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On Stable Homotopy Types of Some
Stunted Spaces
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Hideaki OsHIMA*

1. Introduction

In this note we shall study the stable homotopy types (S-types)
of the stunted spaces N{*¥(G)=N"*¥G)/N*~1(G), where N"(G)=S*"*3
mod G are quotients of S*"*3 by free orthogonal actions of a closed
subgroup G of S3. In §2, we show that NI**(G) are homeomorphic
to the Thom spaces N"(G)*¢. If G is not finite, then G is S, S3 or
the normalizer N(S!) of S! in S3. The case with G=S! or S3 has been
treated by Feder and Gitler [8], [9]. We consider the case with G
=N(S!) in §3. The case with G=2Z, (cyclic group of order m) has
been treated in [12], [15]. On and after §4, we consider the remaining
cases, i.e. the cases with G the binary dihedral or binary polyhedral
groups (see §2 for definitions). We examine the representation groups
of the generalized quaternion groups D*(2"*1) in §4 and evaluate the
orders of some elements of Kg(N™*(D*(2m*1))) in §5 or J(N*(D*(2™*1)))
in §§6-7 and study the S-types of NI*¥(G) in the final section §8.

2. Thom Spaces and Subgroups of S3

In this note G-space means a left G-space and F-vector space (or
bundle) implies a right F-vector space (or bundle) for a field F. For
a G-space X its orbit space is denoted by XmodG and if G acts on Y
also, X x Ymod G denotes the orbit space by diagonal action. For a
vector bundle o over a finite CW-complex X, X* denotes the associated
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Thom space, that is, the one point compactification of the total space
of a.

Let Og(m) denote the orthogonal group O(m) for F=R (the real
numbers), the unitary group U(m) for F=C (the complex numbers)
and the symplectic group Sp(m) for F=H (the quaternions) in m dimen-
sions respectively. We say that a representation d: G—Og(m) of a topo-
logical group G is free if the action of G restricted to the unit sphere
S(V) is free, where V is a representation space of d with an inner prod-
uct (| ). Let kV denote the sum V@---@V (k factors) with the inner
product (a|b)=2Z(a;|b,) for a=(a,,..., ay), b=(by,..., b)ekV. For k<K,
we regard kV as a subspace of k'V by the identification (ay,..., a,)=(ay,
vees Qg 0,..., 0).

For a given free representation d: G—Og(m), we introduce the follow-
ing notations:

N*(G, d)=S((n+1)V)mod G,
NG, d)=N""¥G, d)|N*1(G, d),
and &,(G, d) means the canonical bundle
S(n+1)V)x Vmod G — N"(G, d).
Then we have the following theorem.

Theorem 2.1. There exists a homeomorphism

NG, d)~ N"(G, d)*&n(G:d)

Proof. Consider the map f:S(n+1)V)xDkV)—-S(n+k+1)V) de-
fined by

S, )=, xA)

where D(kV) denotes the unit disk of kV and x=(x,..., X,) € S((n+1)V),
V=0s--» Yu—1) ED(kV), A= JT=(y]y) and xA=(xoh,..., x,4). It is easy
to show that f defines a G-equivariant homeomorphism

S((n+DV)x (D(kV)—=S(kV)) — S((n+k+1)V)—S(kV)
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and then we have a homeomorphism
S(n+1)V)x(DkV)—=S(kV))mod G — (S((n+k+1)V)—S(kV))mod G.

S((n+1DV)x(D(kV)—S(kV))mod G may be identified with the total space
of k&,(G, d). Compactifying the both spaces by adding one point, we
have

N"(G, d)k{n(G,d)zN;cﬁk(G, d)

as desired.

For example, we have
Stk = §ntk|Sk=1 Sk §ntk
for the trivial representation 1-0(1) and
FPytk=Fprk|FPk=1 3 (FPr)h
for the identity O (1)—0Og(1) and
Ly+k(m)= Lrtk(m)/L*F=1(m) = L"(m)**

for Z,=U(l), where FP" indicatcs the F-projective space and L"(m)
the standard mod m lens space. These are well-known.

We say that two spaces X and Y are stably homotopy equivalent
(S-equivalent) if the suspensions S*A X and S?AY are homotopy equiva-
lent for some u and v.

The classifications of S-types of Sp**, CPi*k and HP}** have been
completed. The sphere case is trivial and the complex or quaternion
projective space case has been done by Feder and Gitler [8], [9].

