

It has been shown that if a solution u of the Klein-Gordon equation
82 \-fi~2 — A + a }u(x, i) = Q, x e R", a > 0, vanishes on a half characteristic

cone and its energy integral is finite, then u vanishes identically. This

uniqueness theorem was originally proved by Segal [8] in case n = l

and extended to the general case (n>l) by Goodman [1] and Morawetz

[7].
Taniguchi has shown in [9] that the same uniqueness theorem is

valid for some first order symmetric hyperbolic systems in the case when

In this paper, we intend to extend his result to the case when n>i

and to more general hyperbolic systems, which, in particular, enables

us to discuss the above uniqueness of solutions of the Dirac equation.
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2. Main Theorem

We shall consider the first order hyperbolic system

(2.1) Aj- + Lu, *=(*!,..., jtJeR

where u is a CN- valued function in R"+1, and Aj and L are NxN

constant matrices.

Throughout this paper, we make the following assumptions:

(i) All the eigenvalues of the matrix ^ A£j + iL are real for all £
j=i

= ({19..., ^JeM". These eigenvalues will be designated by

(ii) The matrix JL A£j+iL is uniformly diagonalizable, i.e., there exists

a nonsingular matrix P(£) such that

for all

and

o
where || • || denotes the matrix norm.

By L2-solution we shall mean a solution u(x, i) of the system (2.1)

in the sense of distributions in RM+1 which is a continuous function in

the variable t with values in L2(RW) (i.e., u e C^M1 ; L2(Rn))). Under

the assumption (i) and (ii), for any M0eL2(Rn), the unique L2-solution u

satisfying w(x, 0) = uQ(x) exists and is represented as

(2.2) fl({, 0 = exp ( - it( ±

i;fa the Fourier transformation where * denotes the Fourier transform

with respect to x which is defined by

e'*-*f(x)dx for
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and, in general, by the extension of this mapping /-»/ by the continuity

in L2(R").

By the representation (2.2), using the Parseval's relation, we obtain

(2.3) \\

and

(2.4) \\

for teR1.

Thus we know that the one-parameter family of operators G(t},

f eR 1 , defined by G(i)u0 = u(. , t) forms a equi-bounded group of class

(C0) on L2(R») (Yosida [10]).

It is known that the singular support of the function A,- is a set of

measure zero in Rn for each 7 = !,..., N.

It follows from the assumption (i) that all the eigenvalues of the

matrix £ 4 / f / are also real for £eRn . We denote them by <rj(£)9j

= 1,..., N, and put

We assume below that 0->0.

For a measurable set M, measM will denote the Lebesgue measure

of M. We denote the gradient of/ by V j.
We now state our

Theorem 2.1. Let D = \J sing supp A7 and E= \J {£eR"\D;
l ^ J ^ N l^J iN

|FA/0| = o-}. Suppose that

(iii) meas£ = 0.

// a L2 --solution u of the system (2.1) vanishes almost everywhere in

the cone K = {(x, OeR nx(0, oo); |x|<crr}, then u vanishes a.e. in R"+1.

Remarks. In the above statement, we may replace the cone K by

the cones K+ = {(x, t)eRn+1; t>t0, |x-x0|<or(t~to)} or X_={(x, t)

eRw+1; r< f 0 5 |x-x0l<^o-0} with the vertex at (x0, *0). When n = l,
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if measE>03 then the conclusion of Theorem 2.1 does not hold any

longer. This fact will be shown in section 5.

We shall prove Theorem 2.1 in the next section.

Let Ffoc(Rn+1), s^O, be the space of all functions / such that

feHs(Q) (see Lions-Magenes [4]) for every open ball QaRn+1, Denote

by dS the element of area on the surface dK = {(x9 f)GRn x(0, oo);

\x\ = at}. Let L?oc(dK) be the space of all functions / defined on dK

which are square integrable with respect to dS in any open relatively

compact subset of dK. Then both Hfoc(R»+1) and L?oc(dK) are

Frechet spaces with obvious topologies.

