
Publ. RIMS, Kyoto Univ.
11 (1976), 535-550

Cohomology mod 2 of the Classifying
Space of

By

Akira KONO* and Mamoru MIMURA**

§ 0, Introduction

As is well known, the symplectic group Sp(m) of m variables has

the center isomorphic to Z2. The quotient of Sp(m) by the center is

also a compact, connected Lie group, denoted by PSp(m), and called

the projective symplectic group.
Since H*(PSp(2m); Z2) is not primitively generated (cf. [1]), it seems

to be difficult to determite H*(BPSp(2m)i Z2). In this paper we will

determine the module structure of the cohomology mod 2 of the classify-

ing space BPSp(4n + 2) of PSp(4n + 2) by making use of the Eilenberg-

Moore spectral sequence {Er(PSp(4n + 2J), dr}, which has the following

properties;

(1) E2 = Cotor*(Z2, Z2) for A = H*(PSp(4n + 2) ; Z2) ,

(2) E^ = &*H*(BPSp(4n + 2) ; Z2) .

Our result is

Theorem 4.8. As a module

H*(BPSp(4n + 2)i Z2)^Z2[>2, y3, y5, v16l+16, a4,

where lgl^2n and I runs over all sequences of integers satisfying
r

(2.3) and R is the ideal generated by y5a(I), a(I)2

Vi6ir+i6 and a(I)a(J) + Efia(Id' (For details see Theorem 2.4).
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The paper is organized as follows. In § 1 we define Lie groups
G(m) and determine the Hopf algebra structure of their cohomology

mod 2. In §2 we calculate CotorA(Z2, Z2) for A = H*(PSp(4n + 2); Z2)
by making use of the twisted tensor product ([4], [5]). Various sub-
groups of Sp(2m) and PSp(2m) are considered in §3. We use these

groups to determine the Poincare series of some subalgebras of H*(BPSp

(4n + 2); Z2). The main purpose of the paper, namely a proof of col-

lapsing of the Eilenberg-Moore spectral sequence for PSp(4n + 2) with
Z2-coefficient, is shown in §4. Some algebra relations in H*(BPSp(4n

+ 2); Z2) are given in §5. The next section, §6, is a sort of appendix,

in which H*(BPSp(2n -f 1) ; Z2) is determined. This is one of the results
in [6]. A key proposition used in §4 to prove the collapsing of the

Eilenberg-Moore spectral sequence is proved in the last section, §7.

Throughout the paper Xn stands for the product Xx~-xX of
n objects X in the category whenever the product is defined. For a

homomorphism /: H-+G between two topological groups we use the same

symbol /: BH-+BG for the induced map. $ denotes the reduced form
of the coalgebra structure of #*(G; Z2), $: H*(G; Z2)-»H*(G; Z2)®/f*(G;
Z2), induced from the multiplication on the group G. Further, H*(X)

denotes H*(X\ Z2) unless otherwise stated. The symbol Z2 denotes not
only the cyclic group of order 2 but also the prime field of charac-

teristic 2 by abuse of notation. Let £ <*tl and S fe|f' e Z[[f]] then
i=0 i=0

laf^Ibf means a^b; for any i^O.

§ 1. Hopf Algebra Structures of Certain Semi-simple Lie Groups

Notation. For simplicity we denote by (aL,...9an) the diagonal mat-
/ «i 0

rix \ }eSp(n) and so (1, ...,!) = /„ is the unit matrix. We also
V O a

denote

Note that A(n) is the center of Sp(n).

The following propositions are well known ([2]).

Proposition 1.1. (1) H*(Sp(n)', Z)^A(e3,e1,...,e4n_l), where deget = i
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and e4j.1 is universally transgressive.

(2) H*(BSp(n); Z)^Z[q 15..., qn~], where qt is the i-th universal

symplectic Pontrjagin class which is the universal transgression image

of £4i_1.

Proposition 1.2. The Serre spectral sequence for the fiber ing

Sp(nm)l(Sp(n))m - > B(Sp(n))m -U BSp(nm)

with Z-coefficient collapses for n, m>0.

Proof. H*(Sp(nm); Z) and H*((Sp(nj)m; Z) are torsion free and

the rank of Sp(nm) and (Sp(n))m are same. So Hodd(Sp(nm)l(Sp(n))m;

Z) = 0(cf. §13 of [3]) and by Proposition 1.1 Hodd(BSp(nm)i Z) = 0.

So we can easily get the result. Q.E. D.

