On Stable Homotopy Types of Some Stunted Spaces

By

Hideaki Ōshima*

1. Introduction

In this note we shall study the stable homotopy types (S-types) of the stunted spaces $N_k^{n+k}(G) = N^{n+k}(G)/N^{k-1}(G)$, where $N^n(G) = S^{4n+3} \mod G$ are quotients of S^{4n+3} by free orthogonal actions of a closed subgroup G of S³. In §2, we show that $N_k^{n+k}(G)$ are homeomorphic to the Thom spaces $N^n(G)^{k\xi}$. If G is not finite, then G is S^1 , S^3 or the normalizer $N(S^1)$ of S^1 in S^3 . The case with $G = S^1$ or S^3 has been treated by Feder and Gitler [8], [9]. We consider the case with $G = N(S^1)$ in §3. The case with $G = Z_m$ (cyclic group of order m) has been treated in [12], [15]. On and after §4, we consider the remaining cases, i.e. the cases with G the binary dihedral or binary polyhedral groups (see §2 for definitions). We examine the representation groups of the generalized quaternion groups $D^*(2^{m+1})$ in §4 and evaluate the orders of some elements of $K_F(N^n(D^*(2^{m+1})))$ in the final section §8.

2. Thom Spaces and Subgroups of S^3

In this note G-space means a left G-space and F-vector space (or bundle) implies a right F-vector space (or bundle) for a field F. For a G-space X its orbit space is denoted by $X \mod G$ and if G acts on Y also, $X \times Y \mod G$ denotes the orbit space by diagonal action. For a vector bundle α over a finite CW-complex X, X^{α} denotes the associated

Communicated by N. Shimada, February 5, 1975.

^{*} Department of Mathematics, Osaka City University, Osaka,

Thom space, that is, the one point compactification of the total space of α .

Let $O_F(m)$ denote the orthogonal group O(m) for F=R (the real numbers), the unitary group U(m) for F=C (the complex numbers) and the symplectic group Sp(m) for F=H (the quaternions) in m dimensions respectively. We say that a representation $d: G \rightarrow O_F(m)$ of a topological group G is free if the action of G restricted to the unit sphere S(V) is free, where V is a representation space of d with an inner product (|). Let kV denote the sum $V \oplus \cdots \oplus V$ (k factors) with the inner product $(a|b)=\Sigma(a_i|b_i)$ for $a=(a_1,...,a_k), b=(b_1,...,b_k)\in kV$. For k < k', we regard kV as a subspace of k'V by the identification $(a_1,...,a_k)=(a_1,...,a_k,0,...,0)$.

For a given free representation $d: G \rightarrow O_F(m)$, we introduce the following notations:

$$N^{n}(G, d) = S((n+1)V) \mod G,$$
$$N^{n+k}_{k}(G, d) = N^{n+k}(G, d)/N^{k-1}(G, d),$$

and $\xi_n(G, d)$ means the canonical bundle

$$S((n+1)V) \times V \mod G \longrightarrow N''(G, d).$$

Then we have the following theorem.

Theorem 2.1. There exists a homeomorphism

 $N_k^{n+k}(G, d) \approx N^n(G, d)^{k\xi_n(G, d)}$.

Proof. Consider the map $f: S((n+1)V) \times D(kV) \rightarrow S((n+k+1)V)$ defined by

$$f(x, y) = (y, x\lambda)$$

where D(kV) denotes the unit disk of kV and $x = (x_0, ..., x_n) \in S((n+1)V)$, $y = (y_0, ..., y_{k-1}) \in D(kV)$, $\lambda = \sqrt{1 - (y|y)}$ and $x\lambda = (x_0\lambda, ..., x_n\lambda)$. It is easy to show that f defines a G-equivariant homeomorphism

$$S((n+1)V) \times (D(kV) - S(kV)) \longrightarrow S((n+k+1)V) - S(kV)$$

and then we have a homeomorphism

$$S((n+1)V) \times (D(kV) - S(kV)) \mod G \longrightarrow (S((n+k+1)V) - S(kV)) \mod G.$$

 $S((n+1)V) \times (D(kV) - S(kV)) \mod G$ may be identified with the total space of $k\xi_n(G, d)$. Compactifying the both spaces by adding one point, we have

$$N^n(G, d)^{k\xi_n(G, d)} \approx N_k^{n+k}(G, d)$$

as desired.

For example, we have

$$S_k^{n+k} = S^{n+k}/S^{k-1} \approx S^k \vee S^{n+k}$$

for the trivial representation $1 \rightarrow O(1)$ and

$$FP_k^{n+k} = FP^{n+k}/FP^{k-1} \approx (FP^n)^{k\xi}$$

for the identity $O_F(1) \rightarrow O_F(1)$ and

$$L_{k}^{n+k}(m) = L^{n+k}(m)/L^{k-1}(m) \approx L^{n}(m)^{k\xi}$$

for $Z_m \subset U(1)$, where FP^n indicates the F-projective space and $L^n(m)$ the standard mod *m* lens space. These are well-known.

We say that two spaces X and Y are stably homotopy equivalent (S-equivalent) if the suspensions $S^u \wedge X$ and $S^v \wedge Y$ are homotopy equivalent for some u and v.

The classifications of S-types of S_k^{n+k} , CP_k^{n+k} and HP_k^{n+k} have been completed. The sphere case is trivial and the complex or quaternion projective space case has been done by Feder and Gitler [8], [9].

It is known that which compact group admit a free representation. Finite groups admitting a free representation are listed in [23, Chapter 6]. If a compact group G including infinite elements has a free representation, then G is a Lie group ([17, V Th. 2]) and must be S^1 , S^3 or the normalizer $N(S^1)$ of S^1 in S^3 [5, III 8.5].

From now on, we will treat the case with G a closed subgroup of S^3 and d the inclusion $d_1: G \subset S^3 = Sp(1)$. And we will use the notations:

$$N^{n}(G) = N^{n}(G, d_{1}),$$

$$N^{n+k}_{k}(G) = N^{n+k}_{k}(G, d_{1}),$$

$$\xi_{n}(G) = \xi_{n}(G, d_{1}),$$

$$\xi_{n}(G)_{F}, \text{ the underlying } F\text{-vector bundle of } \xi_{n}(G).$$

 $\pi(G, H): N^n(G) \to N^n(H)$, the natural projection for $G \subset H \subset S^3$. Closed subgroups of S^3 are maximal tori $S^1, N(S^1)$'s (any two of them are conjugate each other respectively), S^3 itself or finite subgroups. Concerning finite subgroups of S^3 , we have

2.2 (Wolf [23, 2.6.7]). Every finite subgroup of S^3 is a cyclic, binary dihedral or binary polyhedral group. If two finite subgroups of S^3 are isomorphic, they are conjugate in S^3 .

We remark that if two subgroups G, H of S^3 are conjugate, then $N^n(G)$ and $N^n(H)$ are naturally homeomorphic, and this homeomorphism induces the isomorphism between $\xi_n(G)$ and $\xi_n(H)$. Thus we may assume that $N^n(G)$ and $\xi_n(G)$ are defined for the conjugate classes of subgroups of S^3 . So we describe the subgroups of S^3 in terms of generators and relations as follows: the binary dihedral group $D^*(4m)$ of order 4m $(m \ge 2)$, the binary tetrahedral group T^* of order 24, the binary octahedral group O^* of order 48 and the binary icosahedral group I^* of order 120 are given by

$$D^{*}(4m): x^{m} = (yx)^{2} = y^{2},$$

$$T^{*} : x^{3} = (yx)^{3} = y^{2}, y^{4} = 1,$$

$$O^{*} : x^{4} = (yx)^{3} = y^{2}, y^{4} = 1,$$

$$I^{*} : x^{5} = (yx)^{3} = y^{2}, y^{4} = 1$$

(see [23] or [18, 6.2]). T^* , O^* and I^* are called the binary polyhedral groups. $D^*(2^{m+1})$ is called the generalized quaternion group.