It is known that which compact group admit a free representation.
Finite groups admitting a free representation are listed in [23, Chapter
6]. If a compact group G including infinite elements has a free repre-
sentation, then G is a Lie group ([17, V Th. 2]) and must be S?, S3
or the normalizer N(S') of S* in S3 [5, III 8.5].

From now on, we will treat the case with G a closed subgroup of
S3 and d the inclusion d,: G=S3=Sp(l). And we will use the notations:
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N*"(G)=N"G, d,),
N G)= NG, dy),

én(G)= én(Gs di) ’
£,(G)p, the underlying F-vector bundle of &,(G).

(G, H): N/ (G)—N"(H), the natural projection for Gc H=S3. Closed
subgroups of S3 are maximal tori S!, N(S!')’s (any two of them are
conjugate each other respectively), S3 itself or finite subgroups. Con-
cerning finite subgroups of S3, we have

2.2 (Wolf [23, 2.6.7]). Every finite subgroup of S3® is a cyclic,
binary dihedral or binary polyhedral group. If two finite subgroups
of S3 are isomorphic, they are conjugate in S3.

We remark that if two subgroups G, H of S3 are conjugate, then
N*(G) and N"(H) are naturally homeomorphic, and this homeomorphism
induces the isomorphism between &,(G) and &,(H). Thus we may assume
that N*(G) and &,(G) are defined for the conjugate classes of subgroups
of S3. So we describe the subgroups of S3 in terms of generators and
relations as follows: the binary dihedral group D*(4m) of order 4m
(m=2), the binary tetrahedral group T* of order 24, the binary octa-
hedral group O* of order 48 and the binary icosahedral group I* of
order 120 are given by

D*(4m): xm=(yx)?=y?,

T*  :x3=(yx)P=y?, y*=1,
0*  ixt=(x)3P=y yt=1,
o ixS=(yx)?=y?, yt=1

(see [23] or [18, 6.2]). T*, O* and I* are called the binary polyhedral
groups. D*(2m*1!) is called the generalized quaternion group.
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3. N~(N(S8'))

In this section we examine the S-types of NIt¥(N(S1)).
For simplicity we use the notations

N"=N"(N(81)), Ni**=Np"K(N(§1)).
For 0<k<n, we define the cells in S((n+1)H)=S4"*3 as follows:
e**={(z15-» Zags1s 05eees 0)5 Zp5 01 #0, arg (25,4 1)=0},
et l={(z1,..., Zag12s 0sens 0); Z2p 1 1 #0, 25442 #0,
arg(za+1)=arg(zz+2)=0},
et 2={(z1,..., Zapy2s 0yerns 0)5 2941 #0, O<arg(z,,4 1)<,
Zok+2 70, arg(zy,42)=0},

and their images in N" by the natural projection S#"*3— N" are denoted
by e*k, e***1 and e***2 respectively, here we regard H as the complex
2-space by the replacement g=z+2z'j. Then it is easy to check the fol-
lowing proposition.

Proposition 3.1. {e**, e*kr1 e4k*2.0<k<n} gives a CW-decomposi-
tion of N".

Remark that the above CW-decomposition satisfies the condition
that the 4m+2-skeleton of N* is N™ for 0<m<n.
It is easy to show that the Serre spectral sequence of the fibration

NO=RP?2 —» N" — HP*®
is trivial and therefore we have the following proposition.
Proposition 3.2. For any coefficients A, we have
H*(N"; A)~H*(HP"; Z)YQ H¥(RP?; A).

Let Ky be real(F=R), complex(#=C) or symplectic(F=H) K-theory



502 Hipeakt OsHIMA
and 0y be the representation

N(S") guotrene N(S1)/ST=0(1) = 0(1)
and 8, be the associated F-line bundle

S((n+1)H)x Fmod N(S!) — N™.

Proposition 3.3. There exists a split exact sequence
0 —_—> KF(HPn) —_— KF(N") —_— Zz_f(n;F) h— 0,

where f(n; R)=2[n/2]1+2, f(n; C)=n+1, f(n; H)=2[(n+1)/2] and the
reduced element 0p—1e K (N") generates the direct summand Z,;c;r.
Here [a] denotes the greatest integer which does not exceed a.

