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A Sufficient Condition for the Existence and
the Uniqueness of Smooth Solutions
to Boundary Value Problems
for Elliptic Systems”

By

Nobuhisa IwASAKI

§1. Introduction, Problem and Result

In this paper we shall give a sufficient condition for boundary value
problems of elliptic systems to have the unique infinitely differentiable
solution for any infinitely differentiable data function. We shall con-
sider an elliptic partial differential system given in ADN [2], but it
includes a real parameter. We give some notations before we state
the problem we shall deal with. Let Q@ be a bounded open set in
R**t1 (n=1) with an infinitely differentiable boundary 0Q. Pol(k) are
spaces of polynomials of degree <k in (& 1)eR»*1x R with coefficients
of infinitely differentiable functions on @ if k=0 and Pol(k)={0} if

k<0, where k are integers. & =(a;)1sizm and #Z=(b;);<;<; are sys-
1=j=m 1=sj=m

tems of polynomials such that a;;ePol(r;+s) and b;;ePol(r;+1),
where (), (s;) and (#;) are systems of integers, which we call weight
indices of (o, #). L°=(a;) and £°=(by;) are principal parts of o
and £, respectively, that is, a?;(b);) be homogeneous parts of order
ri+s;(rj+t) of a;;(b;;). A=(4;;) is the partial differential system (with
a parameter 1) on C2(Q) (Cm-valued infinitely differentiable functions
on Q) and B=(B;;) the trace operator by partial differential operators
from C2(Q) to Cp(dQ), that is, they operate to e=(e;), elements of
C2(Q), such that
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[Ae =f=(NeCa®, 3 Aye;=f, and
=1
Ajjej= aij(am A’)ej
[ Be=g=(g;) € Cy(09), JZ& Bijejlsn=4; and
Bijej = bij(ax, },)ej,

.1 0
where 6x=<z 1 ax; >

We consider a boundary value problem,

Au=f on Q
1.1 {

Bu=g on 09,

where fe C2(Q) and geCP(dQ) are data functions and ueCP(Q) is an
unknown function. If A is of type ADN and if (4, B) is coercive, we
know that the solutions to (1.1) belong to C2(Q) and the operator
(4, B) has an index, but we have so far ignored the existence and the
uniqueness in general. On the other hand if 4 is of Géarding type or
of symmetric type and if some relations between 4 and B are assumed,
we have the theorem of existence and uniqueness on some Sobolev
spaces for sufficiently large A by the use of variational method, but
C=-regularity up to the boundary does not generally hold.

In Agmon [1] and Lions-Magenes [11] we can find a non-varia-
tional case where existence and uniqueness are shown. Extending it
and introducing a more general condition for regularity than coercive-
ness we single out a class of boundary value problem, for which regu-
larity, uniqueness and existence of solution are guaranteed. We state
these as the following theorem which is our main result. Some terms
in the theorem will be defined later. Roughly speaking the condition
described in the theorem is one of sufficient conditions under which
the pseudo-differential operator defined by the Lopatinsky matrix of (4,
B) on the boundary is solvable and hypoelliptic.

Theorem 1. If (A4, B) is an elliptic system properly linked by 1
on Q, then there exists a constant A, such that (A, B) is an isomor-
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phism from C2(Q) to C2(Q)x CP(0Q) for A=1,.

Corollary of Theorem 1. If (A, B) is an elliptic system strongly linked
by A on Q, then Index(4, B)=dim of coker(4, B)—dim of ker(4, B)=0
for any AeC!.

ADN [2] says that these types of partial differential systems (4,
B) can be remodeled systematically to equivalent systems (A4’, B) such
that order of each term of A'<1 and of B’'<0. So, we may assume
that (4, B) is the one remodeled. The main reason why we remodel
it is that we embed the bundle attached to the principal symbol of the
partial differential system A and complemented by the trace operator
B into a trivial vector bundle on T*(2). We explain here only about
equivalence we have used above. We call two partial differential systems
P, and P; equivalent if there exist six partial differential systems F;,
G; and Q;(i=0, 1) such that

( Qo> Po >< 01, Py > ( 0, Py )( Qo> Po ) E
GO:FO GlaFl GlsFl GOaFO

A A’
In our case we have P,= and P, = .

B B’

Let Q=R1*! and let us put x=(x)i=1, . Y=Xp+1> E=()i=1,...n» and
p=in=i,,;. We define 4 (u) as following, where (r;),(s;) and (;)
are the systems of weight indices of (<7, &), m the degree of square
matrix &/ and ro=max(r)).

J

(1.2) Ho(W=((1—n)7reé;)
A (W)=((L—n)*ro~16,))
and (d;;) is Kronecker’s 4.

Definition 1.1. When we assume that «° is non-singular for all
real vector (n, &, 1)#0 at (x, y)=0, we can define the followings.

(1.3) 9=<2m')-1Srmo(u)w"(uwl(uw‘adu,
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(14) 2= niy | @0 W (W7,

where |é|24+A2=1, o/° and #£° are the principal parts of o and
B, LY=LVl n=0 and I' is a C>-Jordan contour which lies in C_
(left half plane) and encloses the roots of deto(u)=0 with negative
real parts.

(L.5) 2Q)=2 (/1L
} when {=(¢, 1)#0.
2Q=2(/IL)

(1.6) Hly=0:049.2
when {=(¢, 1) #0,
Hly=P*0:0%D*

where 2* and 2* are adjoint matrices of &2 as the operator on C™
and of @ as the operator from C™ to C*.

Definition 1.2. 1) We call a system A a favourably elliptic system
(at (x, y)=0) if &° is non-singular at (x, y)=0 for any real vector
(@, & H)#0.
2) We call an elliptic system (A, B) linked by A if it satisfies the
three properties that (1) A is favourably elliptic, (2) the degree of A
(=the degree of det°)=2l and (3) dim of range 2=1 if A>0.
3) We call an elliptic system (A, B) properly linked by A if it is
linked by A and if there exist constants ¢ such that

1.7 N2f|2cl2f]
(1.8) |92 20f 12 = c| 2f|
(1.9) |9 25912 = cl2*g]

for 220, [Ll=1,1fl=1(feCm), |g|=1(geC") and |u|+|fl=1 at a
neighborhood of (0, 0).

4) We call an elliptic system (A, B) strongly linked by A if it is linked
by A and if dim of range 2=1 on A=0.

Definition 1.3. We call an elliptic system (A, B) properly (strongly)
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linked by A on @ if A is a favourably elliptic system at each point
of @ and if (A4, B) is properly (strongly) linked by A at each point
of the boundary 0Q with respect to a coordinate function on Q, (n—1)
of which is a coordinate function on 0Q.

Example.
{ (44 PHu=f on Q

<<paiv+l>u =g on 0Q,

where ¢ is a non-negative C®-function on 0Q and v is the conormal.
Then, [ulls+1,0Sc (W) {lflls0+l1glls+1,00} for sufficiently large A.

We shall study a special case by the method of pseudo-differential
operators and we shall obtain results sufficient to show Theorem 1 in
general cases by regarding them as small perturbations of the special
case. It is as follows.

The domain Q is R3*1. The equation is (1.10).

0 _

—6—+M(xs ax’ i)u—f

(1.10) Y
B(x: am /l)uly=0=g s

where M(x, d,, ) and B(x, 0,, A) are pseudo-differential operators whose
symbols are M(x, ¢, 4) and B(x, & 1). mxm matrix M(x, & A) and
Ixm matrix B(x, &, A) are C«®-functions, in real variable (x, &, 1)eR”"
x {R*"x R—(0, 0)}, which do not depend on x out side of a bounded
set in x-space, and functions of homogeneous order 1 and 0 in (¢, 4),
respectively. We set that «&/=u+M(x, & 4), #=B(x, £, 1) and weight
indices r;=1,s;=0 and t;=—1(j=1,...,m or I). Then, Definition 1.1~3
are well defined.

Definition. Let us set W, cHYR#* )X H,'/2(R") as (u,v)eW, if
and only if u, {73(37+M(x, o, l)}ueH,‘,’,(Ri‘,“), (then, u(-,0) is well
defined in H,'/2(R")), B(x, 0, )ve H}/2(R") and v=u(-, 0).

Remark. H;(Q) is the Sobolev space of C™-valued distributions on Q.
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Definition. C(1) stands for the closed operator, from HS(R%Y)

0
X Hy!2(R") 1o H(RE™) X HII2(R?), (737“”(’“’ G0t O )
0 » B(x, 04, 4)
whose definition domain is W,.

Theorem. Let us assume that the pseudo-differential system (%

+M(x, 0,, A), B(x, 0,, /1)) is an elliptic system properly linked by A

on Ri*l. Then we have:

1) There exists a constant Ay such that, if A=1q, C(A) has the inverse
operator R(A), which is a bounded operator from HO(R:*1)x H!/2(R")
to HY(R#+1)x H,1/2(R").

2) R(A) satisfies for non-negative integers s the estimates that

NRA)ls=csa™*,

where |||l is the norm of bounded operators from HS(R"*1)x H§*1/2(R")

to Hs(Ru+1)x HS~1'/2(R"), that we obtain when we induce the norms

({4}

differential operator with the symbol (|&]2+12)1/2,

2 1/2
+ ||Ar(,1)vu2> in HS(RT+1) x H(R"): A(3) is the pseudo-

The results of Theorem are not enough to show regularity in general
cases. We have to estimate R(1) more precisely to do so. It is possible
for systems properly linked by A.

Definition. Let s=0 and i=0 or 1.
1) Y5(2) = L*(R}i; Hy(R™) x HY2+(R")  with  the norm  |[Ullys
=(|A5(R)u||?+ || A5~ 2 Q)| 2)1/2; U= (u, v) e Yi(A), where oy=m, ;=1
and L?(RY; H5(R™) is a space of HS(R™-valued L2-functions in ye€(0,
).
2) Let x=(x)j=o,.x be a system of C®-functions such that y,=1, ;=1
or e CZ(RTY), and yiy1=xidis1 (iZ1).
3) X35(A, x) stands for the closure of C%(R%*1')x CZ(R") in the space
{U; x;Ue YD), 00=0, 0;=5—(k—j)/2, 1= j<k} with the semi-norms
PO=I1U by and the norm [Ulxii=(, p(U))'12,  where
1 U=(xu, xJ0); U=(u, v) and x§=7y;l,-o
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J
4) Let us set q;;=( > p3)'/*; 0= j=k, q;—1=0.
v=0

Theorem. Let us assume that the pseudo-differential system (%

+M(x, 0, 1), B(x, 0, A)) is an elliptic system properly linked by A
on R%*1. Then, there exists a constant i, such that the inverse operator
R(2) of C(A) in the previous Theorem is a bounded operator from
X5, ) to Xy(4, ) if A=Ay and 0<s=<k/2. It satisfies the following
estimates for Ue X5(4, ).

Pof(RAU) = cod™ py (U) + (s, )A™3/2q,;-1(U),
where ¢y is a constant not depending on s=0, A=1, and y.

Remark. In this theorem it is important that the constant ¢, does
not depend on s, A and y.

If the system M and B do not depend on the variable x, we can
easily construct R(A) by Fourier transform. So, we consider what we
obtain when we regard the variable x in M and B as a parameter.
It defines a pseudo-differential operator and gives a first approximation
of R(2), that is, if we denote it by R’(1), we obtain the relations that
R(AD)-(I+S(A))=R'(A) and (I+T() R(A)=R'(A). We can show that
R'(2), S(4) and T(1) are defined by pseudo-differential operators that
satisfy similar estimates as ones in the previous theorems if we assume
the conditions in Definition 1.2. Thus, I+ S(4) and I+ T(1) are invertible.

We write down the results for pseudo-differential operators we use
in proof of the theorems. R’, S and T are defined by compositions
of pseudo-differential operators to which we can apply them. They are
due to the papers by A.P.Calderon and R. Vaillancourt [4] and L.
Hormander [8]. If we follow them carefully, we have all of them
without other technique.

We consider pseudo-differential operators on the space of distribu-
tions valued in a Hilbert space X, that is, symbols of pseudo-differential
operators are C®-functions valued in BL(X) the space of bounded linear
operators on X. Let C®(RS, X) and C®(Rs, BL(X)) stand for the space
of X and BL(X)-valued C»-functions on RS with respect to the topologies
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by the norms of X and BL(X), respectively. We denote the norms of
X and BL(X) by |-| and the canonical norm of L2(R®, X) the space
of X-valued square integrable functions by | -|.

Let p(x, & A1) and gq(x, &, 1) e C*(R"x R", BL(X)) with a parameter
A€(0, w0) and let us assume that p(x, &, 1) and q(x, & 1) are independent
of x outside a ball and that for all multi-indices «, § there exist constants
Capr My, 0, and p; (i=1, 2) such that

[P, OIS cophIeI(IL] 2yms+o:101-0 1]
|a{B(xs OIS coph™121(L|/2yma+e2101 0211

_on {=(¢ ) eR"x(0, o), where p{E)(x, {)=0%5p(x, {).
Let us set that for ue Cg(R", X),

K(2)u=q(0, 2)p(0, A)u— mZ;,N (D'*1(@)™1q (0, A)opy(0, Au

If 0<6,<p,<1 and 0=<6,=<p;<1, then for any real number s and inte-
ger m there exists an integer N, such that, if N>N, and A2>1,

145(A)p(3, Aull < c A=+ A ms(Aul|
and A5 A)KAull S cnd= M+ 2| A™(Aull, for ueCFR", X).

Let Y be another Hilbert space densely contained in X by a continuous
injection. We assume further for q(x,{) to satisfy that there exists an
integer o, such that g{#(x,{)eBL(X,Y) (bounded linear operators
from X to Y) and

a8 (x, Olxy S Copa(1+[E]msto2181=palel

for all |a|=a, and [f|=0, where |-|4xy is the norm of BL(X, Y). Then,
there exists an integer N, for any integer m such that

IK@ully S cpnall A"(Dullx for NzN, and ueCHR" X),

where ||-|lx and |-||y stand for the norms of L2(R", X) and L2%*(R",Y),
respectively.
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§2. Preliminary Analysis for Proof

We consider the following mxm matrix M(x, &, 1) such that M(x,
£, 1) is a C=-function, in real variables (x, &, A)e R"x {R"x R'—(0, 0)},
which does not depend on x out side of a bounded set in x-space, and
a function of homogeneous order 1 in (&, 1), that is, aM(x, & A)=M(x,
aé, ad) for all «>0. We assume that u+ M(x, £, ) is non-singular when
u=—in and when (y, &, 1) are non-zero real vectors, that is, there exists
the inverse of u+ M(x, &, A). From this assumption we are able to divide
the eigenspace of M(x, &, 1) into two parts as followings.

@.1) Pi(x, &, z)=(2m'>-lg (ut M(x, & A)~tdp

Iy

P_(x, ¢, A)=(2m’)‘1gr (u+Mx, & D) tdp,
where I',(I'_) is a Jordan curve which is laid in the right (left) half
plane of C and surrounds the eigenvalues of —M(x, &, 1) of which the
real parts are positive (negative). P, and P_ are projections and
satisfy the relations that P.(x, af, ad)=P.(x, & 4) for all «>0 and that
P,+P_=I1. 1If we set U(y)=eM&*&DyU(0) and U(0) a vector, then

U(y) satisfies thc equation that {% +M(x, ¢, /1)} U(y)=0 and U(y)

increases (decreases) in the exponential order as y—+oo if U(0) belongs
to the range of P,.(P_). We consider another Ixm matrix B(x, &, A)
such that B(x, & A1) is a Cx®-function, in real variable (x, &, A)eR"x {R"
x R1—(0, 0)}, which does not depend on x outside of a bounded set
in x-space, and a function of homogeneous order 0 in (¢, 4), that is,
B(x, &, )=B(x, a&, al) for all a>0.

< Assumption (A)> Relations between M(x, &, 1) and B(x, &, 2).
1) dim[range of P_(x, & A)]=I.
2) When A>0,|E|12+A%2=1, |f|=1, |g|=1,feCm geC! and |a|+|B]=1,
then there exist constants ¢>0 such that

a) AP_(x, & AfI=cID(x, & Af]
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b) [Hjs(x, & DfI2=c|D(x, &, Af]
C) lHa%ﬂ(x’ 67 A’)glz é CID*(X: é’ j')g] H

where D(x, &, )=B(x, & A)P_(x, & A), P* and D* are adjoint matrices
of P_ as the operator on C™ and of D as the operator from C™ to
C!, respectively, and

Holcﬂ(x’ 65 Z')Ea;agD(x, é, /‘L)'P—(x, és 2')
Ha%ﬂ(xs 6’ A)EP,—k(x: és ;L)a;agD*(xn f, ;l')

Under this <Assumption (A)> we go on with our discussion. We
denote the linear operator (matrix) B(x, &, A)-P_(x, &, 1) from range of
P_(x, & A) to C' by D(x, & 4), too. From the Assumption (A) 1) and
2) a), there exists the inverse operator (matrix) of D(x, &, ) when A>0.
We are going to estimate the operator-norm of the inverse operator in
(x, & ). Let XEZA stand for the set {(x, & A); (x, & A) e R, €2+ 42
=1, A=0}. We first prove the following lemma.