The trace theorem asserts that for s>y, the trace operator y is

continuous from lffoc(R
ri+1) to L?oc(dK). As for the trace operator

and the trace theorem, we refer to Lions-Magenes [4].

Corollary 2.2. Under the hypothesis (iii), if a L2-solution u belongs

Hfoc(Rw+1) for

= 0 a.e. in R"+1.

to Hfoc(Rw+1) for some s> and if yu vanishes a.e. on dK, then

Proof. In view of Theorem 2.1, it suffices to prove that u vanishes

a.e. in 1C.

Choose a function ^eCg>(Rn + 1) satisfying \ \l/(x, i)dxdt = l
J R » + I

and set \l/d(x9 i) = d~n~1\l/(x/d, t/d) for <5>0. Then ud = \l/d*u (the convolu-

tion with respect to the variables (x, i)) is a smooth L2 -solution of the

system (2.1) and tends to u in Hfoc(R"+1) as 6 tends to zero. Hence-

forth, Br denotes the open ball in Rw centered at the origin whose radius

equals to r.

For a given T>0 and any cp e C^(BaT), let v be the solution of

the adjoint system of (2.1):

(2.5) -= AJ --L*v9 *eR»9 / eR1,
Ol /= 1 OX i

such that v(x, T) = <p(x) if x e B f f T and v(x, T) = 0 otherwise, where A*j

and L* are the adjoint matrices of Aj and L. Notice that the system

(2.5) satisfies the conditions (i) and (ii) and that t;eC°°(R"+1).

Since ud is a solution of (2.1), by (2.5), we have
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(2.6) <U«*>-<A*U«» = »-

Let T>e>0, V={(x, OeR n + 1 ; \x\^et, e^t^T] and S = {(x, f)eR"+ 1 ;

\x\ = at, s^t^T}.

Integrating both sides of (2.6) over V and using the Green's formula,

we get

(2.7) ( <ii,(x, T), (?(*)> dx - ( <ud(x, e), i<x, e)>Jx

Since yu = 0 a.e. in S, letting <5-»0, we see

<H(X, T), p(x»dx= ( <M(X, e), »(x,
T J ROE

Since u e CCR1 ; L2(R")) and v e C°°(R"+1)3

\ <w(xs T), ^(x)>dx=lim\ <w(x, e), v(x,
J BITT E-*OjBaS

This implies that w = 0 a.e. in K9 which finishes the proof of the corol-

lary.

3. Proof of Theorem 2.1

To prove the theorem, we shall need the following

Lemma 3.1. Let D be a closed set of measure zero in R" and A

be a real-valued function defined in R" which belongs to C[n/23+2(Rw\D).

For/eL1(R")nL2(R"), define

(3.1)

Let A be a compact set in Rn, B be a measurable bounded set in R"

and set F,= {af + 6;ae4, 6e#}, f>0.
= 0,
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(3.2) lim||0(.
r-»oo

The proof of this lemma will be given after the proof of the theo-
rem.

Proof of Theorem. Let u be a L2-solution of the system (2.1) which

vanishes a.e. in K. Put uQ(x) = u(x, 0). For a given e>0, we choose
a function v0 in Cg)(Rn) satisfying

(3.3) \\u0-v0\\L2(un)<8.

We now choose R so large that the support of v0 is contained in the

ball BR. Denoting by v the L2-solution of (2.1) such that v(x, Q) = v0(x),

by (2.3), we have

(3.4) !!«(-, 0-K-,OllL2 (Hn)<Cfi .

Since the propagation speed of the system (2.1) is less than or equal to

a, it follows from (2.4) that

(3.5) \\Vo\\L^B^C\\v(.9i)\\^ttR^.

