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A Sufficient Condition for the Existence
the Uniqueness of Smooth Solutions

to Boundary Value Problems
for Elliptic Systems*

By

Nobuhisa IWASAKI

§ 1. Introduction, Problem and Result

In this paper we shall give a sufficient condition for boundary value

problems of elliptic systems to have the unique infinitely differentiate

solution for any infinitely differentiate data function. We shall con-

sider an elliptic partial differential system given in ADN [2], but it

includes a real parameter. We give some notations before we state

the problem we shall deal with. Let Q be a bounded open set in

Rn+1 (n^l) with an infinitely differentiate boundary dQ. Pol(/c) are

spaces of polynomials of degree ^ k in (£, A) e Rn+1 x R with coefficients

of infinitely differentiate functions on Q if fc^O and Pol(fc) = {0} if

/c<0, where k are integers. ^ = («i/)i^i<w and & = (bij)1^i^i are sys-
l&j&m Igjgm

terns of polynomials such that afj-ePol^-H-Sj) and fey e Pol (r,-+ f f),

where (rt)9 (st) and (tt) are systems of integers, which we call weight

indices of (jtf, 38). sfQ = (aV.) and ^° = (&?_/) are principal parts of $0

and ^, respectively, that is, a^(b^) be homogeneous parts of order

TJ + st (TJ + tt) of fly (fey). A = (Atj) is the partial differential system (with

a parameter A) on C™(Q) (Cm-valued infinitely differentiable functions

on Q) and J5 = (By) the trace operator by partial differential operators

from C%(Q) to Cf(<3£2), that is, they operate to e = (e/), elements of

C%(B), such that
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_

=/= (ft e C«(fi), £ -V; =/« and

and

where 3 x =r

We consider a boundary value problem,

where feC%(B) and geCf(dQ) are data functions and weC^(O) is an

unknown function. If A is of type ADN and if (A, B) is coercive, we

know that the solutions to (1.1) belong to C*(Q) and the operator

(A, B) has an index, but we have so far ignored the existence and the

uniqueness in general. On the other hand if A is of Garding type or

of symmetric type and if some relations between A and B are assumed,

we have the theorem of existence and uniqueness on some Sobolev

spaces for sufficiently large A by the use of variational method, but

C°°-regularity up to the boundary does not generally hold.

In Agmon [1] and Lions-Magenes [11] we can find a non- varia-

tional case where existence and uniqueness are shown. Extending it

and introducing a more general condition for regularity than coercive-

ness we single out a class of boundary value problem, for which regu-

larity, uniqueness and existence of solution are guaranteed. We state

these as the following theorem which is our main result. Some terms

in the theorem will be defined later. Roughly speaking the condition

described in the theorem is one of sufficient conditions under which

the pseudo-differential operator defined by the Lopatinsky matrix of (A5

B) on the boundary is solvable and hypoelliptic.

Theorem 1. If (A9 B) is an elliptic system properly linked by A

on O, then there exists a constant A0 such that (A, B) is an isomor-
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phism from C£(5) to C£(5) x Cj°(dfi) for A^A0 .

Corollary of Theorem 1. // (A, B) is an elliptic system strongly linked

by I on Q, then Index (A, B) = dim of coker(^, B)-dim of ker(A, B)=0

for any AeC1 .

ADN [2] says that these types of partial differential systems (A9

B) can be remodeled systematically to equivalent systems (A'9 B') such

that order of each term of A'^l and of B'^0. So, we may assume

that (A, B) is the one remodeled. The main reason why we remodel
it is that we embed the bundle attached to the principal symbol of the
partial differential system A and complemented by the trace operator

B into a trivial vector bundle on T*(Q). We explain here only about
equivalence we have used above. We call two partial differential systems
P0 and Pl equivalent if there exist six partial differential systems Fi9

Gt and Qt(i = 09 1) such that

\ G0,F0

(A\In our case we have P0
= an(i PI =

\BJ \B'

Let Q = R$+1 and let us put x = (x^issltmmmtn9 y = xn+1, ^ = feX-= !,...,„, and
^i = irj = i^n+1. We define *#*&) as following, where (rj)9(sj) and (tj)

are the systems of weight indices of (j/, 38\ m the degree of square
matrix jaf and r0 = max(rj«).

(1.2) .^oGO = ((l-'?)P'-roSy)

and (5y) is Kronecker's 5.

Definition 1.1. When we assume that £/° is non-singular for all

real vector (>/, £, 1)^0 at (x, ^) = 0, we can define the fallowings.

(1.3) ^ = (2jri)



562 NOBUHISA IWASAKI

(1.4) 9 = (2nt)

where |£|2+A2 = 1, j/° and &° are the principal parts of #£ and

^5 ^o = ja^0(l)l(^,A)=o and r is a C^-Jordan contour which lies in C_
(left half plane) and encloses the roots of detjaf°(ju) = 0 with negative

real parts.

(1.5)
when £ = (£, A)/0.

(1.6)

* and ^* are adjoint matrices of 0* as the operator on Cm

o/ ^ as the operator from Cm ro C'.

Definition 1.2. 1) We call a system A a favourably elliptic system

(at (x, j/) = 0) if jtf° is non-singular at (x9 y) = Q for any real vector

2) We call an elliptic system (A, B) linked by A if it satisfies the

three properties that (1) A is favourably elliptic, (2) the degree of A

(=the degree of detj/°) = 2i and (3) dim of range ® = l if A>0,

3) We call an elliptic system (A, E) properly linked by A if it is

linked by A and if there exist constants c such that

(1-7)

(1-8)

(1.9)

for A ^ O , | C | = 1, !/| = l(/eC»), |^| = 1 feeC1) and |a| + |j8| = l at a

neighborhood of (09 0).

4) We call an elliptic system (A, B) strongly linked by A if it is linked

by A and if dim of range & = l on A^O,

Definition 1.3* We call an elliptic system (A, B) properly (strongly)
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linked by A on Q if A is a favourably elliptic system at each point

of Q and if (A, B) is properly (strongly) linked by A at each point

of the boundary dQ with respect to a coordinate function on Q, (n — 1)

of which is a coordinate function on dQ.

Example.

, (-J+A2)w=/ on Q

u = g on 8Q,

where (p is a non-negative C°°-function on dQ and v is the conormal.

Then, ||w||5+1)0gc5(A){||/||Sjfi+||sf||s+i afi} for sufficiently large L

We shall study a special case by the method of pseudo-differential

operators and we shall obtain results sufficient to show Theorem 1 in

general cases by regarding them as small perturbations of the special

case. It is as follows.

The domain Q is R'±+1. The equation is (1.10).

(1.10)
^ B(x,

where M(x, dx, A) and B(x9 dx9 A) are pseudo-differential operators whose

symbols are M(x, £, A) and B(x9 £, A), m x m matrix M(x9 £, A) and

/ x m matrix B(x, £, A) are C°°-functions, in real variable (x, £, A) 6 Rn

x {RnxR — (0, 0)}, which do not depend on x out side of a bounded

set in x-space, and functions of homogeneous order 1 and 0 in (<!;, A),

respectively. We set that jtf = u + M(x, £, A), &=B(x, £, A) and weight

indices ^- = 1,5^ = 0 and t~ — 1 (j = l,..., m or I). Then, Definition 1.1 ~ 3

are well defined.

Definition. Let us set WbaH^(Rl+i)xH-1f2(Rn) as (u,v)eWb if

and only if u, {-^ + M(x9 dx, A)}ii6ffS(*J+1), (then, u(-9 0) is well

defined in H;1/2^")), B(x, dx9 A>eH//2(^«) and v = u(-9 0).

Remark. Hfl?(O) is the Sobolev space of Cm-valued distributions on Q.
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Definition. C(X) stands for the closed operator, from H°(Rl+1)

d, A), 0to
0 , B(x, dx,

whose definition domain is Wb.

Theoreme Let us assume that the pseudo-differential system ~^~

+M(x, dx, A), B(x, dx, A)J is an elliptic system properly linked by A

on Rf1. Then we have:

1) There exists a constant A0 such that, if A^A0 s C(A) has the inverse

operator jR(A), which is a bounded operator from H^n(R
1l+1)xH^2(Rn)

to H°(Rp*)xH-U*(R*).

2) ,R(A) satisfies for non-negative integers s the estimates that

where \\\-\\\s is the norm of bounded operators from H^n(R!l+1)xHs
l
+lf2(Rn)

to Hs
m(Rfi)xHfn~

1/2(Rn), that we obtain when we induce the norms

( I IT — d(Z)\Su V \\A'(X)v\\2V/2 in H*(R1+1) x H!(Rn): A(X) is the pseudo-

differential operator with the symbol (|^|2+A2)1/2.

The results of Theorem are not enough to show regularity in general

cases. We have to estimate H(A) more precisely to do so. It is possible

for systems properly linked by A.

Definition. Let s^O and i = 0 or 1.

1) Yl(V = L2(Ri;H?n(R»))xH*-l/2+i(Rn) with the norm ||C/||yf(A)

= (Ms(A)w||2 + M5-1/2+f(A)t;||2)1/2; U=(u, v)eYa
t(X)9 where %0 = m, a1 = I

and L2(Rl; H^(Rn)) is a space of Hs
m(Rn)-valued L2-functions in ye(09

oo).

2) Let X=(Xj)j=o,...,k be a system of C^-functions such that ^0 = 1,^=1

or eCffGR?*1), and ^+i=
3) Xf(A, /) stands for the closure of Cg>(^?+"1)xCg>(K11) in the space

{17; XjUeY?J(X)9 v0 = ®, ffj = s-(k-j)l2, l^j^k} with the semi-norms

\\KjU\\Y<iJu) and the norm ||U||Jff(^) = ( E^/t/)2)1/2, where

= (XjU, Xjv)l U = (u, v) and x° = Xj\y=0.
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4) Let us set qtj = ( Zpfv)1/2; Ogjgfc , «,_!=0.
v=0

—Theorem, Let us assume that the pseudo-differential system

+ M(x, dX9 A), B(x, dx9 X)} is an elliptic system properly linked by A

on R++1. Then, there exists a constant A0 such that the inverse operator

i?(A) of C(A) in the previous Theorem is a bounded operator from

X\(l, x) to XS
0(A,9 x) if ^^^o and O^s^lc/2. It satisfies the following

estimates for UeX\(A9%).

where c0 is a constant not depending on s^O, A^A0 and %.

Remark, In this theorem it is important that the constant c0 does

not depend on s, A and #.

If the system M and B do not depend on the variable x, we can

easily construct R(l) by Fourier transform. So, we consider what we

obtain when we regard the variable x in M and B as a parameter.

It defines a pseudo-differential operator and gives a first approximation

of R(X), that is, if we denote it by R'(X)9 we obtain the relations that

R(X)-(I + S(X)) = R'(X) and (I+T(X))'R(X) = R'(X). We can show that

R'(X), S(X) and T(X) are defined by pseudo-differential operators that

satisfy similar estimates as ones in the previous theorems if we assume

the conditions in Definition 1.2. Thus, I + S(X) and I+T(X) are invertible.

We write down the results for pseudo-differential operators we use

in proof of the theorems. R'9 S and T are defined by compositions

of pseudo-differential operators to which we can apply them. They are

due to the papers by A. P. Calderon and R. Vaillancourt [4] and L.

Hormander [8]. If we follow them carefully, we have all of them

without other technique.

We consider pseudo-differential operators on the space of distribu-

tions valued in a Hilbert space X, that is, symbols of pseudo-differential

operators are C°°-functions valued in BL(X) the space of bounded linear

operators on X. Let C°°(i?s, X) and C°°(£5, BL(XJ) stand for the space

of X and J?L(X)-valued C°°-functions on Rs with respect to the topologies
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by the norms of X and BL(X), respectively. We denote the norms of

X and BL(X) by | • | and the canonical norm of L2(RS, X) the space

of X- valued square integrable functions by || • || .