Note that

where degf^ = 4, ®m is the symmetric group operating on H*(B(Sp(l))m>,

Z) = Z[rlv.., fm] as permutation of tf's and Z[t1,...,tm]'Sm is the in-

variant subalgebra under ®m. Note that Z[r l5...9 rm]s'M^Z[(Tl5..., o"w],

where at is the f-th elementary symmetric function of rf's.

Notation.

Remark that this is a compact, connected Lie group, where we have

(1.3) A(j)^Z29 and hence

H*(BA(j))^Z2\ji] with deg/*=l.

Recall that

(1.4)

(1.5)

where dega,- =

The natural inclusion i: A(m)-*(Sp(l))m induces the homomorphism

)), where we have i*(O = ju4 for
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Therefore the Serre spectral sequence for the fibering (Sp(lJ)m

-+BA(m) yields

Proposition 1.6. lf*(G(m)) = Z2[^]/(/x4)®J(a1,..., am_!), w/iere degju

= 1, dego^ = 3, and there holds

for l< j i^m — 1.

Notation. Let

ft: G(m) - > G(2) (l^igm-1)

be the homomorphism induced by the correspondence

(al5..., am) - >(a,, ain), o^

and put

m-l

P= FI ft: G(«) — >(G(2))»'-

For simplicity we express for the case m = 2:

Then we may suppose

Lemma 1.7. In Proposition 1.6 the elements oct may be chosen

to be universally transgressive. Similarly for above a.

Proof. This is equivalent to T(^)'T(^2)^0. Consider the diagram

Sp(l) -±i i
= PSp(l) -^* G(m)

where Am is the diagonal map, Am is the induced one and the vertical

arrows are the natural projections. This diagram induces the com-

mutative one
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H*(.BSp(.l)) <—=-

I
H*(BSO(3)) < _* H*(BG(m))

where there hold zl*(T(^I"~1)) = wi, the i-th Stiefel- Whitney class, for

i = 2, 3. Therefore T(/I) • n(ji2) ^ 0. Q. E. D.

Remark 1.8. Note that oc2=0, since a2 is primitive and since there

are no non-trivial primitive elements at this degree.

Theorem 1.9. H*(G(m))^Z2M/(Ju
4)®yl(alJ..., a,^), w/zm? deg,u=l

degaf = 3. Further there hold

The Borel' s theorem ([2] or §9 (B) of [3]) and Lemma 1.7 im-

mediately give rise to

Corollary 1.10.

deg y f = i, deg Xj = 4 /or l ^ j ^ m — 1 and S'g13;2:=};3-

§2. Determination of Cotor^(Z2, Z2)

Recall from [1]

Proposition 2.1 (Baum-Browder).

H*(PSX4n + 2))^Z2M/(t8)®^3? ell9 e15,..., el6n+1),

where $(e8J-5) = Q (l^j^2n + l\

Notation. A = H*(PSp(4n + 2)).

(See [8] for the details of the following.)

Regard A as a coalgebra over Z2. Let L be a Z2-submodule of
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generated by {*, t2, f4, e8i.59 esj+1}, l^i^

l^j^2n. Let s:L-»sL be the suspension and denote by sL={y'2,

yr3> y's* arBi-4> b'sj+s} tne corresponding elements. Let c: L-*A be the
inclusion and 9: A-*L be the projection such that 9°c = lL. Define B:

A-+sL by B=s°9 and -c\sL-+A by ~c = c°s~l. Let / be the two sided
ideal of the free tensor algebra T(sL) generated by Im(^o(0®5)o0)oKer0,

where ^ is the product of T(sL). Then X=T(sL)/I is isomorphic to

22[yf29 /3» /5» «8i-4, b'sj+s], l^i^2n + l, l^j^2n. The map d= - o(0®
0)o^oj on sL can be extended over X satisfying 3o3 = 0. Thus X is a

differential algebra.

Remark 2.2. By definition

3y'k = 0 for fe=2, 3, 5,

3a'8J_4 = 0 for l^ i^2n + l,

4 for l^J^2n.

Then we construct the twisted tensor product X = A®X with res-

pect to B, that is, X = A®X is a differential yl-comodule with the dif-

ferential operator d such that d\l®X = d and

1 for i = l 5 2 , 4 5

Then it is easy to see that X is acyclic and hence X = A®X is an

injective resolution of Z2 over A. By definition

H*(X\ 3) = Cotor^(Z2, Z2).

Let / = (!*!,..., Q be a sequence of integers satisfying

(2.3) l^r^2n and I^i1<-<i r^2n.

