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On Stable Homotopy Types of Some
Stunted Spaces
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Hideaki OSHIMA*

1. Introduction

In this note we shall study the stable homotopy types (S-types)

of the stunted spaces N'{+k(G) = N»+k(G)/Nk-i(Gl where JV»(G) = S4"+3

modG are quotients of S4n+* by free orthogonal actions of a closed

subgroup G of S3. In §2, we show that N'l+k(G) are homeomorphic

to the Thorn spaces Nn(G)k^. If G is not finite, then G is S1, S3 or

the normalizer N(S*) of S1 in S3. The case with G = Sl or S3 has been

treated by Feder and Gitler [8], [9]. We consider the case with G

= N(Si) in §3. The case with G = Zm (cyclic group of order m) has

been treated in [12], [15]. On and after §4, we consider the remaining

cases, i.e. the cases with G the binary dihedral or binary polyhedral

groups (see §2 for definitions). We examine the representation groups

of the generalized quaternion groups D*(2W+1) in §4 and evaluate the

orders of some elements of KF(Nn(D*(2™+lyj) in §5 or J(N«(D*(2m+1)))

in §§6-7 and study the S-types of NjJ+fc(G) in the final section §8.

2. Thorn Spaces and Subgroups of S3

In this note G-space means a left G-space and F-vector space (or

bundle) implies a right F-vector space (or bundle) for a field F. For

a G-space X its orbit space is denoted by XmodG and if G acts on Y

also, X x Ymod G denotes the orbit space by diagonal action. For a

vector bundle a over a finite CFF-complex X, X* denotes the associated
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Thorn space, that is, the one point compactification of the total space

of a.

Let OF(m) denote the orthogonal group O(m) for F = R (the real

numbers), the unitary group U(m) for F = C (the complex numbers)

and the symplectic group Sp(m) for F = H (the quaternions) in m dimen-

sions respectively. We say that a representation d: G-»OF(m) of a topo-

logical group G is free if the action of G restricted to the unit sphere

S(V) is free, where V is a representation space of d with an inner prod-

uct ( | ). Let kV denote the sum V@~>@V (k factors) with the inner

product (a|6) = 2:(fli|6<) for a = (alv.., afc), b = (bl9...9 b^ekV. For fc<fc',

we regard kV as a subspace of k'V by the identification (alv.., afc) = (a1,

...,a fc,0,...,0).
For a given free representation d: G-*OF(m), we introduce the follow-

ing notations:

Nn(G9 d) =

N'i+k(G, d) = Nn+k(G9 d)/Nk~l(G, d),

and £B(G, d) means the canonical bundle

S((n + 1)F) x Fmod G - > JVn(G, d) .

Then we have the following theorem.

Theorem 2,1. There exists a homeomorphism

Proof. Consider the map /: S((n + i)V)xD(kV)-*S((n + k+i)V) de-

fined by

where D(kV) denotes the unit disk of kV and X = (XQ,..., xJeS((n + i)V),

y = (yo,...,yk-i)eD(kV),X=Jl-(y\y) and xA = (x0A,..., xHX). It is easy

to show that / defines a G-equivariant homeomorphism

S((n + 1) K) x (D(fc K) - S(/c K)) - > Sftw + fc + 1) K) - S(fc F)
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and then we have a homeomorphism

l)F)x(D(/cF)-S(/vF))modG - > (S((n + /c+l)F)-S(/cF))modG.

S((n + l)F)x(D(/cF)-S(/vF))modG may be identified with the total space

of k£n(G, d). Compactifying the both spaces by adding one point, we

have

, d)

n+k

as desired.

For example, we have

for the trivial representation 1->0(1) and

ppn+k = ppn + k/ppk- 1

for the identity Of(l)-*Of(l) and

L'i+k(m) = L"+k(m)/Lk- * (in) « L»(m)k*

for ZmcC/(i), where FP" indicates the F-projective space and L"(m)

the standard mod/n lens space. These are well-known.