Let p(x, £, X) and q(x, & A) e C°°(Rn x Rn, BL(XJ) with a parameter
A e (0, oo) and let us assume that p(x, C, A) and q(x, £, A) are independent

of x outside a ball and that for all multi-indices a, f$ there exist constants

cap, ml9 5b and pi (i = l, 2) such that

on f = «, A)e£«x(09 oo), where />$(*, 0 = ̂ X*, 0-

Let us set that for u e C<g(Rn, X),

If Og^1<p2^l and O^^^p^i, then for any real number s and inte-
ger m there exists an integer N0 such that, if N^.N0 and A^l,

and || yl5(A)K(A)w || g cNA-^+5-m+ 2 1| /lw(A)w || , for

Let 7 be another Hilbert space densely contained in X by a continuous

injection. We assume further for q(x, 0 to satisfy that there exists an

integer a0 such that q[p](x, 0 e BL(X, Y) (bounded linear operators

from X to y) and

for all |a|^a0 and |^|^0, where \-\XY is the norm of BL(X, y). Then,

there exists an integer N0 for any integer m such that

\\K(l)u\\Y^cmNMmWu\\x for A^ATo and 11 e CJ(JI», X) ,

where \\-\\x and ||-||y stand for the norms of L2(Rn, X) and L2(Rn, Y),

respectively.
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§ 2, Preliminary Analysis for Proof

We consider the following m x m matrix M(x, £, X) such that M(x,

£, A) is a e°°-function, in real variables (x, £, A)eK" x {^xR1-^ 0)},

which does not depend on x out side of a bounded set in x-space, and

a function of homogeneous order 1 in (£, A), that is, aM(x, £, A) = M(x,

a£, od) for all a>0. We assume that ^ + M(x, £, A) is non-singular when

li=—iri and when (77, £, A) are non-zero real vectors, that is, there exists

the inverse of ju + M(x, £, A). From this assumption we are able to divide

the eigenspace of M(x, £, A) into two parts as followings.

(2.1) P+(x,^,X)=

P_(x, & A) =

where r+(F_) is a Jordan curve which is laid in the right (left) half

plane of C and surrounds the eigenvalues of — M(X £, A) of which the

real parts are positive (negative). P+ and P_ are projections and

satisfy the relations that P±(x, oc£, aA) = P + (x, <!;, A) for all oc>0 and that

P + + P _ = L If we set U(y) = e~M^^^V(Q) and 17(0) a vector, then

U(y) satisfies the equation that y- + M(x, ^ A)l/(j;) = 0 and

increases (decreases) in the exponential order as y-* + ao if [/(O) belongs

to the range of P+(P_). We consider another Ixm matrix B(x9 £9 A)

such that B(x, ^ A) is a C°°-function, in real variable (x, £5 A) e Rn x {Rn

xR1— (0, 0)}, which does not depend on x outside of a bounded set

in x-space, and a function of homogeneous order 0 in (£, A), that is,

B(x, f, A) = £(x, af, aA) for all oc>0.

< Assumption (A)> Relations between M(x, ^, A) and B(x, £, A).

1) dim \_range of P_(x, ^, A)] = /.

2) HTien A>0, K|2 + A2 = 1, |/| = 1, \g\ = lJeC>«,gECl and

then there exist constants c>0 such that

a) X.\P_(x,
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b)

c)

where D(x, £, Z) = B(x, £, Z)P_(x, £, X), P* and D* are adjoint matrices

of P_ as the operator on Cm and of D as the operator from Cm to

Cl, respectively, and

fl.Vx, & X) = 6^D(x, & A)-P_(x, & ^)

ff*,(x, & A)sP*(x, 5, A)3$D*(x, & 1).

Under this < Assumption (A)> we go on with our discussion. We

denote the linear operator (matrix) B(x, £, A)-jP_(x5 £, A) from range of

P_(x, £, A) to Cz by D(X ^, A), too. From the Assumption (A) 1) and

2) a), there exists the inverse operator (matrix) of D(x, £, A) when A>0.

We are going to estimate the operator-norm of the inverse operator in

(x, &A). Let XEA stand for the set {(x, & A); (x, ^ A)e^2»+1, |^|2 + A2

= 1, A^O}. We first prove the following lemma.

Lemma 2«L On XEA the following inequalities hold for a positive

constant c.

Proof. This lemma follows from the assumption (A) 2). Replacing

/ in the inequalities of the assumption (A) 2) by P_(x, ^, A)//|P_(x, £,

A)/ 1 and # by ^/|^|, where A^O, we obtain the following inequalities

(2.2).

(2.2) |fli,(x,

Since we can apply to the above inequalities the assumption (A)

2) a), that is, A|P_(x, t, X)f\^c\D(x, £, Z)f\ and also i\g\£c\D*(x, £, X)g\,

we obtain the inequalities which we have to prove. End of proof.
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We now define the operator (matrix) E(x, £, A) for A>0 by

where D(x, £, A)"1 means the inverse operator from Cl to the range of

P_(x, & A) of D(x, £, A). It is clear that for A>0 £(x, £, A) satisfies the

following equalities.

(2.3) £(*, £ X)-D(x, $, X) = P-(x, & A)

Lemma 2.2. On XEA the following estimates hold for some positive

constants ca/3y and for all multi-indices a, ft and y.

2) ||D(jc, ^3 A)-3«5|5I£(jc, ̂ 9 A

3) ||3;553I£(x, §, A)||^ca,vA-(

Proof. We shall prove the lemma by maens of induction in the
n

length fe= Z(ai + ft) + 7 °f multi-index (a, /?, y). If /c = 0, it is immediate-
i=l

ly proved from (2.3) and from the assumption (A) 2) a). We assume

that the inequalities of lemma hold on XEA when fegfc0. Let us differ-

entiate the both sides of (2.3). By Leibniz formula we obtain that,

denoting dt = dt
x-d^dt^; f = (fa, tp, ty) = p, q, r or s,

p+q=r

dr{D-E}= £ c
p+q=r

Transposing terms except for 6SE-D and D-dsE to the other side,

(2.4) drE-D = drP_- S
p+q=r

(2.5) D-drE=- S
p+q=r
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because D-P_=D. We here notice that P_ and D are infinitely differ-

entiable on XEA and that, if |r| = /<0 + l, dpE of the right hand sides of

(2.4) and (2.5) satisfy the estimates of lemma by the assumption of induc-

tion because \p\^k0. From (2.4) and (2.5) we obtain (2.6) and (2.7)5

where ic(0=|fa|/2 + |f,|/2 + f7; t = (tx, tp, ty).

(2.6) drE-D=- X
p+q=r

0<K(q)<l

(2.7) D-d"E=- £ cM3«D • d*E + F2 ;p+g=f
0<K(q)<l

p+g=r

If K(^)^13 then we have that ?<p) + l = K(r) + l-?c(^)^?c(r). We

next estimate the remained terms. Using (2.3),

(2.8) BP£ - d«D • P_ = [dPE • D] • [£ • 5*D • P_] .

Since D* and P*dqD* satisfy the estimate of Lemma 2.1, we replace

g in those inequalities with £* which is the adjoint operator of E and

we consider its adjoint. Then we obtain that, if K(g)<l,

(2.9) \\E(x, ^ X)-d*D(x, t, Z)-P-(x, 5, A)|| £c3W>.

On the other hand [^£(x, ^ A) • D(x, ^, A)] satisfies the estimate 1) of

this lemma by the assumption of induction because |p|^/c0. Combining

(2.9) and the above, we can estimate the remained terms of (2.6) and

we have a bound c4l~
(K(p)+K(q^. Thus, the estimate 1) holds if |r| =

fc0 + L Since £ = P_°£, we differentiate both sides of this equality,

(2.10) BP£= 2 c^P-'&E
s+l=p

s+t=p
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§,A)||gc5A-^+«) if |p|^fco and

Substituting (2.10) for d?E in (2.7)

H
p+q=r

Since dqD-P_=H* if 0</c(g)<l, we have that

p+q=r P+q=r
Q<K(q)<l 0<K(q)<l

Since D and F^ satisfy the estimate of Lemma 2.1, we substitute £ for

/ in those inequalities. We obtain that, if /c(

On the other hand [D(x, f , A) • ̂ E(x, & A)] satisfies the inequality 2)

of this lemma by the assumption of induction because \p\^k0. Combin-

ing these facts, we can estimate the remained terms of (2.7) and we

have a bound c8A~ (K" (p)+K ' (9)) = c8l~'c(l"). Thus, we obtain the inequality 2)

when |r| = k0 + l. The inequality 3) is immediately obtained by operating

E to the right hand side of drE-D and by estimating it by the in-

equality 1), or by operating E to the left hand side of D - drE, by

using (2.10) and by estimating it by the inequality 2) and the inequality

3) for I jp l^ko- End of Proof-

Lemma 2.3.

1) ||3'[3«£(x, & A) -D(x, t,

2) \\d>lD(x, £, X) • d"E(x, £, A)

Proof. We have only to prove the estimate 1) for

] - P _ = £ crsd
r+l>E-dsD-P_

p=r+s

= Z c
P=r+s
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By Lemma 2.1 and 1) of Lemma 2.2 the remained terms are estimated

with the bound cA-K(r+«>"K(s> = cA-K^+«>0 Thus, we obtains 1).

= D • dP+QE + Z cn[H* • £] • [D •
r+s=P

where \\F2(x, £, A)||gc/L~K(^+« )
0 From the above we obtain 2) by using

Lemma 2.1 and 2) of Lemma 2.2. End of proof.

Lemma 2A Le£ us define J* = S|E • d$D and J2 = d\D • d$E. On

XEA for some positive constants c^ and all multi-indices p it holds

that

1) when |a| = l, \\d*Jl(x, ^ A)|| <capA-^)-1

2) when |a| = l,

when

Proof, We obtain the following equalities in the similar way as

in the previous lemma.

(2.11) d\E -d«D=- [d\E * D] • [S;£ • D] + \d\E - D] - 5«P»

when |a| = L

(2.12) SID - d$E= - ID - 5|£] • [D-dSE] + 5|D • 5«P_ • E

when |a| = l.

(213) 3|D • S;£= - [D • 3|£] • [D

S Ct
s+t=<x

\s\=\t\=l

. • P_ •

when |a|=2.
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When |<x| = l, we apply Lemma 2.3 and 3) of Lemma 2.2 to the right

hand sides of (2.11) and (2.12) and these derivatives by 3P. We obtain

the estimates. When |oc|=2, we apply same ones to the right hand

sides of (2.13) and these derivatives by dp. We obtain the estimates

2). The other cases are obtained by applying 3) of Lemma 2.2 to the

defined forms of J£. End of proof.

Lemma 2.5. Let F(x, £, X) be a matrix valued C^-function in (x,

£,X)eR2n+l n{A>0}, homogeneous of order m in £ = (£, X). If F(x, £,

1) satisfies the following estimates on X3A = {(x, £9 X); |£ |2+A2 = 1, /l^O}

then, F(x, c, X) satisfies the following estimates on the whole defined

domain R2n+1 n {A>0}.

(Note)

/(cr): function in aeR™

= (^))i=i, ...,»: ^"-valued function in £eRl

cop vi9 fjLij : non-negative integers

2 m=n n

With these notations we have easily the following formula,
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Proof. We first prove the lemma when F is a homogeneous func-

tion of order 0 in £ = (£, A), i.e. F(x, 0 = F(x, C/ICI). We use the notation
of note.

where / = n, ro = n + l, £=(& 4), Fw(x, Q = ̂ F(^ 0,

It is sufficient to estimate each term of right hand side.

where v=(v,),=I ..... „, t? = (iA,-)i=i ..... »>

We compute these.

(2.14) (3«^

where ^>i(0i=i,2,3,4 are homogeneous functions of order 0 in (. On the
other hand from the assumption for F(x9 0 on XEA we obtain the

folio wings.