Proof. (i) F=C-case. Consider the commutative triangle

K (CP2n+1)

1
Ty .
3

1
K¢(N™) «"— Ko(HP™)

where 7, =n(S!, N(S1)), n,=n(N(S'), S?) and mny=n(S!, S3). Let 95,4,
be the canonical complex line bundle over CP2"*i, Put u=#n,,,,—1
€ K (CP2+1) and v,=¢,(S3)c—2€ Ke(HP"). Then it is well-known that

K(CP2mt ) =Z[p]/u>"*2,
K(HP")=Z[v,]/v;*,
T5((S3) ) =M2n+ 1M 2n+1
where ~ denotes the complex conjugation. Since
ny(v)=p+E=p2 —p3 4 —p2rtl,

the image Imny of =y is a direct summand of K (CP2?"t!)., In the
commutative diagram
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K(HP") — K(HP")®Q —< H*(HP"; Q)

J’n; lni@e 1@

K(N") —— K(N)®Q —<ts H*(N"; Q)

n% is an isomorphism by (3.2) and then =% is monomorphic and the
cokernel of = is finite, where ch denotes the Chern character. And
therefore Imny and Immn} have the same rank. Then, since Imny<Imn)
and Immy is a direct summand of the free module K (CP2"*1), we
know that Imny=Imn! and therefore n}, is an isomorphism onto a direct
summand of K(N").

By definition, we have

71:12(’90 - 1) = 09

and then the aboves imply that §;—1 has a finite order. Put oc=n(Z,,
SY'ue Kg(L?m+1(4)). Tt is easy to see that

1(Zy, N(S))!(0c—1)=02%+20.

Since the order #(62+4206) of 62+42¢ is 27t [14, Th. A], #(0c—1) is a
multiple of 27+1,

Let {E,} be the Atiyah-Hirzebruch spectral sequence for KX(N").
Then E%-9=HP(N"; K&) and

# Tor(Ko(N") <# Tor (X EZ-") =43 E4t+2,~4k=-2—)n+1
P k=0

by (3.2), where Tor(A) denotes the torsion submodule of a module A.
Hence #(fg—1) is a divisor of 27*!, Therefore #(0o—1)=2"*! and O,
—1 generates Tor(Kc(N"). This completes the proof of the proposition
for F=C.
Remark. (3.2) implies that the above spectral sequence collapses.
(ii) F=R-case. Let ¢: Kg—~K; be the complexification and r: K,
—Kpg be the real restriction. Since roc=2 and c(fg—1)=0;—1, we have

$(Og—1)=2m*1  or  2n+2

by (1.
Consider the Atiyah-Hirzebruch spectral sequence {gxE,} for K¥(N").
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Then xE%%=HP(N"; K{) and
$Tor (Kg(N")=# Tor(g‘,RE{_’g"’).

Since the rank of Kgx(N”*) equals the rank of K (N®), n+1, we have
pE4k—4kx7 for 0Lk<n,

and then

$Tor(SRE%)=#Tor( Y gEL )<t ¥ gE37=22["7"]
P 1,2(8)

= p=1,2(8)
Then we have
# Tor (Kx(N7)) £22L(n+2)/2],

Since

n+1 if nis odd
f(n; R)=2[(n+2)/2]= o
n+2 if n is even,

we know that
#(0g—1)=2*1  for n odd.
An easy computation shows that
H¥(N2m+t1 N2m; Ay H¥(HP?m+1, HP?*™; Z)QH*(RP?*; A)
and then by the Atiyah-Hirzebruch spectral sequence, we have
KEY(N2mt1 N2my=0, Kg(N2m+tl N2my~7Z,

Then the long exact sequence of the pair (N27*t!, N2m) induces the
following short exact sequence

00— KR(NZ'"+1, NZm) SN KR(NZ'”H) __L_'__) KR(NZ"') —0.

Then ¢ induces an isomorphism between the torsion submodules of
Kg(N2mt1) and Kgx(N2™). And since ¢/(fg—1)=0g—1, we have

#(0g—1)=2"*2  for n even.
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Therefore
$(0g—1)=27 (R

and Oz—1 generates Tor (Kg(N™)).

Let NY;, be the s-skeleton of N” with respect to the CW-decomposi-
tion (3.1) and Kgx(N"), be the kernel of the restriction Kg(N")—Kg(N{-1))-
Then gES*=Kg(N")/Kg(N")4;. The facts Tor(Kg(N")=Z,swmr and
$Tor (X grEY?)=2/R) imply that we may think that gE4k-4k~Z(0<
kZn) ips a direct summand of Kgx(N"), that is, an element of Kg(N"),
which represents a generator of zE4k-—4k=Z generates a direct summand
of Kgx(N™).