Lemma 2.1. On XZEA the following inequalities hold for a positive

constant c.
ID(x, & Df|ZcAt/2|Hay(x, &, A)f]
[D*(x, &, Dgl=cAt2|HZy(x, &, Dgl,
where |a|+|p]=1.

Proof. This lemma follows from the assumption (A) 2). Replacing
f in the inequalities of the assumption (A) 2) by P_(x, & Af/|P_(x, &,
A)f| and g by g/|gl, where A#0, we obtain the following inequalities
2.2).

(22) [Hg(x, & AfI2Zc|P_(x, & DS ID(x, & D]
[HZ,(x, & Mgl =clg| ID*(x, &, DS ol +[B]=1.

Since we can apply to the above inequalities the assumption (A)
2) a), that is, AP_(x, & Af|=clD(x, &, A)f| and also Alg|<c|D*(x, &, A)gl,
we obtain the inequalities which we have to prove. End of proof.
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We now define the operator (matrix) E(x, &, 4) for >0 by
E(x, &, )=D(x, &, 1)1,

where D(x, €, )~! means the inverse operator from C! to the range of
P_(x,¢&,2) of D(x, &, 7). It is clear that for A>0 E(x, &, 1) satisfies the
following equalities.

(2.3) E(x, &, ) D(x, &, H=P_(x, ¢, 1)
D(x, ¢, 2)- E(x, ¢, A)=1.

Lemma 2.2. On XZA the following estimates hold for some positive
constants c,g, and for all multi-indices o, B and y.

1) [020804ECx, & 2)-D(x, & D) S, ACIx/2+112417D
2) IDGx, & 1) B3RUYECx, &, )| S cpp,pm(ali2B1/2412D

3) (0260803 E(x, & Q)| S cup A2 FIB12H 171+ 1),

Proof. We shall prove the lemma by maens of induction in the

n

length k= Z(ai+ B)+7 of multi-index (e, 8, y). If k=0, it is immediate-
ly proved lfrlom (2.3) and from the assumption (A) 2) a). We assume
that the inequalities of lemma hold on XZA when k<k, Let us differ-
entiate the both sides of (2.3). By Leibniz formula we obtain that,
denoting 0'=0%0[r057; t=(t,, tg, t,)=p, q, I OF 5,

O{E-D}= % c,,0PE-0'D=0"p_

ptq=r

(D E}= Y ¢, 04D PE=0; |r|=ko+1, 1>0.

ptq=r

Transposing terms except for 0E-D and D-¢°E to the other side,

24 FE-D=0P_~ 5 cp0"E-3D
qa+0
=0P_-P_— Cpg0PE- 04D P_,
p+q=r
q+0
2.5) D-0E=— Y c,0D-0"E,
P+q=r
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because D-P_=D. We here notice that P_ and D are infinitely differ-
entiable on XZA and that, if |r|=ky+1, 0PE of the right hand sides of
(2.4) and (2.5) satisfy the estimates of lemma by the assumption of induc-
tion because |p|<k,. From (2.4) and (2.5) we obtain (2.6) and (2.7),
where x(f)=|t,1/2+[t5l/2+1,; t=(1,, t5, ).

(26) O'E-D=— Z— CpqapE'an'P_-}-Fl;
oé’,t("q‘)g 1
IFy(x, & Dl Sey{l+ ¥ A-e@+}
K2z 1
@7 DFE=— 3 cpD PE+Fy;
0ddinta
1Fa(x, & Dl =c,f AmGe@+ D)
p

+49=r
k(g)z1

1%

If x(q)=1, then we have that x(p)+1=x(r)+1—xr(q)<x(r). We
next estimate the remained terms. Using (2.3),

(2.8) OPE-0D-P_=[0vE-D]-[E-04D-P_].

Since D* and P*@giD* satisfy the estimate of Lemma 2.1, we replace
g in those inequalities with E* which is the adjoint operator of E and
we consider its adjoint. Then we obtain that, if x(gq)<1,

29) IEGx, & 2)-0D(x, & 1)+ P_(x, &, )| Sc;d7@.

On the other hand [0PE(x, &, A):D(x, &, A)] satisfies the estimate 1) of
this lemma by the assumption of induction because |p|<k,. Combining
(2.9) and the above, we can estimate the remained terms of (2.6) and
we have a bound c,A~*®*x@)  Thus, the estimate 1) holds if |r|=
ko+1. Since E=P_-E, we differentiate both sides of this equality,
(2.10) OPE= Y c40°P_-0'E

st+i=p

=P_-®E+ 3 ¢, 0°P_-0'E
ifer

==1)_ '0p134‘173
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[F3(x, & Dl Sesd*®*D if |p|<k, and q#0
Substituting (2.10) for JPE in (2.7)

> 0D PE= Y ¢, 0'D-P_-0PE+F,
P+4=r P+49=r
0<k(g)<1 0<k(g)<1

[Fax, & Dl Sced™0.
Since 04D P_=H} if 0<x(q)<1, we have that

> ¢,0D-PE= Y ¢, [H} E]-[D-0PE]+F,.
P+4q=r P+q=r
0<k(g)<1 0<kx(g)<1

Since D and Hj satisfy the estimate of Lemma 2.1, we substitute E for
J in those inequalities. We obtain that, if x(q)<]1,

IHI(x, & ) E(x, & D) S c i@,

On the other hand [D(x, & 1):OPE(x, &, 1)] satisfies the inequality 2)
of this lemma by the assumption of induction because |p|<k,. Combin-
ing these facts, we can estimate the remained terms of (2.7) and we
have a bound cgd~<P*x(@) = A% Thus, we obtain the inequality 2)
when |r|=k,+1. The inequality 3) is immediately obtained by operating
E to the right hand side of ¢0"E-D and by estimating it by the in-
equality 1), or by operating E to the left hand side of D-0"E, by
using (2.10) and by estimating it by the inequality 2) and the inequality
3) for |p|=Zk,. End of proof.

Lemma 2.3.
1) [|oP[P9E(x, &, ) D(x, &, D]l <cpg 7@+,

2) |18°[D(x, €, ) BUE(x, &, A)]|| < cphr @),

Proof. We have only to prove the estimate 1) for oP[04E-D]-P_.

OP[4E-D]-P_= Y ¢, 04E-3*D-P_

p=r+s

— S ¢ @ME-D-E-3D-P_+F,;
o
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[F1(x, & DIl <cAx@+o,

By Lemma 2.1 and 1) of Lemma 2.2 the remained terms are estimated
with the bound cA~*(r+a)-x)=¢)~*(+a), Thus, we obtains 1).

0P[D-34E]=D-0r*4E+ Y ¢, [HL-E]-[D-09*E]+F,,

r+s=p
0<x(r)<i

where ||F,(x, & L)||<cA *(+a), From the above we obtain 2) by using
Lemma 2.1 and 2) of Lemma 2.2. End of proof.

Lemma 2.4. Let us define J;=0%E-03D and J?=0%D-0iE. On
XEA for some positive constants c,; and all multi-indices p it holds
that

1) when |a|=1, [|6PJ}(x, &, A)|| <c,pAxP71
when |a|22, 07T 3(x, &, D] <c A e @)7121/2

2) when |a|=1, [|[02J3(x, &, M| <c,A7* @)1
when 12122, [82J2(x, & D <A@ lel/2
where (p)=|p1l/2+|pal/2+|ps|; 07 =0510%205>.

Proof. We obtain the following equalities in the similar way as
in the previous lemma.

2.11) O%E-03D= —[03E-D]-[0iE-D]+[0%E-D]- 03P _
when |a|=1.

(2.12) 0¢D-03E= —[D-0%E]'[D-03E]+0%D-03P_-E
when |o|=1.

(2.13) 0tD-03E=—[D-0%E]-[D-0iE]+0¢D-0%P_-E

+ ¥  cy{[D-0LE]-[D-0(E]-[D- 03E]

—03D-9LP_+P_-0%E+0:D- 03P_ - OLE}

when |o|=2.
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When |o|=1, we apply Lemma 2.3 and 3) of Lemma 2.2 to the right
hand sides of (2.11) and (2.12) and these derivatives by 6. We obtain
the estimates. When |¢|=2, we apply same ones to the right hand
sides of (2.13) and these derivatives by d?. We obtain the estimates
2). The other cases are obtained by applying 3) of Lemma 2.2 to the
defined forms of Ji. End of proof.

Lemma 2.5. Let F(x, & A) be a matrix valued C®-function in (x,
¢, ) eR?27 1 0 {1>0}, homogeneous of order m in {=(& A). If F(x, &,
2) satisfies the following estimates on XEA={(x, &, 2); |{|2+41%2=1, A=0}

|oPF(x, &, D] écp,"f(ﬁlp:I+‘|pzl+lpal+1); 8"=6§16'§’28§3,

then, F(x, &, 1) satisfies the following estimates on the whole defined
domain R2"t1 0 {1>0}.

[0265F (x, &, )| S cypA=@lal*elB1+ D|Z|Glal+ = DB+ 14m)
(Note)
f(0): function in oceR™

‘/’(é) = (¢i(5))i= 1

,,,,, n: Rm-valued function in £eR!

B= (ﬁj)’ = (Tj): W= (wj)a v=(v), p= (.uij)

i=1,.,m, j=1,.,1

Bj» t;, w;, v;, 1;;: non-negative integers
o+r=(0;+1), |ul=@"); pr= Jilﬂ,-,-, E=(u$?);
#5‘2)= i=§1 Hij

O =0410%2- -0, O =(Wi)); Wiy =0p Wi

l

@) =T1 TI Q).

j=1 i=1

-.

With these notations we have easily the following formula,
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FHSWEN= T Cuop(@yf) () 0@
v=[u|

B

==

o+t

Proof. We first prove the lemma when F is a homogeneous func-
tion of order 0 in {=(¢, ), i.e. F(x, {)=F(x, {/|{]). We use the notation
of note.

OLF (%, Y(D)= X CuopOyFfx, YO - OL@O)*],

< g
=

g

+1=4

where I=n, m=n+1, {=(¢, A), F(x, {)=02F(x, (),
YO=8&/ILl5 i=1,..., n, Y (D=2/IL] .
It is sufficient to estimate each term of right hand side.
Oy F (%, W(O)ILL(0¥)*]

=050y F (%, Y(O)OLL@ ) O m)1

We compute these.
(2.14) @by =1 Tg,
(g = Aliml|Z]=2iml 0)
(O = Al ] -UE 1211 o (0)
G5Oy =2Nemg| U T2l 11D, D),

where ¢,({);=1,2,3,4 are homogeneous functions of order 0 in {. On the
other hand from the assumption for F(x,{) on XZA we obtain the
followings.

(2.15) 103 F (%> DIl S ([Tl )11 5211wt 1

Combining (2.14) and (2.15), we obtain that
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105 F (%, Y(O)OEL@W) TN S A= (L2,
= (8lol + e[|+ v+ 1) — | ol

ey = (0l +&l¥] + v, + D — (&l + 2|l + 7).

Since |l =Vv,, [¥|=1jl and [¥|+v,+|t|=|Bl, so
Ky =0la| +&lf| + L —ev,,—el1l,
K,=0la|+(e—1)|Bl+1—ev,,—e|t].
Considering that A/|{|<1, we obtain that

Ae|f|re < Am(Blal+el Bl D|f|(lal+e= 1) 1B+ 1)

Thus, we conclude that

193 F )(x, W(D)EL@)M]I

< cAm(laltelBl+D|7|(Blal+e= 1181+ 1),

Summing these in (v, 7) up, we obtain the conclusion of this lemma
with other constants c,; when m=0. When m#0, we consider [{|™™F(x,
{), which is a homogeneous function of order 0 and satisfies the same
estimates on XEA as F(x, (). |{|™™F(x, () satisfies the estimates of the
conclusion of this lemma by the previous discussion. Since F(x, ()
=|{|"{|{|"™F(x, {)}, we obtain the conclusion by using the Leibniz
formula. End of proof.

Lemma 2.6. In (x, &, A)eR?"* 1 n{A>0}, for all o, f and y and for

some constants c,; and c,;, which do not depend on (x,¢&, 1), 1)~6)

and 7) hold where {=(¢, J).
1) 6208M(x, &, M| S copll[ 181+
2) [|0204B(x, & )| S copll|™1P!

3) 10308 _(x, & D) S copll|™18!

4) 10202D(x, &, M S cypll|~101
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5)  0208E(x, &, W) S cpph(IeIH1B1+2)12]¢|(lai=181+2)/2
6) [10208T3(x, & Dl S cyp, A UeI¥ 181+ 2)/2){|A=171ED/2 when |y]=1.
10208 1(x, &, D)|| < cop,d=(=I+IBIFII+2212|¢|Ual=181=171+2)/2  yhen [y 22.
7 030873 (x, & D S copyd=1#1HIIFDI2|[|(=171EDI2 when [y =1.
02082 (x, &, )| S cop, A (IeI+IBIF12142)/2|¢|(2l=1B1=171+2)/12 when |y|Z2.

Proof. E is homogeneous order 0 and satisfies 3) of Lemma 2.2
and Ji are homogeneous order —|y| and satisfy Lemma 2.4. We can
apply Lemma 2.5 to these facts to obtain this lemma. End of proof.

Lemma 2.7. For all multi-indices a, f and y and for some positive

constants C,p, C,p, and a,
1) 1020%{(in+M(x, & D) 1} S copllnl? +¢|2)~URI+ /2

2) 1030803 (e M= ENIP_(x, & D} Scypye eI,
where e™M&: &P _(x, &, l)E(21ri)‘1S (u+M(x, & A)) tetrrdp.
r-

Proof. 1) follows from the fact that in+M(x, £, A) is non-singular
for (, £, )#0 and does not depend on x outside a ball in x-space.
Since I'_ is taken not to depend on (x, & A) if |{|2=|€]2+|A|2=1, we
obtain 2) using 1) and homogeneity of M(x, &, A) in (&, A).

End of proof.

§3. Results from Theory of Pseudo-Differential Operators

In this section we shall mention the results on pseudo-differential
operators obtained by A.P. Calderon and R. Vaillancourt [4] and L.
Hormander [8]. We shall apply these to some pseudo-differential opera-
tors which we need in this paper. In order to apply these to our proof
we have to make it clear how norms of pseudo-differential operators
depend on parameters. So we shall give rough proves again though
they are almostly same as ones by L. Hormander.
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We consider pseudo-differential operators on the space of functions
(distributions) valued in a Hilbert space X, that is, symbols of pseudo-
differential operators are C=®-functions valued in BL(X) the space of
bounded linear operators on X with some additional conditions. Let
C®(R%, X) and C=(Rs, BL(X)) stand for the space of X and BL(X)
valued C>®-functions on R® with respect to the topologies by the norms
of X and BL(X), respectively. We denote the norms of X and BL(X)
by || and the norms of H™(RS, X) the Sobolev spaces of X-valued
distribution by | - |,

Lemma 3.1. Let p(x, £)e C°(R"x R", BL(X)) and assume that with
0<6<p=<1(5#1)

[P x, OIS cop(1+[E)PIeI*a1Al

for (x, £)e R*x R". Then there is a constant ¢, depending on the con-
stants c,g, such that

IpCx, ullo=cllullo, ueCFR", X)

where p{@(x, £)=0%0%P(x, £). (Refer to Hdrmander [8] and Calderon
and Vaillancourt [4] for proof. There is nothing that should be
changed in them though symbols take their values in bounded operators
on a Hilbert space.)

Lemma 3.2. Let p(x, £) and q(x, £)e C*(R* x R*, BL(X)) and assume
that p(x, &) and q(x, &) vanish for x outside a ball {x;|x|<R} and
that for all multi-indices o, B we have constants c 5, M, 6; and p;,
where i=1 or 2, such that

PR (s O S €poqppy(1+1Eymates1b1=pale]

{5 (% Ol S €poqppy(1+1E]ymat 02181702 lel,

0=6,<p,=1.