3.
$$N^n(N(S^1))$$

In this section we examine the S-types of $N_k^{n+k}(N(S^1))$. For simplicity we use the notations

$$N^{n} = N^{n}(N(S^{1})), N^{n+k}_{k} = N^{n+k}_{k}(N(S^{1})).$$

For $0 \le k \le n$, we define the cells in $S((n+1)H) = S^{4n+3}$ as follows: $\underline{e}^{4k} = \{(z_1, \dots, z_{2k+1}, 0, \dots, 0); z_{2k+1} \ne 0, \arg(z_{2k+1}) = 0\},\$ $\underline{e}^{4k+1} = \{(z_1, \dots, z_{2k+2}, 0, \dots, 0); z_{2k+1} \ne 0, z_{2k+2} \ne 0,\$ $\arg(z_{2k+1}) = \arg(z_{2k+2}) = 0\},\$ $\underline{e}^{4k+2} = \{(z_1, \dots, z_{2k+2}, 0, \dots, 0); z_{2k+1} \ne 0, 0 < \arg(z_{2k+1}) < \pi,\$ $z_{2k+2} \ne 0, \arg(z_{2k+2}) = 0\},\$

and their images in N^n by the natural projection $S^{4n+3} \rightarrow N^n$ are denoted by e^{4k} , e^{4k+1} and e^{4k+2} respectively, here we regard H as the complex 2-space by the replacement q=z+z'j. Then it is easy to check the following proposition.

Proposition 3.1. $\{e^{4k}, e^{4k+1}, e^{4k+2}; 0 \le k \le n\}$ gives a CW-decomposition of N^n .

Remark that the above CW-decomposition satisfies the condition that the 4m+2-skeleton of N^n is N^m for $0 \le m \le n$.

It is easy to show that the Serre spectral sequence of the fibration

$$N^0 = RP^2 \longrightarrow N^n \longrightarrow HP^n$$

is trivial and therefore we have the following proposition.

Proposition 3.2. For any coefficients A, we have

$$H^*(N^n; A) \cong H^*(HP^n; \mathbb{Z}) \otimes H^*(RP^2; A)$$

Let K_F be real $(F = \mathbb{R})$, complex $(F = \mathbb{C})$ or symplectic $(F = \mathbb{H})$ K-theory

and θ_F be the representation

$$N(S^1) \xrightarrow{\text{quotient}} N(S^1)/S^1 = O(1) \subset O_F(1)$$

and $\hat{\theta}_F$ be the associated *F*-line bundle

$$S((n+1)H) \times F \mod N(S^1) \longrightarrow N^n.$$

Proposition 3.3. There exists a split exact sequence

$$0 \longrightarrow K_F(HP^n) \longrightarrow K_F(N^n) \longrightarrow Z_{2^{f(n;F)}} \longrightarrow 0,$$

where $f(n; \mathbf{R}) = 2[n/2] + 2$, $f(n; \mathbf{C}) = n+1$, $f(n; \mathbf{H}) = 2[(n+1)/2]$ and the reduced element $\hat{\theta}_F - 1 \in \tilde{K}_F(N^n)$ generates the direct summand $Z_{2f(n;F)}$. Here [a] denotes the greatest integer which does not exceed a.

Proof. (i) $F = \mathbb{C}$ -case. Consider the commutative triangle

where $\pi_1 = \pi(S^1, N(S^1)), \pi_2 = \pi(N(S^1), S^3)$ and $\pi_3 = \pi(S^1, S^3)$. Let η_{2n+1} be the canonical complex line bundle over CP^{2n+1} . Put $\mu = \eta_{2n+1} - 1$ $\in \tilde{K}_{\mathbf{C}}(CP^{2n+1})$ and $v_n = \xi_n(S^3)_{\mathbf{C}} - 2 \in \tilde{K}_{\mathbf{C}}(HP^n)$. Then it is well-known that

$$K_{c}(CP^{2n+1}) = \mathbb{Z}[\mu]/\mu^{2n+2},$$

$$K_{c}(HP^{n}) = \mathbb{Z}[\nu_{n}]/\nu_{n}^{n+1},$$

$$\pi_{3}^{*}(\xi_{n}(S^{3})_{c}) = \eta_{2n+1} \oplus \bar{\eta}_{2n+1}$$

where - denotes the complex conjugation. Since

$$\pi_3^{!}(v_n) = \mu + \bar{\mu} = \mu^2 - \mu^3 + \dots - \mu^{2n+1},$$

the image $Im\pi_3^{!}$ of $\pi_3^{!}$ is a direct summand of $K_{\mathbf{c}}(CP^{2n+1})$. In the commutative diagram

STABLE HOMOTOPY TYPES

$$\begin{split} K_{\mathbf{C}}(HP^{n}) &\longrightarrow K_{\mathbf{C}}(HP^{n}) \otimes Q \xrightarrow{ch} H^{*}(HP^{n};Q) \\ & \downarrow^{\pi_{2}^{1}} & \downarrow^{\pi_{2}^{1} \otimes Q} & \downarrow^{\pi_{2}^{*}} \\ K_{\mathbf{C}}(N^{n}) \xrightarrow{} K_{\mathbf{C}}(N^{n}) \otimes Q \xrightarrow{ch} H^{*}(N^{n};Q) \end{split}$$

 π_2^* is an isomorphism by (3.2) and then $\pi_2^!$ is monomorphic and the cokernel of $\pi_2^!$ is finite, where *ch* denotes the Chern character. And therefore $Im\pi_3^!$ and $Im\pi_1^!$ have the same rank. Then, since $Im\pi_3^! \subset Im\pi_1^!$ and $Im\pi_3^!$ is a direct summand of the free module $K_{\rm C}(CP^{2n+1})$, we know that $Im\pi_3^! = Im\pi_1^!$ and therefore $\pi_2^!$ is an isomorphism onto a direct summand of $K_{\rm C}(N^n)$.

By definition, we have

$$\pi_2^!(\hat{\theta}_{\mathbf{C}}-1)=0,$$

and then the aboves imply that $\hat{\theta}_c - 1$ has a finite order. Put $\sigma = \pi(\mathbb{Z}_4, S^1)^{:} \mu \in K_c(L^{2n+1}(4))$. It is easy to see that

$$\pi(\mathbb{Z}_4, N(S^1))^{!}(\widehat{\theta}_{\mathbf{C}}-1) = \sigma^2 + 2\sigma.$$

Since the order $\#(\sigma^2 + 2\sigma)$ of $\sigma^2 + 2\sigma$ is 2^{n+1} [14, Th. A], $\#(\hat{\theta}_c - 1)$ is a multiple of 2^{n+1} .

Let $\{E_r\}$ be the Atiyah-Hirzebruch spectral sequence for $K^*_{\mathbf{C}}(N^n)$. Then $E^{p,q}_{\mathbf{2}} = H^p(N^n; K^q_{\mathbf{C}})$ and

Tor
$$(K_{\mathbf{c}}(N^n)) \leq$$
Tor $(\sum_{p} E_2^{p,-p}) =$ # $\sum_{k=0}^{n} E_2^{4k+2,-4k-2} = 2^{n+1}$

by (3.2), where Tor(A) denotes the torsion submodule of a module A. Hence $#(\hat{\theta}_{c}-1)$ is a divisor of 2^{n+1} . Therefore $#(\hat{\theta}_{c}-1)=2^{n+1}$ and $\hat{\theta}_{c}-1$ generates Tor($K_{c}(N^{n})$). This completes the proof of the proposition for $F=\mathbb{C}$.