Put p=m}(v,) € Kc(N"). Comparing the spectral sequences for
K (HP™) and Kc(N"), we know that p° represents a generator of E&s:—4s
=E454s,

Let c: jRE,—E, be the homomorphism induced by the complexifica-
tion ¢: Kg(N")—»Ko(N"). Since c:gxE51=HP(N"; K§)—>E59=HP(N"; K&) is
induced by the coefficients homomorphism c: K§E—KE, c: gE§kt4,~8k=4
—~ E§k+4,-8k=4 coincides with the multiplication H8*+4(N"; Z)— H8k*4(Nn,;
Z) by 2. Then the aboves imply that v® is not in the image of c:
Kg(N")»K(N") for s odd and 0<s=<n. On the other hand, the image
of c¢: Kx(HP")—K (HP") is generated by gu* for 0<k=<n, where ¢=1
for k odd or 2 for k even [20, 3.11]. Then (i) and the commutative
diagram

Ku(HP") —< Ko(HP")

b

KR(N") — KC(N")

imply that the composition

Ke(HP") 2, Ko(N") — Kg(N™)/Tor
is an isomorphism. Therefore we have the split exact sequence
0 — Kgj(HP") — Kx(N") —> Zystim — 0

as desired.
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(iii) F=MH-case. Identifying KSp with Kgz*, we can prove the
proposition for F=H by the same methods with (ii). And we com-
plete the proof of Proposition.

Corollary 3.4. (i) We have the exact sequence
0 — Ky(Np*¥) — Kx(N"**) — K(N*1) — 0.
(i) The complex conjugation t: Ko(N")— K(N")is the identity.
Proof. (3.3) and the exact sequence
0 — K (HP}**) — Ky(HP"**¥) — K (HP* 1) — 0
imply (i). Since
#(8c)=toc(Bg) = c(Bp) = O

and t: K(HP")—»K(HP") is the identity function, we have (ii) by (3.3).

We shall evaluate the J-groups J(N¥) [3]. Let P&: K(X)—Kg(X)
be the Adams operation for F=R or C. By now proved Adams con-
jecture [2] we may identify J(X) with Kg(X)/N\Y, where e:Z-{0,1,
2,...} and Y= ke®)(Pk—1)Kgx(X). We have

kez
[y if k is odd
PE(Op)= 0 =
1 if k is even.

Then, since Y% commutes with 75, we have the following proposition by
3.3).

Proposition 3.5. There exists a split exact sequence
0— J(HP") — J(N") e Z22[n/2]+2 —0

and then the J-orders of the canonical symplectic line bundles over
HP" and N™ are equal.

Let B, be the J-order of the canonical symplectic line bundle &,(S3)
over HP». (B, has been computed by Sigrist and Suter [21].) Then
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by Atiyah [3, 2.6] we have

Theorem 3.6. If k—I1=0(B,), then NI** and N™! are of the same
stable homotopy type.

Using above propositions and corollary, we may prove the following
theorem by following faithfully the proof of [9, §4] which has treated
HPp** instead of Nptk,

Theorem 3.7. If Ni*k and Np*' are of the same stable homotopy
type, then m=n and one of the following conditions hold:

(i) k—1=0(B,)

(i) k—I=0(B,_) and k+I=0(B,).

4. Representations of the Generalized Quaternion Groups

In this section we examine the representation groups of the general-
ized quaternion groups D*(2m*1) according to Pitt [19].

Let Ri(G) denote real(F=R), complex(F=C) or symplectic(F=H)
representation group of a group G. There exist the natural homomor-
phisms

‘R h
Rx(G) =2 Ro(G) =2 Ru(G)

satisfying the relations
rocg =2, cger=1+t
hoc'=2, c'oh=1+t,

where t: R¢(G)—Re(G) is complex conjugation. Being Ry (G) free, cgx
and ¢’ are monomorphisms and in what follows we shall identify Rg(G)
and Ry(G) with their images in Rc(G) under cx and ¢’

Recall that D*Qm*1)={x, y; x2" '=(yx)2=y2}. We consider the
following complex representations of D*(2mt1):
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x— -1
y— 1
x ——1

y—-—1

M wk 0
X —
| 0 w7k
d, , keZ,
0 (—1)k
y———)
! 0

where o is a primitive 2m-th root of unity. The characters of these

representations are
x(xty=1, x(x*y?)=(—1)%,
Xa(xuy")=(— l)v’ Xc(x"yu)=(— 1)u+v’