Then, for any integer m we have

lgCx, O)p(x, d)u(x) --MTEN(I')'“‘(Od)‘1 4 9(x, 0)epy(x, Nu(x)|

Sb(N, L, mR?"cpo (N, L) u(x)|,, for u(x)e CF(R", X)
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where b(N, L, n) are constants which depend only on N,L and n,

cmax(N ] L)= max [ch] . max [c()l]
1=51-n51 —1=£1-n—N21+L

and m1+m2+(51+52)(l’l+1)+(51—pz)Ném

| my+68,(n+1)—p,N<O.

Proof. We consider a partial sum of the Taylor expansion of gq(x, #)
in  at &.

q(x, n)=|¢|2<Nq(“’(x, @@t n—&)"

+ 2 0 & -9 -9

rOs, & n—8)=Ialf 9©(x, &+ 001-9)(1-0)*1=1dp.

Now we obtain the following Lemma 3.3 for #®((, &, n—&) which is
the Fourier transform of r*(x, &, n—¢&) in x.

Lemma 3.3.

I?(a)(cy 5’ ”l“f)l

<{ sup (1+|E+46(n—&)matozLtn=1)=p2lal}
0=6=1

x{ max [c1}258,R(1+|EDTHE

—-1=51-n<L-1
On the other hand we have Lemma 3.4 for p,(y, £).

Lemma 3.4.

L+ D 1" Bay(s O

éstan. max [cm].(1+lél)m1+51(|a|+L+n—1)
0<i-|e|-n+1<L

We now put v(x)=q(x, )p(x, d)u(x). Then we have
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0= {{ac—n mom—¢, Daaean
= 0§00 —n, dpen—& oz
+ 2 O ([0g—n, & n-0pun—& HaEedn

= X 0@ {7 pul-¢ O

a|<N
+ T Oy ([Hog—n & n-open—e Dz

/\ . . .
where g(® - p,(C, §)=Se‘”‘5q(°‘)(x, OP@(x, &)dx. This equality shows that
it suffices to estimate the last terms

= 0t {row—n, & n-0pu0- Do

le]=N

in the form of Lemma 3.2.

Lemma 3.5.

I?(u)(c_"s éa ”_é)ﬁ(a)(r’_é: é)]

<24+max(2L,pzN—mz—62(n+1))(S Rn)l
= n

x max [ex]* max [cord
—15l-ns1 ~1ZI-N-nSL+1

X (L+1{=nD72I=nlt "L+ g =&~ — &1 A +1ED™,
where my+my,+0,+8,)(n+1)+(0;—p,)NSEm
my+6,(n+1)+6,N+(@0;—1)L=m
my+3d,(n+1)—p,N<0.

If we prove this lemma for #*({—n, & n—08)pem—¢E &), we obtain
the followings by Hausdorff-Young inequality.

llo(x) - Iglqv(i)'“ (@)™ q (%, 0)ope(x, Oux)|
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=1, 2, 0 (@ —n & 1-Obuwin—E Da@aten]

Sb(N, L, n)R?"Cpyy(N, L) u()] 5
b(N, L, n)
2

=24+max(2L,p2N—mz—6z(n+1))5'%(l 2 l/a')<g(1 + |C|)—2|all—ndc)
a|=N

The proof of Lemma 3.2 is complete if we verify Lemmas 3.3~5.
End of proof of Lemma 3.2.

It is easy to verify Lemmas 3.3 and 3.4 using the assumptions for
p(x, & and gq(x, £). So, we prove Lemma 3.5 from Lemmas 3.3 and 3.4.

(Proof of Lemma 3.5) When |g—¢|<]|€]/2, we obtain (3.1) from
Lemma 3.3 and (3.2) from Lemma 3.4 because 1+ |&+40(n—&)|=(1+]E])/2.
Combining (3.1) and (3.2), we conclude Lemma 3.5 if |n—¢|£]|€|/2.

3.0 [P =1, & n—9)

§22—n12—62(11+1)+p2[a[ .San max [cla]l]
1

—1=l-n=
X (LG =) 21 =1 (1 + gyt ot Dl
where m,+d,(n+1)— p,|a| <0.

(32 [Bwy(n—¢&, Ol

<22§,R" max [cod

—12l-n—|a|s1
X (LI = &2l = &1 =7(1+ [glym 0s et

When |n—¢&|=[€|/2, we obtain (3.3) from Lemma 3.3 and (3.4) from
Lemma 3.4 because 1+4[n—¢|=(1+]€)/2. Combining (3.3) and (3.4),
again, we complete the proof of Lemma 3.5.

(3.3) [P —n, & n—2)

<22§,R" max [ep ](A+[—n)72|{—n*",
-151-ns1
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where m,+3,(n+1)— p,|a| 0.
3.4 m(a)(ﬂ =&, &)l

L22+2Lg R# max [eodd
—1=il-|a|-nsL+1

X (L = €)1 — & 1=7(1 + |gfyms+oucletbmt D=L,

End of proof.

Lemma 3.6. Let q(&) be constant in x. If p(x, ) and q(&) satisfy
the hypotheses of Lemma 3.2 except for the hypothesis that q(&) vanishes
in x outside a ball, then the result of Lemma 3.2 is valid with another
constant b'(N, L, n)R*¢’ ,,,.(N, L) such that ¢'(N, L)= max [coden:

—12I-N-nSL+1

Proof. From constantness of g(&) in x we have that

LR O CORVERR(SER TGO

+ T O i (-0~ aEe.
We have further

(3.5) [F@(E, n=8l= Jup (L+|E+0(—)ymamr2lal -y 0.

<

{ 2p2lal-ma(] 4 |5sz—pzlulclalo if [n—=¢lZ|¢|)2

Clalo if |n—¢&21¢l/2,

where m,—p,|a|<0.
Combining (3.2), (3.4) and (3.5) we can estimate as

150~ % 0 fa@pwC-¢ Dacazl
BV, L R auN, DI+ DO
BN, L, m)=22mesGLoahm( 3 1) (1412201

If m1+m2+51(n+1)+(51—p2)N_S_m, m1+51(n+1)+61N+(61_1)L§m
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and m,—p,N <0. End of proof.

Lemma 3.7. Let p(x, & ) and q(x, &, i) e C*(R"x R*, BL(X)) with a
parameter Ae(0, ©) and assume that p(x, ¢, 1) and q(x, & L) are
constant in x outside a ball {x;|x|<R} and that for all multi-indices
o, B we have constants c, g, M;, 6; and p;, where i=1 or 2, such that

1P & DS ciapd™1 - (L 2y 21181011
10t & DS ciaprd™ =1Ll A+ oa181mpatel,

0=4,<p,=1 and {=(¢, ).
Then for any integer m we have

liqCx, 6, 2)p(x, 0, /1)tt(x)--ME<Iv (D1=l(@)1g®(x, 0, Dopey(x, 0, ()|
ScA N2 A Aull,  for  u(x) e CE(R", X)

where ¢ is a constant which depends only on N,L,n, R and cpp»
and m;, 8;, p;, N, L and m satisfy the relations in Lemma 3.2.

Remark. Many times we use pseudo-differential operators A%(1) for
all real number s whose symbols are (|£]2+A2)%/2,

Proof. Let ueC%R", X),v=qpu— Y, (1)‘“‘/0:' qDopyt, P(x, & )=

p(x[2y €2y ), G(x, & A)=q(x[4, &4, 1), ul("‘c)l u(x/4) and vy (x)=v(x/4).
Then

(3.6) v1(x)=§q pu,— Z (l)'“l/“' 4o Py .

Functions p and § satisfy the hypotheses of Lemma 3.2 and 3.6 as
followings

I, & DS cpagp 7 P11+ [E])me+o11BI=p 1D
1GE, & DIS cpagpd P11+ |E])ma+ 22181021,

So we apply Lemma 3.2 and Lemma 3.6 to (3.6). R", c,.(N,L) in
Lemma 3.2 and ¢',,,(N, L) in Lemma 3.6 are less than cA", cA~N-2n+2
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and cA™¥n*1 for some constant ¢, respectively. Thus,
oyl S cA™¥*2 [ A"(Duy |l .

Changing variables, we obtain the estimate of this lemma.
End of proof.

Lemma 3.8. Let p(x, &, A) satisfy the hypotheses of Lemma 3.7, where
0<6,<p,=1 and 6,#1. Then we obtain

[A™(2)p(x, 0, Dull S codms | A ™1 (A)ul|
+ e ATmT O] Amtmit o= 1(Ayy ||
especially
[A™A)p(x, 0, Du| S e, A~ A™ s (Du]|

for Ae[l, ©) and for any real number m, where c, does not depend
on m.

Proof. When m=0, we prove the estimate in the same way as
in Lemma 3.7 using Lemma 3.1 instead of Lemma 3.2. p(x, & 4)
=p(x/A, £A, A) satisfies the hypotheses of Lemma 3.1 with constants
Cloypy Which do not depend on 4 if Az1. If we put v=p(x, J, Du,
u(x)=u(x/t) and v (x)=v(x/r), then v,=p(x,0, Hu; and |ov,] =
c|Am(Du,| by Lemma 3.1, where ¢ does not depend on Ae[l, o).
Changing variables, we obtain that

ol S cAmlAm(Aull, Le[l, ).

Let us put q(x, & D)=({|/A)". Then p(x, & A) and q(x, &, A) satisfy the
hypotheses of Lemma 3.7, where m,=m, 6,=0 and p,=1. This means
that it is enough to estimate the finite numbers of the pseudo-differential
operators with symbols (y, x, &, )=q"(x, & )p,)(x, €, 1) because from
Lemma 3.7 the error term gpu— Y (i)!*//a!-q®op,u is bounded by
eyAmmmm | Agmtm= 1y || if N islalsﬁ&iciently large. For some other
constants ¢, 41y

&), x. &, A
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S Clagiptin A 1T IVI(IL| Ay mat S 11BI=p el + (3 1= D171

So we can use the result which we have already proved in the case
m=0.

¥, x, 0, Dul S c,Ammma=dslrl] gmtmit Gu=DII(Z)u |
Summing these and the error term up, we obtain that
A~ AMDp(x, 0, Dul =llq(x, 8, Hp(x, 8, Dul

écol—m-ml”/lmﬂnl(l)u” + Z l—m—ml—ax|y|”Am+ml+(61-1)|y|(/"t)u ”
1 <N

=7l
+eydmmmT At (ull,  Ae[l, )
é col—m—m; HA"H."”(A)M ” + cmi—m*ml—él ”Am-!—m,+61— 1(/1)” ”

because A0 AC=Ds(Py | < |ul. End of proof.

Lemma 3.9. Let p(x, & 1) and q(x, & A) satisfy the hypotheses of
Lemma 3.7, where 056, <p<1,0,+#1 and 0<d6,<1. Then for any real
number s and integer m and for sufficiently large N’s we have

45D {q(x, 9, 1)~ p(x, 0, 4)

—l¢|Z<N(i)‘“‘/0¢! "q@(x, 0, Aepy(X, 0, A)}ul
Sca Vet 2 A Aull,  for ueCP(R", X).

Proof. 1Tt is trivial if p is constant in x. So we may assume that
the support of p in x is bounded. Let us put r(x, d, A)=A(H)A™5.
Since ¢ and r,p and /Il“li'(“)cq(a), and, Al#lg@op, and r satisfy the
hypotheses of Lemma 3.7, we have (3.7), (3.8) and (3.9). We have also
(3.10) by combining (3.7) and (3.8), and the result of this lemma by
combining (3.9) and (3.10) for sufficiently large N’s.

3.7 I{r-q —'a‘Z:N(i)'“'/d! 1(®og e} pull

é cl-N—m+m1+2 ”A""'"l(}.)pu ”

é CA,_N—"H'Z ” Am(l)u ”
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(3.8) [{r®egqy-p— X ()Rl r@DogBop o, }ull

letp+y| <N

é C),_N_"H' 2 H Am()')u ”

(39) I q®opgy— 3 O lfalyle @ Deq@opg.ul

é C/l_N_"H- 2 “ Am(l)u ”

(3.10) H{r-q-p— X @)=+ [alflyl- re+Doglopes , py}ul
la+p+y|<N
SN2 A (Du). End of proof.

There are Lemmas 2.6 and 2.7 for M, B, P_, D, E, Ji, e ™».P_ and
(in+M)~1, which are defined in section 2. So these are pseudo-differ-
ential operators to which Lemmas 3.7, 3.8 and 3.9 can be applied.

Lemma 3.10. Let h be an element of CF(R"™) and Ae[l, o).
D A(DM(x, 05, Hh| Zc| 45+ (Dh]
2) N1 43(AB(x, 05, Hh| =c|A(Dh]
3) NAP_(x, 0z Hh| Zc|A(Dh|
4 [ 4°()D(x, 0x, Mh| =c|A(Dh]|
5) A DE(x, 05, Dhl| =A™t A5 (Dh]|
6) (1453 (x, Ox Dh| ScA™H | AX(DR]| s Ivl=1
7) AT (x, O DRI S cA”VI2=H AT ZELGR] 5 [y 22
8) [ A(AI(X, Ox, Dl S cA™H [ ADh] s rl=1
9) 45(A)J3(x, Oy DRI S ATV AST IR 5 9] 22

10) || A5(4) {9303 (e”M 0= D¥oP_(x, O, D}h]|

< C{Se‘“'“”l §|z(s+lv|)|ﬁ(§)|zd§}”2

A e O]
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<] 1/2
1) {[* 140y ey mennrop_(x, 0, )12y}

= A O L]
12) ||(in— A1 () 457 () {0x(A7(x, Oy, 1, A)}A]
cl|4= (DA,
where A7¥(x, &, n, A)={in+M(x, & A)}77
13) 145D [B(x, 0z A); P_(x, 05, M]h] =c[ A1 (D)h]|
14) AR [D(x, Ox, A), ECx, Oy, ATh| S A7 A5(Ah]
15) [ A LE(X, Ox» A), D(x, Ox, A)Jh| S cA™H [ AX(Ah]
16) ||(in— A1 (W) 4= 1A [M(x, 05, A), A7(x, O, 1, AR
Sc| 41 (Dh|
17) ll(in— AN A~ 1 (A [A7(x, O, 1, A), M(x, 0, ]|

ScllA5 1 (Dh]

® _ 2 1/2
18) {So 145(2) {3([M(x, Oy, ), e ME0:030P_(x, 8,, D]}A| dy}

Sc| A= 2k

@ : 12
19) {SOHAA(A) {a;([e"M(x,axgi)yoP_(x’ Oy, A), M(x, 0,, i)])}hllzdy}

Zc||AsH =12k .

Remark. [q(x9 6x)1 p(x’ ax)]Eq(x9 ax)‘p(xﬂ ax)—q(x! 6x)°p(x9 a.)c)

Proof. 1)~12) follow easily from Lemmas 2.6, 2.7 and 3.8. From
the definition of [ , ] we have that

[D(x, 0y, A), E(x, 05, )]=— ls|§ll<N(i)'“'(a!)'1J§(x, 0w A+ K.

Here, the error term K is negligible to be estimated if N is sufficiently
large because D and [ satisfy the hypotheses of Lemma 3.9. The other
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terms J2 satisfy the estimates 8) and 9) of this lemma. Thus we obtain
14). The other estimates are proved by the same way as 14).

End of proof.

Let peCY(REMY); R ={(x, y); y=0, (x, y)eR**'}, We define the
operators S;(4), S,(4) and T;,(4) as

$,@p=feirna=1x, 3,0 m, DoEN
SHR=IS10), MG, 0 Do
= femnraicx, 8, m, 2, M(x, 0, D10GDEN
T\ Ro=IMG, 8. 2, Do
= (eI, 8,0 2, A710x, 20, DI0CN
000 =( e ma(, y)dy and A7 (x, & 1, D=1in+Mlx, & D},
Then, we have the following lemma.

Lemma 3.11. Let o CE(RYT'). For any non-negative integer m,

a m+1

D (5) Ssie
+ 35 Y ermememiner (20 0((F) @) (20
2 (&) s

+j=§o<—a—ay—)j [e=M.exi0P_(x, 8., 1), M(x, 8., 1)] ((%)"’" <p)(., 0)
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(L) Tu@e=To(5 ) 0

=0
in Ru*1,

Proof. This is proved by using the relations that
(Ceo - rwyar={ioemtotpwydr - 1(0)
0 (0]

S+wei“ I_kI (iO"—O'j)—l da:(,-)—lg esk ﬁ (‘u—o'j)—ld,u,
- J=1 r /=1

+ 3 () MG, 8.0 ), emaenrep_(x, 0, DI((Z) 0) 40

where s>0,Red;#0 and I' is a C=-Jordan contour which surrounds
o; such that Reo;<0. End of proof.