Remark. (3.2) implies that the above spectral sequence collapses. (ii) $F = \mathbf{R}$ -case. Let $c: K_{\mathbf{R}} \to K_{\mathbf{C}}$ be the complexification and $r: K_{\mathbf{C}} \to K_{\mathbf{R}}$ be the real restriction. Since $r \circ c = 2$ and $c(\hat{\theta}_{\mathbf{R}} - 1) = \hat{\theta}_{\mathbf{C}} - 1$, we have

$$\#(\hat{\theta}_{\mathbf{R}}-1)=2^{n+1}$$
 or 2^{n+2}

by (i).

Consider the Atiyah-Hirzebruch spectral sequence $\{_{\mathbf{R}}E_r\}$ for $K_{\mathbf{R}}^*(N^n)$.

Then $_{\mathbf{R}}E_2^{p,q} = H^p(N^n; K_{\mathbf{R}}^q)$ and

$$\# \operatorname{Tor} \left(K_{\mathbf{R}}(N^{n}) \right) \leq \# \operatorname{Tor} \left(\sum_{n} \mathbb{R} E_{\infty}^{p,-p} \right).$$

Since the rank of $K_{\mathbf{R}}(N^n)$ equals the rank of $K_{\mathbf{C}}(N^n)$, n+1, we have

$${}_{\mathbf{R}}E_{\infty}^{4k,-4k}\cong Z \qquad \text{for} \quad 0\leq k\leq n,$$

and then

$$\# \operatorname{Tor}\left(\sum_{p \in \mathbb{R}} E_{\infty}^{p,-p}\right) = \# \operatorname{Tor}\left(\sum_{p \in \mathbb{1}, 2(8)} E_{\infty}^{p,-p}\right) \leq \# \sum_{p \in \mathbb{1}, 2(8)} E_{2}^{p,-p} = 2^{2\left\lfloor \frac{n+2}{2} \right\rfloor}.$$

Then we have

Tor
$$(K_{\mathbf{R}}(N^n)) \leq 2^{2[(n+2)/2]}$$
.

Since

$$f(n; \mathbf{R}) = 2[(n+2)/2] = \begin{cases} n+1 & \text{if } n \text{ is odd} \\ n+2 & \text{if } n \text{ is even,} \end{cases}$$

we know that

$$#(\hat{\theta}_{\mathbf{R}}-1)=2^{n+1} \quad \text{for} \quad n \text{ odd.}$$

An easy computation shows that

$$H^*(N^{2m+1}, N^{2m}; A) \cong H^*(HP^{2m+1}, HP^{2m}; \mathbb{Z}) \otimes H^*(RP^2; A)$$

and then by the Atiyah-Hirzebruch spectral sequence, we have

$$K_{\mathbf{R}}^{\pm 1}(N^{2m+1}, N^{2m}) = 0, \quad K_{\mathbf{R}}(N^{2m+1}, N^{2m}) \cong \mathbb{Z}.$$

Then the long exact sequence of the pair (N^{2m+1}, N^{2m}) induces the following short exact sequence

$$0 \longrightarrow K_{\mathbf{R}}(N^{2m+1}, N^{2m}) \longrightarrow K_{\mathbf{R}}(N^{2m+1}) \xrightarrow{\iota^{1}} K_{\mathbf{R}}(N^{2m}) \longrightarrow 0.$$

Then $\iota^{!}$ induces an isomorphism between the torsion submodules of $K_{\mathbf{R}}(N^{2m+1})$ and $K_{\mathbf{R}}(N^{2m})$. And since $\iota^{!}(\hat{\theta}_{\mathbf{R}}-1)=\hat{\theta}_{\mathbf{R}}-1$, we have

$$#(\hat{\theta}_{\mathbb{R}}-1)=2^{n+2} \qquad \text{for } n \text{ even.}$$

Therefore

$$\#(\hat{\theta}_{\mathbf{R}}-1)=2^{f(n;\mathbf{R})}$$

and $\hat{\theta}_{\mathbf{R}} - 1$ generates Tor $(K_{\mathbf{R}}(N^n))$.

Let $N_{(s)}^n$ be the s-skeleton of N^n with respect to the CW-decomposition (3.1) and $K_{\mathbf{R}}(N^n)_s$ be the kernel of the restriction $K_{\mathbf{R}}(N^n) \rightarrow K_{\mathbf{R}}(N_{(s-1)}^n)$. Then ${}_{\mathbf{R}}E_{\infty}^{s,-s} = K_{\mathbf{R}}(N^n)_s/K_{\mathbf{R}}(N^n)_{s+1}$. The facts $\operatorname{Tor}(K_{\mathbf{R}}(N^n)) = Z_{2f(n;\mathbf{R})}$ and $\#\operatorname{Tor}(\sum_{\mathbf{R}}E_{2}^{p,-p}) = 2^{f(n;\mathbf{R})}$ imply that we may think that ${}_{\mathbf{R}}E_{\infty}^{4k,-4k} \cong Z(0 \le k \le n)$ is a direct summand of $K_{\mathbf{R}}(N^n)$, that is, an element of $K_{\mathbf{R}}(N^n)_{4k}$ which represents a generator of ${}_{\mathbf{R}}E_{\infty}^{4k,-4k} = Z$ generates a direct summand of $K_{\mathbf{R}}(N^n)$.

Put $\underline{v} = \pi_2^1(v_n) \in K_{\mathbf{C}}(N^n)$. Comparing the spectral sequences for $K_{\mathbf{C}}(HP^n)$ and $K_{\mathbf{C}}(N^n)$, we know that \underline{v}^s represents a generator of $E_{\infty}^{4s,-4s} = E_2^{4s,-4s}$.

Let $c: {}_{\mathbf{R}}E_r \to E_r$ be the homomorphism induced by the complexification $c: K_{\mathbf{R}}(N^n) \to K_{\mathbf{C}}(N^n)$. Since $c: {}_{\mathbf{R}}E_2^{p,q} = H^p(N^n; K_{\mathbf{R}}^q) \to E_2^{p,q} = H^p(N^n; K_{\mathbf{C}}^q)$ is induced by the coefficients homomorphism $c: K_{\mathbf{R}}^q \to K_{\mathbf{C}}^q$, $c: {}_{\mathbf{R}}E_2^{8k+4,-8k-4} \to E_2^{8k+4,-8k-4}$ coincides with the multiplication $H^{8k+4}(N^n; \mathbb{Z}) \to H^{8k+4}(N^n; \mathbb{Z})$ by 2. Then the aboves imply that $\underline{\nu}^s$ is not in the image of $c: K_{\mathbf{R}}(N^n) \to K_{\mathbf{C}}(N^n)$ for s odd and $0 \le s \le n$. On the other hand, the image of $c: K_{\mathbf{R}}(HP^n) \to K_{\mathbf{C}}(HP^n)$ is generated by $\varepsilon_k \nu^k$ for $0 \le k \le n$, where $\varepsilon_k = 1$ for k odd or 2 for k even [20, 3.11]. Then (i) and the commutative diagram

$$\begin{array}{ccc} K_{\mathbf{R}}(HP^{n}) & \stackrel{c}{\longrightarrow} & K_{\mathbf{C}}(HP^{n}) \\ & & & \downarrow^{\pi_{2}^{1}} & & \downarrow^{\pi_{2}^{1}} \\ K_{\mathbf{R}}(N^{n}) & \stackrel{c}{\longrightarrow} & K_{\mathbf{C}}(N^{n}) \end{array}$$

imply that the composition

$$K_{\mathbf{R}}(HP^n) \xrightarrow{\pi_2^i} K_{\mathbf{R}}(N^n) \longrightarrow K_{\mathbf{R}}(N^n) / \text{Tor}$$

is an isomorphism. Therefore we have the split exact sequence

$$0 \longrightarrow K_{\mathbf{R}}(HP^n) \longrightarrow K_{\mathbf{R}}(N^n) \longrightarrow Z_{2^{f(n;\mathbf{R})}} \longrightarrow 0$$

as desired.