We say that two spaces X and Y are stably homotopy equivalent

(S-equivalent) if the suspensions S" A X and Sv A Y are homotopy equiva-

lent for some u and v.

The classifications of 5-types of Sg+fc, CP£+fc and HP'£+k have been

completed. The sphere case is trivial and the complex or quaternion

projective space case has been done by Feder and Gitler [8], [9].

It is known that which compact group admit a free representation.

Finite groups admitting a free representation are listed in [23, Chapter

6]. If a compact group G including infinite elements has a free repre-

sentation, then G is a Lie group ([17, V Th. 2]) and must be S1, S3

or the normalizer N(Sl) of S1 in S3 [5, III 8.5].

From now on, we will treat the case with G a closed subgroup of

S3 and d the inclusion d^i GaS3 = Sp(l). And we will use the notations;
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£,,(G)F5 the underlying F- vector bundle of £n(G) .

n(G, H): Nn(G)-+Nn(H), the natural projection for GaHciS3. Closed

subgroups of S3 are maximal tori S1, N(Si)'s (any two of them are

conjugate each other respectively), S3 itself or finite subgroups. Con-

cerning finite subgroups of S3, we have

2.2 (Wolf [23, 2.6.7]). Every finite subgroup of S3 is a cyclic,

binary dihedral or binary polyhedral group. If two finite subgroups

of S3 are isomorphic, they are conjugate in S3.

We remark that if two subgroups G, H of S3 are conjugate, then

Nn(G) and Nn(H) are naturally homeomorphic, and this homeomorphism

induces the isomorphism between £n(G) and £n(H). Thus we may assume

that Nn(G) and £n(G) are defined for the conjugate classes of subgroups

of S3. So we describe the subgroups of S3 in terms of generators and

relations as follows: the binary dihedral group D*(4m) of order 4m

(m^2), the binary tetrahedral group T* of order 24, the binary octa-

hedral group O* of order 48 and the binary icosahedral group /* of

order 120 are given by

D*(4m): xm =

T* :x3=

I* :x5

(see [23] or [18, 6.2]). T*, O* and /* are called the binary polyhedral

groups. D*(2m+1) is called the generalized quaternion group.
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3.

In this section we examine the S-types of N^+k(N(S1)).

For simplicity we use the notations

For 0^/tgn, we define the cells in S((n + l)H) = S4n+* as follows:

e4fc = {(zl5..., z2k+1, 0,..., 0); z2k+l =^0, arg(z2/£+1) = 0} ,

= {(z l9...,z2k+2, 0,...,0);z2k+1^0, 0<arg(z2k+1)<7r,

0, arg(z2k4.2) = 0},

and their images in Nn by the natural projection S4n+3-»Nn are denoted

by e4k, e4k+1 and ^4fc+2 respectively, here we regard H as the complex

2-space by the replacement q = z + z'j. Then it is easy to check the fol-

lowing proposition.

Proposition 3.1. {e4k, e4*'*"1, e4k+2',Q^k^=n} gives a CW-decomposi-

tion of N".

Remark that the above CPF-decomposition satisfies the condition

that the 4m + 2-skeleton of Nn is JVm for O g m ^ n .

It is easy to show that the Serre spectral sequence of the fibration

N° = RP2 - > Nn - > HP"

is trivial and therefore we have the following proposition.

Proposition 3.2. For any coefficients A, we have

H*(N"; A)^H*(HP"i Z)®H*(RP2; A).

Let KF be real(F = R), complex (F = C) or symplectic (F = H) K-theory
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and 9F be the representation

and 6F be the associated F-line bundle

S((n + l)H)xFmodN(Sl) - > N".

Proposition 33* There exists a split exact sequence

0 - > KF(HP") - > KF(N») - > Z2/C».F, - > 0,

where /(n; R)=2[w/2] + 2,/(n; C) = n + l, /(«; H) = 2[(n + l)/2] and fAe

reduced element 9F—lGKF(Nn) generates the direct summand Z2/(n;F>.

