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Spectral Representation for Schrodinger Operators
with Long-Range Potentials* II

— Perturbation by Short-Range Potentials —

By

Teruo IKEBE

§ Oe Introduction

In our previous work (Ikebe [1]) we have obtained a spectral

representation for the Schrodinger operator — A + V(x) with a purely

long-range, real-valued potential F(x) acting in the Euclidean three-space

U3. That is, we have assumed that V(x) = O(\x\~1/2~d), grad V(x)

= O(\x\-3l2~d) and AV(ra)) = 0(r~d) for |x| = r->oo, <5>0, where A is

the negative Laplace-Beltrami operator acting on the aungular variable

CDEQ = {xeR3\ |x| = l}. In [1] we have pointed out that the introduc-

tion of a short-range perturbation Vs(x) = O(\x\~~l~d) is not trivial, and

cursorily indicated how to handle the matter. The purpose of the

present paper is to show that this is actually possible.

What we have done in [1] is roughly as follows. Let H be the

self-adjoint realization in the Hilbert space H=L2(R
n) (see below) of

the Schrodinger operator T= —A + V(x) with a long-range potential

V(x) in Rn, and let E be the associated spectral measure. (Although

we have treated in [1] the case n = 3, the dimension of the underlying

space is no essential restriction.) For y e f f = I21 and GczH" let

We shall omit y or G if y = 0 or G = Rn. Let h = L2(@), square inte-

grable functions over O with respect to the ordinary surface measure,
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x\

and ff=L2((0, oc); fc), la- valued square integrable functions over (0, oo).

If we choose y>l /2 but close to 1/2, then there exists for each A>0

an operator ^"(X) e ^(L2t7'9 h) such that for any Borel set Bc(0, oo)

and for /, geL2>y

(0.1) (E(B)f, 0) =

where #B denotes the characteristic function of £. (^(X; Y) denotes

the Banach space of all bounded linear operators: X-+Y, X and 7

being Banach spaces. &(X) = &(X\ X). \\ \\x denotes the norm of

X. ( , )x denotes the inner product of a Hilbert space K. \\ \\H is

simply denoted by || ||, and ( , )H by ( , ).) A spectral representation

for H is thus obtainable by means of {^"(A)}, Ae(0, oo).

Now let us consider the perturbed Schrodinger operator Ts= — A

+ F(x)+Fs(x), where Fs(x) is short-range. The corresponding self-

adjoint realization and spectral measure will be denoted by Hs and

Es. The resolvents at z of H and Hs will be designated by R(z) and

Rs(z). In this paper we shall show that if we define ^"s(A)6^(L2,y; h)

by

where Rs(& — iO)f=limE^0Rs(l— is)f, /eL2>y, which is known to exist by

Ikebe-Saito [2], then formula (0.1) obtains, where E and ^(A) are re-

placed by Es and ^(A), respectively. This gives a spectral representa-

tion for the perturbed Schrodinger operator Hs.

Our method is perturbation-theoretic and largely abstract, and is

based essentially upon the facts that jRs(A+z"0) and R(l±iQ) exist and

that we have a complete knowledge of a spectral representation for

the unperturbed operator H.

§1. Assumption and Some Known Results

The Schrodinger operator we shall study is of the form

Ts = - A + F(x) + Fs(x) (T=-A + F(x)) ,

where A is the n-dimensional Laplacian, and V(x) and Vs(x) are a long-
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range and a short-range potential, respectively. We assume:

f V(x) is a real-valued C2 (twice continuously differentiate)

function such that for some

(1.1) grad

i) = O(r-*) (r-»oo,

where A is the negative Laplace-Beltrami operator on the

(n-l)-sphere Q = {x\ \x\ = l}.

f Vs(x) Z5 a real-valued C° (continuous) function such that
(1.2)

Although in Ikebe [1] it has been assumed that V(x) is a smooth

function (over I?3), as we can easily check, it is enough as to the

regularity of V(x) to assume that V(x) is a C2 function (over Un).

The short-range potential Vs(x) may have singularities, if not too strong.

But just for simplicity's sake we have assumed as above.