(iii) $F = \mathbf{H}$ -case. Identifying KSp with $K_{\mathbf{R}}^{-4}$, we can prove the proposition for $F = \mathbf{H}$ by the same methods with (ii). And we complete the proof of Proposition.

Corollary 3.4. (i) We have the exact sequence

$$0 \longrightarrow \widetilde{K}_F(N_k^{n+k}) \longrightarrow K_F(N^{n+k}) \longrightarrow K_F(N^{k-1}) \longrightarrow 0.$$

(ii) The complex conjugation $t: K_{\mathbf{c}}(N^n) \longrightarrow K_{\mathbf{c}}(N^n)$ is the identity.

Proof. (3.3) and the exact sequence

$$0 \longrightarrow \widetilde{K}_F(HP_k^{n+k}) \longrightarrow K_F(HP^{n+k}) \longrightarrow K_F(HP^{k-1}) \longrightarrow 0$$

imply (i). Since

$$t(\hat{\theta}_{\mathbf{C}}) = t \circ c(\hat{\theta}_{\mathbf{R}}) = c(\hat{\theta}_{\mathbf{R}}) = \hat{\theta}_{\mathbf{C}}$$

and $t: K_{c}(HP^{n}) \rightarrow K_{c}(HP^{n})$ is the identity function, we have (ii) by (3.3).

We shall evaluate the J-groups $J(N^n)$ [3]. Let $\Psi_F^k: K_F(X) \to K_F(X)$ be the Adams operation for $F = \mathbb{R}$ or C. By now proved Adams conjecture [2] we may identify J(X) with $\tilde{K}_{\mathbb{R}}(X)/\bigcap_e Y_e$, where $e: \mathbb{Z} \to \{0, 1, 2, ...\}$ and $Y_e = \sum_{k \in \mathbb{Z}} k^{e(k)}(\Psi_{\mathbb{R}}^k - 1)K_{\mathbb{R}}(X)$. We have

$$\Psi_{R}^{k}(\hat{\theta}_{\mathbf{R}}) = \hat{\theta}_{\mathbf{R}}^{k} = \begin{cases} \hat{\theta}_{\mathbf{R}} & \text{if } k \text{ is odd} \\ 1 & \text{if } k \text{ is even.} \end{cases}$$

Then, since $\Psi_{\mathbf{R}}^{k}$ commutes with π_{2}^{i} , we have the following proposition by (3.3).

Proposition 3.5. There exists a split exact sequence

 $0 \longrightarrow J(HP^n) \longrightarrow J(N^n) \longrightarrow Z_{2^{2[n/2]+2}} \longrightarrow 0$

and then the J-orders of the canonical symplectic line bundles over HP^n and N^n are equal.

Let B_n be the *J*-order of the canonical symplectic line bundle $\xi_n(S^3)$ over HP^n . (B_n has been computed by Sigrist and Suter [21].) Then

by Atiyah [3, 2.6] we have

Theorem 3.6. If $k-l \equiv O(B_n)$, then N_k^{n+k} and N_l^{n+1} are of the same stable homotopy type.

Using above propositions and corollary, we may prove the following theorem by following faithfully the proof of [9, §4] which has treated HP_k^{n+k} instead of N_k^{n+k} .

Theorem 3.7. If N_k^{n+k} and N_l^{m+l} are of the same stable homotopy type, then m=n and one of the following conditions hold:

(i)
$$k - l \equiv 0(B_n)$$

(ii) $k - l \equiv 0(B_{n-l})$ and $k + l \equiv 0(B_n)$.

4. Representations of the Generalized Quaternion Groups

In this section we examine the representation groups of the generalized quaternion groups $D^{*}(2^{m+1})$ according to Pitt [19].

Let $R_F(G)$ denote real $(F = \mathbb{R})$, complex $(F = \mathbb{C})$ or symplectic $(F = \mathbb{H})$ representation group of a group G. There exist the natural homomorphisms

$$R_{\mathbf{R}}(G) \xrightarrow[r]{c_{\mathbf{R}}} R_{\mathbf{C}}(G) \xrightarrow[c']{h} R_{\mathbf{H}}(G)$$

satisfying the relations

$$r \circ c_{\mathbf{R}} = 2$$
, $c_{\mathbf{R}} \circ r = 1 + t$
 $h \circ c' = 2$, $c' \circ h = 1 + t$.

where $t: R_{\mathbf{C}}(G) \to R_{\mathbf{C}}(G)$ is complex conjugation. Being $R_F(G)$ free, $c_{\mathbf{R}}$ and c' are monomorphisms and in what follows we shall identify $R_{\mathbf{R}}(G)$ and $R_H(G)$ with their images in $R_{\mathbf{C}}(G)$ under $c_{\mathbf{R}}$ and c'.

Recall that $D^*(2^{m+1}) = \{x, y; x^{2^{m-1}} = (yx)^2 = y^2\}$. We consider the following complex representations of $D^*(2^{m+1})$:

HIDEAKI ÖSHIMA

$$1 \begin{cases} x \longrightarrow 1 & b \begin{cases} x \longrightarrow -1 \\ y \longrightarrow 1 & b \end{cases} \begin{cases} x \longrightarrow -1 \\ y \longrightarrow 1 & c \end{cases}$$
$$a \begin{cases} x \longrightarrow 1 & c \begin{cases} x \longrightarrow -1 \\ y \longrightarrow -1 & c \end{cases} \begin{cases} x \longrightarrow -1 \\ y \longrightarrow -1 & c \end{cases}$$
$$d_k \begin{cases} x \longrightarrow \begin{bmatrix} \omega^k & 0 \\ 0 & \omega^{-k} \end{bmatrix} \\ y \longrightarrow \begin{bmatrix} 0 & (-1)^k \\ 1 & 0 \end{bmatrix} & k \in \mathbb{Z},$$

where ω is a primitive 2^{*m*}-th root of unity. The characters of these representations are

$$\chi_1(x^u y^v) = 1, \qquad \chi_b(x^u y^v) = (-1)^u,$$

$$\chi_a(x^u y^v) = (-1)^v, \qquad \chi_c(x^u y^v) = (-1)^{u+v},$$

$$\chi_{d_k}(x^u y^v) = (\omega^{uk} + \omega^{-uk})(1-v),$$

where $u=1, 2, ..., 2^m, v=0, 1$. Evaluating the characters, we have the relations

$$a^{2} = b^{2} = c^{2} = 1, \qquad ab = c, \qquad bc = a, \qquad ca = b,$$
4.1.
$$d_{0} = 1 + a, \qquad d_{2m-1} = b + c, \qquad d_{-k} = d_{k},$$

$$d_{2m-1+k} = d_{2m-1-k}, \qquad d_{k}d_{j} = d_{k+j} + d_{k-j}, \qquad ad_{k} = d_{k},$$

$$bd_{k} = cd_{k} = d_{2m-1-k}.$$

Then we have

4.2. $R_{\mathbf{c}}(D^{*}(2^{m+1}))$ is free abelian on 1, b and d_{k} $(0 \le k \le 2^{m-1})$ and generated multiplicatively by 1, a, b and d_{1} . Therefore t=identity on $R_{\mathbf{c}}(D^{*}(2^{m+1}))$.