[a] denotes the greatest integer which does not exceed a,

Proof, (i) F = C-case. Consider the commutative triangle

Kc(CP2n+l)

KC(HP»)

where n^ntf1, JVCS1)), n2 = n(N(Sl), S3) and 7T3 = 7E(S1, S3)0 Let r\2n+l

be the canonical complex line bundle over CP2n+1. Put ^ = ??2n+i~l
e£c(CP2M+1) and uIJ = ^(S3)c-2eKc(HP"). Then it is well-known that

where ~ denotes the complex conjugation. Since

the image Imnl
3 of TI^ is a direct summand of Kc(CP2n+1). In the

commutative diagram
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Kc(HPn) - > KG(HPn)®Q -£*-> H*(HPn;Q)

1 4 U®Q U
KC(N») - > KC(N")®Q — £*-> H*(N»',Q)

TJ\ is an isomorphism by (3.2) and then TT^ is monomorphic and the

cokernel of nl
2 is finite, where ch denotes the Chern character. And

therefore Imn^ and Imn\ have the same rank. Then, since Imn^dlmn\

and Imnl
3 is a direct summand of the free module Kc(CP2n+1), we

know that Imn^^Imn^ and therefore nl
2 is an isomorphism onto a direct

summand of Kc(N
n).

By definition, we have

and then the aboves imply that 9C — 1 has a finite order. Put cr = 7i(Z4,

). It is easy to see that

Since the order #O2+2<j) of <72 + 2<T is 2«+1 [14, Th. A], *(0C-1) is a

multiple of 2Il+1.

Let {£r} be the Atiyah-Hirzebruch spectral sequence for K$(Nn).

Then Ep
2><* = HP(Nn; Kq

G) and

fe=0

by (3.2), where Tor (^4) denotes the torsion submodule of a module A.

Hence *(8C-1) is a divisor of 2»+1. Therefore S(0C-1) = 2«+1 and 9C

— 1 generates Tor(Kc(]V")). This completes the proof of the proposition

for F = C.

Remark. (3.2) implies that the above spectral sequence collapses.

(ii) F = R-case. Let c:XR-»J£c be the complexification and r: Kc

->XH be the real restriction. Since r°c = 2 and c(9R— 1) = 9C — 1, we have

#(gR_l) = 2«+1 or 2«+2

by (i).

Consider the Atiyah-Hirzebruch spectral sequence {H£r} for
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Then REp
2>

q = HP(Nn', K£) and

* Tor (XH(N-)) £ * Tor (Z^ST11) -
p

Since the rank of Kn(N
n) equals the rank of Kc(N

n), w + 1 , we have

H^J*'"4*SZ for

and then

p psi ,2(8) p E = l , 2 ( 8 )

Then we have

If Tor (Km(Nn)) ^ 22U"+2 >/2l

Since

{ n + 1 if n is odd

n + 2 if n is even,

we know that

tt(gR-l) = 2«+1 for n odd.

An easy computation shows that

H*(N2m+l, N2m; A)^H*(HP2m+\ HP2m; Z)®H*(RP2; A)

and then by the Atiyah-Hirzebruch spectral sequence, we have

Then the long exact sequence of the pair (IV2m+1, JV2m) induces the

following short exact sequence

0 - > KR(N2m+l
9 N2m) - > KR(N2m+1) -tU KR(N2m) - > 0.

Then r induces an isomorphism between the torsion submodules of

Kn(N
2m+1) and Kn(N

2m). And since ^ !(gR-l)=9M-l, we have

flg_l) = 2«+2 for n even.
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Therefore

and 0R-1 generates Tor(£R(JV'')).

Let N^s) be the s-skeleton of Nn with respect to the CM^-decomposi-

tion (3.1) and KR(Nn)s be the kernel of the restriction K^N^-^Kj^N^^).