Xa(x*y)=(0"* + 0™"*)(1-1),

where u=1,2,...,2m, v=0, 1. Evaluating the characters, we
relations
a’l=b2=c2=1, ab=c, bc=a,
41. dy=1+a, dym-1=b+c, d_,=d,
dym-14x=dam-1_, didj=dy;tdi—j, ady=d,

bdk=Cdk=d2m-l_k-

Then we have

have the

ca=Dh,

4.2. R(D*(Q2m*1)) is free abelian on 1, b and d, (0=kZ2"1) and

generated multiplicatively by 1,a,b and d,.
R¢(D*@2m+1)).

Therefore t=identity on

4.3. Rg(D*(2m*1)) is free abelian on 1,b,d,, (05k<27"2) and 2d,; .,
(0Lk<2m2) and generated multiplicatively by 1, a, b, 2d, and d3.
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4.4. Ryx(D*(2m+1)) is free abelian on 2,2b,2d,, (0£k=2""2) and
davr (0Sk<2m2),

Let A¥( ) be the exterior k-th power operation and put

Adx) =k§ol"(x)t" € R¢(G)[[t]] for xeR¢(G).

Then it is well known that
(x4 y) = 2{X)A(y) -
Hence
Alnd )= (d )= +dt+12)".
Therefore we have

Lemma 4.5. A_y(nd)=@2—d,)".

For the proof of Proposition 5.7, we prepare the following lemma.

Lemma 4.6. In Rc(D*(2m*1!)) we have the relations

_1 2k 2m - 2k
ait=y 5 (ramen)dor % T (reon;)hs

j=1 —w<t<ow

1
+ 2 _w<2< <k+2m—1t Qm= 2>d2'" 1,

om 2_1 2k+1
2k+1
aiti= j;o —oo<zz<oo<k+2m_lt ])dZJH

Proof. Using (4.1), we may prove this by induction on k. The
proof is elementary and easy, so we omit it.

5. Ke(N*(6))

Hereafter G denotes a finite subgroup of S3.

Let V(=H) be the representation space of d,: G=S3=Sp(1)=SU(Q2).
Put E=(n+1)V and consider the following exact sequence of equivariant
K-theory.
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«««—— KF(DE, SE) —> KFyDE) —>
KFySE) — KF{DE, SE)—>---,

where F denotes R or C. By Thom isomorphism, this induces the
exact sequence

«o— KFg#"=4(pt.) L5 RK(G) 255 K(N"(G))
— KF{4m4(pt) —---.
Recalling that
KCe*"=4(pt.)=Rc(G),
Rz (G) if n is odd

KR(‘;“"“'(pt.):{
Ry(G) if n is even,

then Y is the multiplication by A_,((n+1)d,)=Q2—d,)**! which is con-
tained in Rgi(G) (if n is odd) or Rgxg(G) (if n is even). When F=C,
these are as usual. In case F=R, see [19]. ¢, maps a representation
of G to its associated vector bundle induced from the principal G bundle
S((n+ 1)V)->N"(G). Hence ¢(d)=E(,(G)e and ¢gr(r(d,)=E(G)g.  Since
KC@i(pt.)=0 and KRg*(pt)=0 for k=3, 7(8) ([4]), we obtain the cxact
sequence

KFg*m=4(pt.) L=, R(G) 25 K(N"(G)) — 0,
and then we have

Proposition 5.1. (cf. [10], [19]) ¢F: Ri{(G)— K(N"(G)) induces the
isomorphisms

K(N"(G))=R(G)/(2—d,)"™ ' Re(G)

Rgr(G)/(2—d )" 1Rgx(G) if nis odd
Kx(N"(G))= C
Rr(G)/(2—d )" Rx(G) if nis even.

In the rest of this section, we consider the case with G a gener-
alized quaternion group D*(2m*!). For simplicity we will use the nota-
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tions
N7(m)=N"(D*2"*1)), Np**(m)=N"+¥m)/N*~*(m),
Eu(m)=&,(D*(2* 1)),
8, (m)=¢,(m)c—2€ Ke(N"(m)) and
8,(m)=¢,(m)g—4 € Kg(N"(m)).

The remaining part of this section is devoted to evaluate the orders
of &,(m)=¢c(d,—2) and 5,(m)=¢r(r(d;)—4).