4.3. $R_{\mathbf{R}}(D^*(2^{m+1}))$ is free abelian on 1, b, d_{2k} $(0 \le k \le 2^{m-2})$ and $2d_{2k+1}$ $(0 \le k < 2^{m-2})$ and generated multiplicatively by 1, a, b, $2d_1$ and d_1^2 .

4.4. $R_{\mathbf{H}}(D^*(2^{m+1}))$ is free abelian on 2, 2b, $2d_{2k}$ $(0 \le k \le 2^{m-2})$ and d_{2k+1} $(0 \le k < 2^{m-2})$.

Let $\lambda^{k}()$ be the exterior k-th power operation and put

$$\lambda_t(x) = \sum_{k \ge 0} \lambda^k(x) t^k \in R_{\mathbf{C}}(G)[[t]] \quad \text{for} \quad x \in R_{\mathbf{C}}(G).$$

Then it is well known that

$$\lambda_t(x+y) = \lambda_t(x)\lambda_t(y).$$

Hence

$$\lambda_t(nd_1) = (\lambda_t(d_1))^n = (1 + d_1t + t^2)^n.$$

Therefore we have

Lemma 4.5. $\lambda_{-1}(nd_1) = (2-d_1)^n$.

For the proof of Proposition 5.7, we prepare the following lemma. Lemma 4.6. In $R_{c}(D^{*}(2^{m+1}))$ we have the relations

$$d_{1}^{2k} = \frac{1}{2} \sum_{-\infty < t < \infty} {\binom{2k}{k+2^{m-1}t}} d_{0} + \sum_{j=1}^{2^{m-2}-1} \sum_{-\infty < t < \infty} {\binom{2k}{k+2^{m-1}t-j}} d_{2j}$$
$$+ \frac{1}{2} \sum_{-\infty < t < \infty} {\binom{2k}{k+2^{m-1}t-2^{m-2}}} d_{2m-1},$$
$$d_{1}^{2k+1} = \sum_{j=0}^{2^{m-2}-1} \sum_{-\infty < t < \infty} {\binom{2k+1}{k+2^{m-1}t-j}} d_{2j+1}.$$

Proof. Using (4.1), we may prove this by induction on k. The proof is elementary and easy, so we omit it.

5. $K_{F}(N^{n}(G))$

Hereafter G denotes a finite subgroup of S^3 .

Let V(=H) be the representation space of $d_1: G \subset S^3 = Sp(1) = SU(2)$. Put E = (n+1)V and consider the following exact sequence of equivariant K-theory. Hideaki Öshima

$$\cdots \longrightarrow KF_G(DE, SE) \longrightarrow KF_G(DE) \longrightarrow$$

$$KF_G(SE) \longrightarrow KF_G^1(DE, SE) \longrightarrow \cdots,$$

where F denotes \mathbb{R} or \mathbb{C} . By Thom isomorphism, this induces the exact sequence

Recalling that

$$KC_{G}^{-4n-4}(pt.) = R_{C}(G),$$

$$KR_{G}^{-4n-4}(pt.) = \begin{cases} R_{R}(G) & \text{if } n \text{ is odd} \\ \\ R_{H}(G) & \text{if } n \text{ is even,} \end{cases}$$

then ψ_F is the multiplication by $\lambda_{-1}((n+1)d_1) = (2-d_1)^{n+1}$ which is contained in $R_{\mathbf{R}}(G)$ (if *n* is odd) or $R_{\mathbf{H}}(G)$ (if *n* is even). When $F = \mathbb{C}$, these are as usual. In case F = R, see [19]. ϕ_F maps a representation of *G* to its associated vector bundle induced from the principal *G* bundle $S((n+1)V) \rightarrow N^n(G)$. Hence $\phi_{\mathbf{C}}(d_1) = \xi_n(G)_{\mathbf{C}}$ and $\phi_{\mathbf{R}}(r(d_1)) = \xi_n(G)_{\mathbf{R}}$. Since $KC_G^{\text{odd}}(pt) = 0$ and $KR_G^{-k}(pt) = 0$ for $k \equiv 3, 7(8)$ ([4]), we obtain the exact sequence

$$KF_{G}^{-4n-4}(pt.) \xrightarrow{\psi_{F}} R_{F}(G) \xrightarrow{\phi_{F}} K_{F}(N^{n}(G)) \longrightarrow 0,$$

and then we have

Proposition 5.1. (cf. [10], [19]) $\phi_F: R_F(G) \to K_F(N^n(G))$ induces the isomorphisms

$$\begin{split} K_{\mathbf{C}}(N^{n}(G)) &\cong R_{\mathbf{C}}(G)/(2-d_{1})^{n+1}R_{\mathbf{C}}(G) \\ \\ K_{\mathbf{R}}(N^{n}(G)) &\cong \begin{cases} R_{\mathbf{R}}(G)/(2-d_{1})^{n+1}R_{\mathbf{R}}(G) & \text{if } n \text{ is odd} \\ \\ R_{\mathbf{R}}(G)/(2-d_{1})^{n+1}R_{\mathbf{H}}(G) & \text{if } n \text{ is even.} \end{cases} \end{split}$$

In the rest of this section, we consider the case with G a generalized quaternion group $D^*(2^{m+1})$. For simplicity we will use the nota-

tions

$$N^{n}(m) = N^{n}(D^{*}(2^{m+1})), \quad N^{n+k}_{k}(m) = N^{n+k}(m)/N^{k-1}(m),$$

$$\xi_{n}(m) = \xi_{n}(D^{*}(2^{m+1})),$$

$$\delta'_{n}(m) = \xi_{n}(m)_{\mathbf{C}} - 2 \in \widetilde{K}_{\mathbf{C}}(N^{n}(m)) \text{ and }$$

$$\delta_{n}(m) = \xi_{n}(m)_{\mathbf{R}} - 4 \in \widetilde{K}_{\mathbf{R}}(N^{n}(m)).$$

The remaining part of this section is devoted to evaluate the orders of $\delta'_n(m) = \phi_{\mathbf{C}}(d_1 - 2)$ and $\delta_n(m) = \phi_{\mathbf{R}}(r(d_1) - 4)$.

Proposition 5.2.

$$\sharp \delta'_n(m)^k = \begin{cases} 2^{m+2(n-k)+1} & \text{if } 1 \leq k \leq n \\ 1 & \text{if } k > n \text{ or } n = 0. \end{cases}$$

Proof. By (5.1), we have that $\delta'_n(m)^k = \phi_{\mathbf{C}}((d_1-2))^k = 0$ for k > n or n=0. Let η be the canonical complex line bundle over $\mathbb{C}P^{2n+1}$. Put $\sigma = \pi(\mathbb{Z}_{2^m}, S^1)^* \eta - 1 \in \widetilde{K}_{\mathbf{C}}(\mathbb{L}^{2n+1}(2^m))$. Then we have

$$\pi(Z_{2^m}, D^*(2^{m+1}))^! \delta'_n(m)^k = \pi(\mathbb{Z}_{2^m}, S^1)^! \pi(S^1, S^3)^! (\xi_n(S^3)_{\mathbb{C}} - 2)^k$$
$$= (\sigma + \bar{\sigma})^k$$

 $=\sigma^{2k}$ + higher terms.