(215) l|3;F(.)(x, Oil gcav(

Combining (2.14) and (2.15), we obtain that
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| + vM+l)H/iJ

+ |

Since |j£j = vm, |v| = |AI and |v| + vm+|T| = |/J|, so

Considering that A/|(|;gl, we obtain that

Thus, we conclude that

Summing these in (v, T) up, we obtain the conclusion of this lemma

with other constants c^ when ra = 0. When m^O, we consider |£|~mF(x,

Q, which is a homogeneous function of order 0 and satisfies the same

estimates on XEA as F(x9 Q. |C|~mF(x5 () satisfies the estimates of the

conclusion of this lemma by the previous discussion. Since F(x, Q

= ICIm{ld~w^(X 0}5
 we obtain the conclusion by using the Leibniz

formula. End of proof.

Lemma 2.6. In (x, f, A)e JR
2 n + 1 n U>0}, for all a, £ and y and for

some constants c^ and cxpy which do not depend on (x, £, A), 1)~6)

and 7) /zo/d where £ = (£» A).

2)

3)

4)
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5) ||5«3j£(x, & X)\\

6) ||

7) ||a«^/2(x3^A)||^ca^A-(

when

Proof. E is homogeneous order 0 and satisfies 3) of Lemma 2.2

and Jj, are homogeneous order — \y\ and satisfy Lemma 2.4. We can

apply Lemma 2.5 to these facts to obtain this lemma. End of proof.

Lemma 2,7 0 For all multi-Indices a, jS and y and for some positive

constants cap, ca/?y and a,

2)

where e~M^^^yp.(x, £, A) = (27iO~1(
J r_

Proof. 1) follows from the fact that fy + M(x, <!;, A) is non-singular

for 0?,<!;,A)7^0 and does not depend on x outside a ball in x-space.

Since F_ is taken not to depend on (x, £5 A) if |C|2 = |£|2 + |A|2 = 1, we

obtain 2) using 1) and homogeneity of M(x, £, A) in (£, A).

End of proof.

§3. Results from Theory of Pseudo-Differential Operators

In this section we shall mention the results on pseudo-differential

operators obtained by A. P. Calderon and R. Vaillancourt [4] and L.

Hormander [8]. We shall apply these to some pseudo-differential opera-

tors which we need in this paper. In order to apply these to our proof

we have to make it clear how norms of pseudo-differential operators

depend on parameters. So we shall give rough proves again though

they are almostly same as ones by L. Hormander.
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We consider pseudo-differential operators on the space of functions

(distributions) valued in a Hilbert space X, that is, symbols of pseudo-
differential operators are C°° -functions valued in BL(X) the space of

bounded linear operators on X with some additional conditions. Let

C^R*, X) and C°°(£s, BL(XJ) stand for the space of X and BL(X)

valued C°°-functions on Rs with respect to the topologies by the norms

of X and BL(X), respectively. We denote the norms of X and BL(X)

by | • | and the norms of Hm(Rs, X) the Sobolev spaces of Z-valued

distribution by || • ||m.

Lemma 3.1. Let p(x, £) e C™(Rn x Rn, BL(X)) and assume that with

for (x,£)GRnxRn. Then there is a constant c, depending on the con-

stants ca£, such that

\\p(x, d)u\\0^c\\u\\0, ueC$(R",X)

where p($](x, £) = 3f3£P(x, £). (Refer to Hormander [8] and Calderon

and Vaillancourt [4] for proof. There is nothing that should be

changed in them though symbols take their values in bounded operators

on a Hilbert space.)

Lemma 3.2. Let p(x, £) and q(x, £) e C™(Rn x Rn, BL(X)} and assume

that p(x, £) and q(x, £) vanish for x outside a ball {x; \x\^R} and

that for all multi-indices a, ft we have constants c^^, mi9 dt and pt,

where i = l or 2, such that

Then, for any integer m vie have

\\q(x, d)p(x, 8)u(x)- S W\(«!)-iqM(x, d)°pw(x, d)u(x)\\
\a\<N

g b(N, L, n)J?2«cmax(N, L) • ||«(x)L, for ii(x) 6 Cff(K», X)
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where b(N, L, n) are constants which depend only on N, L and n,

cmax(AT,L)= max [c^]' max [c0J
-l^I-n^l -l^l-n-N^l+L

and

Proof, We consider a partial sum of the Taylor expansion of q(x,

in rj at £,

Z ^(^«l<^

+ Z r(-)(x, f, ^-OOrCa!)

Now we obtain the following Lemma 3.3 for P(fl°(C, £, if — £) which is

the Fourier transform of r(a)(x, ^9 if — ̂ ) in x0

Lemma 33,

^ SUP
O^fl^

x{ max
-l^Z-n^

On the other hand we have Lemma 3.4 for

Lemma 3.4.

max

We now put v(x) = q(x, d)p(x, B)u(x)a Then we have
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= E (O'-'CaO

= E (O

where ^f (a ) -jp(a)(C, £) = U~i*Va)(x, 5)p(a)(x, Qdx. This equality shows that

it suffices to estimate the last terms

Z O
|a|=JV

in the form of Lemma 3.2

Lemma 3.58

x max [CN] • max [c0J

If we prove this lemma for ^(a)(C-^, f, ^-^)p(a)(^-{5 0> we obtain
the followings by HausdorrT- Young inequality.
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— N

b(N, L, n)

= 24+max(2L,p2JV-m2-<52(n+l))52( £ l/a!)f (
|a |=W \J

The proof of Lemma 3.2 is complete if we verify Lemmas 3.3 ~ 5.

End of proof of Lemma 3.2.

It is easy to verify Lemmas 3.3 and 3.4 using the assumptions for

p(x9 £) and q(x, £). So, we prove Lemma 3.5 from Lemmas 3.3 and 3.4.

(Proof of Lemma 3.5) When to-fl^l/2, we obtain (3.1) from
Lemma 3.3 and (3.2) from Lemma 3.4 because
Combining (3.1) and (3.2), we conclude Lemma 3.5 if \r\ — £|:g|

(3.1) !?(«>(£_,,, ^-^i

where

(3.2) IA.)(^-^OI

n max

When |f/ — £|l^|£|/2, we obtain (3.3) from Lemma 3.3 and (3.4) from

Lemma 3.4 because l + to-f|^(l + |{|)/2. Combining (3.3) and (3.4),
again, we complete the proof of Lemma 3.5.

(3.3) |^o(£_^?f?_£)|

» max [c
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where m2 + <52(w + i) — p2|a|^0.

(3.4) IA«>fo-&0l

n max [cOI]

End of proof.

Lemma 3.6. Let q(£) be constant in x. If p(x, %) and q(£) satisfy

the hypotheses of Lemma 3.2 except for the hypothesis that q(£,) vanishes

in x outside a ball, then the result of Lemma 3.2 is valid with another

constant b'(N, L, n)Rnc'max(N9 L) such that c'(N, L) = max LCOI~]CNI.

Proof. From constantness of q(£) In x we have that

<KO= z (o

+ E (Ol'KaO-
|a|=W

We have further

(3.5) |rW«, f / - O l g o S i

"^-"^(i + m"^p^cMO if |

LIO if

where w2 — p2lal=0-
Combining (3.2), (3.4) and (3.5) we can estimate as

- z (O'-Kai

b'(N,L, n)=22+m^2L'p^N-m^
|a|=N

if m1 + m2 + ̂ 1(w + l) + (^1-p2)]V ^ w, Wt + ̂ n + ̂  + SiJV + ̂ -^L g m
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and m2 — p2N^Q. End of proof.

Lemma 30?8 Let p(x, f , A) and q(x9 & A) e C°°(JRM x Rn
9 BL(X)) with a

parameter X e (0, oo) and assume that p(x9 £, 1) and q(x, ^ A) are

constant in x outside a ball {x; \x\£R} and that for all multi-indices

a, ft we have constants c^^, mi9 dt and pi9 where 1=1 or 2, such that

\p\j](x9 «, A)|g

^l and C = K,A).

for any integer m we have

\\q(x9 d, X)p(x, ^
«|<N

-'w+2p'"(A)w||5 /or n(x) e Cg3^", Jf)

c is a constant which depends only on N, L, n, R and C|a |j^js

mh dh pi9 N, L and m satisfy the relations in Lemma 3.2.

Remark* Many times we use pseudo-differential operators /1S(A) for

all real number s whose symbols are (|^

Proof. Let u e C£(R»9 X), v = qpu- £ (0|a|/oc! • q^p^u, ftx, {, A) =
|a|<#

p(x/A9 {A, A), §(x? {, A) = ^(x/As a, A), ii^siiCx/A) and »1(jc) = i<x/A).

Then

(3.6) »iW = «^i-

Functions p and q satisfy the hypotheses of Lemma 3.2 and 3.6 as

followings

So we apply Lemma 3.2 and Lemma 3.6 to (3.6). jRM, cmsLX(N9 L) in

Lemma 3.2 and c'max(JV? L) in Lemma 3,6 are less than cA", cA-N~2'I+2
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and cA™N~II+1 for some constant c, respectively. Thus,

Changing variables, we obtain the estimate of this lemma.

End of proof.

Lemma 3.8. Let p(x, £, A) satisfy the hypotheses of Lemma 3.7, where

O^^p^l and 6^1. Then we obtain

\\Am(X)p(x9 d, A)w||^c0A-mMMm+miWw|l

especially

\\Am(X)p(x9 d, A)W||^cmA-»'MI^"+miW"ll

for Ae[l , oo ) and for any real number m, where c0 does not depend

on m.

Proof, When m = 0, we prove the estimate in the same way as

in Lemma 3.7 using Lemma 3.1 instead of Lemma 3.2. p(x9 £, A)

= p(x/A,9 £A, A) satisfies the hypotheses of Lemma 3.1 with constants

C|a | lpl which do not depend on A if A^l . If we put v = p(x, d, A)w,

M i(x) = w(x/A) and v L(x) = v(x/X)9 then u JL = jp(x, d, A)w t and || v x || ^

cll/l111^!)!/!!! by Lemma 3.1, where c does not depend on Ae[l ,oo).

Changing variables, we obtain that

||i;||^a-mHI/lWI1(A)u||, Ae[ l , oo).

Let us put q(x, £9 A) = (|C|/A)m. Then p(x, £, A) and q(x, 4, A) satisfy the

hypotheses of Lemma 3.7, where m2 = m, <52 = 0 and p2 = l- This means
that it is enough to estimate the finite numbers of the pseudo-differential

operators with symbols r(y, x9 £9 A) = ^(y)(x, ^, A)Jp(y)(x, ^, A) because from

Lemma 3.7 the error term qpu- X (0 |a|/a- " <2(a)°P(a)w is bounded by
|a|<tf

cNA-m-mi~1||ydm+mi-1(A)w|| if A^ is sufficiently large. For some other
constants c,aM/,,,y,,
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= c

So we can use the result which we have already proved in the case

m = 0.

ry, x, , i i^Cy- 1 "-" 1 ! - ! ! / !" 1 -

Summing these and the error term up, we obtain that

l-™\\A™(X)p(x, d, X)u\\ = \\q(x9 d, AM*, d, A)ti||

£c0li-
m-mt\\Am+mi(X)u\\+ y A-ni-mi-

i*|y|<tf

+ cJVA"m~mi"1||>lI"+lfl*-1(A)tt||, Ae[l, oo)

because ^-^^A^^^^ull £ \\u\\. End of proof.

Lemma 3.9* Let p(x> ^ ^) aw^ ^(^5 ̂ > ̂ ) satisfy the hypotheses of
Lemma 3.7, where 0^d1^pl^i.> 5^1 and 0^52<1. Then for any real

number s and integer m and for sufficiently large N's we have

\\A'(X){q(x9d,X)-p(x,d9X)

\*\<N

+s-m+2 iiyim^u^ for u E c$(Rn, X) .

Proof, It is trivial if p is constant in x. So we may assume that
the support of p in x is bounded. Let us put r(x, 3, /l) = /ls(/l)A~s.
Since q and r, p and /Ualr(a)og(a), and, ^p^q(^°p(py and r satisfy the

hypotheses of Lemma 3.7, we have (3.7), (3.8) and (3.9). We have also

(3.10) by combining (3.7) and (3.8), and the result of this lemma by

combining (3.9) and (3.10) for sufficiently large APs.