Put flW=4-3(68<l+8...68lr+8). Clearly d(a'(/)) = 0.
^5

Theorem 2.4. Ler ^4 = i:f*(PSp(4n + 2)). T/ien as an algebra
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Cotorx(Z2, Z2)^Z2[j;2, y3, y5, D16/+16, o~4,

where l^l^2n and I runs over all sequences satisfying (2.3). Further,

R is the ideal generated by ysa(I), a(/)2 + ^vl6il + 16...alij+4...vl6ir+16

and a(/)a( J) + Z/i^CQj wfcere /^ is a polynomial of y2, j>3, J5 and
i

Remark 2.5. (1) yt, v^6l+16, a4 and a(/) are represented by /i5

^82/+s» fl4 an(i fl/W respectively.

(2) fl'(0 = fl8* + 4-

We call j;5fl(/) = 0 the relation of type I and a(I)a( J) + • • • = 0 the

relation of type II.

§3. Subgroups of Sp(2m) and PSp(2m)

In this section we consider various subgroups of Sp(2m) and

PSp(2m).

Notation. For simplicity we denote by (Al9...,Ak) the matrix

r A1 0-1

LO Ak

for A{t

Definition 3.1. e£=±/2 ,

/(m) ={(elv..,em)},

J(m) ={(e1,...,em.1, J2)},

Lemma 3.2.

(1)

(2)

(3)

(4) /(m)c: Center 5(m).
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Notation. M(m)=M(m)IA(2m) for M = H, I or K.

Lemma 3.38 (1) K(m) is a closed, normal subgroup of H(m)

and isomorphic to Sp(2),

(2) H(m)^K(m)xJ(m) as Lie groups,

(3) H(m)^K(m)xJ(m) as Lie groups,

(4) K(m)^PSp(2)^SO(5).

The proofs of these two lemmas are easy.

Let i1 : 1(2m)-*Sp(2m) be the natural Inclusion.

Lemma 3A Kerzf = (gl5 g3,...9 q2m-i)i where i*[: H*(BSp(2m))

-»H*(BI(mJ) and q'ts are generators in Proposition 1.1.

Proof. Let siEH1(BI(m)) be the generator corresponding to the

dual element of

Z2s{(/2,...,/2,fii,/2,...,/2)}. Then

Consider the sequence

i, : BI(m) -LL» BSp(l)2m - > BSp(2m) ,

where i2 is the map induced by the natural inclusion. Recall (cf. § 1)

that

Clearly

from which follows the lemma. Q.E. D.

Lemma 305, (1) H*(M(m)) = H*(M(m))®H*(5J(m)) = Z2[51, q2, a1?

...,am_1], where Kerjf = (g1) for the natural map j1 : BI(m)-+BH(m).

The proof follows from the observation j1 = id x /lm : J(m) x A(2m)

->J(m)xK(m), where /Lw: J(2m)->K(m) is the natural map
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Lemma 3.6, H*(BH(m)) = H*(BK(m))®H*(BJ(mJ) = Z2[w2, w3, w4? w5,

Remark 3.7. For the projection n2: H(m)-*H(m), we have

= (w2, w3, w5),

§4. The Eileeberg-Moore Spectral Sequence

Consider the following commutative diagram

H*((BSp(l))4n+2) *£- H*(BSp(4n + 2)) J^> H*((BH(2n + 1))
T * T * T *«1 FO 7C2

- H*(BPSp(4n + 2)) -*£+ H*(BH(2n+l))

where nt is the natural projection for z = 0, 1, 2 (7T0 = 7r) and k and k'

(resp. k and fc') are the natural inclusions (resp. the induced ones).

Lemma 4.1. H*(BPSp(4n + 2))^Z2iy2, j>3, y5, a4] /or *<5,

3;5 = ̂ 2J;3 + 3;23;35 J^Sfl1)^ dega4 = 4, degj;^!.

Proo/. Recall that

H*(PSp(4n + 2))^Z2tt']/(t8)®A(e3) for *^4.

Then yi+i = ̂ (ti) for 1 = 1,2,4. Further, e3 is universally transgressive

and T(e3) = a4, since k^(y2y^) = k^(y^)k^(y 3) = 72^3^^ (cf- the proof of
Lemma 3.4). Q.E.D.

Lemma 4.2. (1) £*(}>,) = j>f for i = 2, 35

(2) K*(y5) = 0,

(3) TrfC^j)1^^^ /or i = 03 1, 2 arcd a/iy j.

The proof is clear.

Consider the following statement:

(4. 3. h) the Eilenberg-Moore spectral sequence for PSp(4n + 2) with

%2-co efficient collapses for degrees ^h.
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Notation. Under the assumption (4. 3. h) we denote by yi9 a4,

a(I) and v16i of H*(BPSp(4n + 2)) the elements expressed by yt, 04,

a(I) and v16i of CotorA(Z2, Z2) respectively for degrees ^h.