Lemma 3.12. Let ¢eCZ(R%!). For any non-negative integer m,

Copyl| 2205038 1 (D01

2
la|+[B]+]y[=m+1

Sc T ey | A5083lp)2
le|+|B]+|y|=m

2) Copy 129050} S7 (M) 0|2

la]+]B]+[7][=m+1

<c Capy 14205030012
lal+161%171=m

3) Capy|A20203T 11 (D13

lal+[Bl+]y]=m+1

Se F oy, lA00l0l,
la|+ Bl +]v|=m

where llpl3=({ ., 0x, y)2dxdy.

Proof. We prove 1). When m=0, it follows from the
gularity of in+ M(x, &, 4), that is, from 12) of Lemma 3.10,

122050381 (M2

lal+[B1+]71=1

non-sin-



BOUNDARY VALUE PROBLEM FOR ELLIPTIC SYSTEMS 589
< lin—A1G)Ax, 0, DI

< | oel2an=clol2.

We use Lemma 3.11 in the general case of m. The terms that y=0
are estimated immediately by 12) of Lemma 3.10, that is,

el S Dolise 3 cylidol?.

|| +]|B|=m+1
When y#0, we have by 1) of Lemma 3.11 that

230351l < | 1204035, ()85 o
+% |A2050}~Te~MC-0x:D30P_(x, 8,, 1) (057 10) (-, O) +-
j=1
The first term is estimated by 12) of Lemma 3.10, too.
/\
Ill“aﬂayS1(1)5§‘1<pll%écgIlA'“'*'ﬁ'(l)(ai“‘qo)(n)ll21111

<c > Capy 122050 0|2
lal+gf2moypy P70 VTN

We use 11) of Lemma 3.10 for the remained terms.
Capl| 42050} T e Mx:0:0¥0P_(x, 0, 1) (0] 1) (+, 0)12
la]+]|B]l=m—]y|+1

ScfAlHBERI=ImI2(2) (05 @) (-, 0)]12

Se( ¥ eyl 2ROyl 3+ > cupll 2050} 0113,

fa|+]|B]=m—|v| lel+|Bl=m=|7|+1

where we use the well-known inequality that

1A2(De(-, 02 < A (Del3 + 10,02

Thus, we obtain 1) of this lemma. We can prove 2) and 3) using
16)~19) of Lemma 3.10 in the same way as 1) because S,(2) and T;,(4)
have the similar expression 2) and 3) of Lemma 3.11. End of proof.

Lemma 3.13. Let p(x, &, A) satisfy the hypotheses of Lemma 3.7, where
0<6,=p,=1 and 6,#1. Then we obtain
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[ Am(A)p(x, 0, Dl S cod™™ [ A m(Aull + e(l, m)|| AN (Dul|

for Ae€[1, ) and for any real number | and m such that m+m,>]I,
where ¢y is a constant which does not depend on A, 1 and m.

Proof. This lemma is a corollary of Lemma 3.8. We know well
the inequality that

lA*(ull S ell AP (A)ul + e~ A7(Au] .
So we obtain
[[A4mtma* =1 (Au]|
SelAmrmi(Dul| +e2immmmim ot DIA=0D | AN |
el Amtmi(Rul] +e(l, m)ams | AYAu|

where e=cyfc,, and I<min(0, m,;). (It is no restriction that we assume
it.) End of proof.

Lemma 3.14. Let y,eC®R™) or y;=1(i=1,2) such that 0=Zy=<1
and y,=yxx:. Let p(x, & 1) satisfy the hypotheses of Lemma 3.7, where
0=<6,=<p,=1 and 6,#1. Then, we obtain that

[A™(Dx2p(x, 0, Aull < cod™m || A1)y ull
+e(l, m, A~ e Amtmamey(Ayggull + eI, m, x) | AN (D

for Ae[l, ©) and for any real number | and m such that m+m,>1,
where ¢y is a constant which does not depend on A, 1, m and y;.

Proof. In Lemma 3.9 we put p(x, 0, A)=yx,(x), q(x, 0, )= p(x, 0, 1),
s=m and m<l. Then we obtain that

[ 4(2) {p(x, 0, /1)7(2“—IQEN(i)'“'(d!)"Xz(a)l"")(x, 0, Au}|
=c(l, m, )| A'Au] .

We use again Lemma 3.9 for p(x, 0, A)=yx,(x) and q(x, 8, 1) =y2yp'(x,
d, A) when |a|=1.
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[A™(2) {20y P P (X, 8, D)1t = K20yP @ (x, 0, Al
<c(l, m, A Dul,

because ¥ X1pP * H(x, 0, )=0, when |B|=1, and yyu%1=X2@- Thus,
we obtain that

I A™(Dx2p(x, 0, Dull = [[A™(A)p(x, 0, A)xaull

+ [ 4™(2) {IaEN(i)'“'(a!)’IXZ(a)P‘“’(x, 0, A}xaull

+e(l, m, )| A'(Aull .

We apply Lemma 3.13 to the first and second terms in the right hand
side of the above inequality. Then, we obtain the result of Lemma
3.14, because Al*ly,,,p®(x, 0, ) (Ja|=1) satisfy the hypotheses of Lemma
3.7 for p(x, d, ) when we replace m,; by m,;—p,|al.

End of proof.

Using Lemma 3.14, we obtain the similar lemma as Lemma 3.10.
This is used to prove the existence of regular solution or the regularity
of solutions.

Lemma 3.15. Let h be an element of C®(R"), Le[l, ©), m>1 and
% (i=1,2) be these in Lemma 3.14. Then, there exists a constant c,
which does not depend on 1, m, 2 and y; such that

D A" M(X, 05 Dh| = coll A" 1 (D)x2h]
+e(l, m, x) {1 A" bl + 1AM}
2) [ A™Wx2B(X, 05, Al = coll A™(A)x2h]
+e(l, m, ) {1 A" (Dxahll + [ A DR}
3) [ 4"@)x2P (X, 8z DRI = coll A™(A) g2kl
+e(l, m, ) {IA™ (Dbl + [ A' AR
4) [ A"Dx2D(x, Oy D= col| A™(A)x2h]l

+e(l, my ) {IA™ (Dbl + 1A' DA|}
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5)

6)

7

8)

9

10)

11)

12)

13)

14)

NOBUHISA IWASAKI
[A™(D)x2E(X, 0y M| S cod™ | A1 (Dyh]l

el m, ) {27312 A1 20 bl + L ATDRIY
{{ 1am @y som o _x, 0, D12y} Seol Am 123

el m, 1) {1A4™212; bl + | 411}
i — AL (AP QYo 4715, 0y 1, Db Sl 4™z
el m, 1) (1A 2@yl + | AR
|Am)LIBG, 0y, 2, P (x, 3y, ATAN Sl 47~ (2]
el m, 2) (A2l + AR}
|Am(LIDG, 8y 2), E(x, 8y ] S o2~ [ A7)t
(T, m, ) (332 A 112y, bl + | AXA
| AmG)TEGS, 0y, ), D(x, 85, AT S o | AmR)h]
el m, ) {732 A 112) bl + | AR
Iin— AL (AT (2oL A 5, By 1, 29, MO, 00 DTN
<col Am= (ol + (L, m, ) {142kl + | AR}
(i — AX (AT Qo TM(x, 8, 2), 475, B, 1, )T
< coll Am (gl + el m, 7) {142l + | AR
{(T14alMCx, 0 ), eMe0m90P_(x, 3,0 DTNy}
<col Am= 12 @)h| + s m, 1) {1 Am=/ )l + | AR}
{(1Am oL s0m2eP (3, 0,0 2), M(x, 0 DN}

Scoll 4™ 2Dkl +e(l, m, 1) {1432y k] + | AXAA} -

We say finally some properties about a special type of pseudo-differ-
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ential operators in R%*!. One of them has the symbol (|{]—in)*, which
will appear in the lower terms and in the translators when we shall
adapt the general cases to the special cases at the section 6. It is a
typical example of pseudo-differential operators satisfying the transmis-
sion property with which L. Boutet de Monvel has dealt in [3]. We
may be able to deal with boundary value problems of these types of
pseudo-differential operators. But we use only the special ones and it
is sufficient as far as we deal with the boundary value problems of partial
differential operators in this paper. 12), 16) and 17) of Lemma 3.10
show that Al-A~1, A'-[M, A~'] and A!'-[A™!, M] are ones of the
simplest symbols of pseudo-differential operators in yeR!, which take
their values in BL(HS(R")), because 02A~'=A"% 0i[M, A~']=[M, A™*]
and 0%[A~', M]=[A"*, M]. We generalize them in the case that they
depend on the variable y. Let M(x, y, &, 1) be a C=-function, which
is constant in y outside a bounded set. We assume that it satisfies the
conditions of M(x, £, A) for each fixed y. We can define Az%(x, y, 0,
n, 1) with the symbol A3%(x, y, & n, H={in+M(x, y, &, A)}%, also [M,
A3*] and [A3% M], where the bracket [ , ] is the one as in the
pseudo-differential operator in x. We have Lemma 3.16 as well as
3.10.

Lemma 3.16. For he Cg(R")
1) ll(in—A* D)) A" A3%(x, ¥, 05 1, | | A"Dh|
2) l(in—A' Q) ADAIM(x, p, 05, 2, A3%(x, y, Oy, 1, V]|
Zcl|lAm()h]
3) l(in— AT ) A" [AZ*(x, ¥, Oy, 1, 1), M(x, p, 0y, V]|
=c|lAm(Z)h]|.
(We omit the proof.)

This shows us that they have stronger properties, for example, A3*
takes its value in BL(HS(R"), Hs**(R")). So, we modify Lemmas 3.2 and
3.6 in order to make a good use of them.
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Lemma 3.17. Let Y be another Hilbert space densely contained
in X by a continuous injection. Let p(x, &) and q(x, &) be ones in
Lemma 3.2 or 3.6, and let q(x, ) satisfy that there exists an integer
ao such that q{®(x, &)e BL(X, Y) (bounded linear operators from X
to Y) and

la{8)(x, O xy S cop(L+|Elymsmp2lel+22161

for all |a|=ay, and |f|=0, where |-|xy is the norm of BL(X, Y). Then,
there exist N and c for any integer m such that, for ue C%R", X),

q(x, 9)" p(x, Ou— | |Z< N(i)'“"(oc!)‘ 14X, 0)op y(x, Ou=Ku

and |Kulyo=c|u|xm. Here ||*|xm and | -|ym stand for the norms of
H™(R*, X) and H™(R", Y), respectively.

Proof. We have only to replace the norm |-| of BL(X) by the
norm |-|yy of BL(X, Y) for the estimation of #®)((, & n—¢&) in Lemma
3.3 or #®(&, n—¢&) in Lemma 3.6. End of proof.

We immediately obtain Lemma 3.18 by applying Lemmas 3.1 and 3.17.

Lemma 3.18. Let y(x, y)e C*(R"1) such that y;=1 or € CR(R"1),
0=<=1 and yx1=),- Let A=1l,0a, B,y integers and s,t, 0,7 real
numbers. Then, we obtain the following estimates for all ue C$(R"1),
where ||| stands for the standard L2-norm on R*'! and ¢, is a con-
stant not depending on s, t, 0, t and 1. We set

A3 (%, ¥, &, N)=0543%(x, v, & 1, A)
[M, Az a)(%, ¥, O, 11, D=IM(x, ¥, Oxy 1), A3%(%, Y5 Oxs 1, H)]
[43°% Mg(%, ¥, 0, 1, D=04[A3(x, ¥, 0y 1, ), M(x, y, 85, A)].
D (A1) —id,)* - A45(A) - Az (X, Y5 Ox Oy Al Scf| A5(Au]|
2) (A A)—idy)* - AXA) - [M, A3%](g)(X, ¥» Oxs Oy Dul| S| A*(Au]

3) (A R)—id)*- A5(2) - [Az*, M]g(X; ¥, Ox, Oy, Dul Zc||A*(Aul
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49 4D (AN A= i0,) " xz (AN (D) —id,)~u]|
= A Dxzull + {1 45() - (AT (D) = i0,) " xqul + | A7(Dul}
5 (A (D) —id,) 4D x2" A7 (X, ¥, Oxs Oy Mul ol A%(2) - 221
+e{[l A1) - gaull + 1A% (R)ul}
6) (A (A)—id,) 452 12 [M, A3 o)X, ¥ Oxs Oy M|
Zcoll A5 xaull + {1451 (A) - xyull + [ A7 (Aul|}
) (ANA) —idy) - A5() - x2 [A3 " M 0)(%, ¥> Os» Oy Mull

Zeoll A5(A) - yaull + {1 A1 (A) - yyull + | AT (A)ul )} -

Proof. Wc give thc proof of (5). We first consider the commuta-
tion of x, and A3'(x, y, 0y, 0), A) in the variable y. We have (3.11)
by Lemma 3.17 as well as we have had the similar one in the proof of
Lemma 3.14.

(3‘11) Azl(xi Vs am ay: }»)'Xz(X, J’)U
N )
- EOCVAEI(v)(x: Y, axa aya A’)(°)X2(v)(xs y)U
v= y

=Kv, 0eCgR"")
and
(A" (4) = i0,) AS(A)Kvl|| = c[| AX(A)v]|

for a sufficiently large N, where o stands for the product in the sense
of symbols as pseudo-differential c:perators in y valued in pseudo-differ-
ential operators in x. By definition A3'®)(x, y, d,, 0,, A)(;)xz(v)(x, ¥)
have the symbols A31C)(x, y, 0., 1, 2)* X20y(%, ¥). So we apply it Lemma
3.14 as pseudo-differential operators in x. We have for a sufficiently
large N

AEI(V)(xa yn ax’ f, /1) 'XZ(v)(xa y)h

- Z XZ(\v}(ar)(xa J’)AEI(‘,)W)(X’ Vs axa 1, j~)h

le| <N
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=K'(y, n, L)h, he Cg(R"™)
and
A5 (DO30LK (v, 1, DRI S opee(1+ 1)) #77= 1 | AX(DR],
where N does not depend on « and f, because
10302050743 (x, y, &, 1, A)|
S Capyan(L+1(E, 1, A4 10171
S Capran(L+ DAL+, HDTPL
Therefore we have for ue C§(R**1)
(A1 (2) = idy) - A%(2)* K'(y, 0y, D]l S el A"(Au]] -
This means that
A3 (%X, y; Oxs By 1) Yo%, Y)V

- Z Z XZ(v)(az)(x’ y)AEI(v)(a)(x’ Vs axa ay’ A)U
N

v<N |a|<
=K, ve CP(Rr+1)
and
(A1 (A) — idy) - A5(2) - Kovl| Sc[|A(Av]] .

We commute y; and each term at the second part of the left hand side
to modify v by yx,; except for the principal term

Xz(x= y)AEI(xs Y, axa aya A)U

Then, we have that

(.12) A o=tz A= T e A7 w0
Jal<N
(v,a)#0
=K117

and [[(41(A)—i0,)- AS(A)K v| Sc|[A*(A)v||, where it is clear that yyw-
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A31M@®) satisfy the estimates
I(A*(2) = i0y) - AW L2 ey " A2 0|
eyl A1) - (AN () — i0,) ] -

Thus we obtain the estimate 5). The other estimates 4), 6) and 7) can
be analogically proved. End of proof.

The operators (A!(A)+id,)* are isomorphisms from Hs*{(R"*1) to
H'(R**t!) for real numbers s and ¢t and the symbols of (A!(A)+id,)
are (|{|xin)*; {=(& A), where we take the branch of z® for Rezz=0
which is real if z is real. They are the adjoint operators to each other
on HO(R"*1). (AYA)+id,)u=0 in R%! if weH'(R"™1) (=0, s+t=0)
and if u=0 in RZ'!. Moreover y 1/2(AY(A)+id) /2ueHO(RLE) if
ue H°(R*!) and if u=0 in R%!. So, (4'(4)—id,)* induces the isomor-
phism from Hs*(R4*!) to H'(R4*!) and (A!(A)+id,)* the isomorphism
from H§Y(R%TY) to HE(R'Y) if s+t and ¢t are positive, where Hj(R%1)
are the closed subspace of HY(R%*1!) densely containing CZ(R%*!) if ¢
are non-negative integers and the others are defined by the interpolation
of them.

(A'(A)+i0,)y* the adjoint operator of (A!(A)+id,)* on HH(RE!)
is the isomorphism from Hs *(RZt!) to H R%*t!) if s—t and —t are
non-positive and it is equal to (4'()—id,)* on C%(R%*1). So we denote
again it by (A4'(2)—id,)>. It has the representation that for ¢ e C3(RL™Y)

(@)= idyo={{ercerm(c - imy e, macan

o= ax{"emiecmg(x, yyay.