(3.7) l|{r-s- :(0'"V«!-
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(3.8) Il{r(')o«w-p-

(3.9)

(3.10) ||{ffl'p-
|

gcA-iy-m+2||/lm(A)u||. End of proof.

There are Lemmas 2.6 and 2.7 for M, 5, P_, D, £, Jj,, e~M^oP_ and
(ifj + M)"1, which are defined in section 2. So these are pseudo-differ-
ential operators to which Lemmas 3.7, 3.8 and 3.9 can be applied.

Lemma 3.10. Let h be an element of Cg"(K") and A e [1, oo).

2)

3)

4) \\A*(X)D(x, 8X,

5) ||/l*(A)E(x, 5,,

6)

7)

8)

9) ||/ls(A)J2(x, dx,

10)
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1/2«o

12)

, {, A)}-'

13) M*(A) [B(x, 5X, 1), P_(*. 3

14) ||/1'(A) [D(x, 5a, X), E(x, 8X,

15) M*(A) [£(x, aw A), D(x, dx,

16)

17) IK^-yl^AWM'-HA) C^-J(x, ax, f,, A),

1/2

Remark0 [g(x, 3J, X^> 8J] = q(x9 dx}-p(x, dx)-q(x, dx)°p(x, dx).

Proof. 1)^12) follow easily from Lemmas 2.6, 2.7 and 3.8. From

the definition of [ , ] we have that

[£>(x, dx, A), £(x, 5,, A)] =

Here, the error term K is negligible to be estimated if N is sufficiently

large because D and E satisfy the hypotheses of Lemma 3.9. The other
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terms J£ satisfy the estimates 8) and 9) of this lemma. Thus we obtain

14). The other estimates are proved by the same way as 14).

End of proof.

Let <peC3(££+1);^+1 = {(x, y)\ y^Q, (x, y)eR»+l}. We define the
operators S^A), S7(A) and Ttl(A) as

M(x, d,,

ifa dx, rj, A), M(x,

c, 3X9 A), A-i(x, dx, r

jXj and ^t-1^, 5, ̂  A) = {/^ + M(x3 f, A)}"1.

Then, we have the following lemma.

Lemma 3.11B Let (peCcg(R1+l). For any non-negative integer m,

pi \m+l

Hi)

\m-j
_(x, dx, A) v (, 0)

m+l

_(X, 8X, 1), M(*, fl,, A ) ] m " V ( - , 0)



588 NOBUHISA IWASAKI

( /) \m+l
W) ^llWcp=Tll

, 8X, X), e

m ££+1.

Proof. This is proved by using the relations that

where s>09 Reaj^O and F is a C°°- Jordan contour which surrounds

ffj such that Recrj<0. End of proof,

Lemma 3,12. Let cpeC^(R^+1). For any non-negative integer my

i) Z

2)

3)

=

Proof. We prove 1). When m = 0, it follows from the non-sin-

gularity of irj + M(x, £, A), that is9 from 12) of Lemma 3.10,
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We use Lemma 3.11 in the general case of m. The terms that y=0

are estimated immediately by 12) of Lemma 3.10, that is,

When y^O, we have by 1) of Lemma 3.11 that

J = l

The first term is estimated by 12) of Lemma 3.10, too.

We use 11) of Lemma 3.10 for the remained terms.

where we use the well-known inequality that

Thus, we obtain 1) of this lemma. We can prove 2) and 3) using

16)~19) of Lemma 3.10 in the same way as 1) because S7(A) and rlx(A)

have the similar expression 2) and 3) of Lemma 3.11. End of proof.

Lemma 3.13. Let p(x9 £, A) satisfy the hypotheses of Lemma 3.7, where

p j ^ l and dl^l. Then we obtain



590 NOBUHISA IWASAKI

, 3,

/or Ae[l , oo) and /or any reaJ number 7 and m SHC/I £/?a£ m + m 1>/,
w/iere c0 is a constant which does not depend on A, I and m.

Proof. This lemma is a corollary of Lemma 3.8. We know well

the inequality that

So we obtain

where e = c0/cm and /<min(0!) mj,, (It is no restriction that we assume

it.) End of proof.

Lemma 3.14. Let ^eCg^CR") or #,.= l ( i = l ? 2 ) swd*

and %2 = %2l\- Let p(x, £, A) satisfy the hypotheses of Lemma 3.7, w/zere
pigl and dl^l. Then, we obtain that

? m, ̂ - » ^ - ^ m m i - p l ^ 1 t f + c 9 m, ^

/or Ae[l, oo) and for any real number I and m such that m + m1>l,

where c0 is a constant which does not depend on A, I, m and Xt-

Proof. In Lemma 3.9 we put p(x, d, A) = ^2W5 <?(X ^ %) = p(x9 d, A)?

s = m and m^L Then we obtain that

3,A)/2ti- I (O
\a\<N

We use again Lemma 3.9 for p(x, 3, A) = 7t(x) and ^(x, ^9 A) =

5, A) when |a|^l.
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A«(X){X2Wp<*\x, 3, Vw-frrtpt'Kx, 0, X)u}\\

because x2toXi(fiP(*+ft)(x> 3, A) = 0, when |/?|^1, and x2(«)Zi=X2(a)- Thus>

we obtain that

We apply Lemma 3.13 to the first and second terms in the right hand

side of the above inequality. Then, we obtain the result of Lemma

3.14, because A |a |#2(a)P(a)(X 3, A) (|a|^l) satisfy the hypotheses of Lemma
3.7 for p(x, d, 1) when we replace mx by m1—p1\o^\.

End of proof.

Using Lemma 3.14, we obtain the similar lemma as Lemma 3.10.

This is used to prove the existence of regular solution or the regularity

of solutions.

Lemma 3.15. Let h be an element of C$(Rn), A 6 [1, oo), m > I and

%;( / = !, 2) be these in Lemma 3.14. Then, there exists a constant c0

which does not depend on I, m, A and Xi such that

(jc, 3,, X)h\\ ^cQ\\A

2)

3) Mw(%2P_(x, dx9 X)h\\ ^c0

4) II /iw(A)%2D(x, ^, A)/t || ̂  c0
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5)

/, m

1/2
6) -

, m, Xi

7) IKiff-AKAflA-'-'a^-'C*. 3,, if, A)fc|| gc0||A»-i(A)X2'«ll

+ c(/, m, xD{ll^"-2(A)Xifc|| +

8) Pm(A)x2[B(x, 3,, A), P_(x, dx,

+ c(J, m, ^

9) ||

+ C(/, m, ^

10) Mm(A)x2[£(x, 3,, A), D(x, dx,

+ c(/, m,

11) IKiij-AK^M"-1^)^^-1^, ^» »/, A), M(x, 5,

12) ||(if,-A1(A)M"-1(A)X2[M(x, 3,, A), A~l(x, dx, r,, A)]ft||

«oo
oM

m(A)X2[M(x, 3,, A), e-«(«.««.«''oP_(x, dx,
1/2

, m, x,

« oo ) 1/2
oM

ma)x2[e-M(-'s-^"oP_(x, 3,, A), M(x, 3W

gc0||/l"-1/2(A)X2/i|| + c(/, m,

We say finally some properties about a special type of pseudo-differ-



BOUNDARY VALUE PROBLEM FOR ELLIPTIC SYSTEMS 593

ential operators in E?.+ 1. One of them has the symbol (|C| — irj)*9 which
will appear in the lower terms and in the translators when we shall

adapt the general cases to the special cases at the section 6. It is a

typical example of pseudo-differential operators satisfying the transmis-

sion property with which L. Boutet de Monvel has dealt in [3]. We

may be able to deal with boundary value problems of these types of

pseudo-differential operators. But we use only the special ones and it

is sufficient as far as we deal with the boundary value problems of partial

differential operators in this paper. 12), 16) and 17) of Lemma 3.10

show that A1 -A'1, A1 • [M, A~l~] and Al-{_A~l,M~\ are ones of the

simplest symbols of pseudo-differential operators in yeR1, which take

their values in BL(Hs(Rn)), because 8^A~1=A-<X, dj;[M, ^~1] = [M, A-«~]

and d*\_A~l, M] = [^4~a, M]. We generalize them in the case that they
depend on the variable y. Let M(x, y, £, A) be a C°°-function, which

is constant in y outside a bounded set. We assume that it satisfies the

conditions of M(x, £, A) for each fixed y. We can define A~^x(x, y, dx,

rj, A) with the symbol A^(x, y, £9 rj, X) = {irj + M(x, y, £, A)}~a
9 also [M,

^2a] and [^2% M]* where the bracket [ , ] is the one as in the

pseudo-differential operator in x. We have Lemma 3.16 as well as

3.10.

Lemma 3.16. For heC$(Rn)

2) \\(iq-A*(X))*A'"(X)d>lM(x9 y, dx, A), A~2*(x, y, dx9 ^ A)]/i||

3) \\(\n-A\^A-\^%A-2\^ y, dx9 r,, A), M(x, y, dx,

(We omit the proof.)

This shows us that they have stronger properties, for example, A^

takes its value in BL(Hs(Rn\ Hs+«(Rn)). So, we modify Lemmas 3.2 and

3.6 in order to make a good use of them.
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Lemma 3,17* Let Y be another Hilbert space densely contained

in X by a continuous injection. Let p(x, £) and q(x9 £) be ones in

Lemma 3.2 or 3.6, and let q(x, £) satisfy that there exists an integer

a0 such that q{p}(x9 ^) e BL(X, 7) (bounded linear operators from X

to Y) and

for all |a|^a0 and |£|^05 where \-\XY is the norm of BL(X, Y). Then,

there exist N and c for any integer m such that, for u e C^(Rn
9 X),

o ) =
\at\<N

and \\KU\\YO ^c\\u\\xm> Here \\°\\x>» and \\m\\Ym stand for the norms of

Hm(Rn
9 X) and Hm(Rn, Y), respectively.

Proof. We have only to replace the norm | • | of BL(X) by the

norm \ m \ X y of BL(X, Y) for the estimation of f(a)(C3 £, i\ — £) in Lemma

3.3 or rW(%, j/-Q in Lemma 3.6. End of proof.

We immediately obtain Lemma 3.18 by applying Lemmas 3.1 and 3.17.

Lemma 3.18. Let &(x, jOeC°°CRH+1) such that & = ! or eCg)(^n+1)?

O^Zj^l and X2%i=X2- Let I ^ l 5 a 3 / ? ? y integers and s, t, <r, t real

numbers. Then, we obtain the following estimates for all ueC'§(Rn+1).>
where \\-\\ stands for the standard L2-norm on Rn+1 and c0 is a con-

stant not depending on s, t, a, T and L We set

Aifax, y, , rj,

[M, 43«]w(x, y, ^ 17, A)s5j[M(x, j;3 3,, A), 45«(xf J5 3^ 17, A)]

(x, y, dx9 n, A), M(x, y9 dx, A)] .

2) IK^HA)- %)a • vls(A) • [M,

3) IK^KA)-^)-^^)-^^
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4) H/KA) ' (Ai(X)-idyy - X2 ' (A\X)-idyT«u\\

5) \\(Ai(X)-idJ'A'(X)-x2'A2\x9 y, dx9 dyj A)ii||g

6) ||(4HA)-i3,)-^(A)^2-[M, A2i]m(x9 y, dx, dy, A)u||

7) \\(Ai(X)-idJ-A'(X)-x2>[.A2i9 M](O)(JC, y, dx9 dy, A)ii||

Proof. We give the proof of (5). We first consider the commuta-

tion of i2 and ^K-Kj )'> d*» 3^, A) in the variable y. We have (3.11)
by Lemma 3.17 as well as we have had the similar one in the proof of

Lemma 3.14.