Definition. Let P2(h) be the subalgebra of H*(BPSp(4n + 2y) gener-

ated by {yj (j = 2, 3, 5), 04, v16i (I6i<^h)} and P^A) the subalgebra

generated by {yj (7 = 2, 3), a4, a(I) (deg 0(7) ̂  fe), vi6i (16igA)}. Denote by

Pi(h) the corresponding subalgebra of CotoH(Z2, Z2).

Remark 4.4. (1) In general,

PS(Pl(h))»PS(Pi(hJ) for A ^6.

(2) If PS(PI<A)) = PS(P/(A)) for i = l, 2, then (4, 3, A + l) is true.

(Of course (4, 3, A + l) implies (4, 3, A).)

(3) (4, 3, A) is true for A = 5 by Lemma 4.1.

Let m =

Proposition 4.5. Under the assumption (4, 3, A)

(1) k*|P1(A) is injective,

(2) £'*|P2(A) is injective.

The proof will be given in the last section, § 7.

Corollary 4.68 Under the assumption (4, 3, A)

PS(P,(A))»PS(Pf(A)) for i = l,2.

The proof is clear from Proposition 4.5.

Thus we have proved

Theorem 4.7. The Eilenberg-Moore spectral sequence for PSp(4n

+ 2) with Z2-coejficient collapses.

As an immediate corollary we have

Theorem 4.8. As a module

2, Z2)
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where l^/^2/i and I runs over all sequences satisfying (2.3) and

R is the ideal generated by ysa(I), a(I)2 + £ V16ii + i6...alij+4...v16ir+16

and a(/)a(J) + £/ifl(/i). (See Theorem 2.4 for the notations).

§5. Remark on Some Algebra Relations

The following is Theorem of [6]

Lemma 5.1. The homomorphism

1?,1+1 : fl*(BPSX4n + 2)) — H*(BPSp(2))

is an isomorphism for f ^ l O and a monomorphism for i^ll.

So we have the isomorphism as algebras over A2:

(5.2) H*(BPSp(4n + 2)) ̂  H*(BPSp(2)) = H*(BSO(5)) for * ̂  10.

Notation. Denote by j>2, y$, a4, y5 the image of w2, w3, w4, w5

under this isomorphism respectively, where we have w5 = Sg2w3 + w2w3,

w3 = S#1w2 by the Wu~formula. (This assures us that choosing the

generators of H*(BPSp(4n + 2J) in this way does not contradict to those

in the previous section.)

By a similar argument to that in §5 of [8] we can show

Proposition 5.3. (1) In H*(PSp(4n + 2))^Z2lt']/(t8)®A(e3, ell9 ei5,

..., e16n+1) the elements e8j-5 may be chosen to be universally trans-

gressive for l^j^2n + l.

(2) With suitably chosen a8j-_4 = T(e8j-_5) there holds

= 0 for l^j^2n.

Proof. See Proposition 5.6 of [8] for the method to choose fl8j-_4

= <%--5)-
We will prove Proposition 5.3 for the case j = 2s+l. Clearly T(e16s+4)

= Sg8e16s_4 + decomp. , since S'^8^i6s-5 = ^i6s+3- The Wu-formula Sqlw5

= w iw5(0gf^5) gives Sqly5 = yiy5 (0^f^5). (wa =0 and hence Ji=0).

Put
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and then y5ai68+4 = Sqs(y5ai68^4) = 0. Q.E.D.

§6.

In this section we give an alternative proof of the result in §4 of

[6].

Notation. F(k) = Sq(k)/(Sq(l))k.

Remark 6.1. F(k) = PSp(k)/G(k).

As is well known, the Serre spectral sequence with Z-coefficient for

the fibering

F(k)—*(BSp(l))k—*BSp(k)

collapses, since (Sp(l))k is of maximal rank and since H#((Sp(l))ki Z)

is torsion free (cf. [2]). In particular,

Proposition 6.2. PS(H*(F(k)i Z)) = (l-t8)...(l-t4-k)/(l-t*)k-i.

Recall from [1]

Proposition 63 (Baum-Browder).

where degf=l and degef = £ and

Notation. B2n+1=H*(PSp(2n

By an easy calculation

Lemma 6 A As an algebra

We shall prove
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Theorem 6.5. The Eilenberg -Moore spectral sequence for PSp(2n

+ 1) with Z2-coefficient collapses.

