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Cohomology mod 2 of the Classifying
Space of PSp(4n+2)
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Akira KoNo* and Mamoru MIMURA**

§0. Introduction

As is well known, the symplectic group Sp(m) of m variables has
the center isomorphic to Z,. The quotient of Sp(m) by the center is
also a compact, connected Lie group, denoted by PSp(m), and -called
the projective symplectic group.

Since H*(PSp(2m); Z,) is not primitively generated (cf. [1]), it seems
to be difficult to determite H*(BPSp(2m); Z,). In this paper we will
determine the module structure of the cohomology mod 2 of the classify-
ing space BPSp(4n+2) of PSp(4n+2) by making use of the Eilenberg-
Moore spectral sequence {E.(PSp(4n+2)),d,}, which has the following
properties;

) E,=Cotor(Z,, Z,) for A=H*(PSp(dn+2); Z,),
) E,=%H*BPSp(dn+2); Z,).

Our result is

Theorem 4.8. As a module

H*(BPSp(4n+2); Z,)=Z,[y,, y3, Vss V161+16> 4> A)]/R,

where 1=<1Z2n and I runs over all sequences of integers satisfying
(2.3) and R is the ideal generated by ysa(l), a(I)?>+ Zvls“HG .Y PR
Visi,+16 and a(l)a(J)+Zfa(l). (For details see Theorem 2.4).
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The paper is organized as follows. In §1 we define Lie groups
G(m) and determine the Hopf algebra structure of their cohomology
mod2. In §2 we calculate Cotor4(Z,, Z,) for A=H*(PSp(4n+2); Z,)
by making use of the twisted tensor product ([4], [5]). Various sub-
groups of Sp(2m) and PSp(2m) are considered in §3. We use these
groups to determine the Poincaré series of some subalgebras of H*(BPSp
(4n+2); Z,). The main purpose of the paper, namely a proof of col-
lapsing of the Eilenberg-Moore spectral sequence for PSp(4n+2) with
Z,-coefficient, is shown in §4. Some algebra relations in H*(BPSp(4n
+2); Z,) are given in §5. The next section, §6, is a sort of appendix,
in which H*(BPSp(2n+1); Z,) is determined. This is one of the results
in [6]. A key proposition used in §4 to prove the collapsing of the
Eilenberg-Moore spectral sequence is proved in the last section, §7.

Throughout the paper X" stands for the product X x---xX of
n objects X in the category whenever the product is defined. For a
homomorphism f: H—G between two topological groups we use the same
symbol f: BH—BG for the induced map. ¢ denotes the reduced form
of the coalgebra structure of H*(G; Z,), ¢: A*(G; Z,)-H*(G; Z,)Q H*(G;
Z,), induced from the multiplication on the group G. Further, H*(X)
denotes H*(X; Z,) unless otherwise stated. The symbol Z, denotes not
only the cyclic group of order 2 but also the prime field of charac-
teristic 2 by abuse of notation. Let f)oa,.t" and iiob,-t"eZ[[t]] then

Xa;t'>Xb;t* means a;=b; for any i=0.

§1. Hopf Algebra Structures of Certain Semi-simple Lie Groups

Notation. For simplicity we denote by (a,,..., a,) the diagonal mat-
rix < “ ° )e Sp(n) and so (1,...,1)=I, is the unit matrix. We also
denoteo o

Am)={+1I,}=Sp(n).

Note that 4(n) is the center of Sp(n).
The following propositions are well known ([2]).

Proposition 1.1. (1) H*(Sp(n); Z)= A(é;, €4,..., €4, 1), Where degé;=i
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and &,;_, is universally transgressive.
(2 H*(BSp(n); Z)~Z[q,,.-., q4,), where q; is the i-th wuniversal
symplectic Pontrjagin class which is the universal transgression image

of &4-1.
Proposition 1.2. The Serre spectral sequence for the fibering
Sp(nm)/(Sp(n))" — B(Sp(n))" —— BSp(nm)

with Z-coefficient collapses for n, m>0.