Then RE^-S = KR(N»)S/KR(N»)S+,. The facts Tor(KR(7V")) = Z2/(n;R) and

#Tor(£R£'f>~p) = 2/(li;R) imply that we may think that RjE**'~4fc^Z(Ogj

fc^n) is a direct summand of KR(Nn), that is, an element of KR(Nn)4.k
which represents a generator of RE4fc>~4fc = Z generates a direct summand

of XH(N«).
Put u = ^2(0 eKc(N

n). Comparing the spectral sequences for

Kc(HPn) and Kc(N
n), we know that us represents a generator of £4s'~4s

Let c:RjEP->JEP be the homomorphism induced by the complexifica-

tion r' K (Nn}-*K (Nn\ Since c% Fp'q — HP(Nn' Kq}—>FP>^ — J-fP(Nn- Kq} isL1L/11 C . JVR^J T y ~ JVQ^l V J, kJlll^>W< U . R-<--' 2 ^~ -* -* \ ' 5 JR./ 2 V 5 C/

induced by the coefficients homomorphism c: XR->XJ, c: R£"|fc+4'-8/c~4

_^£8fc+4,-sfc-4 coincides with the multiplication H8k+4(N"i%)-*H8k+4(Nn',

Z) by 2. Then the aboves imply that vs is not in the image of c:

KR(Nn)-+Kc(N
n) for s odd and Q^s^n. On the other hand, the image

of c:KR(HPn)-*Kc(HPn) is generated by skv
k for 0^/cg«, where ek=\

for /c odd or 2 for /c even [20, 3.11]. Then (i) and the commutative

diagram

KR(HP») -£-> J

imply that the composition

KR(HP") ^ KR(N") » Kn(

is an isomorphism. Therefore we have the split exact sequence

0 —, KR(HP") —* KH(JV") — Z2/(n;R) —» 0

as desired.



506 HlDEAKI OSHIMA

(iii) F = H-case. Identifying KSp with K^4, we can prove the

proposition for F = H by the same methods with (ii). And we com-
plete the proof of Proposition.

Corollary 3A (i) We have the exact sequence

0 - > KF(N»k
+k) - > KF(Nn+k) - > K^N*-1) - » 0.

(ii) The complex conjugation t: KG(Nn) - > Kc(N
n) is the identity,

Proof, (3.3) and the exact sequence

0 - > Kf(HPn
k+

k) - > KF(HPn+k) - > X^HP*-1) - > 0

imply (i). Since

t(§c) = toc(0R) = c(eR)=9c

and t: Kc(HPn)-*Kc(HPn) is the identity function, we have (ii) by (3.3).

We shall evaluate the J-groups J(N») [3]. Let Wk
F: KF(X)->KF(X)

be the Adams operation for F = M or C. By now proved Adams con-
jecture [2] we may identify J(X) with Km(X)/i^Ye9 where e: Z-»{03 1,

2,...} and 7e=E fce(*>(y&-l)XH(JSQ. We have
fceZ

{§H if fe is odd

1 if k is even.

Thens since W^ commutes with nl
2, we have the following proposition by

(3.3).

Proposition 3a59 There exists a split exact sequence

0 - > J(HP») - > J(N») - > Z22[n /2]+2 - > 0

and then the J -orders of the canonical symplectlc line bundles over

HPn and Nn are equal

Let Bn be the J-order of the canonical symplectic line bundle £n(S
3)

over HP". (Bn has been computed by Sigrist and Suter [21].) Then
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by Atiyah [3, 2.6] we have

Theorem 3.6. // k-l = Q(Bn), then N'/t+k and Nf+l are of the same

stable homotopy type.

Using above propositions and corollary, we may prove the following

theorem by following faithfully the proof of [9, §4] which has treated

HPn
k
+k instead of Nn

k
+k.

Theorem 3.7. // N'k
+k and Nf+l are of the same stable homotopy

type, then m = n and one of the following conditions hold:

(i) k- /=

(ii) k-l = Q(Bn_t) and

4, Representations of the Generalized Quaternion Groups

In this section we examine the representation groups of the general-

ized quaternion groups D*(2m+1) according to Pitt [19].