By [13, 1.1], we have

$${}^{\sharp}\sigma^{k} = \begin{cases} 2^{m+2n+1-k} & \text{if } 1 \leq k \leq 2n+1 \\ 1 & \text{if } k > 2n+1. \end{cases}$$

Then we know that $\#\delta'_n(m)^k$ is a multiple of $2^{m+2(n-k)+1}$ if $1 \leq k \leq n$.

To obtain an upper bound of $\sharp \delta'_n(m)^k$, we use the complex cobordism theory U^* .

5.3. (Conner-Floyd [7]). There exists a monomorphism $\tilde{K}_{\mathbf{c}}(X) \rightarrow U^2(X)$ for any finite connected CW-complex X.

Since the tangent bundle $\tau N^n(m)$ of $N^n(m)$ satisfies the condition

HIDEAKI ÖSHIMA

$$\tau N^n(m) \oplus 1 \cong (n+1)\xi_n(D^*(2^{m+1}))_{\mathbf{R}}$$

[22, 3.3], $N^n(m)$ is a U-manifold. Then there is a duality isomorphism

$$U^{k}(N^{n}(m)) \cong U_{4n+3-k}(N^{n}(m)),$$

and in particular we have

$$U^{2}(N^{n}(m)) \cong U_{4n+1}(N^{n}(m)).$$

Since $N^n(m)$ is the 4n+3-skeleton of $BD^*(2^{m+1}) = \bigcup_n N^n(m)$ [10], we have

$$U_{4n+1}(N^n(m)) \cong U_{4n+1}(N^{n+1}(m)) \cong \cdots \cong U_{4n+1}(BD^*(2^{m+1})).$$

Hence we have a monomorphism

$$\widetilde{K}_{\mathbb{C}}(N^n(m)) \longrightarrow U_{4n+1}(BD^*(2^{m+1})).$$

Since $H_*(BD^*(2^{m+1}); \mathbb{Z})$ is periodic ([6, XII]), the Atiyah-Hirzebruch spectral sequence for $U_*(BD^*(2^{m+1}))$ collapses ([16]) and then the Thom map $\mu: U_*(BD^*(2^{m+1})) \to H_*(BD^*(2^{m+1}))$ is epimorphic. Recall $D^*(2^{m+1})$ $= \{x, y; x^{2^{m-1}} = (yx)^2 = y^2\}$. We will identify \mathbb{Z}_{2^m} and \mathbb{Z}_4 with the subgroups of $D^*(2^{m+1})$ generated by x and y respectively. Let $i'_1: \mathbb{Z}_{2^m}$ $\to D^*(2^{m+1})$ and $i'_2: \mathbb{Z}_4 \to D^*(2^{m+1})$ be those inclusions. And let $i_1: BZ_{2^m}$ $= L^{\infty}(2^m) \to N^{\infty}(m) = BD^*(2^{m+1})$ and $i_2: BZ_4 = L^{\infty}(4) \to BD^*(2^{m+1})$ be the induced maps (see §2). And we will write the following inclusions by the same letter ϵ :

$$N^{k}(m) \subset BD^{*}(2^{m+1}), \ L^{2k}(2^{m}) \subset L^{\infty}(2^{m}) = BZ_{2^{m}}$$
 and
 $L^{2k}(4) \subset L^{\infty}(4) = BZ_{4}.$

Then { $\mu[N^k(m), \epsilon], \mu i_{1*}[L^{2k}(2^m), \epsilon], \mu i_{2*}[L^{2k}(4), \epsilon]; 0 \leq k$ } generates $\tilde{H}_*(BD^*(2^{m+1}); \mathbb{Z})$ and then { $[N^k(m), \epsilon], i_{1*}[L^{2k}(2^m), \epsilon], i_{2*}[L^{2k}(4), \epsilon]; 0 \leq k$ } generates the U_* -module $\tilde{U}_*(BD^*(2^{m+1}))$. The orders of these U_* -module generators have been computed by K. Shibata and Y. Katsube (unpublished) as follows:

5.4.
$$\#[N^k(m), \iota] = 2^{m+2k+1},$$

STABLE HOMOTOPY TYPES

This implies

$$2^{m+2n-1}U_{4n+1}(BD^*(2^{m+1})) = 0$$

and then

$$2^{m+2n-1}\tilde{K}_{\mathbf{C}}(N^n(m))=0.$$

Comparing this upper bound with the above lower bound of $\#\delta'_n(m)$, we have

5.5.
$$\#\delta'_n(m) = \begin{cases} 2^{m+2n-1} & \text{if } n > 0\\ 1 & \text{if } n = 0. \end{cases}$$

To compute $\sharp \delta'_n(m)^k$, we prepare the following lemma.

Lemma 5.6. (cf. [19, 5.2]) For $\lambda \in \mathbb{Z}$, $\alpha \in R_{\mathbb{C}}(D^*(2^{m+1}))$ and $k \ge 2$, $\lambda(d_1-2) = \alpha(d_1-2)^{n+1}$ holds if and only if $\lambda(d_1-2)^k = \alpha(d_1-2)^{n+k}$.

Proof. Only if part is trivial. (5.1) and (5.5) imply

$$2^{m+2n-1}(d_1-2) = \beta(d_1-2)^{n+1}$$
 for some $\beta \in R_{\mathbf{c}}(D^*(2^{m+1}))$,

and in particular

$$2^{m+1}(d_1-2) = \beta(d_1-2)^2$$
 for some $\beta \in R_{\mathbb{C}}(D^*(2^{m+1}))$.

Then

$$\beta^{k-1}(d_1-2)^k = 2^{k(m+1)}(d_1-2)$$

and hence

$$\beta^{k-1}(d_1-2)^{n+k} = 2^{k(m+1)}(d_1-2)^{n+1}.$$

Let $\lambda (d_1 - 2)^k = \alpha (d_1 - 2)^{n+k}$. Then

HIDEAKI ÖSHIMA

$$2^{k(m+1)}\lambda(d_1-2) = \lambda\beta^{k-1}(d_1-2)^k = \beta^{k-1}\alpha(d_1-2)^{n+k}$$
$$= 2^{k(m+1)}\alpha(d_1-2)^{n+1}.$$

But $R_{\mathbb{C}}(D^*(2^{m+1}))$ is free, so we have

$$\lambda(d_1-2) = \alpha(d_1-2)^{n+1}.$$

Thus the lemma (5.6) follows.

(5.6) implies

$$\sharp \delta'_n(m)^k = \sharp \delta'_{n-k+1}(m) \quad \text{for} \quad 1 \leq k \leq n$$

and hence

$$\#\delta'_n(m)^k = 2^{m+2(n-k)+1}$$
 for $1 \le k \le n$.

This completes the proof of the proposition.

Since d_1 is self conjugate (i.e. $t(d_1) = d_1$), we have

$$t(\delta'_n(m)) = \delta'_n(m)$$
 and $c(\delta_n(m)) = 2\delta_n(m)$.

Then we have

$$\#\delta_n(m) = 2^{m+2n-2}$$
 or 2^{m+2n-1}

Pitt [19, 5.5] has proved

$$\#\delta_1(m) = 2^{m+1}.$$

Using (4.7) and the method of Pitt, the author has checked the following proposition.

Proposition 5.7.

$$\sharp \delta_n(2) = \begin{cases} 2^{2n+1} & \text{if } n \text{ is odd} \\ 2^{2n} & \text{if } n \text{ is even} \end{cases}, \ \sharp \delta_n(3) = \begin{cases} 2^{2n+2} & \text{if } n \text{ is odd} \\ 2^{2n+1} & \text{if } n \text{ is positive} \\ and even \\ 1 & \text{if } n=0 \end{cases}$$

and

STABLE HOMOTOPY TYPES

 $\sharp \delta_2(m) = 2^{m+2}$.