Write P({) = toXmnO-1=(p°XO)^ = ^i9...,%) and i>0 = '(i>0i,...,
VON). By (2.2),

vj(x,t) = ( *-'*•< £
JRM k,i=i

for j = l,..., N. By the assumption (ii), we have

\PJk(Q\, IP*i(OI^C, !£/, fc, /^AT,

Therefore, pjkpkivQl belongs to Ll(Rn) n L2(RM). Applying Lemma 3.1
with yl = {3/eM11; |j|=cr} and with B = BR9 we observe that there exists

T>0 such that for any t>T, the inequality

(3.6) b( - ? OllL 2 (BH + ff,\Bfft)<e

holds. Thus we have
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by (3.3) and (3.5). Since n = 0 a.e. in K, by (3.4), we get

and therefore,

by (3.6). This implies that w0 = 0 a.e. in R", and therefore that u = 0

a.e. in Rn+1. The proof is complete.

Next we turn to the

Proof of Lemma 3.1. Let e>0 be an arbitrary but fixed number.

We choose such a large closed ball Q in R" that

where CQ is the complement of Q and #CQ the characteristic function of

the set CQ. Since the Lebesgue measure is regular and the measure of

£ = {{eRw\D; — FA(£)e,/4} equals to zero, there exists an open set O

such that

It follows from the continuity of FA that E is closed, and therefore

DUE is closed. Since Q\O is compact and (D U E) n (6\0) = 0, dis(Q\O,

D U £), the distance between 2\0 and D U JB, is positive.

Let p be a function in Cg)(R") such that p^O, \ p(x)dx = l and
JRM

supppc^i. For ??>0, we set prj(x) = r]-np(x/ri) and

Let us choose ?/ so small that 2^<dis(DU,E, Q\0) and

Since A and supp/, are compact, the set C/ =

ae^4} is compact in R1. Therefore, considering that supp/,; n (D U E)

= 0, we see that the minimum of 17 (which will be denoted by m) is
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positive. This implies that for any %esuppfn and xeA, there exists

j=j(£, x) such that

/•Q >-i\ GAi /1?\ . «s^ *•*

Let 0* be an open bounded set containing supp/^ such that dis(0*9

D)>0. By the assumption that AeC2(Rw\D),

M= sup <00a

For ^esupp/jy, let J2(£) be the open ball in R" centered at <^ whose

radius equals to minf /—- 9-ydis (CO*, supp/^) j.

Since supp/^ is compact and the family {£(£) ; { e supp/J covers

supp/^ there exist f1 ,^2 , . . . ,^1 such that

supp/.c: w

L e t f = m i n , d i s ( s u p p / , C O * ) , a , = p * k a n d

For fc = l, 2,..., /, let us set

[ 0

Then, E /k(0=/,(0 for {eR",/*eCff(R») and for each fc and each
k=i

x G A, there exists j = j(k, x) such that

(3.8)

In fact, for any yesupp/fc (c suppafe),

"
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Therefore, by (3.7),

3 A fK\ 8A f

For x = at + b, as A, beB, we define

gk(x9 t)=( g-'(«-«+^«))'e-'*-«
JRn

Integrating by parts d = [n/2] + l times with respect to £J9 we get

gk(x, t) = r'\ «-'<"<+*«»' f A,(£, &)^£(£)^,
JR" 4=0 C7CJ

where /i^(<^, fe) are represented as linear combinations of products of

By virtue of (3.8) and the boundedness of B,

with a constant C independent of a e A, beB and f . Therefore,

where c1=max(|a|; fle^4) and c2 = sup(|fc|; hejB). This shows that for
sufficiently large T9

\\E9k(',t)\\L2F<e for t>T.

Notice that ff(x, f)= Z «*(*, 0 + ( e-«*-«-»<«'C/(0-/^)^. By the
k=l JRn

Parseval's relation, we have
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Thus we obtain

H0(-.OW.)<4fi for t>T9

which completes the proof of Lemma 3.1.

4. Applications

We begin with an obvious lemma which is of importance for appli-

cations.

Lemma 4.1. Let A be a real-valued function in C2(Rn) and HA(£)

be the Hessian ( .f2A (®) °f L V detHA(Q^O for all
\0Ci0Cy /l^ij^n

then

meas^eR"; |FA(£)| = <j} = 0 for each er>0.