(3.11) A~2
l(x, y, d» dyy A) • #2(x3 y)v

N

- Z cv^21(v)(^5 y, 8X9 dy9 A) o %2(v)(x5 y)u
v = 0 (y)

and

for a sufficiently large AT, where o stands for the product in the sense
(y)

of symbols as pseudo-differential operators in y valued in pseudo-differ-

ential operators in x. By definition ^21(v)(X y-> dx> dy> ̂ ) ° %2(v)(x> y)
(y)

have the symbols ^21(v)(X J7? dx9 rj, A)'X2(V)(^» j)- So we apply it Lemma
3.14 as pseudo-differential operators in x. We have for a sufficiently
large N

9 y9 dx9 q9 X)h
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= K'(y,Tt,X)h, heC$(R»)

and

where N does not depend on a and /?, because

(x, y, & n, X)\

Therefore we have for

IK^H^-^'/l'W-X'O', dy, Vu\\^csr\\A*(X)u\\ .

This means that

')(8)(x, y, 8X, dy, X)v
v<N \a\<N

= K0v,

and

We commute Xi and each term at the second part of the left hand side

to modify v by Xi except for the principal term

l(x, y9 dx, dy9 X)v.

Then, we have that

(3.12) A-2i-x2v-X2°A-2iv- E X2(v)(«)'^
v<N
\<x\<N

and ^(A^-idy^'A^K^vll^cllA^vll where it is clear that X2(v)(a)-
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~ i ( v ) ( a ) satisfy the estimates

• A~ Kv>(«>0| |

Thus we obtain the estimate 5). The other estimates 4), 6) and 7) can

be analogically proved. End of proof.

The operators (A1(X)±i8y)
s are isomorphisms from Hs+t(Rn+i) to

Hf(Rn+1) for real numbers s and t and the symbols of (A1(X)±idy)
a

are (\£\±irj)s; £ = (£, A), where we take the branch of zs for Rez^O
which is real if z is real. They are the adjoint operators to each other

on H°(Rn+1). (A1(X)±idyy
iu = 0 in Rn++i if ueH'(Rn+1) (f^O, s + t^fy

and if w = 0 in JRJ+1. Moreover y-^2(A1(^)±idy)-^
2uGH°(Rn

±
+i) if

i*6H°(JRn+1) and if n = 0 in ]^+1. So, (^(A)-^)8 induces the isomor-
phism from Hs+t(R'±+1) to Hf(Rl+1) and (Al(X) + idy)

s the isomorphism

from Hs
Q

+t(Rl+1) to H^Rf1) if s + ^ and t are positive, where H^Rf1)

are the closed subspace of H*(R$+1) densely containing C$(R'l+1) if t

are non-negative integers and the others are defined by the interpolation

of them.

(A^ + idy}5* the adjoint operator of (A^fy + idy)* on H^R^1)

is the isomorphism from HS~'(RJ+1) to H-f(K!f.+ 1) if s-f and -f are
non-positive and it is equal to (Ai(l) — idy)

s on C^(R^.+ 1). So we denote
again it by (A^-idy)8. It has the representation that for (peC$(Rl+1)

x9 y)dy.cp=\
J K n

It is clear that (A1(X)-idyy(Al(X)-idyy = (A1(X)-idyy
s+t. Therefore we

obtain Lemma 3.19.

Lemma 3.19. (A^fy-idy)5 induces the isomorphism from Hs+t(R$+i)

to Hf(R++1-) for all real number s and t and its inverse is (Al(X)

— idy)~s. Let / f ( i = l,2) be C^-functions defined in Lemma 3.18. Then

we have for all real number 53 a and % and for all M6Cg)(l^++1)
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|| AW • (A ' (A) - id,? -x2-(Ai (X) - /a,)-'«

Proof. In the same way of (3.12) we have

(3.13) X2V-(A1(X)-idyy-X2 • (AW-idfv

- I av(x, y, dx, K)-(Al (A) - idjr* -Xl v = Kv,
v=l

where av(x, y, dx, X) are pseudo-differential operators in x such that
\\As(K)-av(x,y,dx,X)-h\\^c\\As+*-l(X)h\\ for AeCffGR") and K is the
error term such that ||/ls(A)Kt;|| gc||/lT(A)i>|| for veC$(Rn+1). Thus

(3.13) holds for u = u on R'j.+ 1 and u = 0 on Kl+1, where weCg1^4-1).
We obtain the estimate of the lemma if we take the norm || ||+ in
R£+1. End of proof.

Lemma 3.20. Let &(/ = !, 2) be Cx-functions defined in Lemma 3.18

and X?(x)sXi(x> 0)- We obtain for heC^R") and for all real number
s and i

2) \\A*(X)w-M^*>Vy°P_(x, dx, X)h\\

3) !|^(Afe[M(x, dx, A), e-"<-.«"

^coll^^^Mftll+cCs, T,

4)

v^here c0 does n0£ depend on A, s, T

Proof. It is sufficient in order to show 1) that we prove the same

estimate for e~~A(^y"%2 without assumption for %2 ^° ^c non-negative.
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We use many times this equality and Lemma 3.14. And we modify

3v
yX2\y=Q by Xi except for the principal term because x?djx2l,=o = dj/2lj,=o-

The last terms form the remained term ||/LT(/l)/7||. 2), 3) and 4) are

proved similarly. End of proof.

§4. Existence, Uniqueness and Regularity (Special Case)

In this section we shall treat a special case, that is, the domain is

K£+1 = {(x, j;); XER", yeR1 and j>>0} and the equation is

(4.1)

B(.\,

where M(x, dx, A) and B(x9 dx, A) are pseudo-differential operators whose

symbols are M(x, £, X) and B(x, ^, A) in the section 2 and satisfy the

assumption (A). We shall show existence, uniqueness and regularity of

solutions for (4.1) by means of constructing right and left parametrices

with the pseudo-differential operators which we have dealt with in the

sections 2 and 3.

We first make (4.1) more exact. We assume that

and

(4.2)
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Lemma 4.1. u(x, y) can be considered as H^i/2(Rn) valued con-

tinuous function in y on [0, oo). Therefore, the boundary value of

u(x, y) in R'±+l which belongs in H~1/2(il") is well-defined.

Proof. We first prove the following inequality (4.3) in the case

that iieCg>CR!jL+1). To (4.2) we operate A~l(X) which is a pseudo-differ-

ential operator with the symbol (|£|2+/12)~1/2 and consider the inner
product of it and u( • , y) in x.

Integrating from 0 to oo in y, we obtain that

x, dx,

where < , > and ( , )+ are the standard inner products in H%(Rn)

and H^(R'^+L), respectively. A~1(X)-M(x, dX9 X) is a bounded operator

on H%(Rn)9 also on H°(R'1.+ 1). Thus, we obtain that

(4.3)

where the constant c does not depend on A. Let us prove it in the

case that, n,/e #£(#$+ J) satisfy (4.2). Since |y- + M(x, dx9 X)\ is an

elliptic system, u(x, y + a)eH^(R^+l) for a>0. This means that u(- 9 y)

is an H^/2(Rn), also H~t
1/2(Rn) valued continuous function in y on (0,

oo). Since Cg>(K!?.+ 1) is dense in H*l(R$n:), u(x, y + a)-u(x9 y + b) satisfies

(4.3) for a, fc>0. Since lim u(x, y + a) = u(x, y) and lim /(x, y + d)=f(x, y)

in H0(^»+i), there exists the limit of u( - ,a ) in H~l/2(Rn) as a->+0.

Putting n(- , 0) = lim M ( ° , a), M ( ° , 0) and w satisfy (4.3). End of proof.
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Definition 4.1. Let us define W as ueWif and only if u and

Remark. W does not depend on A because any homogeneous func-

tion p(£, A) of order a in (£, A) is written as p(£, X) = p(£,Q) + A,q(£, X),

where q(%, A) is a homogeneous function of order a — 1 in (£, A).

Corollary of Lemma 4.1. C*§(R++1) is dense in W with the norm
2 X 1 / 2

Definition 4.2. Let us define Wb as ueWb if and only if ueW

and B(x9 dx, A)w(- 5 0)

Remark. Wb does not depend on A because of the same reason as

the remark of Definition 4.1.

Remark. When we regard as W(Wb)<=H°(Rl+1)xH-l*2(Rn)9 W(Wb)

stand for the elements (/, g) such that /e W (Wb) and g=f\y=0.

Definition 43. Let C0(A) stand for the closed operator, from

U2(R") to

- x,li), 0 w]wse definition Domain is Wb.
0 , B(x, dx9 A)

§§4.1. Existence of Solutions

We first define some operators in the following way

Definition 4.4. A0(X)=-j- + M(x9 dX9 A)

A(x9 ^ Y\, A) = iiy + M(x, ^ A).

Definition 4.5.

Si(X)f= JJe'('«+«M(x, t, r,, X)~
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(We use the symbol of integral for Fourier transform in ^, (£, t]\ x

or (x, j') to be visible though they may not be integrable. Refer to

the section 2 for definitions of e~MyP_, P_ and E.) These operators

are well defined by Lemmas 3.10 and 3.12. (St(X)f)(- , y) is an H,}/2(jR")
valued continuous function in y and (S1(A)/)(-, 0) = S2(/l)/'. (S3(/l)0) ( • , y)

is an H~,1/2(R") valued continuous function in y^O and (S3(A)<?) ( • , 0)

Definition 4.6, Let us put

?!(A), S3(A) • S5(X)
SW =

S(A) is a continuous linear operator from H°(Rl+1) x H}/2(R") to
/^0(A), 0 \

ff^^^^xH-1/2^") with a parameter L We operate
V 0 , B0WJ

to S(/l) from the left hand side and represent it by pseudo-differential
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operators.

A0(X), 0 \ / /*0(A)-S,(A), X0(A)-S3(A)-SS(A) \
-S(A) =

0 , B0(A) / V B0(A)-S2(A), B0(A)-S4(A)-SS(A) /

= 7+T(A)

, T12(A)

T12(A) = [M(x, S,, A), e-Mu,^,A),0p_(X) ^ A)]-SS(A)

T21(A)=B(x,fl je,A)-S2(A)

T22(A)=[B(x, 3,, A), P_(x, S,, A)]-Ss(A) + [D(x, 5X, A), SS(A)] .

(Cl7? <L\ = P' cL~P°cL-> where p and g are pseudo-differential operators and o
is product in symbol space.)

Lemma 4,2,

1) IITnWKfA-' on H2(/JrJ)

2) HT.^KcA-1 //-om fl,1/2^") to

3) ||r21(A)||<c/ro« H2(U?.) i

4) ||r22(A)||<cA-1 on HI I* (R*

5) ||r(A)-T(A)||<cA-i o

6) There exists the inverse operator of I+T(1) on

for sufficiently large L

(I + T(X))- l=(I- T(X)) (I - T(X) • T(A))-l

and \\(I+T(X))-l\\<c'9te*A0, where we use \\A^2(X)(p\\9 <peHt'2(Rn)

as the norms of H}l2(Rn) with parameter L
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Proof. If we assume 1), 2), 3) and 4), then 5), also 6) are clear.

From the definitions, TtJ are combinations of pseudo-differential operators

which we have dealt with In Lemmas 3.10 and 3.12. We can use them

to obtain 1), 2), 3) and 4). For example, by 5)? 13) and 14) of Lemma

3.10,

^ \\AV*(X)-lB(x, dx, 1), P.(x, 5,, A)] -E(x, 3,, A)fe||

D(x9 BX9 A),

End of proof.

Theorem 20 T/ierg exist bounded operators R0(X) from H%(Rl+1)x

H$'2(Rn) to H°(Rl+l)xH-l'2(R*) for A^ E A 0 such that range of R0(X)

") and \\

Proof. We can define R0(X) = S(X) • (I + T(A))- ! by Lemma 4.2.

Then (A°^9
 D°nC}- R0(X) = I by (4.4). The remark after the defini-

\ v 9 -OOVA)/
tion 4.4 for S(X) shows that range of R0(X)cWb. Thus

C0(A)-jR0(A) = /.