Proof. The Serre spectral sequence with Z2-coefficient for the

fibering

F(2n + 1) - > BG(2n + 1) - > BPSp(2n + 1)

gives

(6.6) PS(H*(5PSX2rc+l)))>^

On the other hand we have

(Z2,Z2)) =/(0 .

Thus the Eilenberg-Moore spectral sequence for PSp(2n + i) with Z2-

coefficient collapses. Q.E. D.

Corollary 6.6. There exist elements yiEHl(BPSp(2n + iy) such that

H*(BPSp(2n + iy)*Z2[y29 j/3, yS9 y12,..., y8n+4].

Since the equality holds in (6.6), we obtain

Corollary 6.7. The Serre spectral sequence with Z2-co efficient for

the fibering

F(2n + 1) - > BG(2n + 1) -JU BPSp(2n + 1)

collapses. In particular, i*: H*(BPSp(2n+iy)-+H*(BG(2n + iy) is in-

jective.

(cf. [7])

§7. A proof of Proposition 4.5

We prepare a lemma which will be used in the proof of the pro-

position below.

Let k be a commutative field. Let Xt(l^i^ri) and Y/( l^j^m)

be indeterminates with suitable positive degrees and R = k[Xl9...9 Xn,

7l5..., Yinj and jR = fe[yl5..., Yjn] be graded polynomial algebras over k.
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Let Rf be a graded commutative algebra generated by homogeneous

elements xt(l^i^n) and //(l^j^s) over k, where degx^>0 and deg/,-
>0. Let R" be the subalgebra of R' generated by { f i 9 . . . , f s } . Let i//:

R'-*R be a homomorphism of graded algebras such that \j/(e) = e(e;

the unit) and ij/ preserves the degree. Let p: R->R be the projection.

Lemma 7.1. // if/ satisfies

(1) (p°\l/)\R" is injective,

(2) *(xd = Xi for all i,

then \l/ is injeclive.

Proof. Define the weight w as follows:

wpQ=0, w(yi) = degyi, w(x;) = 0, «</;) = deg/;.

Introduce a filtration F; in R(/) by

Put E0(R^)=FiIFi+1.
i = 0

Then the induced homomorphism \l/0 = E0(\l/): E0(R')-*E0(R) satisfies
^0(x.) = ^T.. Further, for a homogeneous element g e #" (gf ̂  0, deg gf > 0),

i/r0(0) is a non-zero polynomial of 7l5...5 7m. For a sequence of non-

negative integers, J = (f l 5 . . . ? in) put x/ = xi1...x^n and XI = Xi
1

l...Xi
n

n.

Consider the homogeneous element X! fi*1- Then *ls0(ZfIx
I) = Z\l/0(fI)X

I

fieR"
= 0 implies ^0(fI) = 0 implies // = 0 implies the injectivity of \l/0. Thus
i/f is injective. Q.E.D.

A proof of Proposition 4.5.

(1) By the commutativity of the diagram

H*((BSp(l))4n+2) *£

«* Fo

we have 7rfofc*|p1(/i) = /c*o7i;*|P1(/?), where fe* is injective. Observe that

the relations of type II in H*(BPSp(4n + 2J) are mapped by TC§ to the

trivial identity in H*(BSp(4n + 2)) and that Ker(7cS|P1(A)) = (^, y3).
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Let P!(/?) be the subalgebra of P^h) generated by {a4, #(/), Vj\ deg/z}.

Since KerTif = (y2, ^3) and k*(yi) = yi(i = 2, 3) and since k^^n^P^h) is

injective, we have k*\P^(K) is injective by Lemma 7.1.

(2) Consider the commutative diagram

BA(4n + 2)

BH(2n+l) ——> BSp(4n + 2)

BH(2n + 1) —T.—> BPSp(4n + 2)

Then by the naturality of the transgression,

K'*(yj) = v>j for 7 = 2,3,5.

Consider the commutative diagram

H*(BI(2n+ 1)) «A_ H*(BH(2n+ 1)) <-^

H*(BH(2n+ 1)) <ITT- H*(BPSp(4n + 2)) .

the homomorphism jfoTrlo^'* maps the subalgebra generated by v16i

monomorphically, since 7*ofe/* = f* and since 7rJ(z;16i) = ^|i + i;'16i, where

u'16i is the term consisting of the elements of lower index. The relation

n%(y4) = qi implies k'*°n$(y4) = q1, and hence Jc'*(y4) = w4. Since Kerjf
==(^i) by Lemma 3.5, the homomorphism Trfo/c'* is injective on the

subalgebra generated by a4 and v16l by Lemma 7.1. Now the result

follows from the fact Ker7c| = (w2, vv3, w5) and Lemma 7.1. Q.E. D.
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