Propesition 5.2.

2m+2(n—k)+1 lf lékén
#o,(m)*=

if k>n or n=0.

Proof. By (5.1), we have that & ,(m)*=¢c((d;—2))¥=0 for k>n
or n=0. Let  be the canonical complex line bundle over CP2"*1, Put
6=1(Zm S1)*n—1e Ke(L2"*1(2™)). Then we have

M(Zym, D¥" 1)) S (m)E =1(Zym, S1)'n(S?, §3)'(E(S%)c—2)
=(o+G)*
=02*+ higher terms.
By [13, 1.1], we have

2mt2nti-k if 1<ks2n+1
fok=
1 if k>2n+1.
Then we know that #§,(m)* is a multiple of 2m*2(=k*+1 jf 1<k<n.
To obtain an upper bound of #J,(m)*, we use the complex cobordism
theory U*.

5.3. (Conner-Floyd [7]). There exists a monomorphism K(X)—
U2(X) for any finite connected CW-complex X.

Since the tangent bundle tN"(m) of N"(m) satisfies the condition
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N"(m)@1=(n+ 1DE(D*(2™ )k

[22, 3.3], N"(m) is a U-manifold. Then there is a duality isomorphism

UKN"(m)) =2 U 44 3 -1 (N"(m)),
and in particular we have

UA(N"(m)) = U g+ 1(N"(m)).
Since N"(m) is the 4n-+ 3-skeleton of BD*(Z'"+1)=\"JN"(m) [10], we have

U A(N"(m) 2 U gy (N* 1 (m)) 2 o 2 Uy (BDH2)).
Hence we have a monomorphism
Ke(N"(m)) — Uy (BD¥2"1)).

Since H . (BD*(2m*1); Z) is periodic ([6, XII]), the Atiyah-Hirzebruch
spectral sequence for U.(BD*(2m*1)) collapses ([16]) and then the Thom
map pu: Ugu(BD*(2"*1))—H,(BD*(2m*1)) is epimorphic. Recall D*(2m*1)
={x, y; x2" '=(yx)2=y2}. We will identify Z,. and Z, with the
subgroups of D*(2m*1!) generated by x and y respectively. Let i}:Z,m
—D*(2m*1) and i,: Z,—~»D*(2m*1) be those inclusions. And let i,;: BZ,.
=L*(2")—»N*(m)=BD*(2"*1) and i,: BZ,=L®(4)— BD*(2"*') be the
induced maps (see §2). And we will write the following inclusions
by the same letter ¢:

N¥m)<= BD*(2m+1), L2k2")c L*(2")=BZ,~ and
L?¥(4)c L~(4)=BZ,.

Then {u[N*(m), <], pi;[L2%Q2™), ], pi<[L2*(4), []; 0k} generates H,
(BD*(2m*1); Z) and then {[N¥(m), c], i;+[L2*(2™), ], i,«[L?*(4), c]; 0= k}
generates the U,-module U, (BD*(2m*1)). The orders of these U,-
module generators have been computed by K. Shibata and Y. Katsube
(unpublished) as follows:

5.4. H[N (m), (]=2m+2k+1,
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2 if k=0
$i,[L2+2m), (]= , and
2m+2k—1 H" k>0

$i,u[L24(4), (]=22k+1,
This implies
2L 4y (BDH2" 1)) =0
and then
2m+2n=1 K (N"(m))=0.

Comparing this upper bound with the above lower bound of #d,(m),
we have

2m+2n-—1 lf n>0
5.5. $o0,(m) =
1 if n=0.

To compute #d,(m)¥, we prepare the following lemma.

Lemma 5.6. (cf. [19, 5.2]) For Ae€Z,axeR(D*Q2m*1)) and k=2,
Md,=2)=a(d,—2)"*! holds if and only if Md,—2)k=o{d,—2)"*%.