Proof. It suffices to remark that the Hessian Hx is the Jacobian

matrix of FA and the set {£eRn; |FA(^)| = a} is the inverse image of

FA of the set Sa = {xERn; \x\ = a} of measure zero.

Example 4.2. Consider the Klein-Gordon equation in three space

dimensions

- = 0y a>0,
ot

We reduce this equation to the first order symmetric hyperbolic system

where U ^ m . - - ^ - - -^~ ^/ is the 5x5 matrix with zeros\ 5/ ' fei dx2 dx3 )
 J

everywhere except at the (2, j + 2) and (j + 2, 2) elements3 whose value

is unity, and L is the 5x5 matrix with only two non-zero elements,
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one at the (1, 2) element whose value is a and the other at the (2, 1)
element whose value is — a.

Then, the eigenvalues of £ A^j + iL are equal to 0 or ±(|£|2 + a2)2".

Let HJ£) denote the Hessian of the function A(^) = (|^|2 + a2)i The de-

terminant of Hx(^) is in this case

Hence, detjF/A(^)^0 for all £eR3 . In view of Lemma 4.1, we now

easily see that the system (4.1) satisfies the condition (iii).

Since Aj and iL are hermitian, the assumption (ii) is valid with
some unitary matrix P for the system (4.1).

Now we know that Theorem 2.1 and Corollary 2.2 are applicable
to the system (4.1).

Example 4.3. Next we examine the Dirac equation

f A i\ du ^ A du . T(4.2) w=z AJ—+LU

where

(0 0 0 1 \

0 0 1 0

0 1 0 0

\ 1 0 0 0

0 0 -1 0\

0 0 0 1

- 1 0 0 0

0 1 0 0

and L=ia

I 0 0 0 1 \

0 0 - 1 0

0 1 0 0

- 1 0 0 O /

-1 0 0 0 \

0 - 1 0 0

0 0 1 0

0 0 0 1

a>0.

An explicit calculation shows that the eigenvalues of £ A^+iL are
j_ j= i

+ (|^|2 + a2)2. Therefore, by the same reasoning as above, we conclude
that Theorem 2.1 and Corollary 2.2 can be applied to the system (4.2).

Remark. In Lemma 3.1, if we take A = Sd and replace the assump-

tion meas{feR"\D; -F;<QGA}=0 by detHA«)^0 for all £eR",
then we can prove (3.2) using the asymptotic estimate for the integral
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(3.1) obtained by Littman [4] and by Leblanc [3]. But such a setting

is not sufficient to deal with the general case as was seen in the case
of Example 4.2.

5o Necessity of the Condition (iii)

In this section, we shall show that in one space dimensional case

the condition (iii) is necessary in order that the assertion of Theorem

2.1 holds.

We use the same notations as in Theorem 2.1.

Theorem §9L Assume n = l. If meas£>0, then there exist nonzero

infinitely differentiate L2-solutions of (2.1) which vanish in K.

Proof. We shall verify this theorem in case when

(5.1)

for some fc. The other case is treated in the same way.

We shall write z = £ + iri, £, rj eR1. The eigenvalues of A^z + iL are

branches of analytic functions of z with only algebraic singularities at

finite number of points. By the unicity theorem on analytic functions

and by (5.1), we see that one of these analytic functions equals to CTZ + /Z

for some /^eR1 . Here we have used the assumption (ii). Write A(z)

= <7z + ju. By Kato [2], we know that the eigenprojection PA(Z) an(i
eigennilpotent DA(z) corresponding to A(z) are polynomials of z with

matrix coefficients since so is A(z). In particular, by the assumption

(ii), we have DA(z)=0 for all zeC1.

Let r>0 and / be a function in Cg5(R1) with its support in Br.

By the Paley- Wiener's theorem, the support of the function

is contained in Bf, Hence, the infinitely differentiate solution

ii(x, f)=(
JR 1
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is supported in {(x, OeR 2 ; \x + at + r\^r}. Since PA(£)^0 for all {eR1,

we can select / lest u0 should vanish identically. The proof is complete.
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