The following notation will be used. Hs (H) is the self-adjoint

realization in H=L2 of Ts (T). Rs(z) (R(zJ) is the resolvent of Hs

(H) at z. Es (E) is the spectral measure associated with Hs (H). HStac

(Hac) is the absolutely continuous subspace for Hs (H). FSjflc (Pac)

is the orthogonal projection onto HStOC (Hac}. It is known that PSjac

= £s((0, oo)) and PflC = E((0, oo)).

Now we shall collect some known results from Ikebe [1] and

Ikebe-Saito [2] which will be needed for the development of our sub-

sequent discussion.

Theorem 1.1. Let /eL2>r where y is greater than but sufficiently

near 1/2 (0<2y-l<(l + 2<5)/4). Then Rs(z)f and R(z)f as L2i_y-valued

functions of z can be continuously extended to the closures of the

upper and lower half complex planes exclusive of (— oo, 0] (but for

A>0£s(A+iO)/ [jR(A+iO)/] is generally different from
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Theorem Ic20 Associated with the operator H and A>0 there exists

a bounded linear operator J^(A) e &(L2}7 ; K) such that ^(X)f, /e L2i7,

is strongly continuous in A>0, and the following relations hold:

(1.3)

(1 .4) (E(B)/, <?) = f
J

where f , g E L 2 ) Y and B is a Borel set of (0, oo). The operator J^:
*.

L2iy-»B defined by (& f)(X) = &(X)f can be uniquely extended by

continuity to a partially isometric operator e &(H;H) which is unitary

on Mac = PacH onto H, and will also be denoted by & '. &*, the

adjoint of J^, admits of the following representation

where s-lim means the strong limit (in M), and where J*"(A)*, the

adjoint of .^"(A), is a linear opera tor E &(h ; L2}-y) defined by

for $ eh, geL2ir

As to Theorem 1.2 let us remark the following. In [1] we have

constructed ^"(A) as an operator e ^(L2f i ; fe). But we have shown

there that this J^(A) can be extended to an operator e 3$(L2 >y ; A) (by

using Theorem 1.1 and relation (1.3) valid with /,0eL2si). The strong

continuity in A>0 of #r(X)f,feL2ii, In the topology of h has been

shown also in [1], That this Is the case with /eL2§y may follow from
the following argument. First, by using (1.3), it may be noted that

for this purpose it suffices to show that (^(A)/, $)k is continuous In A

for smooth (freh. Then one can show this by using the definition of

J^(A) and Green's formula. (This sort of argument has been made

actually in [1], though the continuity in A of ^"(A)/3/eL2j}, has not

been explicitly stated. As a matter of fact, In our discussion that

follows, the continuity in A of &(X) will not be absolutely necessary.

Instead, in most cases, the measurabillty and local boundedness of

J^A) alone will suffice.)

Assumption (1.1) will never be used explicitly, because almost every-

thing necessary Is included in the above two theorems. We shall make
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an explicit use of (1.2) solely for recalling that Vs is a bounded linear

operator e ^(L2>_v; L2ty).

§2. Spectral Representation for Hs

To start with let us consider the resolvent equation

(2. 1) Rr(z) - R(z) = - R(z)VsRs(z) = - Rs(z)VsR(z)

for non-real z. Although (2.1) is valid usually as an equation in ^(fl),

it can also be interpreted as an equation for jRs(z), R(z)e ^(L2>y; L2,_y),

because, as is easily checked by (1.2), Vse ^(L2 j_y; L2>y). Then by

Theorem 1.1 we see that (2.1) is also valid for the boundary values of

Rs(z) and R(z). Namely, we have the following

Lemma 2.1. For A>0 R&±iQ)-R(A±iO)=-R(Ji±iQ)VsRs(A,±iQ)

= -Rs(A±iQ)VsR(l.±iQ).

2.2. 3? S(A) = &(X) (1 - VSRS(1 - zO)) for 1 > 0.

is well-defined as an operator e &(L2jJ ; h), for we have VsRs(k

The adjoints F| and £5(A±iO)* of Fse ^(L2s_y; L2>7) and

^(L2)V; L2j _v) are defined by the following relations:

(Vgii, i;) = (ii, 7si;), (i?s(l± iO)*/, ^) = (/, J?S(A± iO)flf)

for u,vEL2}-y and f9geL2t7. Similarly for R(A±iQ)*. Clearly, Ff
e ^(L25_y; L2}J) and ^s(/l± iO)* e ^(L2>v; L2i_y). The following lemma

is an obvious consequence of these definitions, (1.2) and Theorem 1.1.