Proof. Only if part is trivial. (5.1) and (5.5) imply
2mt2n=1(d, — D) =p(d, —2)"** for some feRg(D*2"*1)),
and in particular
2mti(d, —2)=p(d,—2)?> for some feRe(D*Q2m1)).
Then
Bri(dy —2)k=2km+1)(d, —2)
and hence
BE1(d — 2tk =2kt 1)(d | —2)nH1,

Let A(d,—2)k=a(d,—2)"**. Then
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2kt )(d, —2)=AB*1(dy —2)F=fF tod, —2)t*
=2k(m+1)g(d, —2)n+1,
But Rg(D*(2m+1)) is free, so we have
AMd,—2)=a(d,—2)"+1,

Thus the lemma (5.6) follows.
(5.6) implies

$6,(m)c =40, _1s(m) for 15k<n
and hence
#5;l(m)k=2m+2(n—k)+l for lékén

This completes the proof of the proposition.
Since d, is self conjugate (i.e. #(d,)=d,), we have

#(0;(m))=0,(m) and ¢(0,(m))=26,(m).
Then we have
#0,(m)=2m+2n=2  or  2mt2n-l
Pitt [19, 5.5] has proved
$6,(m)=2m+1,

Using (4.7) and the method of Pitt, the author has checked the follow-
ing proposition.

Proposition 5.7,

22n+1 if n is odd { 227%2 if n is odd
#0,(2)= , $0,(3)=/
22 if n is even ) 220+1 if p is positive
and even
[ | if n=0

and
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#,(m)=2m+2,

In case m=2, this has been proved by Fujii [11], more generally
he has determined the additive structure of Ky(N"(2)). The proof of
(5.7) is long and routine and so we omit it.

Remark. By (5.7), we may conjecture that for n>0

Qm+2n—1 if n is odd
$0,(m)=
Jm+2n—2 if n is even.

6. J(N*(2))
The purpose of this section is to prove the following theorem.

Theorem 6.1. J-homomorphism J: Kg(N"(2))—J(N*(2)) is an iso-
morphism.

Since Ygl=t is identity on Kg(N"(m)) by (4.2) and (5.1), we have
Ph=¥%* on KyN"(m)). So we will consider Y% for k non negative
only.

Consider Adams operation ¥4: R(G)— R, (G). Concerning the charac-
ters it is wcll known that

Xri0) (@) =x(g") for 0eRL(G) and geG
(see [1, 4.4]). Then (4.2) and a short character computation show that
Yk =identity on Rp(D*(8)) for k odd.
Then (5.1) and the following commutative diagram

Kp(N"(2)) 22— R(D*(8))

‘I’;l lwi

Kp(N™(2)) <57 Rp(D*(8))
imply

Lemma 6.2. Yi=identity on K (N"(2)) for k odd.
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Now we prove Theorem 6.1. Since Ky (N,(m)) is a 2-primary group
(see e.g. [6], [10], [11]), we have 2¥Kgx(N"(2))=0 for some N. Let us
choose e:Z—{0,1,2,...} so that e(k)=N for k even. Then ke®)(¥k
—DKx(N*(2))=0 for k even. But for k odd Y% is identity on Kg(N"(2))
by (6.2), so that ke®)(Pk—1)Kgz(N"(2))=0. Thus we have Y,=0 for
this function e, and hence NY,=0 (see §3 for the definition of Y).
This completes the proof of Tﬁeorem 6.1.

As a corollary of this theorem and (5.7), we have the following.

Corollary 6.3.

22nt1 if nis odd
#J(0,2)=
22n if nis even.

7. JIN"(6))

In this section we evaluate the J-order of &,(G).
For simplicity we will use the notation J(zr) instead of J(z-dimgt)

for a vector bundle 7.
Consider the induced homomorphism 7(G, S3)*: J(HP")— J(N"(G)).
Then, since (G, S3)*J(&,(S3))=J(¢,(G)), we have

Propesition 7.1. #J(¢,(G)) is a factor of B,.

By (5.2) and (5.7) we have

Proposition 7.2. (i) #J(,(D*(2™*'))) is a factor of 2mt2nTi,

(i) ¥J(E(D*(16))) is a factor of 22"*2 (if n is odd) or 22"*+1
(if n is even).

(iii) #J(E,(D*(2m*Y))) is a factor of 2m*2,

Let Z, be a cyclic subgroup of G and 7#,,,,(k) be the canonical
complex line bundle over L2"*1(k). Since w(Zy, G)*E(G)ec="24+1(k)

+an+ l(k)a we have

(Z, GY*J(E(G))=2J (N304 1(K)) -
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Then we have

Proposition 7.3. If Z, <G, then #J(E(G)) is a multiple of
#2J(n20+1(K))-

Remark. #J(n,(k)) has been determined by Kambe-Matsunaga-Toda
[12] and Kobayashi-Sugawara [15] when k=p or p? for p prime.

When D*(8)=G i.e. G=D*@8m), T*, O¥ or I*, we obtain the follow-
ing proposition by (6.3), since w(D*(8), G)*J(&(G))=J(E(D*(B))).