In case m=2, this has been proved by Fujii [11], more generally he has determined the additive structure of $K_{\mathbf{R}}(N^n(2))$. The proof of (5.7) is long and routine and so we omit it.

Remark. By (5.7), we may conjecture that for n > 0

$$#\delta_n(m) = \begin{cases} 2^{m+2n-1} & \text{if } n \text{ is odd} \\ \\ 2^{m+2n-2} & \text{if } n \text{ is even.} \end{cases}$$

6. $J(N^n(2))$

The purpose of this section is to prove the following theorem.

Theorem 6.1. J-homomorphism $J: \widetilde{K}_{\mathbf{R}}(N^n(2)) \rightarrow J(N^n(2))$ is an isomorphism.

Since $\Psi_{\mathbf{c}}^{-1} = t$ is identity on $K_{\mathbf{c}}(N^n(m))$ by (4.2) and (5.1), we have $\Psi_F^k = \Psi_F^{-k}$ on $K_F(N^n(m))$. So we will consider Ψ_F^k for k non negative only.

Consider Adams operation $\Psi_F^h: R_F(G) \to R_F(G)$. Concerning the characters it is well known that

$$\chi_{\Psi_F^k(\theta)}(g) = \chi_{\theta}(g^k) \text{ for } \theta \in R_F(G) \text{ and } g \in G$$

(see [1, 4.4]). Then (4.2) and a short character computation show that

$$\Psi_F^k$$
 = identity on $R_F(D^*(8))$ for k odd.

Then (5.1) and the following commutative diagram

$$\begin{array}{c} K_F(N^n(2)) \xleftarrow{\phi_F} & R_F(D^*(8)) \\ \Psi_F^k & \downarrow \\ K_F(N^n(2)) \xleftarrow{\phi_F} & R_F(D^*(8)) \end{array}$$

imply

Lemma 6.2.
$$\Psi_F^k = identity$$
 on $K_F(N^n(2))$ for k odd.

Now we prove Theorem 6.1. Since $\tilde{K}_F(N_n(m))$ is a 2-primary group (see e.g. [6], [10], [11]), we have $2^N \tilde{K}_R(N^n(2)) = 0$ for some N. Let us choose $e: \mathbb{Z} \to \{0, 1, 2, ...\}$ so that $e(k) \ge N$ for k even. Then $k^{e(k)}(\Psi_R^k - 1)K_R(N^n(2)) = 0$ for k even. But for k odd Ψ_R^k is identity on $K_R(N^n(2))$ by (6.2), so that $k^{e(k)}(\Psi_R^k - 1)K_R(N^n(2)) = 0$. Thus we have $Y_e = 0$ for this function e, and hence $\bigcap Y_e = 0$ (see §3 for the definition of Y_e). This completes the proof of Theorem 6.1.

As a corollary of this theorem and (5.7), we have the following.

Corollary 6.3.

$$#J(\delta_n(2)) = \begin{cases} 2^{2n+1} & \text{if } n \text{ is odd} \\ \\ 2^{2n} & \text{if } n \text{ is even.} \end{cases}$$

7.
$$J(N^n(G))$$

In this section we evaluate the J-order of $\xi_n(G)$.

For simplicity we will use the notation $J(\tau)$ instead of $J(\tau-\dim_{\mathbf{R}}\tau)$ for a vector bundle τ .

Consider the induced homomorphism $\pi(G, S^3)^*: J(HP^n) \to J(N^n(G))$. Then, since $\pi(G, S^3)^*J(\xi_n(S^3)) = J(\xi_n(G))$, we have

Proposition 7.1. $\# J(\xi_n(G))$ is a factor of B_n .

By (5.2) and (5.7) we have

Proposition 7.2. (i) $\# J(\xi_n(D^*(2^{m+1})))$ is a factor of 2^{m+2n-1} . (ii) $\# J(\xi_n(D^*(16)))$ is a factor of 2^{2n+2} (if n is odd) or 2^{2n+1} (if n is even).

(iii) $\# J(\xi_2(D^*(2^{m+1})))$ is a factor of 2^{m+2} .

Let \mathbb{Z}_k be a cyclic subgroup of G and $\eta_{2n+1}(k)$ be the canonical complex line bundle over $L^{2n+1}(k)$. Since $\pi(\mathbb{Z}_k, G)^* \xi_n(G)_{\mathbb{C}} = \eta_{2n+1}(k) + \bar{\eta}_{2n+1}(k)$, we have

$$\pi(\mathbb{Z}_k, G)^* J(\xi_n(G)) = 2J(\eta_{2n+1}(k)).$$

Then we have

Proposition 7.3. If $Z_k \subset G$, then $\#J(\xi_n(G))$ is a multiple of $\#2J(\eta_{2n+1}(k))$.

Remark. $\sharp J(\eta_n(k))$ has been determined by Kambe-Matsunaga-Toda [12] and Kobayashi-Sugawara [15] when k=p or p^2 for p prime.

When $D^*(8) \subset G$ i.e. $G = D^*(8m)$, T^* , O^* or I^* , we obtain the following proposition by (6.3), since $\pi(D^*(8), G)^*J(\xi_n(G)) = J(\xi_n(D^*(8)))$.

Proposition 7.4. If $D^*(8) \subset G$, then $\#J(\xi_n(G))$ is a multiple of 2^{2n+1} (if n is odd) or 2^{2n} (if n is even).

As a corollary of this we have

Corollary 7.5. If $n=2^{u}+2v+1$ for $\frac{u-3}{4} \le v \le 2^{u-1}-1$ and $u \ge 1$, then $\#J(\xi_n(D^*(2^{m+1})))=2^{2n+1}$.

Proof. Recall that

$$v_2(B_n) = \max \{2n+1, 2j + v_2(j); 1 \le j \le n\}$$

(see [21]), where $v_2(w)$ denotes the largest integer for which $2^{v_2(w)}$ divides w. If n satisfies the above condition, then $v_2(B_n) = 2n+1$ and then (7.1) and (7.4) imply (7.5).

8. S-types of $N_k^{n+k}(G)$

Evaluating the (co)homology groups of $N_k^{n+k}(G)$ (see [6, XII §§7, 8, 9]), we have

Theorem 8.1. If $N_j^{m+j}(G)$ and $N_k^{n+k}(H)$ are of the same stable homotopy type, then G is conjugate with H and m=n.

By Atiyah [3, 2.6] and (2.1) we have

Proposition 8.2. If $j \equiv k$ ($\sharp J(\xi_n(G))$), then $N_j^{n+j}(G)$ and $N_k^{n+k}(G)$ are of the same stable homotopy type.

Put $B_n(m) = \min\{m + 2n - 1, v_2(B_n)\}$. Then (8.2) implies the following theorem by (5.1), (7.1) and (7.2).

Theorem 8.3. (i) If $j \equiv k(2^{B_n(m)})$, then $N_j^{n+j}(m)$ is S-equivalent to $N_k^{n+k}(m)$.

(ii) For a fixed G, all $N_n^n(G)$ are of the same stable homotopy type.

(iii) If $m=2 \text{ or } 3 \text{ and } j \equiv k \mod \begin{cases} 2^{2n+m-1} & \text{if } n \text{ is odd} \\ 2^{2n+m-2} & \text{if } n \text{ is even} \end{cases}$, then $N_j^{n+j}(m)$

is S-equivalent to $N_k^{n+k}(m)$.