Proof. H.(Sp(nm); Z) and H,((Sp(n)y*; Z) are torsion free and
the rank of Sp(nm) and (Sp(n))™ are same. So H°(Sp(nm)/(Sp(n))™;
Z)=0(cf. §13 of [3]) and by Proposition 1.1 H°(BSp(nm); Z)=0.
So we can easily get the result. Q.E.D.

Note that
Im i* = H¥B(Sp(1))™; Z)°=Z[t4,..., t,,1®m,

where degt,=4, S, is the symmetric group operating on H*(B(Sp(1))";
Z)=Z[t,,..., t,,] as permutation of ¢t’s and Z[t,,...,1,]%" is the in-
variant subalgebra under &,. Note that Z[t,,...,,1°"=Z[04,..., 6,1,
where o; is the i-th elementary symmetric function of #;’s.

Notation. G(m)=(Sp(1))"/A(m).
Remark that this is a compact, connected Lie group, where we have

(1.3) A(j)=Z,, and hence
H*BA(j)=Z,[pn] with degu=1.
Recall that
(1.4) H*(Sp(1))") = A(Gys-.5 Gm)»

(1.5) H*((BSp()")=Z,[t5... bl s
where degd;=3 and degt;=4.

The natural inclusion i: 4(m)—(Sp(1))" induces the homomorphism
i*: H¥(BSp(1))")—»H*(BA(m)), where we have i*(t)=p* for 1<r<m.



538 AkIRA KoNOo AND MAMORU MIMURA

Therefore the Serre spectral sequence for the fibering (Sp(1))"—2-G(m)
—BA(m) yields

Proposition 1.6. H*(G(m))=Z,[u]/(uH)®4(xy5..., 4p_1), where degu
=1, dego;=3, and there holds

n¥(o)=8&+4&, for 1Zi<m-—1.
Notation. Let
pi: G(m) — G(2) (1=i=m-1)
be the homomorphism induced by the correspondence
(0ty5eees Ot) —> (o 0t,), ;€ SP(1)
and put
p="T1 pi: Gm) — (@)
For simplicity we express for the case m=2:
H*(G(2)=Z,[1]/(u*)@4(w).
Then we may suppose
o;=p¥() for 15i<m—1.

Lemma 1.7. In Proposition 1.6 the elements o, may be chosen
to be universally transgressive. Similarly for above .

Proof. This is equivalent to t(u)-t(u?)#0. Consider the diagram

Sp(1) 4= (Sp(1)™

SO(3)= PSp(1) 2m, G(m)

where 4, is the diagonal map, 4, is the induced one and the vertical
arrows are the natural projections. This diagram induces the com-
mutative one
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H*(BSp(1)) «— H*((BSp(1))™)
H*(BSO(3)) +—— H*(BG(m))

where there hold A*(z(ui=!))=w, the i-th Stiefel-Whitney class, for
i=2,3. Therefore t(u)- t(u?)#0. Q.E.D.

Remark 1.8. Note that «?2=0, since «? is primitive and since there
are no non-trivial primitive elements at this degree.

Theorem 1.9. H*(G(m))~Z,[u]/(u*)®A(0ty,-.., 0p_1), where degu=1
and dega;=3. Further there hold

d(w)=¢(2)=0,  for 1<ism-—1.

The Borel’s theorem ([2] or §9 (B) of [3]) and Lemma 1.7 im-
mediately give rise to

Corollary 1.10.

H*(BG(m))=Z2[y29 V35 X15eees xm—l] H

where degy;=i,degx;=4 for 1<jsm—1 and Sq'y,=y;.

§2. Determination of Cotor4(Z,, Z,)
Recall from [1]
Proposition 2.1 (Baum-Browder).
H*(PSp(4n+2))=Z,[t]/(t¥) @ A(es, €115 €155--+> €16n+7) >
where ¢(eg;—5)=0 (1=<j<2n+1),
Plegjrr)=eg;43@1* (1=j=2n).
Notation. A=H*(PSp(4n+2)).
(See [8] for the details of the following.)