It is clear that (A'(A)—id,)*(A'(A)—id,)'=(A'(A)—id,y*!. Therefore we
obtain Lemma 3.19.

Lemma 3.19. (A'(A)—id,)° induces the isomorphism from HSTY(R%*1)
to H'(R%*Y) for all real number s and t and its inverse is (A'(A)
—id,)™s. Let x;(i=1,2) be C®-functions defined in Lemma 3.18. Then
we have for all real number s, ¢ and t and for all ue CH(RLT)
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[45(2) - (A1 (A) = i0,)7 - 12" (AN (D)= id,)"u] +
S5 x2ull + + {1 A3 (AN D = i0,) ™ xyull + + A (Dull 4} .
Proof. In the same way of (3.12) we have

(3.13) XZU_(AI()“)—'iay)“'Xz '(/11()»)-—1'5),)“%
_ éav(x, ¥y 0 1) (AN —i0,)7 - y0=Kov,

where ay(x, y, 0,, ) are pseudo-differential operators in x such that
145(A) - a,(x, y, Oxy A)-B|| Sc|| A5~ 1(D)h| for heCPR") and K is the
error term such that |AS(A)Kv| Zc|A*(A)v]| for veCPR"). Thus
(3.13) holds for i=u on R™! and #=0 on R"'!, where ue CP(RL).
We obtain the estimate of the lemma if we take the norm || |, in
Ru+1L, End of proof.

Lemma 3.20. Let y; (i=1,2) be C®-functions defined in Lemma 3.18
and x?(x)=yx{x, 0). We obtain for he CZ(R") and for all real number

s and 1
1) A (R)x2e™* PR 4 Scol A5~ 2(A)x 3R]
+ (s, 7, ) {I1AS732(A) g8 Al + [ AX(DR]]
2) || A (A)ype M0 R¥oP_(xX, Oy, D]l 4
Sl A28 Rl + (s, T ) {1 A3 2D h] + | A(DR}
3) AW [M(x, Oy, 2), eME0=D3P_(X, 0, AN 4
Scoll A5 H2(Dx8hl + (s, T 1) {1432 (D22 hll + [ 47D}
4) A5 (DgoLe™ M *0:DYeP _(x, 0, A), M(x, 0, A)Ih] +
Scoll AT 2(A)x8hl + (s, T, x) {1 A 2D hll + | AT(DA |}
where ¢, does not depend on A, s, T and ;.

Proof. 1t is sufficient in order to show 1) that we prove the same
estimate for e 4.y, without assumption for y, to bc non-negativc.
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[ 43(A)e= 4B, 2

=(neresihizay, =@

fael 10125000 h 20y

1 P
2 (1c1oy 1kl e
v=1 y=0
© o~
+{ae] Tre12memavay g h 2y

We use many times this equality and Lemma 3.14. And we modify
Oyx2ly=0 by %9 except for the principal term because x903%,l,-0=0%%2l)=0-
The last terms form the rcmained term |A*(A)h]. 2), 3) and 4) are
proved similarly. End of proof.

§4. Existence, Uniqueness and Regularity (Special Case)

In this section we shall treat a special case, that is, the domain is
Ritt={(x, y); xe R*, ye R! and y>0} and the equation is
y

[0 : .

B(x, a.u A)”Iy-()=y 5

where M(x, d,, 4) and B(x, d,, A) arc pscudo-differential operators whosc
symbols are M(x, &, 4) and B(x, ¢, ) in the section 2 and satisfy thc
assumption (A). We shall show existence, uniqueness and regularity of
solutions for (4.1) by means of constructing right and left parametrices
with the pseudo-differential operators which we have dealt with in the
sections 2 and 3.

We first make (4.1) more exact. We assume that ue HO(R:H1),
fe HY(Ru+1) and

4.2) {;%+M(x, s /1)}u(x, y)=f(x,);y>0.
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Lemma 4.1. u(x, y) can be considered as H,'/2(R*) valued con-
tinuous function in y on [0, o). Therefore, the boundary value of
u(x, y) in R%¥*1 which belongs in H;,'/2(R") is well-defined.

Proof. We first prove the following inequality (4.3) in the case
that ue Cg(R%*1). To (4.2) we operate A~1(1) which is a pseudo-differ-
ential operator with the symbol (|¢|2+42)"1/2 and consider the inner
product of it and u(-, y) in x.

_%<A_1(A)u(g y)s u('s J’)>

=2Re{<A™1(A) M(x, 0, Du(-, y), u(+, y)>
= <ATYDSfC, y) u(e, p)>T.
Integrating from 0 to oo in y, we obtain that
<A~ (Au(-, 0), u(-, 0)>
=2Re{(A7 ' (AM(x, 0y, Du, u)y — (AT DS, w4},

where < , > and ( , ), are the standard inner products in HZ(R")
and HY(RI*L), respectively. A~1(1)-M(x, d,, 1) is a bounded operator
on HS(R"), also on HY(R**1!). Thus, we obtain that

(4.3) <A™ 2, 0)> 2
= <A=1(Du(-, 0), u(-, 0)>

Sclllul 2+ 101 Null+3s

where the constant ¢ does not depend on A. Let us prove it in the
case that, u, fe HO(R%*1) satisfy (4.2). Since {73@37+M(x’ Oy /1)} is an
elliptic system, u(x, y+a)e HLY(R**!) for a>0. This means that u(-, y)
is an HY/2(R"), also H,!/2(R") valued continuous function in y on (0,
). Since CP(RT*1) is dense in HL(RY), u(x, y+a)—u(x, y+b) satisfies
(4.3) for a, b>0. Since 11m u(x, y+a)=u(x, y) and 11m f(x, y+a)=£(x, y)
in HY(R%*1), there ex1sts the limit of u(-, a) in H“I/Z(R”) as a—+0.
Putting u(- ,0)=11_)r51 u(-, a), u(-,0) and u satisfy (4.3). End of proof.
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Definition 4.1. Let us define W as ueW if and only if u and

{6 +MG, 0, Djue HYRE).

Remark. W does not depend on J because any homogeneous func-
tion p(&, ) of order a in (& A) is written as p(&, A)=p(&, 0)+Ag(&, A),
where g(£, 1) is a homogeneous function of order a—1 in (&, A).

Corollary of Lemma 4.1. CZ(R%t1) is dense in W with the norm

=3+ | { -+ mex, 2, )"

Definition 4.2. Let us define W, as ueW, if and only if ueW
and B(x, 0., Au(-, 0)e H}/2(R™).

Remark. W, does not depend on A because of the same reason as
the remark of Definition 4.1.

Remark. When we regard as W(W,)c HO(R%1) x H,1/2(R"), W(W,)
stand for the elements (f, g) such that fe W(W,) and g=f|,=.

Definition 4.3. Let Cy(A) stand for the closed operator, from

HE(RE) x Hy 2(RY) fo H(RE) x Hi2(R,

( Gt M0, D, 0

) whose definition domain is W,.
0 , B(x, 04, 4)

§§4.1. Existence of Solutions

We first define some operators in the following way.
Definition 4.4. AO(A)E%+M(>¢, 0., 7)

Alx, &, )=in+M(x, &, 1)
Definition 4.5.

s\ s=({eresomac, & n e macan e HyRE
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sans={emcace, & n, iy maean e HRY
SyRg={erte e P (v & DgOEE e HYRY
SuBg=eeP_(x, &, DY € Hy1/2(R")
Ss(/l)hzge"‘é‘E(x, &, Dh(ode € Hy1/2(R")

where  fe HO(RIY), geH;'?(R"), heH}/?(R"),

e m=({ ., eeeomss, yaxdy,
§©={etgdx  and

)= ge-ixéh(x)dx.

(We use the symbol of integral for Fourier transform in &, (&, 1), x
or (x,y) to be visible though they may not be integrable. Refer to
the section 2 for definitions of e M»YP_, P_ and E.) These operators
are well defined by Lemmas 3.10 and 3.12. (S,(A)f)(-, y) is an HL/2(R")
valued continuous function in y and (S, (A)f)(-, 0)=S,(Vf. (S;(DHP(-, »)
is an H,'/2(R") valued continuous function in y=0 and (S;(A)g)(-,0)
=S54(Ng.
Definition 4.6. Let us put
Bo()=B(x, 0y, 4)
10, S50 Ss(h)
S()=
S,(A), S4(A)Ss(A) /-

S(A) is a continuous linear operator from H2(R4*!)x H}/2(R") to

AO(}')Q 0 )

0 , Bo(4)
to S(4) from the Icft hand side and represent it by pseudo-differential

HY(R*Y)x H,;/2(R") with a parameter A. We operate <
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operators.

Ao(2), 0 Ap(2)-S8,(2), Ag(A)*S3(A)-Ss(4)
o (e |

([p,

0 , By(d) Bo(1) S5(2),  Bo(A)* S4(A) S5(2)
=1+T()
Ty,(D,  Tix(2)
)
T,1(4), Ty(4)
Ty, (D) =[M(x, 0, A), S1(2)]
Ty, (A)=[M(x, 8,, A), e M=2:03P_(x, 3, )]* S5(A)
Ty,()=B(x, 0., 4) S,(2)
Ty, (A)=[B(x, 8y, ), P_(x, 8,, 1] Ss(A)+[D(x, 8, 4), Ss(A)].

ql=p-q—peq, where p and g are pseudo-differential operators and o

is product in symbol space.)

1
2)
3)
4
5)

6)

and

Lemma 4.2,

1Ty WDl <eA™! on HY,

m

(RY™T)

IT (W) <eA™ from H}/2(R") to HY(RYH)
1T, <c from HR(RY) to HI'>(R")

I T2l <cA™ on H}I2(R™)

IT@) T <eA™* on HY(RY)x H}IZ(R")

m

There exists the inverse operator of I+T(J) on HS(RI*1)x H}/2(R™)
for sufficiently large .

I+TA) ' =I-TEYIT-T@A) TA)™*

IT+T@) Y <c; A=3y, where we use |[AY2(D)e|, o € H}2(R")

as the norms of H}/2(R") with parameter A.
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Proof. If we assume 1), 2), 3) and 4), then 5), also 6) are clear.
From the definitions, T;; are combinations of pseudo-differential operators
which we have dealt with in Lemmas 3.10 and 3.12. We can use them
to obtain 1), 2), 3) and 4). For example, by 5), 13) and 14) of Lemma
3.10,

|41 2(2) T (A
<[ 412(2) - [B(x, 0y, A), P_(x, 0,, A)]* E(x, O, A)h]
+1AY2(A) - [D(x, 0y, 4), E(x, 0, A)1h]
ScllA71/2(2) " E(x, Oy, M)A
+14172(2) [D(x, 0x, A), E(x, Oy, A)1h]|
<AV AV2(A)h]) . End of proof.

Theorem 2. There exist bounded operators Ry(1) from HY(RZ1)x
H}I2(R™) to HY(R% ') x H,1/2(R") for A=Ely such that range of Ry(1)
=W, Co(A) - Ro(A)=I on HO(R""1)x H}I2(R") and |Ro(A)|| Zci™1.

Proof. We can define Ry(AN)=SA):-(I+T() ! by Lemma 4.2.
Then (Ao('l)’ 0 )-Ro(l)=l by (44). The remark after the defini-

O s BO(A)
tion 4.4 for S(1) shows that range of Ry(4)c=W,. Thus

Co(4) " Ro(A)=1.

The estimate for Ry(A) follows from the estimates for S;(1)~Ss(4) of
Lemmas 3.10 and 3.12. Here, we have to notice that we use the norms
with parameter A such that [|AS(D)e|, ¢ € H5(R") for HE(R™).

End of proof.

§§4.2. Uniqueness and regularity of solutions
Definition 4.7, S4(1) fzggeiwmA(x, & n, D)-tinf(€, n)dédn

€ HY(R%#+1), where fe HY(R%H1) and
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e m= ., eesomps, yxdy.

R:-}-l
Lemma 4.3. Let o CH(RTY).
D S ()F0=SD+S(De(,0)  in Ry,

2) $i(A)Ao(De=0¢+S3(De(-, 0)+[S,(2), M(x, 0, )¢, in RE1.
(We omit the proof.)

Lemma 4.4. Let ue W and f=Ao(A)u.

1) u+SsAu(-, 0)+IS:(4), M(x, 85, HJu=S,(.

2) u(-, 0+ S(Du(-, 0)+[S1(A), M(x, 05, A)July=0=S,(A)f.

Proof. If ueC®(R%1), 1) and 2) are valid by 2) of Lemma 4.3.
[S:(A), M(x, 0,, 1)] is a bounded operator from HZ(R*!) to HL(Rz*1),
S3(4) from H,'/2(R*) to HY(R%*'), S;(4) from HY(RZ*') to HL(R#Y),
S4(4) from H,'/2(R") to H,;'/2(R") and S,(1) from HS(R%*!) to HL/2(R").
C%(R™*1) is dense in W with the norm (|u[2+]f||2)!/2 by Corollary
of Lemma 4.1. Thus, 1) and 2) are valid for ue W. End of proof.

Definition 4.8. For ue HO(R%*"') and ve H,'/2(R"), we define S,(4),
Sg(1) and So(A) as

S,(ADu=[S;(4), M(x, 0,, 2)]u e HL(RY)
Sg(Du=[S,(A), M(x, 0., Dul,=o € H,/*(R")
So(Mv ={S5(4) - [Bo(4A): S4(M]+[Ss5(A), D(x, 0, H]}v
e H,1/2(R").
Lemma 4.5. Let ue W, f=Ao(Au and g=Bo(Au(-, 0).
u(-, 0)=So(Au(-, 0)+Sg(ADu—S,(4)* By(4) : Ss(A)u

=S5(A)g+S5(4) - Bo(2) - S5(A)f in  HL'2(R").
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Proof. We operate By(1) to the equality 2) of Lemma 44 from
the left hand side.

Bo(Du(+, 0)+ Bo(A) - Se(Au(+, 0)+ Bo(A) - Sg(Aut
=By(2) - S,(A)f.
We further operate Ss(i) to this equality.
Ss()g +S5(2) Bo(A) " Sa(Wu( -, 0)+ S5(2) - Bo(2) - Ss(Mu

=8S5(4)* Bo(4) - S5(A)f.

Since
S5(4) Bo(4) " S4(2)
=854(A)+55(4) - [Bo(4), S4(A)]1+[S5(4), D(x, 0y, V],
Sa(Au(, 0)=—{85(2) - [Bo(4), S4(A)]+L[Ss5(4), D(x, Ox, H]}u(-, 0)
—S5(4)* Bo(4) - Sg(A)yu—S5(A)g +S5(4) - Bo(4) - S5(D)f.

Putting this in the equality 2) of Lemma 4.4 again, we obtain the equali-
ty of this Lemma 4.5. End of proof.

Definition 4.9.
Z,(N=8,(D), Z,(A)=85(1)
Z,1(N)=S8g(A)—S5(2) - Bo(4) - Ss(2), Zyy(A)=—So(4)

Z11(A), Z15(4) . S1(4), 0
>, S(A)E( >

Z() E(
S5(4) - Bo(A)* S5(A), Ss(4h)

Z51(A), Z25(4)
Lemma 4.6. Let ue W, f=Aq(A)u and g=By(u(-, 0).
re2m( e, 0 )=S0 7)-

Proof. It follows from the definition of Z(4), 1) of Lemma 4.4
and Lemma 4.5. End of proof.
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Lemma 4.7. Let A21.

D NZy (Dl <ed™? on HJ(RH)
2) Zx(Dll<e from H;'2(R") to HO(Ru*")
3) 1Z,,(W)]<ei ! from HY(R™') to H;2(R")
4) |(Zyy(D] <At on Hyl/2(R")

5) 1Z(A)-Z(A)l<eaA™t  on Hp(RY)xHL'2(R™)

6) There exists the inverse operator of I+Z(2) on HY(R" 1) x H,'/2(R")
for sufficiently large A.

I+Z)) = =Z()NT = Z(2) Z(D)™!
IT+Z) I <e; 2234,

where we use |A~12(D)ol, ¢ € H, '2(R") as the norms of H;2(R"™) with
parameter A.

Proof. 6) follows from 5), which follows from 1), 2), 3) and 4),
which follow from Lemmas 3.10 and 3.12. For example, by 5), 13) and
15) of Lemma 3.10,

[A7172(A)  Z5o(D)h]|
A7) E(x, Oy A) - [B(x, 0y, A), P_(x, 05, ]|
+147172(2)  [E(x, 0y, A), D(x, 0, A)]h|
ScA Y ATY2(Dh| . End of proof.