For the converse of this, we have the following theorem by methods of Kobayashi-Sugawara [15, 1.1].

Theorem 8.4. If $N_j^{n+j}(2)$ and $N_k^{n+k}(2)$ are of the same stable homotopy type for $n \ge 1$, then $j \ge k(2^{2n-2})$.

Proof. Consider the Puppe exact sequence

$$\widetilde{K}_{\mathbf{C}}(S^{1} \wedge N^{n+j}(m)) \xrightarrow{(1 \wedge \iota)^{1}} \widetilde{K}_{\mathbf{C}}(S^{1} \wedge N^{j-1}(m)) \longrightarrow \widetilde{K}_{\mathbf{C}}(N^{n+j}_{j}(m))$$
$$\xrightarrow{p^{1}} \widetilde{K}_{\mathbf{C}}(N^{n+j}(m)).$$

Since Atiyah-Hirzebruch spectral sequences for $\tilde{K}_{c}(S^{1} \wedge N^{u}(m))$ and $\tilde{K}_{c}(N_{j}^{n+j}(m))$ collapse, we have $\tilde{K}_{c}(S^{1} \wedge N^{u}(m)) = \mathbb{Z}$ and $(1 \wedge \iota)^{1} = 0$. Hence above sequence induces the following exact one

$$0 \longrightarrow \mathbb{Z} \longrightarrow \widetilde{K}_{\mathbf{C}}(N_{j}^{n+j}(m)) \xrightarrow{p^{1}} \widetilde{K}_{\mathbf{C}}(N^{n+j}(m))$$

and then p^i is monomorphic on $\operatorname{Tor}(\widetilde{K}_{\mathbf{C}}(N_j^{n+j}(m)))$. Then by (6.2), we know that $\Psi_{\mathbf{C}}^{v}$ is identity on $\operatorname{Tor}(\widetilde{K}_{\mathbf{C}}(N_j^{n+j}(2)))$ for v odd. Consider the following diagram

where I indicates the Bott isomorphism. Then we have $\Psi_{c}^{v}I^{u} = v^{u}I^{u}\Psi_{c}^{v}$.

Therefore we have

8.5.
$$\Psi_{\mathbf{C}}^{2v+1} = (2v+1)^{u} \text{ on } \operatorname{Tor} (\tilde{K}_{\mathbf{C}}(S^{2u} \wedge N_{j}^{n+j}(2))).$$

If $S^u \wedge N_j^{n+j}(m)$ is homotopy equivalent to $S^v \wedge N_k^{n+k}(m)$, then v=u+4(j-k) by their cohomology groups.

Now suppose that there exists a homotopy equivalence

 $g: s^{2u+4(j-k)} \wedge N_k^{n+k}(2) \longrightarrow S^{2u} \wedge N_i^{n+j}(2)$

and consider the following commutative diagram

Then (8.5) implies that

8.6.
$$(2v+1)^{u+2(j-k)}g^{i} = (2v+1)^{u}g^{i}$$
 on $\operatorname{Tor}(\tilde{K}_{\mathbf{C}}(S^{2u} \wedge N_{j}^{n+j}(2)))$.

Since

$$\begin{split} \tilde{K}_{\mathbf{C}}(S^{2u} \wedge N_{j}^{n+j}(2)) &\cong \tilde{K}_{\mathbf{C}}(N_{j}^{n+j}(2)) \\ &\cong K_{\mathbf{C}}^{-4j}(N^{n}(2)) \quad \text{(Thom isomorphism)} \\ &\cong K_{\mathbf{C}}(N^{n}(2)), \end{split}$$

there is an element of order 2^{2n+1} in $\tilde{K}_{c}(S^{2u} \wedge N_{j}^{n+j}(2))$ by (5.2). Then (8.6) implies that

$$(2v+1)^{u+2(j-k)} - (2v+1)^u \equiv 0(2^{2n+1}),$$

that is

$$(2v+1)^{2(j-k)}-1\equiv 0(2^{2n+1}).$$

It was proved by Adams [1, 8.1] that

if
$$b = (2a+1)2^{f}$$
, then $3^{b} - 1 \equiv 2^{f+2}(2^{f+3})$.

This implies

Hideaki Öshima

 $3^{2(j-k)} - 1 \equiv 2^{\nu_2(2(j-k))+2} (2^{\nu_2(2(j-k))+3}).$

Then

$$2n+1 \le v_2(2(j-k))+2 = v_2(j-k)+3,$$

and therefore

$$j-k \equiv 0(2^{2n-2}).$$

This completes the proof of Theorem 8.4.

References

- [1] Adams, J. F., Vector fields on spheres, Ann. of Math. 75 (1962), 603-632.
- [2] —, On the groups J(X)-I, Topology 2 (1963), 181–195.
- [3] Atiyah, M. F., Thom complexes, Proc. London Math. Soc. 11 (1961), 291-310.
- [4] and Segal, G., Equivariant K-theory and completions, J. Differential Geometry 3 (1968), 1–18.
- [5] Bredon, G. E., Introduction to compact transformation groups, Academic Press, New York, 1972.
- [6] Cartan, H. and Eilenberg, S., *Homological Algebra*, Princeton Univ. Press, Princeton, New Jersey, 1956.
- [7] Conner, P. E., and Floyd, E. E., The relation of cobordism ot K-theoreis, *Lecture Notes in Math.* 28, Springer-Verlag, 1966.
- [8] Feder, S. and Gitler, S., Stunted projective spaces and the J-order of the Hopf bundle, Bull. Amer. Math. Soc. 80 (1974), 748-749.
- [9] —, The classification of stunted projective spaces by stable homotopy type, preprint.
- [10] Fujii, K., On the K-ring of S^{4n+3}/H_m , Hiroshima Math. J. 3 (1973), 251–265.
- [11] —, On the KO-rings of S^{4n+3}/H_m , Hiroshima Math. J. 4 (1974), 459–475.
- [12] Kambe, T., Matsunaga, H. and Toda, H., A note on stunted space, J. Math. Kyoto Univ. 5 (1966), 143–149.
- [13] Kawaguchi, T. and Sugawara, M., K- and KO-rings of the lens space $L^{n}(p^{2})$ for odd prime p, Hiroshima Math. J. 1 (1971), 273-286.
- [14] Kobayashi, T. and Sugawara, M., K_A -rings of lens spaces $L^n(4)$, Hiroshima Math. J. 1 (1971), 253–271.
- [15] Kobayashi, T. and Sugawara, M., On stable homotopy types of stunted lens spaces, *Hiroshima Math. J.* 1 (1971), 281–304.
- [16] Landweber, P. S., Complex bordism of Classifying spaces, Proc. Amer. Math. Soc. 27 (1971), 175–179.
- [17] Montgomery, D. and Zippin, L., *Topological transformation group*, Interscience Publishers, Inc., New York, 1955.
- [18] Orlik, P., Seifert manifolds, Lecture Notes in Math. 291, Springer (1972).

- [19] Pitt, D., Free actions of generalized quaternion groups on spheres, Proc. London Math. Soc. 26 (1973), 1-18.
- [20] Sanderson, B. J., Immersions and embeddings of projective spaces, Proc. London Math. Soc. 14 (1964), 137–153.
- [21] Sigrist, F. and Suter, U., Cross-sections of symplectic Stiefel manifolds, Trans. Amer. Math. Soc. 184 (1973), 247–259.
- [22] Szczarba, R. H., On tangent bundles of fibre spaces and quotient spaces, Amer. J. Math. 86 (1964), 685–697.
- [23] Wolf, J. A., Spaces of constant curvature, McGraw Hill, New York, 1967.