Proposition 7.4. If D*(8)=G, then #J(¢,(G)) is a multiple of 2271
(if n is odd) or 22" (if n is even).

As a corollary of this we have

Corollary 7.5. If n=2"+2v+1 for u;3 <vL2%1—1 and u=1,
then $J(E(D*(2m*1)))=22n+1,

Proof. Recall that
vy(B)=max{2n+1, 2j+0,(j); 1S j=sn}

(see [21]), where v,(w) denotes the largest integer for which 2v2
divides w. If n satisfies the above condition, then v,(B,)=2n+1 and
then (7.1) and (7.4) imply (7.5).

8. S-types of N}'*(G)

Evaluating the (co)homology groups of Ni+¥(G) (see [6, XIT §§7,
8, 9]), we have

Theorem 8.1. If N"*i(G) and Njy**(H) are of the same stable
homotopy type, then G is conjugate with H and m=n.

By Atiyah [3, 2.6] and (2.1) we have

Proposition 8.2. If j=k (#J(£,(G)), then N*J(G) and N}T*(G)
are of the same stable homotopy type.
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Put B,(m)=min{m+2n—1, v,(B,)}. Then (8.2) implies the follow-
ing theorem by (5.1), (7.1) and (7.2).

Theorem 8.3. (i) If j=k(2B~m), then N"*i(m) is S-equivalent to
Ni+i(m).
(ii) For a fixed G, all N¥G) are of the same stable homotopy

type.
22ntm=1 if n is odd
(iii)) If m=2or 3 and j=kmod , then N"ti(m)
22ntm=2  if p is even

is S-equivalent to Nt (m).

For the converse of this, we have the following theorem by methods
of Kobayashi-Sugawara [15, 1.1].

Theorem 8.4. If N3*/(2) and Ni**(2) are of the same stable homo-
topy type for n=1, then j=k(22"2),

Proof. Consider the Puppe exact sequence
Re(ST AN i(m)) L85 Ro(STA NI~ (m)) — Re(N'y+(m))
25 Re(N™i(m)) .

Since Atiyah-Hirzebruch spectral sequences for Kg(S!AN*(m)) and
Re(Nn+i(m)) collapse, we have Kc(S'AN“(m))=Z and (1Ac)'=0.
Hence above sequence induces the following exact one

0 — Z — Ro(N1+i(m)) 2 Ro(N"i(m))

and then p' is monomorphic on Tor(I?C(N;'-”(m))). Then by (6.2), we
know that Y2 is identity on Tor(KC(N7+f(2))) for v odd. Consider
the following diagram

Re(N+i(2)) L Ro(S24 A NTH(2))

wél lwé

Re(N1(2)) 12> Re(S2* AN (2))

where I indicates the Bott isomorphism. Then we have WgI*=v*I*¥P§.
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Therefore we have
8.5. Pertl=2p+1)* on Tor (]?C(SZ“ A N;'.” 2)).

If S*AN"ti(m) is homotopy equivalent to S” A Nj*¥(m), then v=u
+4(j—k) by their cohomology groups.
Now suppose that there exists a homotopy equivalence

g: s2utal=—k) p Nitk(2) —s S2u ANSI_+.I'(2)

and consider the following commutative diagram

Ko(S? ANH(2)) 25 K(S2H4U=0 A Nk (2))

2v+1 2v+1
¥e 1 ¥e

Ko(S2ANGH(2) o> Ko (S20+4070 ANEHH(2)
Then (8.5) implies that
8.6. (0+1)20U-kgt=2v+1)*g' on Tor(K(S2" ANIH(2))).
Since
Ke(S2 ANTH(2)= Ro(NFHi(2)
~Kg*/(N*(2)) (Thom isomorphism)
=K(N"(2),

there is an element of order 22#+! in KC(SZ“/\N;!“(Z)) by (5.2). Then
(8.6) implies that

Qu+1)r+20-— 20+ 1H=0(22r+1),
that is
Qu+1)2G-—1=0(2211),
It was proved by Adams [1, 8.1] that
if b=(2a+1)2/, then 3*—1=2/+2(2/+3),

This implies
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320-0) — 1 =202(2(=k)+2(Q02(2(j=k)+3)

Then

2n+120,2(j - k) +2=0,(j—k)+3,

and therefore

j—k=0(2272).

This completes the proof of Theorem 8.4.
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