Theorem 3. For any A=A, which is a fixed constant, there exists
a bounded operator Ly(A), from HY(R™*1)xH}/2(R") to HY(RI*')x
H;,1/2(R"), which is a left inverse operator of Co(l), that is, (Aoo(i),
BO(A)> whose definition domain is W,c HS(R»**') x H,1/2(R") and
0

satisfies the estimate

Lo <ed™!.
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Proof. We consider the operator (I+Z(A)"'5(2). This is what
we need because of Lemma 4.6. The estimate is obtained by combining
those of (I+Z(4))~1, S;(4), S5(4) and S,(1). (See Lemmas 3.10 and 3.12.)

End of proof.

Theorem 4. Let ue H(RUY). If u satisfies that Aqg(A)u=0 and
Bo(A)u(+, 0)=0 for a sufficiently large A, then u is zero of HY(RZ*1).

Proof. This is a corollary of Theorem 3. End of proof.

We now go on to the next problem, the regularity of solutions.
We show the regularity in x of solutions because the regularity in y
is brought by the equation.

Lemma 4.8. Let ue CP(R™ 1), ve CP(R"), y;e C*(R™Y) and y2(x)=
2i(x, 0)€ C*(R") such that y;=1 or €CP(RIY), 0= ;=1 and Y (2=1Y>-
Then, there is a positive constant ¢, not depending on Ae[l, od), s=0
and y; such that

D 1ADx2Z 1 1(Dull + S cod™ | A(Dx2ull +
F (s, A2 A2 (Dygull 4 + llull 4}
2) N ADx2Z1 (W]l + S coll 45~ H2(D)x 30|
+e(s, A 2{| A D)y Yol + 4712 (Aol }
3) AV Z,y(Dul| S coh™H | AV aull +
+e(s, DA 2{| A1 2 (Dyaull + + lull+ 3
4 A2 Z oo (D] S cod™ M| ASTH2(D)x 80
+e(s, x)A32{ A4 Dy ol + 14712 (Aol
where |- ||y and ||| are L?-norms in R%*! and in R", respectively.

Proof. These follow from Lemmas 3.15 and 3.18. End of proof.

Lemma 4.9. Let X be a Banach space and {p}i=,., be semi-

J
norms on X such that q, is a norm of X, where q;=(X p?)'/?;
i=o
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j=0,...,1. Let T be a bounded linear operator on X such that
pi(Tx)2éaipi(x)z"'biqi—-l(x)z; i=0,..., l’

where 0<La;<a;,,<1 and q_,=0. Then, I+T is an isomorphism on X
and it satisfies the estimate:

a((I+T) ' %) (1 =/a,)"2g(x)* +cq;- 4 ().

Proof. We consider §= (Z cpA)V?; i=1+d;)(a;—a)), d;= Z chJ
(i=0,...,1-1) and d,=0. Then q is a norm of X and q(Tx)2<a,q(x)2
that is, T is a contraction operator on X with the norm §. Thus, there
exists (I+ T)~!, which satisfies the estimate:

GA+T) ' x)=(1—Ja)'§(x). End of proof.
Definition 4.10. Let s=0 and i=0 or 1.
1) Yi(A)=L2(R}; H5(R™)x HS;12+i(R") with the norm
1Ullys iy = ADu )13+ |45~ 2H (D)) 2)1 25 U=(u, v) € Yi(D),

where ag=m, o,=1 and L?*(R}; H(R") is a space of H3(R"-valued
L2-functions in y e (0, o).

2) Let x=(xpj=o,.x be a system of C®-functions such that y,=1,
%€ C*(RET); ;=1 or e CZ(RY™™), 0=, =1 and yiq 1 23=1i+1 (iZ1).

X5(A, x) stands for the closure of CZ(R"*1)x CF(R™) in the space
{U; ;UeY9(A), 0;=s—(k—j)2, 1= j<k and o0y,=0} with the semi-
norms p;{U)=|x;Ulycizy» and the norm ”U”xj(a,x)E(jéopij(u)z)llz,
where y;U=(yu, x%0); U=(u, v) and x9=y;l,=o.

Lemma 4.10. Let 0=<s<k/2. Then, for all Ue X34, ),
PofZ(2) Z(A)U) S coA™ po(U) +c(s, x)A7312q0;-1(U);

0<j<k, where QO,—(ZPO Y12, 0<j<k,qo_1=0 and c, is a constant
which does not depend on s=0,A=1 and y.

Proof. These follow from Lemmas 4.7 and 4.8. End of proof.
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Lemma 4.11. There exist constants Ay and cy, which do not depend
on s=0 and yx, such that for any Az=l, and s=0,I+Z(1) gives an
isomorphism on X§(4, x) and satisfies the following estimate.

II+ZA)~1U| Xg(z,x)éco U] xg(;.,x)"'c(sa VA2 U”xg'”’(z,z'),

where X'={Xj}0§j§k—1 when X=(Xj}0§j§k-

Proof. This follows from Lemmas 4.9 and 4.10 because (I+Z(4))~!
=(I—-Z(A)T—-Z(A) - Z(A))~ L. End of proof.

Lemma 4.12. Let 0<s=<k/2. Then, for all Ue X5, %),

Po;’(g(ﬂ-)U)écol_lPu(U)+C(5a XM_B/Z‘Iu— (U); 0=j<k,

where qus(zj“, pINV2;,0=j<k,q,-,=0 and cy is a constant which
v=0 ~
does not depend on s=0, A=1 and y. (See Definition 4.9 for S(1).)

Proof. These follow from Lemmas 3.10, 3.15 and 3.18. End of proof.

Theorem 5. The left inverse operator Ly(A) of Cy(X) in Theorem 3
is a bounded operator from X35(A, x) to X3P(A, y) when A=y and 0Zs
<k/2, where Ay is in Lemma 4.11. It satisfies the following estimates
for Ue X5(4, p).

PofLo(MU)=cod™ py (U +c(s, 0)A73/2q,;-4(U),

where ¢y is a constant not depending on s=0, A=1, and .

Proof. By the definition of Ly(A), Loy(4) is written as Ly(A)=0
+Z())"18(%). By Lemmas 4.11 and 4.12, L,(A)U belongs to X35(4, 3)
and satisfies the estimate in Theorem 5 when U e X5(4, x).

End of proof.

Corollary of Theorem 5. Let ueW,, Ao(Du=f, By(Du(:,0)=g and
F=(f, 9) e Hy,(RY* ) x H{*1/2(R").  Then (u, u(-,0)) e Hy (R} 1) x H7 1/2(R™)
when A=4, and s=0.
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Proof. It is cnough to prove the theorem when s is integer. U
=(u, u(-,0)) is written as U=LyA)F. We put y={y;; x;=1} 05j=<k
in Theorem 5. We have that Ue X§(4, x) because Fe X5(4, ). So, in
order to prove the corollary it is enough to show that d5ue HJ(R3H1).
Since Ao(Au=f, d5u is written as

Oyu=p(x, 0)u+4q(x, 0y, 0,)f,

where p(x, 0,) is a pseudo-differential operator in x of order s and
q(x, 0, 0,) is a pseudo-differential operator in (x, y) of order s (differ-
ential operator in y). Thus, d5ue HJ (R ). End of proof.

§5. Existence, Uniqueness and Regularity (Special Case, Continue)

In this section we shall treat a more general case. It is the case
where M(x, 0,, 4) in the section 4 is M(x, y, d,, 4), that is, the pseudo-
differential operator in (4.1) may depend on the variable y while the
domain is same. The equation is

r{ai+M(x, ¥, 0xs A+ My (x, y, 05, 0,, ,1)1{”=f
(5.1) y
|\ {B(x, 0y, )+ By(x, 0, A)+Bs(x, 0, 0,, D}uly—0=49,

where M(x, y, £, A) and B(x, &, ) are homogeneous functions of order 1
and 0 in (&, A), respectively, {n+M(x, 0, &, 1), B(x, &, A)} satisfies <As-
sumption (A)> (Section 2), and By(x, 0, 4), B3(x, 0, 0,, 1) and M,(x, y,
0y 0,, A) are compositions of pseudo-differential operators in x or (x, y)

M,(x,y,0,,0,4), 0

such that C3(/1)E< > is a bounded operator

B3(x9 ax: aya )')5 Bz(xs 6x3 )')
from Y3(4) to Y9(A) and satisfies for any y and s the estimates that, for
UeXy(4, y) and j=0,..., k,

(5.2) P1(Ca(MU) =S copo(U)+c(s, A~ 2q4 ;- 4(U),

where ¢, does not depend on 4,yx,s,j and k. (Refer Definition 4.10
for notations.) Moreover we assume that no pseudo-differential operator

in the equation (5.1) depends on (x, y) or x outside a ball in R+l or
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R". We shall show that we can regard (5.1) as a small perturbation
of the type dealt with in the section 4 and that we can obtain the
same results as ones in the section 4.

Definition 5.1.
Ao =L+ M(x,0,0,, 3,
dy x

AI(A)E%+M(x, P2 00 D)+ My(x, y, 0s, 0y, 4),

AZ(A)E—(%+M(x, 7,00 2),

BO(}')EB(x, ax’ A)a BI(A)EB(-XQ axa A)+BZ(xs ax: A)a
B,(2)=B;(x, 0, 4), By(A)=Bj(x, 0, 0y, 4),
MI(A')EM(x: Vs ax: A)_M(xa 05 axa 2’): M2(’1)EM2(XS Y, ax} aya )')

Lemma 5.1. Let ¢eC%(RL); a function in y and ¢0)=0. If
ue W (See Definition 4.1.), then oue HL(R%1Y) and

14 Doull + = c{llAo(Dpull + + | oull 1},
where ¢ does not depend on ¢ and 1=1.
Proof. Since ue W, so pueW, too. By Lemma 4.4
pu+[S1(4), M(x, 0, 0, lpu=S,(A)f; [f=Ao(D)opu.

We apply Lemma 3.12 to this equality. Then, we obtain the estimate
we need. End of proof.

Definition 5.2. W(A) stands for the space such that ue W(A) if and
only if u and Aue H3(R%*1), where A is an elliptic first order system.

Lemma 5.2. Let ue W(A4,(4)). Then u(y)=u(-, y) is considered as
an H,'/2(R™)-valued continuous function in y on [0, c0).

Proof. We omit the proof because we can show it in the same way
as in Lemma 4.1 if we use the fact that A~'(4): M(x, y, 0,, A) is a uni-
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formly continuous function in ye[0, o) which is valued in the space
of bounded operators on HQ(R"). End of proof.

Lemma 5.3. W(Ay(1)=W=W(4,(2).

Proof. From Lemma 5.1 it is clear that WcW(A4,(1)), because
A Du=Ao(Hu+M (Du+M,()u each term of which is in HZ(R%!)
if ueW. We assume that u and A;(AQue H(RZ ). It is enough to
show that gue HL(RZ"') in order to prove that WoW(A4,(1), where
@eCPRL) (a function in y) and @(0)=0, because A (Du=A4,(Au—
M,(ADu—M,(A)u where A;(A)u and M,(A)u are already in HZ(R%'1)
and M, (A)u becomes an element in H(R%*!) if it is shown. It is
done by the fact that Al(z)¢u=<§y~<p>u+¢(A1(A)—M2(A))u+M2(,1)gou
€ HY(R"*1') on the whole space R"*!, where we properly extend A,(1)
on R"*1 as an elliptic system and ¢=u=0 in y<0. And this is verified
by using the result of Lemma 5.2. End of proof.

Definition 5.3. Let C,(4) stand for the closed operator, from

4,(2), 0

HY(RY ) x HyU2(R") to HY(RYH) x HY2(R™), (Bs(/l) By (%)

) whose de-

finition domain is W,

Remark. It is well-defined because of Lemma 5.3.

§§5.1. Existence of Solutions

Definition 5.4. Let Ry (A1) stand for the right inverse Ry(1) of Cy(d)
in Theorem 2 and P(P,) stand for the canonical projection from
HO(RI Y)Y x H,112(R") to HY(R™Y)(H,'2(R") such that U=(uy, uy)—
P,U=u;. Let us put

Rof(A)=P;"Ro(4).

Lemma 5.4. Let F=(f,,f,)eHo(R"*1) xH}/?(R") and ¢eCZ(RL);
a function in y. Then,

||M1(A)¢R01(A>Fu+§c{

<’7§37(y<p)‘ + ly¢I)R01(A)FH++ |!ygof1||+},
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where ¢ does not depend on ¢ and A= 4,.

Proof. We first note that M, (%) is written as M,(1)=yM(1) where
M(2)- A~1(2) is a zero order (bounded) pseudo-differential operator in x
with CZ(R%+1)-coefficients. We put u=Ry,(A)F. Then, ueW. Using
Lemm 5.1, we obtain that

M (AD)@Ro(A)F| +
Sc; | A (DyeRo(DF] +

=c2{ll4o(Dy@Roy(AF ||+ + | y@Ro 1 (DF | 4 }

e
oof|

(35 79)RosWF+y0f,| +1y0Ro1(DFI.}

IIA

(| & vo|+1r0))RosWF| +lIyerill}.
End of proof.

Definition 5.5. We may assume that A,(1) is defined as a first
order elliptic pseudo-differential system in the whole space R"*l. We
denote the inverse operator of A,(A) on HY(R"*'), whose definition
domain is HLY(R"1), by R,(A).

Lemma 5.5. There exist some constants ¢>0 and 1y such that for
any fe HQ(R™1) and A=A, we have that

141 @) Ry 12+ |5 Roirr| el 112
(We omit the proof.)

Let  be a function of C%(RI) in y such that 0Z¢(y)<1 and
Y(y)=1 at the neighborhood of y=0. Let u;=yRy(VF, u,=(1-
VR, (A)f, and u=u,+u,, where F=(f,f,) e HQ(R*)x H}/2(R"). We
operate A;(4), B3(4) to u and B;(4) to u(-, 0).

A, (Du

=AMy + A (Au,
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=(Ao(A)+M ((A)+M(A)uy +(Ax(A) + M (D),

=(Ao(MWR o (AF +4if 1 + M (A) (YR (A)F) + M () (Y Ro 1 (A)F)

F =) A0) - RoWfy =(F0 ) Ry + My (L= )Ry (DF)
= 11+ (Z 0 )R DF+ M (DR (DF) + My (DY Roy (DF

+ =PRI} =5V )R
BAOJ(-, 0)
=B,(Au,(-,0), because uy(-,0)=0
=Bo(Du,(*, 0)+B(Hu,(-, 0)
=/f,+B,(1)* Ro(A)F.
Bs(M)u
= By Ro,F+By() (1 =Ry

Thus, we obtain the equation (5.2) that F should satisfy in order that
u is a solution of (5.1).

Definition 5.6. Let us put
M, () +M,(H), O My(A), 0
>7 CS(/{)E< )

(D E(

B3(%) » B2(A) B3(4), By(%)

RZ(’{), 0 llla 0 _a__!// 0
RZ(A)E< ), ‘If=_=< )and Y’yE< ay >
0,0 0,1 0,0
5.2) F+T,(AF =G,
where F=(f}, f,), G=(/, ¢g), which is one given in (5.1), and

(5.3) Ty(M=Cy(A)' ¥ Ro(AD)+ T, Ro(A)+C3(A) - (I=¥) Ry(A)—=Y, Ry(4).
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Lemma 5.6. Let FEH(R4 ) x H}/2(R")=Y{(1). For any a (0<a<1)
there exist Y and Ay such that, for A=1,,

IT(DF| =alF|,
where ||| =[Fllyoy=fill2+ 141 2(D)f2012)!/2; F=(f1, f2)-

Proof. Let |¢|+Eyg[13.)§°)|<p(y)| for ¢ e C(RY). Then,

G MDY R WFl s {(| gvw| + vl )+ 1wl 17

because of Lemma 5.4 and Theorem 2.
(5.5)  NIC(A) (¥ Ro(D+UT—¥)* Ry(D)F|

S [[(¥ - Ro(A) + (= ¥V)R,(A))F|| S, A7 | F|
because of the definition of C5(4), Theorem 2 and Lemma 5.5.

(5.6) [P, (Ro(A)—Ry(A)F|
=|(Zrw)Ror = RaDF | sasiot| 50 1

because of Theorem 2 and Lemma 5.5.
Thus, there exist  and A, such that for A=, | Ty(A)| Sa<, that is,

cxllyl/1|++{a1<’%yl//|++[y¢|+>+a2+a3‘%n//‘+}l‘l§a<1. In fact there
exists Y such that o,|y¥|, <a/2 because |yy|,<e when the support of ¥

is contained in [0, €], and we put for such a y fixed zosz{%('%yw
+
+|yl//l+>+ oc2+oc3‘—a%l//,+}a‘l. End of proof.