Lemm 23. i) 7J = Vs. ii) J^S(A ± /O)* = i^s(A + zO), ^(A ± iO)* = J^(A + zO)

/or

Lemma 2048 For eac/i /eL2>y ^"S(A)/ z's a continuous function

of A>0 m t/ze topology of h, and the following relation holds:

Rs(l-iQ)f, g).

Proof. The continuity of ^s(^)f is obvious from that of
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(Theorem 1.2), since VsRs(}i— iO)f Is continuous in A in h by Theorem

1.1.
To prove the last half we compute as follows:

- iO))/,

(by Definition 2.2)

iO)- JJ(A-iO)] [1 - FSRS(A- JO)]/, [1 - FSKS(A- iO)]0)

(by Theorem 1.2)

= (27n)- 1 {([1 - FSRS(A - iO)]/, R(A - iO) [1 - FSRS(A - iO)]0)

- (*(A - iO) [1 - FSRS(A - zO)]/, [1 - FSRS(A - iO)]3)}

(by Lemma 2.3 ii))

(by Lemma 2.1)

^)} (by Lemma 2.3 i), ii))

which was to be shown. The proof of the lemma is thus complete.

Now it is easy to derive with the aid of Lemma 2.4 the relation

(1.3) of Theorem 1.2, where E and ^(A) are replaced with Es and

^"S(A). Consequently, the proof of the following theorem is standard

(see, e.g., [1]) except for the proof of the onto-ness of the operator

J^s (to be defined in the theorem). This we shall do after stating the

theorem.

Theorem 2.5. a) For any f,geL2t7<^H and for any Borel set

Bc:(Q, oo) we have

b) Define ^s by

for /eL2>7.
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.A

Then ^s: L2jy->H=L2((0, oo); li) can be extended by continuity to

a partial isometry on H which is unitary from HS}ac = PS}acH onto

H, and the following relation holds: For any bounded Borel function

a(A)

(^sa(^s)PS)flc/)(A) = a(A)(^s/)(A) for a.e. A>0,

where we have denoted the extended operator also by &'s.

c) For any bounded Borel set B whose closure is contained in

(0, oo), define ^\ by

where J^A)* is defined in the same manner as J*"(A)* is defined in

Theorem 1.2. Then J*"| is not only in &8(HL\ L2t-y) but also in 38(H\

H), and we have ^% = ES(B)^. For any Borel set B let BN = B

n [N"1, N] (AT>1). Then the strong limit as N-*co of ^%N exists and

s-limN^00^
r%N = Es(B)^1l. In particular, the following inversion formula

is valid:

d) ^5(1)* is an eigenoperator for Hs or Ts with eigenvalue A>0

in the sense that for any (j)Eh and any smooth function f with com-

pact support

^

Proof that ^s maps onto H. The proof is completely the same

as the one given in Ikebe [1] (§3) except for the last step.

That J^s maps onto H is equivalent to that the null space of J5"!

consists only of 0. Thus we need to show that J^f/^O implies /=0.

Arguing as in [1], from J^f/^0 we can get to ^S(A)*/(A) = 0 for a.e.

A>0. We have by Lemma 2.1 and Definition 2.2 J^(A) = J*r
s(A)(l +

VSR(A - iO)), and hence &(X)* = (1 + R(l + iO)Fs)^s(A)*. Therefore,

) = 0 for a.e. A>0 implies ^(A)*/(A) = 0 for a.e. A>0, i.e.,

=0 by Theorem 1.2. But since J5" maps onto H by Theorem 1.2,

we have /=0, which completes the proof,
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In concluding the present paper we remark that Kato and Kuroda's

general abstract stationary method (see, e.g., [3]) may be applied to

our situation. Here, we have chosen a rather direct way of constructing

a spectral representation or eigenfunction expansion,
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