The estimate for R0(X) follows from the estimates for S^fyt^S^fy of

Lemmas 3.10 and 3.12. Here, we have to notice that we use the norms

with parameter A such that ||/ls(A)p||, (peHs
m(Rn) for Hs

m(Rn).

End of proof.

§§420 Uniqueness and regularity of solutions

Definition 4.7. S6(X)f=§eW»A(x, ^ ^ A)'1!^ »?X^

J+1), where /eH2(*++1) and
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Lemma 4.3. Let

2) Si(A) • A0(l)<p = cp + S3(A>( • , 0) + [S^A), M(x, 3X, A)],?, in R"++ * .

(We omit the proof.)

Lemma 4.4. Lef ueW and f=A0(X)u.

1) u + S3(A)u( • , 0) + [S^A), M(x, 5,, A)]u = S^A)/.

2) ii ( • , 0) + S4(A)«( • , 0) + [S^A), M(x, 5,, A)]«|^0 = S2(A)/.

Proof. If HeCg>(J?£+1), 1) and 2) are valid by 2) of Lemma 4.3.

[Si(A), M(x, dx, A)] is a bounded operator from H°,CR"+1) to

S3(A) from H^I2(R«) to H°(R"+
+l), St(A) from H^r1) to

S4(A) from H-,1/2^") to H'1/2^") and S2(A) from H°(Rn
+

+l) to

Cg1^^1) is dense in W with the norm (||M|||+||/||5)1/2 by Corollary

of Lemma 4.1. Thus, 1) and 2) are valid for ueW. End of proof.

Definition 4.8. For ueH°(R'±+l) and veH~l/2(R"), we define S7(A),

S8(A) and S9(A) as

S7(A)u = [S^A), M(x, ^, A)]«

S8(A)u = [S,(A), M(x, dx, A)]M|^0 e

SgCA)^ = (S5(A) • [B0(A), S4(A)] + [S5(A),

Lemma 4.5. Let ueWb,f=A0(K)u and g = BO(A)M( • , 0).

u( • , 0) - S9(A)w( • , 0) + S8(A)w - S2(A) • B0(A) • Sg(A)w

5(A)-B0(A)-S5(A)/ in /
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Proof, We operate B0(A) to the equality 2) of Lemma 4.4 from

the left hand side.

B0(X)u( ' , 0) + BQ(X) • S4(l>/( • , 0) + B0(X) • S*(X)u

We further operate S5(A) to this equality.

S5 (A),? + S5(A) • B0(X) • S4(A)u( • , 0) + S5(A) • B0W • SB(A)«

= Ss(A)-.Bo(A)-S2(A)/.

Since

1), D(x, Bx, A)],

, 0)= - (S5(A) • [B0(A), S4(A)] + [S3(A), D(x, 3W A)]}«( • , 0)

- S5(A) • B0(X) • S8(X)u - S5(X)g + SS(X) • B0(X) • S2(X)f.

Putting this in the equality 2) of Lemma 4.4 again, we obtain the equali-

ty of this Lemma 4.5. End of proof.

Definition 4.9.

Z21(A) = S8(A) - S5(A) • B0(A) • S8(A), Z22(A) = - S9(A)

/ ZU(A), Z12(A) \ / S^A), 0
Z(A)= , S(A) =

\ Z21(A), Z22(A) / V S5(A)-B0(A)-S2(A), S5(A)

Lemma 46. Let u e Wb,f=A0(X)u and g=B0(Z)u(-, 0).

Proof, It follows from the definition of Z(A), 1) of Lemma 4.4

and Lemma 4.5. End of proof.
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Lemma 4.7. Let A g l .

on

2) ||Z12(A)||<c from H ~ l / 2 ( R n ) to

3) ||Z21(A)||<cA-1 from H,°(^+1) to

4) ||Z22(A)||<cA-1 o« H-W(R»)

5)

6) There exists (he inverse operator of I + Z(X) on H°(Rl+1)x.H~l/2(Rn)

for sufficiently large X.

1 = (/ - Z(A)) (/ - Z(A)

^ use \\A~*i\K)q>\\,q>eH^ll2(Rn') as the norms of H~l/2(Rn) with

parameter A.

Proof. 6) follows from 5), which follows from 1), 2), 3) and 4),

which follow from Lemmas 3.10 and 3.12. For example, by 5), 13) and

15) of Lemma 3.10,

-i /2(A)-E(x, dX9 A)-[B(x, a,, A), P_(x, 3,,

M-1/2(A) • [JB(x, 5,, A), D(x, 5,, A)]/i||

End of proof.

Theorem 3. For any A^A0 , which is a fixed constant, there exists

a bounded operator L0(A), from H?n(Rl+1)xH}l2(Rn) to H°(R$+l)x

H~n
ll2(Rn\ which is a left inverse operator of C0(A)5 that is , °>

£°(A)) W/705e definition domain is Wbc:H^(Rf1)xH-^2(Rn) and

satisfies the estimate
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Proof, We consider the operator (I + Z(X))~1S(X). This is what

we need because of Lemma 4.6. The estimate is obtained by combining

those of (J + ZCA))-1, S^X), S5(X) and S2(X). (See Lemmas 3.10 and 3.12.)

End of proof.

Theorem 4 Let ueH^Rf1), If u satisfies that A0(X)u = Q and

)w( - 9 0) = 0 for a sufficiently large A, then u is zero of

Proof. This is a corollary of Theorem 3. End of proof.

We now go on to the next problem, the regularity of solutions.

We show the regularity in x of solutions because the regularity in y

is brought by the equation.

Lemma 408a Let u e C$(R$+l), v e C<§(Rn\ Xt e C°°(J^+1) and

^x,0)sCfl°(R») such that ^=1 or eCffCRip1), O^fc^l and

Then, there is a positive constant CQ not depending on Ae[l, oo)9 s;>0

and X such that

2)

3)

4)

• || are L2-norms in JR++1 and in J^"9 respectively.

Proof, These follow from Lemmas 3.15 and 318. End of proof.

Lemma 4.9. Let X be a Banach space and {pJi=0 ..... i ^e semi-

norms on X such that ql is a norm of X, where qj = (J^
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j = 0,..., /. Let T be a bounded linear operator on X such that

where 0:ga£<a /+1<l and q-l=Q. Then, I+T is an isomorphism on X

and it satisfies the estimate:

Proof. We consider q=( £ qpf)1/2; q = 1 + d^ - af), dt= E fe,c,

(i = 0,..., / — 1) and d/ = 0. Then, q is a norm of X and

that is, T is a contraction operator on X with the norm g. Thus, there

exists (I+T)'1, which satisfies the estimate:

q((I + T)~ * x) £ (1 - 7*3- J §(x) . End of proof.

Definition 4,10, Let s^O and f = 0 or 1.

1) yf(A) = L2(^i;^(^M))x^a71/2+I '(^n) w/rfc r/ie norm

a0 = m, ax = J and L2(^; Hs
m(Rn)) is a space of Hs

m(Rn)-valued

L2 -functions in ye(0, oo).

2) Let X = (Xj)j=o,...,k be a system of C°°-functions such that %Q = l,

XieC^Rp1)',*^! or eC^Rf^), O^^gl and
, %) stands for the closure of ^(Rf1) x C$(Rn) in the space

and cr0 = Q} with the semi-

norms pdW=hjU\\Y-JW9 and the norm \\U\\ ̂ ^ = ( EQPij(

where XjU = (XjU, Xjv)l U = (u, v) and x^ = Xj\y=o-

Lemma 410. Let O^s^/c/2. Then, for all UeXs
0(k, x),

- Z(A)£7) ^ cor ipo/U) + c(5, %)A-3/2^0j-- 1( t/) ;

c0 is a constant

w/nc/z does no^ depend on s^O, A^l and %.

Proof. These follow from Lemmas 4.7 and 4.8. End of proof.
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Lemma 4.11. There exist constants A0 and c0, which do not depend

on s^O and %, such that for any A^A0 and s^O, I-hZ(A) gives an

isomorphism on XS
0(19 /) and satisfies the following estimate.

U||z;(^

w/iere x' = {/j}0^gk-i when # = Co-log./^-

Proof, This follows from Lemmas 4.9 and 4.10 because

= (/ - Z(A)) (I - Z(A) • Z(A))- ! . End of proof.

Lemma 4.12. Let Q^s^k/2. Then, for all UeX\(^ /),

^f i j = (S ^ iv) 1 / 2 j O^J^k? ^i- i=0 flwd c0 is a constant which
v=o w

does not depend on s^O, A^l and %. (See Definition 4.9 for S(l).)

Proof. These follow from Lemmas 3.109 3.15 and 3.18. End of proof.

Theorem §0 The left inverse operator LQ(X) of C0(/l) in Theorem 3

is a bounded operator from X\(h9 %) to XS
Q(^ %) when /L^A0

 and 0^s

^fe/2, where /L0 is in Lemma 4.11. It satisfies the following estimates

for

where c0 is a constant not depending on s^O, /1^/10 and %.

Proof, By the definition of L0(l), L0(l) is written as L0(A) = (I

+Z(1))-1S(1). By Lemmas 4.11 and 4.12, L0(X)U belongs to XS
0(^ /)

and satisfies the estimate in Theorem 5 when UeX\(h %).

End of proof.

Corollary of Theorem §„ Let UE Wb, A0(X)u=f, B0(X)u(- , 0)=g and

F=(/^)e^(^+1)xH?+1/2(^»). Then (u, t£(

when A^A0 and s^O.
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Proof. It is enough to prove the theorem when s is integer. U

= ( u , u ( ' 9 Q ) ) is written as l/ = L0(A)F. We put / = {ft; ft=l} 0^./gfc

in Theorem 5. We have that U EXS
0(1., %) because F eX\(k, %). So, in

order to prove the corollary it is enough to show that ds
yuEH%[Rtl+1).

Since A0(X)u=f, ds
yu is written as

Bs
yu=p(x, 3x)u + q(x, Bx, dy)f9

where p(x, dx) is a pseudo-differential operator in x of order s and

q(x, Bx, dy) is a pseudo-differential operator in (x, y) of order s (differ-

ential operator in y). Thus, Bs
yueH^(Rl+1). End of proof.

§5. Existenee9 Uniqueness and Regularity (Special Case9 Continue)

in this section we shall treat a more general case. It is the case

where M(x, Bx, A) in the section 4 is M(x9 y, Bx, A), that is, the pseudo-

differential operator in (4.1) may depend on the variable y while the

domain is same. The equation is

, {B(x, dX9 Z) + B2(x, dx9 X) + Bz(x9 dx, dy9

where M(x, y, £, A) and B(x, c, A) are homogeneous functions of order 1

and 0 in (£, A), respectively, {r\-\-M(x, 0, £, A), B(x9 £, A)} satisfies < As-

sumption (A)> (Section 2), and B2(x, c^, A), B3(x, 5^, dy, A) and M2(x, 3;,

Bx, By, A) are compositions of pseudo-differential operators in x or (x, y)

such that C3(A) = I I is a bounded operator

from 7g(A) to Y?(A) and satisfies for any x and s the estimates that, for

(5.2) JPiJ<

where c0 does not depend on A, #, s, j and fe. (Refer Definition 4.10

for notations.) Moreover we assume that no pseudo-differential operator

in the equation (5.1) depends on (x, y) or x outside a ball in R'±+i or
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Rn. We shall show that we can regard (5.1) as a small perturbation

of the type dealt with in the section 4 and that we can obtain the

same results as ones in the section 4.

Definition 5.1.

=-- + M(x9y9 dx9 l) + M2(x9 y, dx9 dy9 A) ,

B0(X) = B(x, 8X9 A), Bi(X) = B(x, dx, A) + B2(x9 dX9 A) ,

B2(X) = B2(x, dx9 A), B3(X) = B3(x, dx, d,9 A) 5

M,W = M(x5 y, a,5 A)~M(x3 0? dx, A), M2(A) = M2(x5 y, dX9 dy A) .