Theorem 6. There exists a bounded operator R,(A) from HZ(R%'1)
xH}M2(R™) to HY(R®Y\)x H,'/2(R") for A=A, such that the range of
R,(%) is contained in W, |Ri(AD)|<cA™t and C{(A)-R{(A)=I on HY(RL!)
x H}/2(R™).

Proof. There exists the inverse operator of (I+T;(4)) for A=4,
because of Lemma 5.6. We now put
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Ri(D={¥" Ro(D)+U—P) Ry(A)} -+ Ty ().

The previous discussion shows that this R,(A) is what we need. The
norm of R;(1) is obtained by combining Theorem 2, Lemma 5.5 and
Lemma 5.6. End of proof.

§§5.2. Uniqueness of Solution

Let UeW, (See Definition 4.2.)cHO(R"*!)x H;1/2(R") and satisfy
(5.1). We operate Ly(%), which is a left inverse of Co(2), that is, (Ao(()’l)’
B?A)) whose definition domain is W, (See Theorem 3.), to (5.1), that

o

is, C,()U=F.
(5.7 Lo(D)F =Lo(4) - C(HU

=Lo(4)  Co(DU + Lo(4) - C2(HU

—U+Ly(2) C,(YU
Let ¢=C=(R]),0<p(y) =1 (y>0), o(»)=y 0=y=1/2.) and @()=1(y
>1). Then, M,(2)=M(A)¢; M(%) is a first order pseudo-differential sys-
tem with C®(R1t1) coefficients. Since A2(2)¢u=<%—qo>u—(pM2(A)u+(pf
on R"l) where U=<Z} ) and gp=u=f=0 in y<O0, we have that

y=0

(pu=R2(),)(%(p>u—R2(l)-<pM2(A)u+R2(A)(pf. (See Definition 5.4) Thus,
we put it in (5.7).

(5.8 U+ Lo(A): M) Ry(2)* {®,— D - C3(A)}U + Lo(A) - C3(HU

= Lo(A)F — Lo(4) - M(/D "R,(2)" OF,

qu 0 _i 0 ~
where @ = , &= 9y 7 and we identify M(1)-R,(1) to

0,0 0,0
"M(2):R,(2), 0
( . Let us put
0 , 0

(5.9) To(A)=Lo(A): M(2) - Ry()* {@y— D - C3(1)} + Lo(A) - C5(%)
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Lemma 5.7. |T,(A)) £cA ! on HY(RIY) x H,''2(R") = YJ(A) for
A=
Proof. |C5(WU IIY(I(A)§C”U”yg(A) by the assumption. ||[M(A)-R,(4)-

(0,0 C;Ulwn=| ) - Re D Z-o-0 Mo fu| sclul, =
c][UHng by Lemma 5.5, and ||Lo(/1)V||yg(A>§Cl'1llVllygu) by Theorem 3,
where I*llyosy stands for the norm with the parameter A of HY(R®HY)
x Hy2+i(R"™), ag=m, oy =1. (See Definition 4.10.) Combining these three,
we obtain the estimate of this lemma. End of proof.

Theorem 7. For any A=2ly (Ao is a fixed constant) there exists
a bounded operator L,(A) from HY(R¥1)XxH}?2(R") to HY(RIT!)x

H,Y2(R™) which is a left inverse operator of C(4), that is, <g18{;’
3 >

Bo(/l)> whose definition domains is W, H(R'"') x H,'/2(R") and
1

satisfies the estimate |L,(A)| ScA™1.

Proof. By Lemma 5.7 there exists a constant A, such that for
A= Ao there exists (I+T,(4))~! on HY(RI)x H,,1/2(R"). We put

(5.10) Li()=U+T,() 1 - Lo(2) - (I - M(2) Ry(2) - D).

This is what we need, that is, L,(1)-C,(A)=I and the estimate is ob-

tained from the estimate of Lgy(A). End of proof.
§§5.3. Regularity of Solutions

We can easily show the regularity in x of solutions by the similar
way as in the section 4. We use the equation (5.8).

Lemma 5.8. R,(1) satisfies the estimate for u such that (u,0)
€ X3(4, 1), 0=s=k/2. (See Definition 4.10.)

Pij(AY(A)* Ry(Au, 0) S cop;j(u, 0)+c(s, A" 12q;5-4(u, 0),
where ¢y is a constant not depending on A, s and .

Proof. We remark that it is enough to obtain the following type
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of estimate (5.11) for T =A'(1):R,(2) and 0=s=k.
(5.11) [AS(A) T u |2

k=1
= coll ANt + s, )A7H2 Z | AT EDI Ay u ]2
=

for ueCg(R™1) and A24s where {1}}-0,..=% 2M)=1(~) if y<O,
|-l is the norm of HY(R"*!), and A, and ¢, are constants not depend-
ing on s and y. Let S'(1) stand for the pseudo-differential operators in
R"*1 whose symbol is A3(x, y, & n, )={in+M(x, y, ¢, )}~ and let
T'(A)=[A,(4), S'(A)]. Then we can represent R,(4) as

R,()=S'())-U'(2), where (I+T'(O)U'(N)=I

on HY(R"*'). From Lemma 3.18, we have the estimate (5.11) for 7
=A'1)-S'(A) or AT'(A) and 0=<s=<k/2. So, we have it for T =U'(1)
by Lemma 4.9. Combining these, we obtain the estimate for R,(1).

End of proof.

Lemma 5.9. When 0Zs<k/2, A=A, and 0Zj=<k, T,(2) (See (5.9.)
satisfies the estimates that, for Ue€ X{(4, y),

Po (TR (MUY L o™ po (U) + (s, 0)A732q0;-(U),

where ¢q and 1, are constants not depending on s, A and y.

Proof. Tt is the combination of Theorem 5, Lemma 5.8 and the
assumption for Cj(4). End of proof.

Theorem 8. There exists a constant Ay, which does not depend on
A, s and y, such that the inverse operator L;(1) in Theorem 7 is a
bounded operator from X5(2,x) to X3(, x) when A=, and 0<s<k/2.
L,(A) satisfies the estimate for Fe X5(4, x) and 0Z j<k that

POj(L1(/1)F)écol_ll’u(F)'i‘c(S, X)A_3/ZQ1,'~1(F)=
where ¢, is a constant not depending on s=0, =1, and 7.

Proof. We apply T,(2) to Lemma 4.9 because of Lemma 5.9. We
obtain that (I+T,(4))"! is a bounded operator on X§(4, ¥) when we



620 NoOBUHISA IWASAKI

put Ap>1/c,. We combine it with Lemma 5.8. Then, we obtain the
results of Theorem 8 from the definition of L,(4). (See (5.10).)
End of proof.

Let us put MO)=M(A)+ M,(4)

M®OQ)= [% M("‘U(/l):l

=<(_aéy_) M(O))(x, Vs 0y 0,,4), i=1,2,...

We furthermore assume for M®(1) to satisfy the additional conditions
(5.12). Then, we have the following theorem for regularity of solutions,
which will be used for proof of theorem in general cases.

(5.12) For i=0,1,2,..., s,teR! and s=0,
P (A" (A, 0)
Sc¢;pof(A(Au, 0)+c(s, 1, t, )A~1/2q0 (A (A)u, 0),
if v=MODu, A (Nue X§(4, ), j=0,..., k and s<k/2.

Remark. It is clear that M(A) satisfies a stronger form of inequality
(5.12), and M,(2) the lower term which we shall deal with in the next

section. In fact, we set M (1)=M,(1) and M‘Z‘)(A)E[a—i—, M(zi‘l)(l)]=
=<%>iM2(l). Then, Cs(4) and M$P(A) satisfy (5.2) and (5.12) if they

satisfy (5.13), (5.14) and (5.15). For any real number s=0 and y;
(i=1,2) in Lemma 3.14,

(5.13) 145w |12+ | 45* 112w, |12
S (145 13+ 145712 (A)u,|12)
(5.14) 14522201112+ 14551 2(A) 20,12

S co(l A5zt 1 12+ 1147112 (A2 %)
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+ (1A (gau |13 4 145732 (D), |
FluF+147120)u,12)
(5.15) 1A DMPDuy ||+ S cgll 4Dyl +
45D MP Ay ||+ S el AR xau: | +
(A7 Axauall+ + gl 4

where we set V=<”1>=C3(,1)U and U=("1>_
Uy Uy

Theorem 9. We assume the additional condition (5.12) in Theorem
8. Let F=(f, g) and (A™(A)0}f, 0)e X5(4, y) O=v=s+1). Then
(A7¥(A)0yu, 0) e X3(4, ) for O=v=s+1 and

(516)  po(A™ D)3, 0)

<67 {Z puAT DS, 0+, (0, 9))

v, 5, DIPLE 11 (A7 LS, 0+ 1,10, 9}

Proof. This is a corollary of Theorem 8. We use the induction in

0<v<s+1. Since i+M(°)(/1) u=f, we have that
oy

i (L) == Seamo( L) ur (L)

(A‘“(l)(%)v 1, 0) and (Aiw(ﬂ)(%)v_'u, o>exw, x) by assumption.
<A‘(V+1)(A)M(i)(ﬂ.)<—a%)v_iu, o)exw, 2) and are bounded by the right
hand side of (5.16) because of (5.12). Thus, (A‘(”+1)(A)<a—i~>v+lu, 0)
€ X§(4, x) and satisfies (5.16). End of proof.

Corollary 1 of Theorem 9. Let (f, g) e HS,(R%*') x H{*Y/2(R") and
S, x°g) e Hyf 12(RYFY) x HiF1(R™).  Then, (u, u(0)) € Hy(R"{1) x Hy~1/2
(R") and (qu, x°u(0)) € H3*1/2(RY+1) x Hy(R™) if s20, xe C3(RYY) and



622 NOBUHISA IWASAKI
x°=xly=0 € CF(R").

Corollary 2 of Theorem 9. R,(1) (= L,(1)) satisfies the estimate
(5.18) for A=A, and s=0 as operator from HS(RYT)x H{*U/2(R™) to
Hy(RYH) x Hi 1 12(RY).

(5.18) IRi(Dl=ed™,

where we use the norm [(A'(A)—id)ull, for ueHs(RY*Y) and [AS(A)v|
for ve H5(R™).

§6. Proof of Theorem 1

We here use the symbols, the notations and the assumptions in the
section 1. We assume that (4, B) is already the remodeled system of
first order with a weight index (r, s, f). We can construct a local right
or left parametrix by Theorems 6, 7 or 9, because there exists a partition
of unity of class C* which satisfies proper conditions (Lemma 6.1), and
we shall show that the error term is a small perturbation and that the
regularity of solutions is immediately deduced by Theorem 9.

Lemma 6.1. There exist a system of finite number non-negative
real valued functions {u;, B;} and a system of finite number local co-
ordinates {(Q, x*)} of the compact domain @ with C® boundary such
that 1) Ya2=1, a,f,=a,, suppf,=Q¥, 2) x"(Q")=V"*t if Q'NiQ=4¢,
and x”(Q”v)=V_’;+1 if @'noR#¢p, where V"1 is the open unit ball in
R™! gnd Vnti=Vntiq R+ and 3) the partial differential system
(4, B) is an elliptic system properly (strongly) linked by A on Q¥
for a weight index (r, s, t) and a local coordinate function (xV).

(We omit the proof.)

Lemma 6.2. Let us put (A, B))=(A, B)lsupps,- We can extend
(4,, B,) in R¥1, if @' noQ#¢ (in R*™! if Q*ndQ=¢), as the extended
system keeps to be an elliptic system properly (strongly) linked by A
and does not depend on x° outside a bounded set. We denote it by

(4,, B,).
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Proof. Let ¢@=C%(RI) such that 0Z¢=<1, p()=1 on 0g£t<
sup {|x*|; x* esuppf,} <1 and ¢()=0 on r=1. If we replace x* with
x*¢(|x*]), we obtain the systems A, and B, on R’*! (or R"*!) and R,
and we can show that (4,, B,) satisfies the above conditions. End of proof.

We use the symbol (A4, B) for (A,, B,). We omit the index v
since we are not confused without it. Let us define 4", as well as (1.2).

(6.1) Ho=AHo(tt, O = (] —p)™77700;)
A =40 O=((El =70 16;)
A= AN O =(L77700;))
N 3= NSO =778,

where (§;;) is Kronecker’s § and {=(&, 4). (Refer (1.2).) And let us denote
the pseudo-differential operators whose symbols are 47, by N;(i=0,1,2
and 3), where we consider the Fourier inverse transform in ¢ and the
Laplace inverse transform in pu whose integral is taken on the pure
imaginary axis.

Lemma 6.3. N;(i=0,1,2 or 3) is an isomorphism from X to Y, where
X= ]_[H"U”J(R"“) Y= H H‘J(R"“) 1=(1;) a system of real num-
bers aoj—ro r; and alj—l o—S; if i=0o0r 1, or X= ]—[H"'J“‘J(R")
Y—HH'J(R") Oy;=—To—tj, O3;=To—"1;, ;=1 and I;=m zf 1—2 or 3.

j=1

(We omit the proof. Refer Lemma 3.19.)

s

Definition 6.1. Let us put as A=N,AN, B'=N,BN,=
=)
k(%) Ay=2 (See Definition 1.1), Msai—(zo)—l;i, W,=1, I,

[ai M, 1]+Mk_11\~4, ¥ =0, Mk_aa My + M, (k=1,2,...), B=

&

=0}

= i

rz B,M, and B"= Z By M, where ro_.max {ro—r;}, By are compositions
of pseudo-dyferentzal operators in x with parameter A and we define only

Aif Q,n0Q=¢. Let A©, BV [, BO AN gnd MO stand for
the pseudo-differential operators whose symbols are o7 (©, F(© 40 F(O),
D and MV, respectively, where 7 O =N, LON o, BO' =N, BON,
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-
=3 B0k, (B =(k!)~ (an) (FO'Y],m0), MO =p— (L) 17O,
k=0
FO =3 FO(FOW, o7 (D=7 O 4 7)) (7 D ={a$P} such that a{? =
k=0

02
(’j—’o)a {8:;}+ il (e, 0y=0 U rj+s5:=1, 0(2)-—(" —ro+1)a, {a;;}
if ri+s; -—0 and a{¥=0 otherwise,) and M4 =n—(Z )" 1&{(1) Let
us set as M@ = M- M©®, M =1, Mﬁ“E[%, M§£)1J+M§,£)1A7I(“

~ ~ ~ ~ -~ ~

(k=1,2,..), Bth= E VMY, B@ =B —BO) gpd B =B~ B0

Mz

Lemma 6.4. ((A,)"'A4, B) is a type of first order pseudo-differential

system with which we dealt in the section 5. In fact, (ZO)*Z:i

dy
—J\7I=—5@y——]\71(°)—1\71(2). B=BO+B@ 4 B3, (g0, F(®) the symbol
of (M, B(®) that is the principal part of (M, B) are homogeneous
functions in (€, ) with order 1 and 0. (n—.4(®, Z®) satisfies <As-

)
sumption (A)> and Cz(A)= ( BJg; B?Z)> satisfies (5.2) and (5.12).

Proof. It is easy to show that <Assumption (A)> is satisfied. In
fact, I'_ and D in the section 2 that we obtain if we replace M and B
with —.Z(® and F(® are equal to 2 and 2 in the section 1 (1.5),
because A= (AN")"1 (i=0, 1), I=# =5 if ||=|(&, D|=1, (1— .4 ()1
=( @)1= (W) (AO)H W) and D={ B 0— 4O

dn=g @(°>'(n—ﬁ°>)-1dn=g N RO (FO) ()1 Odn = D, We
r r

use the remark with respect to C3(1) at the last part of the section 5. Each
term of M,(1) consists of finite sum of the pseudo-differential operators

(6.2) ao(x, Y) (A1 (1) = i0,)"* AP (A)a’y(x, y, Ox, 2)

such that a’i(x, y, 0,, A)=a(x, )47(A), a(x, y)0,, 47" 1(4), ay(x, Y)AAT"1(A),
[a,(x, y), AT ()10, 4771 () or [ay(x, y), A1) A*"1(A), where a=f+v,
=0 and q;(i=0,1) are C=®-functions in (x, y). Thus, M,(4) satisfies
the types of estimates (5.13), (5.14) and (5.15), because (A!(4)—i0,)"*A%(2)
and A~**8(D)a’i(x, y, 0, 4) satisfy them. (Refer Lemma 3.19.) Each term
of A~1(1)B,(4) consists of finite compositions of types (6.2) such that
=0, and each term of A~1(A)B;(A) consists of finite sum of finite pro-
ducts JI P; such that P; are of types (6.2) and one of them has

finite
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«=>1, because we have divided B(1) as they are. So B,(1) and B;(4)
defined for Cg-functions in x and in (x, y), respectively, satisfy (5.13)
and (5.14). End of proof.