Let RF(G) denote real(F = R), complex (F = C) or symplectic (F = H)

representation group of a group G. There exist the natural homomor-

phisms

Rn(G) ~1 RC(G) d=
r c'

satisfying the relations

hoc' = 2, c'oh = l+t,

where t: RC(G)-+RC(G) is complex conjugation. Being RF(G) free, CR

and c' are monomorphisms and in what follows we shall identify -RR(C)

and RH(G) with their images in ^C(G) under CR and c'.

Recall that D*(2m+1)=={x, y\ x2m~1=(yx)2=y2}. We consider the

following complex representations of D*(2m+1):
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f X > 1 f X

1 b

1
1

Q)k 0

0 co~k _
, keZ,

0 (-1)*

1 0

*fc

y

where co is a primitive 2m-th root of unity. The characters of these

representations are

Xi(xuyv) = l, Xb(x»yv) = (-1)",

where u = l, 2,..., 2m, t; = 0, 1. Evaluating the characters, we have the

relations

4.10 J0=lH-fl , d2m-i

d2m-i+k = d2m-i-k, dkdj = dk+J + dk-j9 adk = dk,

bdk = cdk = d2m - 1 - fe.

Then we have

42. RC(D*(2™+1)) is free abelian on 1, b and dk (O^/c

generated multiplicatively by I, a, b and d±. Therefore t = identity on

4.3, RR(D*(2m+1)) is free abelian on 1, b, d2k (Q^k^2m~2) and 2d2k+ 1
2) and generated multiplicatively by 1, a, b, 2dt and d\.
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4.4. RH(D*(2"'+1)) is free abelian on 2, 2b, 2d2k (Og/cg2m~2) and

Let lk( ) be the exterior /c-th power operation and put

Ux) = S A* (*)tk E *C(G)[ W] for x e RC(G) .
fc^O

Then it is well known that

Hence

Therefore we have

Lemma 4.5. A_1(nd1) = (2 — d^)n.

For the proof of Proposition 5.7, we prepare the following lemma.

Lemma 4.6. In Rc(D*(2m+1)) we have the relations

,2fe 1 v / 2k \, , ^v"1 ^ f 2k
«1 =y L ( ^ . O m - l / )«0+ L 2J I j^ , 7m-lZ -oo<f<oo\ / C + Z */ j=l -c»<r<oo\ / C"r L

~

j=0 -oo<t

Proof. Using (4.1), we may prove this by induction on /c. The

proof is elementary and easy, so we omit it.

5.

Hereafter G denotes a finite subgroup of S3.

Let V( = H) be the representation space of d^: GcS3=Sjp(l) =

Put E = (n + l)F and consider the following exact sequence of equivariant

K-theory.
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---- >KFG(DE, SE) - > KFG(DE) - >

> KFG(DE, SE)

where F denotes R or C. By Thorn isomorphism, this induces the

exact sequence

-*£+ KP(N"(Gy)

Recalling that

RR(G) If n is odd

RH(G) if n is even,

then \I/F is the multiplication by ^_1((n-i-l)d1) = (2 — d1)
n+i which is con-

tained in 1?H(G) (if ra is odd) or KH(G) (if n is even). When F=C9

these are as usual. In case F = R, see [19]. (j)F maps a representation

of G to its associated vector bundle induced from the principal G bundle

5((n+l)K)->JVM(G). Hence <l>c(di) = £n(G)c and ^m(f(di)) = ̂ n(G)R. Since

XCgdd(pf.) = 0 and KRck(pt.) = Q for fc = 3, 7(8) ([4]), we obtain the exact

sequence

*»-\pt.) ^U RF(G) n> XXN»(G)) > 0,

and then we have

Proposition 5.1, (cf. [10], [19]) <t>F: RF(G)-+KF(Nn(GJ) induces the

isomorphisms

In the rest of this section, we consider the case with G a gener-

alized quaternion group D*(2m+1)- For simplicity we will use the nota-
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tions

Nn(m) = Nn(D*(2m+ 1)), ATg+fc(m) = Nn+k(m)/Nk~ l(m) ,

and

The remaining part of this section is devoted to evaluate the orders

of 5i(m) = 0c(d1-2) and 5B(m) = 0H(Kd1)-4).