Lemma 58L Let (peC^(Rl); a function in y and <p(0) = 0. //

ueW(See Definition 4.1.), then (pueH^R'f1) and

where c does not depend on (p and AgrL

Proof. Since ueW, so q>u e W9 too. By Lemma 4.4

), M(x, 05 5,, A)>ii = S1(A)/; f=A0(X)<pu.

We apply Lemma 3.12 to this equality. Then, we obtain the estimate

we need. End of proof.

Definition 5.2. W(A) stands for the space such that u e W(A) if and

only if u and AuEH®l(R++i), where A is an elliptic first order system.

Lemma 582. Let ueW(At(Xj). Then u(y) = u(°,y) is considered as

an H^1/2(Rn)-valued continuous function in y on [0, oo).

Proof. We omit the proof because we can show it in the same way

as in Lemma 4.1 if we use the fact that ^l"1(A)-M(x, y, dx, A) is a uni-
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formly continuous function in ye[0, oo) which is valued in the space

of bounded operators on H?n(R
n). End of proof.

Lemma 53. W(A0(X))=W=W(Ai(X)).

Proof. From Lemma 5.1 it is clear that Wa W (^(A)), because

Ai(fyu = AQ(X)u + Ml(fyu + M2(Z)u each term of which is in H°CR£+1)

if ueW. We assume that u and Al(X)u£H?n(R
1±+1). It is enough to

show that (pueH^(Rl+i) in order to prove that W=>W(At(X)), where

<pEC^(R^) (a function in y) and <p(Q) = Q, because A0(X)u=A1i(X)u —

M1(A)M-M2(A)u where A±(X)u and M2(X)u are already in H%(Rl+1)

and M^tyu becomes an element in H°(.ft£+1) if it is shown. It is

done by the fact that A1(l)(pu = (-^(pJu + (p(A1(l) — M2W)u + M2(l)(pu

eH°(&"+1) on the whole space ,R"+1, where we properly extend A^(X)

on ,R"+1 as an elliptic system and (p = u = Q in y<Q. And this is verified

by using the result of Lemma 5.2. End of proof.

Definition 5.3. Let C^X) stand for the closed operator, from

H«(R>fi)xH-V2(R») to H»(R>^)xH}l*(R»l (j£$)\ B?(Xy) whose de~

finition domain is Wb.

Remark. It is well-defined because of Lemma 5.3.

§§5.10 Existence of Solutions

Definition 5.4. Let RQ(X) stand for the right inverse R0(X) of C0(A)

in Theorem 2 and Pi(P2) stand for the canonical projection from

H&Rp^xH-VW) to H°(R*+i)(H-"*(R«y) such that U = (ui,u2)->

PiU = ui. Let us put

Lemma 5A Let F = (/l9/2)eH°(^+1) xH}'2(Rn) and (p

a function in y. Then,
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where c does not depend on (p and A^A0 .

Proof. We first note that M^fy is written as M1(X) = ylH(X) where
M(X)-A~l(X) is a zero order (bounded) pseudo-differential operator in x

with CQ (^"Coefficients. We put u = R01(X)F. Then, ueW. Using
Lemm 5.1, we obtain that

End of proof.

Definition 5,5, We may assume that A2(X) is defined as a first

order elliptic pseudo-differential system in the whole space Rtt+1. We

denote the inverse operator of A2(X) on HSt(R
n+1), whose definition

domain is H,ln(R»+i), by R2(X).

Lemma 5.58 There exist some constants c>0 and A0 such that for

any feH°(Rn+l) and A^A0 we have that

2
<C

(We omit the proof.)

Let ^ be a function of C*§(Rj) in y such that O^iKjO^l and
) = l at the neighborhood of y=Q. Let u1s^01(A)F, w2 = (l —

)/! and u = Ul + u2, where F^f.J^eH^R^^xHI'^R"). We

operate A^X), B3(l) to u and B^X) to u( •, 0).
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,(A) + M2(A)>, ! + (A2(X) + M2(A)>/2

+ M t

=B1(A)u1(-,0), because u 2 ( - ,0)=0

Thus, we obtain the equation (5.2) that F should satisfy in order that

M is a solution of (5.1).

Definition 5.6. Let us put

0 \ /M2(A), 0
C2(A) =

j j r^ .o
0 ,07 V O , / 7 V o ,0

(5.2) F+T1(A)F = G,

where F=(/1,/2), G = (f, g), which is one given in (5.1), and

(5.3) T, (A) = C2(A) • V • K0(A) + 'F, - R0(X) + C3(A) • (/ - «P) • R2(X) - ¥, • R2(A).
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Lemma 5,6, Let FeHSt(Rl+i)xH}f2(Rn)=Y°1(%). For any a (0<a<l)
there exist \l/ and A0 such that, for 1^A0,

where ||F||EE ||F||yo(A)K^

Proof. Let \<p\+= max \cp(y)\ for peCffCRj). Then,
ye[09oo)

(5.4) \\MiW.il,. R

because of Lemma 5.4 and Theorem 2.

(5.5) || C3(A) • (!P • U0(A) + (/-

because of the definition of C3(A), Theorem 2 and Lemma 5.5.

(5.6) \\Vy-(R0(X)-

because of Theorem 2 and Lemma 5.5.

Thus, there exist ij/ and A0 such that for A^0 IIT^A))! ^a<i, that is,

^ fact there

exists \j/ such that %l\y\l/\+<a/2 because \yij/\ + <s when the support of \//

is contained in [0, e], and we put for such a ^ fixed AO^^OCJ/ rgr"^

-- " 1 E n d o f proof.

Theorem 6e There exists a bounded operator R^ty from

xJfi/2(^») to HMRp^xH-V^R") for A^A0 such that the range of

Ri(X) is contained in Wb9 IIK^II^cA-1 and C1(A)-JR1(A) = J on

xHl'2(R»).

Proof. There exists the inverse operator of (J+7\(A)) for A^A 0

because of Lemma 5.6, We now put
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The previous discussion shows that this ^(A) is what we need. The

norm of R^X) is obtained by combining Theorem 2, Lemma 5.5 and

Lemma 5.6. End of proof.

§§5.2. Uniqueness of Solution

Let UeWb (See Definition 4.2.)c:H£(^«+1)xH-//2(^") and satisfy

(5.1). We operate L0(A), which is a left inverse of C0(A), that is, (A°Q^'

B x n x ) whose definition domain is Wb (See Theorem 3.), to (5.1), that

is, C1(X)U = F.

(5.7)

= L0(A) • C0(A)C7 + L0(A) • C2(A)C7

= l/ + L0(A)-C2(A)C/

Let cp = Cc°(Ri),Q<(P(y)^l(y>Ql cp(y)= y (Q^y^i/2.) and cp(y) = l (y

>1). Then, M1(/l) = M(A)(/?; M(/l) is a first order pseudo-differential sys-

tem with Cg)(jR^n) coefficients. Since A2(fy(pu = (^(p\--(pM2(X)u + (pf

on Rn+l
9 where U = (u

l ) and (p = u=f=Q in y<0, we have that
\w | 3 ? =o/

<pu = R2(^^<p}u-R2(fy-<pM2(tyu + R2(fy<p£ (See Definition 5.4.) Thus,

we put it in (5.7).

(5.8) U + L0(X) • M(X) • ,R2(A) • {#,- $ - C3(A)} 17 + L0(A) • C3(A)17

= L0(1)F-L0(A) • M(A) • R2(X) - <PF,

(<P,0\ (3 o,
where <P= , $y= 5j | and we identify M(A) • ̂ 2W to

\ 0 , 0 / \ 0 ,0,

•J(J(A)-^2(A),0\
Let us put

0

(5.9) T2(A) EEL0(A) - M(A) - U2(A) •{*,-*• C3(A)} + L0(A) - C3(A)
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Lemma 5.7. || T2(A) || ^ eA" * on //°W+1) x H^l^(R-) = Fg(A) for

Proof. ||C3(A)t7||yo(A)^c||l7||yo(A) by the assumption. \\£J[(X)'R2(X)-

,-*• C3(A)}I/||yo (A) =

y Lemma 5.5, and ||L0(A)F||ro(A)^cA~1||7||yo(A) by Theorem 3,

where || • ||y?(A) stands for the norm with the parameter A of H%(R$+1)

xH-^2+i(R"), a0 = m, a1 = l. (See Definition 4.10.) Combining these three,

we obtain the estimate of this lemma. End of proof.

Theorem 70 For any A^A0 (A0 is a fixed constant) there exists

a bounded operator LX(A) from HSl(Rf1)xH^2(Rn) to H°(R'±+1)x

H-l/2(R») which is a left inverse operator of C^A), that is, fi1^9
\iJ3^AJ,

whose definition domains is Wb cz H°(R$+1) x H~1f2(Rn) and

satisfies the estimate ||L1(A)|| ^

Proof. By Lemma 5.7 there exists a constant A0 such that for

^A0 there exists (J + T2(A))-1 on H^R'f^xH-^^R"). We put

(5.10) L,(X) = (!+ T2(A))~ i • L0(A) • (I - M(A) • R2(X) • *) .

This is what we need, that is, L1(A)-C1(A) = J and the estimate is ob-

tained from the estimate of L0(A). End of proof.

§§5.3. Regularity of Solutions

We can easily show the regularity in x of solutions by the similar

way as in the section 4. We use the equation (5.8).

Lemma §88e R2(X) satisfies the estimate for u such that (u, 0)

f(A, xl O^s^/c/2. (See Definition 4.10.)

s, xW-V2qU-i(u, 0),

where c0 is a constant not depending on A, s and %.

Proof. We remark that it is enough to obtain the following type
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of estimate (5.11) for ,T = /11(1)- R2(A) and O^

(5.11) \\A°(A)Xkfn\\2

wll 2 + c(s, jt)A- ' '2

for uEC$(R»+i) and A^A0 , where {^}jBBO,..,k = X, Xj(y) = Xj(- )0 if >><0,
|| • || is the norm of ff°(R"+1), and A0 and c0 are constants not depend-

ing on s and x- Let S"(A) stand for the pseudo-differential operators in

Rn+1 whose symbol is A2
1(x9 y, £, r\, A) = {z>? + M(.x, y, <;, A)}"1 and let

) = [A2(X)9 S'(A)]. Then we can represent R2(%) as

J?2(A) = S'(A) • C7'(A), where (I + T/(A))C7'(A) = /

on H%(Rn+1). From Lemma 3.18, we have the estimate (5.11) for f

= Al(X)-S'(Z) or ir(A) and Q^s^k/2. So, we have it for f = U'(l)

by Lemma 4.9. Combining these, we obtain the estimate for R2(%).

End of proof.

Lemma 5.9. When O^sg/c/2, A^A 0 anr/ Q^j^k, T2(X) (See (5.9.))
satisfies The estimates that, for U e XS

O(}L, %),

where c0 and A0 are constants not depending on s, 1 and %.

Proof. Tt is the combination of Theorem 5, Lemma 5.8 and the

assumption for C3(A). End of proof.

Theorem 8. There exists a constant A0, which does not depend on

A, s and 7, such that the inverse operator LL(X) in Theorem 1 is a

bounded operator from X\(k, x) to Xso(h I) when A^/10 and Q^s^k/2.

Li(A) satisfies the estimate for FeX\(A.9%) and Q^j^k that

where CQ is a constant not depending on s^O, A^A 0 and %.

Proof. We apply T2(A) to Lemma 4.9 because of Lemma 5.9. We

obtain that (J+T2(A))~1 is a bounded operator on XS
0(1, %) when we
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put A0>l/c0. We combine it with Lemma 5.8. Then, we obtain the
results of Theorem 8 from the definition of L^A). (See (5.10).)

End of proof.

Let us put M(°>(A) =

We furthermore assume for M(f)(A) to satisfy the additional conditions
(5.12). Then, we have the following theorem for regularity of solutions,

which will be used for proof of theorem in general cases.