Regard A as a coalgebra over Z,. Let L be a Z,-submodule of
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At= igoH"(PSp(4n+2)) generated by {t, t2, t4, eg;_s, €g;4 7}, 1Si<2n+1,
1=5j<2n. Let s:L-sL be the suspension and denote by sL={y},
V3, Vs, Ggi-a, bgjig} the corresponding elements. Let ¢(:L—A be the
inclusion and 6: A—L be the projection such that for=1,. Define 8:
A-sL by O=sof and z:sL—»A4 by z=cs"1. Let I be the two sided
ideal of the free tensor algebra T(sL) generated by Im (yo(0®8)-¢)-Ker8,
where  is the product of T(sL). Then X=T(sL)/I is isomorphic to
Z,[yss V'35 V's» G5i—4» byjis], 1SiS2n+1,1<5j<2n. The map d=--(0®
B)oor on sL can be extended over X satisfying ded=0. Thus X is a
differential algebra.

Remark 2.2. By definition
dy,=0 for k=2,3,5,
dag;_4=0 for 1<ZiZ2n+1,
dbyj s=y5a5;.4  for 1=j<2n.

Then we construct the twisted tensor product X=A®X with res-
pect to f, that is, X=A®X is a differential A-comodule with the dif-
ferential operator d such that d|1® X=d and

di@D=1®yi:; for i=1, 2,4,
d(eg;-s®1)=1®as;_4 for 1=Zi<2n+1,

d(eg;+7®1)=1@bG 15 +e5;+3®'s for 1=5j=2n.

Then it is easy to see that X is acyclic and hence X=A®X is an
injective resolution of Z, over A. By definition

H*(X: 3)=C0torA(Zz, Zz) .
Let I=(i,,..., i,) be a sequence of integers satisfying
2.3) 1=r=2n and 1=5i;<:-<i,Z2n.

Put a'(I)=;l,—3(b§il+8...bgir+8). Clearly d(a'(I))=0.
5

Theorem 2.4. Let A=H*(PSp(4n+2)). Then as an algebra
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Cotord(Z,, Z,)=Z,[¥;, 73, Vs U161+ 16 Gas AD]/R,

where 1Z1<2n and I runs over all sequences satisfying (2.3). Further,
R is the ideal generated by ysa(l), a(I)?+ Er:516i1+16"'a§i,~+4'-'516i,+16
=1
and a(Da())+Y.f.a(l), where f, is a polynomial of 7,,¥s, ys and
i

Vi6i+16-

Remark 2.5. (1) J; D161416> A4 and a(l) are represented by yi,
bi?.s, ay and a’(I) respectively.

(2) d()=ag+4
We call ysa(I)=0 the relation of type I and a(l)a(J)+---=0 the
relation of type II.

§3. Subgroups of Sp(2m) and PSp(2m)

In this section we consider various subgroups of Sp(2m) and
PSp(2m).

Notation. For simplicity we denote by (4i,..., 4,) the matrix
[Al 0]
0 A,

Definition 3.1. &=+1,,
H(m)={(¢,4,..., ,4); Ac Sp2)},
T(m) ={(815--~’ sm)} 1

j(m) ={(e15» €m—1> 1)},
R(m)={(4,..., 4); AcSp(2)}.

for A4;eSp(2).

Lemma 3.2.

1) H(m)>I(m)>J(m)>42m),

@ Jm)n R(m)=I,,

() Im)=(Zym and J(m)=(Z)" 1,
(4) I(m)cCenter H(m).
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Notation. M(m)= M(m)/42m) for M=H, I or K.

Lemma 3.3. (1) K(m) is a closed, normal subgroup of H(m)
and isomorphic to Sp(2),

Q) Hm)=K(@m)xJ(m) as Lie groups,

(3) H(m)~K(m)xJ(m) as Lie groups,

(4) K(@m)=PSp(2)=SO(5).

The proofs of these two lemmas are easy.

Let i,: I(2m)—Sp(2m) be the natural inclusion.

Lemma 3.4. Kerit=(q:, 43:--s Qam—1)> where it: H¥(BSp(2m))
—H*(BI(m)) and qs are generators in Proposition 1.1.