Proposition 5.2.

2m+2(n-fc)+l if i^k^

or 7t = 0.

. By (5.1), we have that ^;,(m)fc = 0c((d1-2))fc = 0 for k>n

or n = 0. Let rj be the canonical complex line bundle over CP2n+1. Put

<r = n(Z2m, S1)*^- 1 6 Kc(L
2«+1(2m))- Then we have

= <T2fe + higher terms.

By [13, 1.1], we have

r 2 '»+2«+i-fe if l^/c^2n + l
tt(7k=|

[ 1 if fe>2n + l.

Then we know that %5'n(m)k is a multiple of 2m+2(«-fe>+1 if l^fc^n.

To obtain an upper bound of %d'n(m)k, we use the complex cobordism

theory 17*.

5.3, (Conner-Floyd [7]). There exists a monomorphism Kc(X)-»

U2(X) for any finite connected CW-complex X.

Since the tangent bundle rNn(m) of Nn(ni) satisfies the condition
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rN"(m)® 1 * (n + 1){B(D*(2»+ *))*

[22, 3.3], Nn(m) is a U-manifold. Then there is a duality isomorphism

and in particular we have

Since Nn(m) is the 4n + 3-skeleton of BD*(2n+l) = \jNn(m) [10], we have

Hence we have a monomorphism

Since H*(BD*(2m+1)°, Z) is periodic ([6, XII]), the Atiyah-Hirzebruch

spectral sequence for C/^.(BD*(2m+1)) collapses ([16]) and then the Thorn

map /x: l/^(^D*(2w+1))-^jFf^(BD*(2ffI+1)) is epimorphic. Recall D*(2W+1)

= {x, yi x2m~l=(yx)2 = y2}. We will identify Z2m and Z4 with the

subgroups of D*(2W+1) generated by x and j; respectively. Let i\ : Z2m

->D*(2m+1) and i'2: Z4~^D*(2m+1) be those inclusions. And let il:BZ2m

= L™(2m)-»N™(m) = BD*(2m+1) and /2: 5Z4 = L00(4)-^BD*(2'"+1) be the

induced maps (see §2). And we will write the following inclusions

by the same letter c:

2m) = BZ2m and

L2fe(4)cL°°(4) = BZ4.

Then {n[_Nk(m\ ,], iii^L2k(2m)9 0, M^2*C^2fc(4)5 0; 0^^} generates H*

(BD*(2m+1); Z) and then {[N^m), 0, iV[^2k(2"), 0, »2*[^"(4), 0 5 0^ fc}
generates the l/^-module U*(BD*(2m+1)). The orders of these 17 -̂

module generators have been computed by K. Shibata and Y. Katsube

(unpublished) as follows:

5,4
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2 if jt=o
»/1,[L"(2l"),0= > and

2m+2k~1 if k>0

This implies

and then

Comparing this upper bound with the above lower bound of

we have

2m+2»~1 z/

1 If n = 0.

To compute #5I,(m)fc
5 we prepare the following lemma.

Lemma 5.6. (cf. [19, 5.2]) For AeZ, ae£c(Z)*(2'»+1)) and /c^

Proof. Only if part is trivial. (5.1) and (5.5) imply

2«+2«-i(£/1-2) = jS(d1-2)n+1 for some £e£c(D*(2'»+1

and in particular

2m+1(dl-2) = p(d1-2)2 for some jSeJRc(D*(2»'+1)).

Then

and hence

Let A(d1-2)fe-a(dl-2)"+fc. Then
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= 2*0»+1>a(d1-2)B+1.

But Rc(D*(2m+1)) is free, so we have

^(d1-2) = a(d1-2)»+1.