Lemma 6.5. There exists a constant A, such that for any A=A,
the partial differential system (A, B) defined from HZ2(R™!) to
H2(RTY)x HP(R") (A defined on HZ(R"!) if Q'NdQ=¢) has the
inverse R(A), which satisfies that for F=(F,, F,)e H2(R%"')x H?(R")
and for s=¥,

{I(4*(A)—id,y* - N5* - R)F |2+ || 4%~ 1/2(2) - N3 R(A)F =] 2} 1/
Se A H{I(AN () —i0,) - N Fyl| 2+ 455 1/2(A) - N, F,o || 212,
(I(A' (D) =i,y N3 - RAF|| S c A~ (A () —id,) N F|
if Q' n0Q=4)

Remark. We always identify a distribution ue 2'(Q) and a pair of
distributions (u, v)e 2'(Q)x 2'(0Q) if u°=ul,, the boundary value of u
is well defined and if u®=v.

Proof. Theorems 6~9 are valid for ((4,)"!'-4, B) by Lemma 6.4.
So, there exists the inverse R,(A) of ((4,)"!-4, B). Corollary 2 of
Theorem 9 and Definition 6.1 show that

(Ay)! , 0
(6.3) ﬁa(z)=i€1(z)-< o >

—B".(Ay) 1
gives the inverse of (4, B) and it satisfies the same estimate of Theorems
7~9 if s=7, because A1(1)-B” consists of the composition of the types
6.2). (If @Q'noR=¢, Ri(H=R, (1) (4,)"t. We omit the proof of
existence of R;(1). Refer Definition 5.5 and Lemmas 5.5 and 5.8.) We
set

Nl! 0
6.4) R(A)=N0.ﬁ'1(,1).< )
0, N,

(If Q°noQ=¢, we set R(D)=Ny-Ry(A)-N,) This is what we want,
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It satisfies the estimate of this lemma. In fact, if u=R(L)F,
(41 (D) —i0,y* - Ng'ull .

Ny, 0
= (A (D) —idy)y - Ry(2)- ( )Fll +
0, NZ

SeATHI(AN D) —i0,)* Ny Fy |3+ 145+ 1/2(2) - NoFo|| 23112
and
I 45=1/2(2) - N3 uly=oll S c[(4* (D) —i0,) - Ng ull +
if s>1/2. End of proof.

Definition 6.2. Let us define Hilbert space O34, Q) (i=0, 1) as fol-
lowings.

f)(l, Q)E ﬁ H"O""J-+S(Q) X ﬁHro—rj+s—1/2(a_Q)
j=1 j=1

with the norm Oy(U)={X po(U)?}1/%;
PoU)={Il(AN (D) —id,)* - N5' Byl 3+ |4~ /2(AN3 B2} /2

for U=(u, v)e HX(Q) x H(09).
@SI(A, Q)E ﬁ Hl"ro—s_,-'hs(g) X ]-LIH—ro—tj+s+1/2(ag)
Jj=1 j=1

with the norm 6,(U)={3Xp,(U)?}1/2
P U)={II(A (D) —id,)** N1Byull3+ [ 457 1/2(2) - N, v} 112

SJor U=(u, v) e H(Q) x HP(0Q).

Here, {B,} is the system of C%-functions in Lemma 6.1, Bo=p8|:0
and (A'(A)—i0,), A%(A), Ny, |I'll+ and || are defined with respect to
the local coordinate on Q.

Let us denote o,U=(ou, alv) for U=(u, v)e Oi(4, ). We consider

(6.5) R'(H=Xa,R,(A)a,
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which gives a good approximation for the inverse of (’é’ %) In fact

4,0 - 4,, 0
(6.6) R’(l)( >= > avﬁv(l)av( >

v ~

0, B 0, B,
.Zv, O ‘av(av)’ 0
T R T
v 0, B, v 0,0
= Z(x\% - ZavRv(A)A((xv)
=I-Ya,R(M)A(,)
and
4,0 A, 0
(" o™ Yoo,
0, B *\ o, B,
4,0 4,(,), 0
= Z%( >Rv(/1)ocv + Z< > R,(Ma,
' 0, B, ' 0,0

= Yol + X A@)R,(A)e,
=I+ ZA(“v)Rv(l)av .

Here, A(x,) stands for <A(gv)’ 8)

We show that I— Y« R(D)A(x,) and I+ Y A(x,)R, (L, are invertible
on Oy(4, Q) and O5(4, Q) for A=1, and s=F,, respectively.

Lemma 6.6. Let us put T,=Yo,R(1)A(@,) and T,=Y A(x,)R,(A)a,.
Then there exists A, such that for A=k,

Oo(R'(WF)=c,A10,(F)
Oo(ToFo) =cd™10(Fy)

0(T\F{) ScA™10,(F)).
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Proof. Let us put V,=R (MDA()F, and V,=RMa,F,. If Q'n
0Q+# ¢, then by Corollary 2 of Theorem 9,

Pou(e, V1)
<copolVy) because f,B,2,= .1,
<c.,A 1p, (2, F,) because of Theorem 9
S A pa(Fy),
Pou(“vVo)
ScopouVo) because f,B,z,=pa,
<c;, A" 1p, (A(og)Fo) because of Theorem 9
Zcl, A7 1po(Fy) because
(6.83) (A1 (A)—i0,)* - Ng ' A(oo)ul| S cl|(A1 (D) —i0,)* - Nyull
P1(A(@)V1)
ScwpifA()Vy) because B,B,A(x,)=p,A(a,)
=c.,po (V) Dbecause of (6.8)
Zcl,A1p,(a,F;) because of Theorem 9
Scy A7 py(Fy).
Summing up these in u and v we obtain Lemma 6.6. End of proof.

Lemma 6.7. There exists A, for s=F, such that for A=A, I-T,
and I+ T, are isomorphisms on @%5(A, Q) and OY(4, Q2), respectively. So,
(I-Ty) *R'(A) and R'(A)(I+T,)"! are left and right inverses of the
minimal closed extension of (‘g:%) with the definition domain HE(Q)
from OF(, Q) to O5(4, Q). Therefore they are same.

Proof. This lemma follows immediately from Lemma 6.6.
End of proof,
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This lemma means (1.1) has the unique solution in O%(4, ) for data
given in @%(4, Q). So we complete the proof of Theorem 1 if we show
this solution belongs to H®(2) when the data is given in HL(Q) x HP(0L).
We shall show it locally on Q. 1t is clear at the inner point of Q. So,
we can assume Q=R’*! because, if UeO%(4, Q) is a solution of (1.1)
for a datum F given in ©3(4, Q), oU e @§(4, Q) is a solution of (1.1) for
a datum F—A(p)UecO3(A, Q), where ¢eCg(). In Lemma 6.5, (4, B)
has the inverse R(1) for A=1,. Corollary 2 of Theorem 9 shows R(})
is also a bounded operator from ©@35(4, Ri1) to Oy(4, Ri+) for A=4,.

Lemma 6.8. If s=7,, Fe®3(4, Ri*1) and YF e @5 1/2(4, RitY), then
R()F e ©3(), Ri*Y) and YR(A)F € @51/12(A, R1*Y) for A=l (Ao does not
depend on s), where e CHRIY), Y°=yl,o0, F=(f1, ) and YF=(f;,
YO f).

-1
Proof. Let us put Go=< N01 ’ NO‘I )F. Then Gye HS(R:H1)x
’ 2
Hst1/2(R"y and yGye Hs*1/2(Ru+1)x Hst1(R"). (Refer Lemma 3.19 and

Definition 6.2.) Thus,

(‘;1“0)_1 ) 0

G1=( )GOGHS(R!{_+1)XHS+1/2(R")

—B'(A), I

and
lPGl GHS#-I/Z(R!:_—FI) x Hst I(Rn) .
(Refer Definition 6.1 for B”.) By Corollary 1 of Theorem 9
Uo=R (DG, € H(Ry* 1) x H=1/2(R")

and YyUgyeHs*1/2(R1*1)x HS(R"). Since U=R(1)F=N,U, we obtain
Ue®y(A, RE1) and YU e@F1/2(4, REFL), End of proof.

Lemma 6.8 means that, if FeH2(Qy)xHP(2,nR")NEO5A, RETY),
u=R(A)F e H2(K) for any compact set of K €, which is an open set in
Rr*1, Thus the equation (1.1) has the unique solution u in @%(4, Q)
for data F=(f, g) in ©3(4, Q) if A=, and s=F,, and
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sing supp u =sing supp F =sing suppf U singsuppg = Q.

We complete the proof of Theorem 1.

§7. Remarks

1. (4, B) is properly linked by A if (4, B) is strongly linked by A.
(4, B) is strongly linked by A if and only if (4, B) is linked by A and
coercive.

2. At the example in the section 1 we can verify it is properly linked
by A. It is finally enough to make it sure for Ay~'1+¢ to satisfy the
conditions of Assumption (A), where ¥=(a;;{;¢;4+42)12 (#0 if {=(, 1)
#0). We use the well known property that |grad¢|?<2|¢|sup |hess @]
if @=0. Then, it is clear that |~ '+¢|=cA|l|7!, |grad Ay~ 1+ )| =
|Ay~2 grad, | +|grad,@| S (|4~ + || /) Sclip™' +¢|/2 and |grad(Ay~*
+ )| =14y~ 2 graday| S clAy~' + o [{]~1.

We give next a more general type of boundary conditions. Let € be
0 \? 02 .
+1 =(—=— o — 2 -
R 1, A—<6y> +1§§j§na”6’x,~6xj a,; A +d; be a second order ellip
tic operator with real coefficients and B=bo%+ Zbi%+ b, 1A+d,
i=1 i

be a boundary operator with real coefficients, where d, and d, are
lower order terms. We put o=i(Y a;;¢¢; + a, 422, (=(, 4) and

a=the minimum of ¢({) on Zn: bi£;=0. If we assume that
i=1

bo=0, boa>b,,, |bj|*<cb, i=1,...,n and

lgrad,( 3. bi&)I2 Selbo+| 3 bk on [é=1,

then we have same results as for the example. The last inequality is
satisfied if |grad.b,|2<cb, or if (b)=b(b,) such that X |b;/2=1 and
|grad,b|2 < c(by +b)).

3. In this paper we have considered the boundary value problem.
The discussion in the section 4 shows us the way to give a sufficient
condition for solvability and hypoellipticity of non-elliptic pseudo-differ-
ential operators if we watch pseudo-differential operators only on the
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boundary R" of Ri¥1. Let us consider M(x, {) mx m matrix of infinitely
differentiable functions on R"x {R%*1—(0, 0)} which independent of x
outside a bounded set of R" and a homogeneous function of order |
in {. We assume that M(x, () satisfies Alh|=c|M(x, {)h|, |grad, ,M(x,
Ohl2=cM(x, Ohl and |grad, oM*(x, Oh|?> < c[M*(x, Oh| for heCm {
=(, A), |h|=1 and |{|=1. Then, the equation M(x, 0, )u=f on R*
has the inverse R(L) on H~*(R"), R(Q)ueH(s, k, y) if feH(s, k, y), and
it holds that p (RN Zcar o) +ca(A™3/2p_(f), where y is a
system of infinitely differentiable functions such that y={y; j=0, 1, 2,...;
xo=1, ;=1 or eCZR"), and x;xj+1=xj+1}> and H(s, k, x) stands for
the completion of CP(R") by the norm p(f)= (Z [ ASHI2(A) ;S 12)112.
Moreover if M (x, 0, 1) is a composition of pseudo dliTerentlal operator
which satisfies (M (x, 0, A)f) S capi(f)+ca()A™ 20— ((f). Then, we
obtain the same result for {M(x, 0, 1)+ M (x, 0, D)}lu=/.

4. There exists a constant A, such that A2—@24 is solvable and hypo-
elliptic for A=4, if ¢ is a non-negative infinitely differentiable function.
A= A(D)+i[A(A), y] and A+iyA(L) satisfy the conditions of the previ-
ous remark 3 and so its results, where Yy =q@(1+¢2)"1/2, We consider
the product of them. (1—y2)"1(A—iyAQR)+i[AQ), ¢ A+ ipA)=A?
—@?A+N Dbecause A?(A)=A%?—A4. We have also the same results for
this operator and so for A2 —@24 since N is a negligible term.

5. We givc an example of mnon-hypoelliptic differential operator. We
construct it by the following procedure.

) 1, (a—18)n=x=(a+1/8)r; a=2t1 —14j
l//(i,j)E[

0, otherwise
o3 620, Sadx=1 and suppoc(—n/16, 7/16)

Wi, =00, j)
o= ¥ (=D27YG, )

1gjg21
0=5i<ow
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= % Y,

(i, J)sv=(—1)r27%

f =e**(sin x)*og|sin x|

fm=0w)f
¢ =sinx(cosx—sinx) 1y

f(etr®), x>0
f(V)E[

0 , x=Z0

{ —x2"el/*@(et’*), x>0
0 =

0 , xZ0

Fo=(W=2+6 4L 00))J+00)e > Gsin 5%

h(el’*), x>0
h E{

0 , x=0.

Then, (p% f)=vf(v)+h. ¢ and h are infinitely differentiable but

f(v) is not so at the neighborhood of origin. Thus, (go%—/lv) is not
hypoelliptic if 1 is positive integer and v is one of (—1)i27%. Using
this differential operator we can easily construct the boundary value
problem which is linked by A but not properly linked by A.

6. Let A be a symmetric system of first order and elliptic. Let kerB
be a maximal dissipative boundary condition with respect to A. Then
(A+2, B) is linked by A. Moreover it satisfies (1.7). But it is not true
to be properly linked by A.

7. We can give weaker conditions if it is not necessary to permit per-
turbations as large as at the remark 3. Let M(x, {) be the same one
but its homogeneous order in { be 0. 1) M(x, () is invertible if A>0
and |{|=1. 2) For each (x, {)(J{|=1 and A=0) there exist its neighbor-
hood Q(x,{) and positive real number 6 and ¢ such that 0<d<
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& AZc|M(x, Qul* and [020803M(x, Qu| S c|M(x, Qu|1=01AI=(=a)lal=(2e=8)y op
Qx, H)n{A=0} for all multi-indices («, B, y) satisfying J|f|+(e—09) ||
+Qe=06)y<1 if ueC™ and ju|=1.

If we assume 1) and 2), then we conclude that there exists a positive
Ao such that M(x, 0, A) has a solution in & for any data in & when
A=2o. On the other hand if the adjoint symbol M*(x, {) satisfies 1)
and 2), then we can find 4, such that singsupp M(x, 0, A)u=singsuppu
for any ue$’ when A=4,. Let ¥ stand for a ring consisting of sym-
bols C(x, {) such that C(x, {) is a mxm matrix valued infinitely differ-
entiable function on R"x {R7*1—(0)}, which is independent of x outside
a bounded set in R, and satisfies |0%02C(x, ()| Sc,4¢|71*! for all multi-
indices (a, ). Let % and £ stand for the left and right ideals of ¥
generated by {02020 M(x, {); 1 =|B| < |«|+7}, respectively. For M(x,
d, A)+C(x, 0, A) we have same results with another constant Ay(C) if
C(x,{) is an element of % or £ and if we assume 1) and 2) to its
principal part M(x, {) or the adjoint M*(x, {), respectively.

8. We can find out some well known hypoelliptic partial differential
operators by using the conditions at the remark 7. A2—¢@24 we noted
at the remark 4 is also proved to be hypoelliptic by the remark 7. We
have a similar example. 34+iA%2, where ¥ is a real valued C>-func-
tion, is also hypoelliptic and solvable for large . We can show that a
parabolic equation —gt—+a(x, 0,) is hypoelliptic and solvable, where a(x,
0, )= > aux)0% is an elliptic operator of order 2m>0 with real co-
eﬂicielzorzllt_s?m We may assume a(x, £)=0. Let u be a solution of the
parabolic equation. Consider the equation which is satisfied by e*fu(t/
A?2m=1 %) Then, we have 12”’+/12""16it+a(x, d,), which satisfies the

conditions at the remark 7.

9. We have receipt two preprints [15] and [16] closely related to our
results. We note here they have given some interest results for second
order elliptic equations.
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