Proof. Let s;e HY(BI(m)) be the generator corresponding to the
dual element of

Z,~{(,,..., I,, &, I,,..., I,)}. Then
H*(BI(mM))=Z,[51,.++> Sp] -
Consider the sequence
i,: BI(m) _iz, BSp(1)>™ — BSp(2m),

where i, is the map induced by the natural inclusion. Recall (cf. §1)
that

H*(B(Sp(1)>™) = Z,[t15--.s tam] -
Clearly
i5(t2;-1)=15(t))=5%,

from which follows the lemma. Q.E.D.

Lemma 3.5. (1) H*(BA(m))=H*BR(m)®H*(BI(m))=Z,[41s Gz» %1,
vees Om_1], where Kerj*=(g,) for the natural map j,: BI(m)—BH(m).

The proof follows from the observation j,=idx A,: J(m)x A(2m)
—J(m) x K(m), where A,: 4(2m)—K(m) is the natural map
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Lemma 3.6. H*(BH(m))=H*(BK(m))® H*(BJ(m))=Z,[#,, Ws, Wy, Ws,

LSEIE am—l]'
Remark 3.7. For the projection m,: H(m)—H(m), we have
Ker ﬂf% =(W29 W3, W5) )

n5(Wa)=q;-

§4. The Eilenberg-Moore Spectral Sequence
Consider the following commutative diagram

H*((BSp(1))4n+2) X H*(BSp(4n+2)) X H*((BH (2n+1))

* *
Ty To T

H*(BG(4n+2)) E— H*(BPSp(4n+2)) &% H*(BH(2n+1))

where m; is the natural projection for i=0, 1,2 (no=n) and k and K’
(resp.k and k') are the natural inclusions (resp. the induced ones).

Lemma 4.1. H*(BPSp(4n+2)=~Z,[y,, 3, Vs, as] for %<5, where
Ys=542y3+y2y3, ¥3=5q'y,, dega, =4, deg y;=i.

Proof. Recall that
H*(PSp(4n+2))=Z,[t]/(t®)® A(es) for *<4.

Then y;,,=1(t") for i=1,2,4. Further, e; is universally transgressive

and 1(e;)=a,, since k*(y,y;)=k*(y,)k*(y3)=y,y3#0 (cf. the proof of
Lemma 3.4). Q.E.D.

Lemma 4.2. (1) k*(y)=y; for i=2,3,
(2) k*(s5)=0,
3) #n¥(y)=0 for i=0,1,2 and any j.

The proof is clear.
Consider the following statement:

(4.3.h) the Eilenberg-Moore spectral sequence for PSp(4n+2) with
Z ,-coefficient collapses for degrees <h.
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Notation. Under the assumption (4.3.h) we denote by y, a4,
a(l) and v, of H¥*(BPSp(4n+2)) the elements expressed by j;, dg,
a(l) and 7,4 of Cotor4(Z,, Z,) respectively for degrees <h.

Definition. Let P,(h) be the subalgebra of H*(BPSp(4n+2)) gener-
ated by {y;(j=2,3,5), as, v;; (16i<h)} and P,;(h) the subalgebra
generated by {y; (j=2, 3), a,, a(I) (dega(I)<h), v,s; (16i<h)}. Denote by
P(h) the corresponding subalgebra of Cotor4(Z,, Z,).

Remark 4.4. (1) In general,

PS(P(h))> PS(P(h)) for hz=6.

(2) If PS(P(h))=PS(P(h)) for i=1,2, then (4,3, h+1) is true.
(Of course (4, 3, h+1) implies (4, 3, h).)

(3) (4,3, h) is true for h=5 by Lemma 4.1.

Let m=2n+1.

Proposition 4.5. Under the assumption (4, 3, h)

(1) Ek*|P.(h) is injective,

(2) Kk'*|Py(h) is injective.

The proof will be given in the last section, §7.

Corollary 4.6. Under the assumption (4, 3, h)
PS(P{(h))>»>PS(P(h)) for i=1,2.

The proof is clear from Proposition 4.5.
Thus we have proved

Theorem 4.7. The Eilenberg-Moore spectral sequence for PSp(4n
+2) with Z,-coefficient collapses.