Thus the lemma (5.6) follows.

(5.6) implies

*a;(m)* = *5;.fc+1(m) for l ^ fc^n

and hence

for l ^ fc^w.

This completes the proof of the proposition.

Since d1 is self conjugate (i.e. t(d1) = d1), we have

t(5'n(iri)} = d'n(m) and c0B(m)) = 2<5K(m) .

Then we have

*<5B(m) = 2m+2B-2 or Z"^2"-1.

Pitt [19, 5.5] has proved

%61(m) = 2m+i.

Using (4.7) and the method of Pitt, the author has checked the follow-

ing proposition.

Proposition 5.7.

22n+1 if n is odd f 22n+2 if n is odd

22" if n is even ] 22"+1 if n is positive

and even

1 if n=Q

and
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In case m = 2, this has been proved by Fujii [11], more generally

he has determined the additive structure of KR(N"(2)). The proof of

(5.7) is long and routine and so we omit it.

Remark. By (5.7), we may conjecture that for

( 2*1+2,1-1 jf n i
*Sn(m)=\

[ 2>n+2n-2 Jf n

6.

The purpose of this section is to prove the following theorem.

Theorem 6.1. J-homomorphism J: Kn(N"(2))-^J(Nn(2J) is an iso-

morphism.

Since lFci=t is identity on Kc(N
n(m)) by (4.2) and (5.1), we have

<PF=yF* on KF(Nn(mJ). So we will consider Wk
F for k non negative

only.

Consider Adams operation ^: RF(G)-+RF(G). Concerning the charac-

ters it is well known that

for 9 e RF(G) and gzG

(see [1, 4.4]). Then (4.2) and a short character computation show that

Wk
F = identity on flF(D*(8)) for fe odd.

Then (5.1) and the following commutative diagram

KF(N»(2)) +-*?—

imply

Lemma 6.2. *Fk
F = identity on KF(N"(2)) for k odd.
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Now we prove Theorem 6.1. Since KF(Nn(m)) is a 2-primary group

(see e.g. [6], [10], [11]), we have 2NKn(N"(2)) = 0 for some N. Let us

choose e: Z->{0, 1, 2,...} so that e(k)^N for k even. Then k^^W^

-l)XK(Ar"(2)) = 0 for /c even. But for k odd W^ is identity on Kn(N
n(2))

by (6.2), so that /ce<fc)(^|-l)KM(]V«(2)) = 0. Thus we have 7e = 0 for

this function e, and hence r\Ye = 0 (see §3 for the definition of Ye).
e

This completes the proof of Theorem 6.1.

As a corollary of this theorem and (5.7), we have the following.

Corollary 6.3.

22"+1 if n is odd

22n if n is even.

1. J(N»(G»

111 this section we evaluate the J-order of £„(£).

For simplicity we will use the notation J(T) instead of J(T-dimRT)

for a vector bundle T.

Consider the induced homomorphism n(G, S3)*: J(HPn)-*J(Nn(G)).

Then, since n(G, S3)*J(^(S'3)) = J(^(G)), we have

Proposition 79L % J(^n(GJ) is a factor of Bn.

By (5.2) and (5.7) we have

Proposition 7.2. (i) # J(^(D*(2m+1))) is a factor of 2m+2"-i.

(ii) *J(^(D*(16))) is a factor of 22n+2 (if n is odd) or 22n+l

(if n is even).

(iii) % J(£2(D*(2W+1))) is a factor of 2m+2.

Let Zfc be a cyclic subgroup of G and rj2n+i(k) be the canonical

complex line bundle over L2n+1(k). Since 7i(Zfe, G)*£n(G)c = rj2n+i(k)
we have
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Then we have

Proposition 7,3. // Zk c G, then ft J (£n(G)) is a multiple of

*2J(i/2ll+1(fc)).

Remark. #J(/7n(/c)) has been determined by Kambe-Matsunaga-Toda

[12] and Kobayashi-Sugawara [15] when k = p or p2 for p prime.