As an immediate corollary we have

Theorem 4.8. As a module
H*(BPSp(4n+2))=~Cotor4(Z,, Z,)

=Z,[y2, Y3, V55 Vi61+165 94» a(D]/R,
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where 1=1=<2n and I runs over all sequences satisfying (2.3) and

R is the ideal generated by ysa(l), a(I)?+ Er‘,016,-1+16...a§i1+4...v16ir+16
=1

and a(D)a(J)+Xf.a(I;). (See Theorem 2.4 for tjhe notations).

§5. Remark on Some Algebra Relations
The following is Theorem of [6]
Lemma 5.1. The homomorphism
A%,41: H¥(BPSp(4n+2)) —> H*(BPSp(2))
is an isomorphism for i<10 and a monomorphism for i<11.

So we have thc isomorphism as algebras over A,:

(5.2)  H*(BPSp(4n+2))~H*(BPSp(2))=H*(BSO(5))  for #=<10.

Notation. Denote by y,, ys, a4, ¥s the image of w,, wi, wy, ws
under this isomorphism respectively, where we have ws=Sq?w;+w,ws,
wy;=S8q'w, Dby the Wu-formula. (This assures us that choosing the
generators of H*(BPSp(4n+2)) in this way does not contradict to those
in the previous section.)

By a similar argument to that in §5 of [8] we can show

Proposition 5.3. (1) In H*(PSp(4n+2)=Z,[t]/(t®)®A(es, €1, €15,
.-y €16a+7) the elements eg;_s may be chosen to be universally trans-
gressive for 1<j<2n+1.

(2) With suitably chosen ag;_,=1(eg;_5) there holds

Vsagj-4=0 for 1=j=2n.

Proof. See Proposition 5.6 of [8] for the method to choose ag;_4
=1(eg;-s)-

We will prove Proposition 5.3 for the case j=2s+1. Clearly t(eigs+4)
=Sq8e,¢,_4+decomp. , since Sq®e s, s=e€;65+3. The Wu-formula Sqiws
=wws (0<i<5) gives Sqiys=y,y5 (0<i<5). (w;=0 and hence y,=0).
Put
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A165+4=59%A165-4+Y25q% 654+ Y359°A165-4+asSq*a 1654
+¥58q3a65-4

and then ysaie5+4=59%(Vsa165-4)=0. Q.E.D.

§6. H*(BPSp(2n+1))

In this section we give an alternative proof of the result in §4 of

[6].
Notation. F(k)=Sq(k)/(Sq(1))x.

Remark 6.1. F(k)=PSp(k)/G(k).
As is well known, the Serre spectral sequence with Z-coefficient for
the fibering

F(k)— (BSp(1))*— BSp(k)

collapses, since (Sp(1))* is of maximal rank and since H,((Sp(1))*; Z)
is torsion free (cf. [2]). In particular,

Proposition 6.2. PS(H*(F(k); Z))=(1—18)...(1 —t*¥)/(1 —t#)*~ 1,
Recall from [1]
Proposition 6.3 (Baum-Browder).
H*(PSpQ2n+1))=Z,[t]/(t*)R® A(e,..., €gn+3)»
where degt=1 and dege;=i and §(t)=p(e;})=0.

Notation. B,,,;=H*(PSp(2n+1)).
By an easy calculation

Lemma 6.4. As an algebra

COtOI‘BZ"“(ZZ, Zz)gzzf)_’m J73’ .}78"": y8n+4] .

We shall prove
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Theorem 6.5. The Eilenberg-Moore spectral sequence for PSp(2n
+1) with Z,-coefficient collapses.

Proof. The Serre spectral sequence with Z,-coefficient for the
fibering

F(2n+1) — BG(2n+1) — BPSp(2n+1)
gives
(6.6) PS(H*(BPSp(2n+1)))>f(t)={(1—12)(1—13)(1—15)...(1 - 18+4)}~1.
On the other hand we have
PS(CotorBzn+1(Z,, Z,))=f(f).

Thus the Eilenberg-Moore spectral sequence for PSp(2n+1) with Z,-
coefficient collapses. Q.E.D.

Corollary 6.6. There exist elements y,e H(BPSp(2n+1)) such that

H*(BPSp2n+1)=Z,[y3, V35 Vas V12s+++s VYan+al -

Since the equality holds in (6.6), we obtain

Corollary 6.7. The Serre spectral sequence with Z,-coefficient for
the fibering

F(2n+1) — BG(2n+1) —» BPSp(2n+1)

collapses. In particular, i*: H¥(BPSp(2n+1))-»H*(BG(2n+1)) is in-
Jective.

(cf. [7D)

§7. A proof of Proposition 4.5

We prepare a lemma which will be used in the proof of the pro-
position below.

Let k be a commutative field. Let X;(1<i<n) and Y;(1=<j<m)
be indeterminates with suitable positive degrees and R=k[X,,..., X,,
Yy,..., Y] and R=k[Y,,..., Y,] be graded polynomial algebras over k.
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Let R’ be a graded commutative algebra generated by homogeneous
elements x; (1<i<n) and f; (1<j<s) over k, where degx;>0 and degf;
>0. Let R” be the subalgebra of R’ generated by {f;,...,fs}. Let y:
R'->R be a homomorphism of graded algebras such that y(e)=e (e;
the unit) and  preserves the degree. Let p: R—»R be the projection.

Lemma 7.1. If  satisfies

(1) (py)|R" is injective,
(@) ¥(x)=X; for all i,
then ¥ is injective.

Proof. Define the weight w as follows:
W(Xi)=09 W(Yl)=deg Yi, W(xi)=09 w(fz)=degf1
Introduce a filtration F; in R) by

F(RM)={xeR"; w(x)2i}.

Put E(R)=3 FifFi,;.

Then the indl;gd homomorphism y=Ey(/): Eo(R")—>Ey(R) satisfies
Yo(x;))=X,. Further, for a homogeneous element geR" (¢+#0, degg>0),
Vo(g) is a non-zero polynomial of Y,,...,Y,. For a sequence of non-
negative integers, I=(i,...,1,) put xI=xit.xi» and XT=Xi.. Xin
Consider the homogeneous element Z fixI. Then yo(ZfixD)=2yo(fHX!
=0 implies Yo(f;)=0 implies f;=0 1r§1p11es the injectivity of ,. Thus
Y is injective. Q.E.D.

A proof of Proposition 4.5.
(1) By the commutativity of the diagram

H*((BSp(1))*"*2) £ H*(BSp(4n+2))

7:1 o

H*(BG(4n+2)) &~ H*(BPSp(4n+2))

we have n¥ok*|P,(h)=k*on%|P,(h), where k* is injective. Observe that
the relations of type II in H*(BPSp(4n+2)) are mapped by =n§ to the
trivial identity in H*(BSp(4n+2)) and that Ker(n§|P,(h)=(y;, ¥3)-
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Let P,(h) be the subalgebra of P,(h) gencrated by {a,, a(l), v;; degh}.
Since Kern*=(y,, y3) and k*(y)=y; (i=2,3) and since k¥on§|P,(h) is
injective, we have k*|P,(h) is injective by Lemma 7.1.

(2) Consider the commutative diagram

BA(4n+2)

o Ny
BA@2n+1) —e—> BSp(4n+2)

BH(2n+1) —p— BPSp(4n+2)
Then by the naturality of the transgression,
k*(yp=w; for j=2,3,5.

Consider the commutative diagram

H*(BIQn+1)) <1 H*(BA(2n+1)) &2 H*(BSp(4n+2))

T2 To

H*(BH(2n+1)) <+ H*(BPSp(4n+2)) .

the homomorphism j¥on%ck’* maps the subalgebra generated by v
monomorphically, since jiok'*=i¥ and since 7n¥(v,s)=¢g3%;+076;» Where
v6; 1S the term consisting of the elements of lower index. The relation
n¥(y,)=q, implies k'*on¥(y,)=q,, and hence k'*(y,)=w,. Since Kerj*
=(q,) by Lemma 3.5, the homomorphism =%ck'* is injective on the
subalgebra generated by a, and v, by Lemma 7.1. Now the result
follows from the fact Kern%=(w,, w3, ws) and Lemma 7.1. Q.E.D.
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