When D*(8)cG i.e. G = D*(8m), T*, O* or I*, we obtain the follow-

ing proposition by (6.3), since 7i(D*(8), G)*J(SB(G)) = J«B(D*(8))).

Proposition 7.4. // Z)*(8)c=G, then *?J(£M(G)) is a multiple of 22n+1

(if n is odd) or 22n (if n is even).

As a corollary of this we have

Corollary 7.5. // n = 2» + 2v+l for L^v^2ll~l-l and w ^ l ,

then

Proof. Recall that

v2(Bn) = max {2« + 1 , 2/ + o2(j) ;

(see [21]), where u2(w) denotes the largest integer for which 2U 2^W )

divides w. If n satisfies the above condition, then D2(Bn) = 2n + l and

then (7.1) and (7.4) imply (7.5).

8. S-types of Nn
k
+k(G)

Evaluating the (co)homology groups of N%+k(G) (see [6, XII §§7,

8, 9]), we have

Theorem 8.1. // NJ+J(G) and N%+k(H) are of the same stable

homotopy type, then G is conjugate with H and m = n.

By Atiyah [3, 2.6] and (2.1) we have

Proposition 8.2. // j = k (# J(£n(G))), then Nnj+J(G) and N'i+k(G)

are of the same stable homotopy type.



518 HlDEAKI OSHIMA

Put Bn(m) = min{m + 2n-l, v2(Bn)}. Then (8.2) implies the follow-

ing theorem by (5.1), (7.1) and (7.2).

Theorem 83. (i) // j = k(2B»W), then N']+J(m) is S-equivalent to

Nn
k
+k(m),

(ii) For a fixed G, all N%(G) are of tlie same stable homotopy

type.

f 22n+m~1 ifn is odd
(iii) // m = 2 or 3 andj = kmodl 9 then Ny+^iri)

[ 22n+m~2 if n is even

is ^-equivalent to N%+k(ni).

For the converse of this, we have the following theorem by methods

of Kobayashi-Sugawara [15, 1.1].

Theorem 8.4. // Nnj+J'(2) and N%+k(2) are of the same stable homo-

topy type for n^l, then j = k(22n~2).

Proof. Consider the Puppe exact sequence

K^S1 A Nn+J(m)) -IlAilU K^S1 A N

Since Atiyah-Hirzebruch spectral sequences for KC(S1 A^"(m)) and

Kc(iVf%0) collapse, we have K^S1 AN"(m)) = Z and ( lAO'=0 .
Hence above sequence induces the following exact one

0 - > Z - > Kc(NfJ(m)) ^U Rc(N«+*(mft

and then pl is monomorphic on Tor(Kc(Ny+J'(m))). Then by (62), we

know that !Pg is identity on Tor(Kc(N
lj+j(2))) for v odd. Consider

the following diagram

£c(tff (2)) -1% KC(S2» A

-^ KC(S2« A Nf

where I indicates the Bott isomorphism. Then we have
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Therefore we have

8,5. W*v+1=(2v + iy on Tor(Kc(S
2" AAff J (2)).

If SMANj+- /(ni) is homotopy equivalent to Sv A N%+k(m), then i; = w

+ 4(j — k) by their cohomology groups.

Now suppose that there exists a homotopy equivalence

g+fc(2) - > S2u A IVf ./(2)

and consider the following commutative diagram

KG(S2u A Nnj
ya.+ 1J

2" A tf

Then (8.5) implies that

8.6. (2u+l)»+2(-/- fe^ l = (2i;+l)«^1 o/i Tor(Xc(S
2" AN

Since

XC(S2» A

J) (Thorn isomorphism)

there is an element of order 22»+1 in Kc(S
2u AN>]+J(2)) by (5.2). Then

(8.6) implies that

that is

It was proved by Adams [1, 8.1] that

if fo = (2a + l)2/, then 35-l=2'+2(2'+3),

This implies
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Then

and therefore

This completes the proof of Theorem 8.4.
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