(5.12) For ? = 0,1,2,..., s.teR1 and

Plj(A<-^(^ 0)

£cjPo£A<(X)u9 0) + c(s, *, r, i)X-^qQj(A\X)u, 0),

if v = MW(l)u,At($ueXs
0(^x)J = Q9...,k and

RemarkB It is clear that M(A) satisfies a stronger form of inequality
(5.12), and M2(A) the lower term which we shall deal with in the next

section. In fact, we set M(
2

0)(A) = M2(A) and M(j\X) = [-£-9 M(
2

i-1)(A)"| =

= (y-YM2(A). Then, C3(A) and M(
2^(A) satisfy (5.2) and (5.12) if they

satisfy (5.13), (5.14) and (5.15). For any real number s^O and %t

(i = l, 2) in Lemma 3.14,

(5.13) \\A'(X)vi\\l+ \\

(514)
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(5.15)

where we set F=ft?lN)=C3(A)t7 and I/=(MI\
\V2/ \U2/

Theorem 9. We assume the additional condition (5.12) in Theorem

8. Let F = (f, g) and (A~v(X)dv
yf, 0)6X1 (A, x) (Ogvgs + 1). Then

, 0)eXs
0(A, %) for Ogv^s+1 and

(5.16) p0j(A-\W*u, 0)

, s, Z)A-3/2{ ij-i^-'W^/, 0) + glj._1(0, g)}

Proof. This is a corollary of Theorem 8. We use the induction in

^v^s + 1. Since j-Jy + M<°>(A)ln=/; we have that

/ a \ v + l
(5.17)

- r / , o a n d / l ' - v ( A ) - r w , o e X - o ( A , ^ b y assumption.

M^Wry-y"1!/, O^eJirU^/) and are bounded by the right

hand side of (5.16) because of (5.12). Thus, f/l-(v+1>(A)(^Y+1w, o)

eXs
0(A,,x) and satisfies (5.16). End of proof.

Corollary 1 of Theorem 9. Le* (/, 0) e H'm(R$+l) x HJ+1/2(.R»)

x°0)eHi+1/*(*S.+ 1) x jyj+H*")- T/ien, (u, ̂ O^eH^^i1)^^-172

w) and (xti, x°u(0))eHs
m

+1'2(Rl+1)xHs
m(Rn) if s^O, xeC^f^1) and
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Corollary 2 of Theorem 98 R^X) (= LA(A)) satisfies the estimate

(5.18) for A^A 0 and s^O as operator from Hs
m(Rtl+l)xHs

l
+^2(Rn) to

(518) \\Ri

where we use the norm \\(Al(fy-idy)
su\\ + for ueHs(Rl+i) and \\A'(X)v\\

for veHs(Rn).

§68 Proof of Theorem 1

We here use the symbols, the notations and the assumptions in the

section 1. We assume that (A, S) is already the remodeled system of

first order with a weight index (r, s, t). We can construct a local right

or left parametrix by Theorems 6, 7 or 9, because there exists a partition

of unity of class C°° which satisfies proper conditions (Lemma 6.1), and

we shall show that the error term is a small perturbation and that the

regularity of solutions is immediately deduced by Theorem 9.

Lemma 6.1. There exist a system of finite number non-negative

real valued functions {a/? ft} and a system of finite number local co-

ordinates {(Ov, xv)} of the compact domain Q with C°° boundary such

that \) £aJ = l ,aX = av>supp/?vc:(2v , 2) jcv(Gv)=F"+1 if QvndQ = (/),

and xv(Ov)=F|J+1 if QvndQ^<l>, where Vn+1 is the open unit ball in

Rn+1 and F£+1 = F;|+1 n ̂ ++1, and 3) the partial differential system

(A, B) is an elliptic system properly (strongly) linked by A on Qv

for a weight index (r, s, t) and a local coordinate function (xv).

(We omit the proof.)

Lemma 6.20 Let us put (AV9 BV)=(A9 5)|supp/?v. We can extend

(AV9BV) in R^1, if Qvf]8Q^(l) (in Rn+l i / O v n d O = <£), as the extended

system keeps to be an elliptic system properly (strongly) linked by A

and does not depend on xv outside a bounded set. We denote it by
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Proof. Let cp = Cg> ( jRj) such that 0 ̂  <p g 1 , <p(0 =1 on 0 g * ̂

sup{|xv|; xve suppj5v} <1 and <p(f) = 0 on t^l. If we replace xv with

xv<p(\xv\), we obtain the systems Av and Bv on j^1 (or Rn+1) and RB,

and we can show that (Av, Bv) satisfies the above conditions. End of proof.

We use the symbol (A, B) for (AV9 Bv). We omit the index v

since we are not confused without it. Let us define ,/Tf as well as (1.2).

(6.1) ./remote a=((ICI-AO-r'+rc%)

where (<5^) is Kronecker's 6 and ( = (^, A). (Refer (1.2).) And let us denote

the pseudo-differential operators whose symbols are ^ by N}(i = 0 ,1 ,2

and 3), where we consider the Fourier inverse transform in £ and the

Laplace inverse transform in fj. whose integral is taken on the pure

imaginary axis.

Lemma 6.3. N,-(/ = 0,1,2 or 3) is an isomorphism from X to Y, where

X= f[£P<;+M^+1), y= fl^ r t j(^++1)»T = (T;) a svs^m o/ real num-

s, a0j = r0~rj and alj = l-r0-sj if / = 0 or 1, or JT= O Ha"+T->(Rn

Y= n HTj(R"), G2J=-r0-tp ff3j = rQ-rp I2 = l and 73 = m i/ / = 2 or 3.
7=1

(We omit the proof. Refer Lemma 3.19.)

Definition 6.1. Le* MS put as A = N^NQ, Bf = N2BN0 ==
fc = 0

&e ite/iiii/ioii 1.1), M^-^-ao)-1^, J»0s7, XJt

^JW, J&f,s=0, JW;=- r^_1+J& t_1 , (Ar=l , 2,...), 5 =
~ ^ ~ ~
jB"= X £fcMfc> w/zere r0=max {r0-rj, B^ are compositions

k=0 k=0 i
of pseudo-differential operators in x with parameter A and we define only

A if O v n a O = 0. Let J?<°>, 5(°)', M<°), JBf(°>, A^ and M^ stand for

the pseudo-differential operators whose symbols are

and J?(l\ respectively, where ̂ '^=^
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= {a} such that a =

— Q and aff = Q otherwise,) and

= 1, 2,. . .) , S(1)s Z ^Mi1}
9 5(*> = 5d>-S«» OIK/

Lemma 6040 ((^lo)"1^, 5) is a type of first order pseudo-differential
«- — f)

system with which we dealt in the section 5. In fact, (A0)~
1A = -* —

_M= -A_M(0)___M(2) o 5 = S(0) + 5(2) + 5(3)> (^(o^jfco)) the symbol

of (M(0), B(0)) that is the principal part of (M, 5) are homogeneous

functions in (£, X) with order 1 and 0. (77 — u^(0), J^) satisfies <As-

sumption (A)> and C3(k) = (~~^\2^ ®2 satisfies (5.2) anJ (5.12).

Proof. It is easy to show that < Assumption (A)> is satisfied. In

fact, F_ and D in the section 2 that we obtain if we replace M and B

with -«^(0) and ^(0) are equal to 0> and ^ in the section 1 (1.5),

because JT\ = (Jr}r* O' = 0, 1), 1 = ̂ 2=^3 if |CI = |«, A)| = l, (ly

We

use the remark with respect to C3(A) at the last part of the section 5. Each

term of M2(X) consists of finite sum of the pseudo-differential operators

(6.2) a0(xs y)(Ai(Z)-id,r*A'(X)a\(x, y, dx9 A)

such that OK*, y, dx, %) = al(x, y)Ai(X)9 a±(x9 y)dxtAi-*(X), afa

[fl^^yl1^)]^^"1^) or K^jXyiUA)]^-1^ where a^j
a^O and 0^(1 = 0,1) are C°°-functions in (x, y). Thus, M2(X) satisfies

the types of estimates (5.13), (5.14) and (5.15), because (Al(X)-idJr*A*(X)

and yl-a+^(A)oi(x, y, dx9 A) satisfy them. (Refer Lemma 3.19.) Each term

of A~l(fyB2(X) consists of finite compositions of types (6.2) such that

a = 0, and each term of A~i(l)B3(^) consists of finite sum of finite pro-

ducts 0 PI such that Pi are of types (6.2) and one of them has
f inite
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a^l, because we have divided B(X) as they are. So B2(X) and J33(/l)

defined for C^-functions in x and in (x, j), respectively, satisfy (5.13)
and (5.14). End of proof.

Lemma 6.58 There exists a constant >10 such that for any A^A 0

the partial differential system (A, B) defined from H%(R%+1) to

H%(R"+
+1)xH?(Rn) (A defined on H%(Rn+1) if QvndQ = (t)) has the

inverse R(X), which satisfies that for F = (F19 F2)eH^(Rl+1)x Hf(Rn)

and for s^r0

|+M«-i/2(A)-]V31^(A)F|y=0p}i/2

)-idy)
5-N1F1\\l+\\As+lt2(X)-N2F2\\

2}ll2.

ol • R(X)F\\ ^csl~i \\(A'(A)-13,)- • N,F\\

Remark. We always identify a distribution u e @'(Q) and a pair of

distributions (u, v)e&'(G)x &'(dQ) if w° = w|ao the boundary value of u

is well defined and if u° = v.

Proof. Theorems 6~9 are valid for ((A0)~
l'A,B) by Lemma 6.4.

So, there exists the inverse R^(X) of ((^o)"1-^, 5). Corollary 2 of

Theorem 9 and Definition 6.1 show that

,0
(6.3)

gives the inverse of (A, B) and it satisfies the same estimate of Theorems

7~9 if s^r0 because Al(K)-B" consists of the composition of the types

(6.2). (If O v n50 = 0, jR/
1(A) = jR1(A)-(^0)"1. We omit the proof of

existence of 51(A). Refer Definition 5.5 and Lemmas 5.5 and 5.8.) We

set

N19 0
(6.4)

(If O v n ^ O = 0, we set R(Z) = N0'K
f
l(X)-N1.) This is what we want0
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It satisfies the estimate of this lemma. In fact, if u =

N19 0 v
]F\\ +

o , N2 I

^

and

if s>l/2. End of proof.

Definition 6,20 Let MS de/zne fft'/feerf space 0f(A, fl) (i = 0, 1) as /o/-

6)S
0(^, fl)=

witfc ^ norm 00(^) =
V

pov(l/)MII(^)-%)^^
/or U=(u,v)eHS(Oi)xHS(dai).

with the norm 0!(l/) =
V

)-i3^

/or C7 = (11, i>) e H»(Q) x Hf (SO).

Here, {jSv} is r/ie system of C°° -functions in Lemma 6.1, ^ = ̂ v\dQ

and (Al(X)-idyy,Aa(X)9Ni9 \\-\\ + and \\-\\ are defined with respect to

the local coordinate on Qv.

Let us denote avU = (avn5 ajv) for U = (u, u)60f(A, O). We consider

(6.5) K'WsS



BOUNDARY VALUE PROBLEM FOR ELLIPTIC SYSTEMS 627

( A 0 \Q' «). In fact

A, 0 \ / Av, 0
(6.6)

0, B v 0 , Bv

^v. 0 \ / ^?v(av), 0
k-2X£v(A)

0 , Bv / v \ 0 , 0

and

A, 0 \ / AV9 0
W(A)=Zl

09 1? / v \ 0 , Bv

( Av, 0 \ / iv(av)9 0
/ \ ^ /

v V 0, Bv / A 0,0

Here, ^(ocv) stands for

We show that I- I>v^v(^M(av) and I+JZA(uv)Rv(X)oiv are invertible
V V

on 6>o(A, ^) and ®i(^9 ^) for /l^A0
 and s = ^o? respectively.

Lemma 6.6. Le^ us put r0sZav£v(A)4(av) anrf ^ =
V

T/zen there exists A0 SMC/7 f/ia< for A^A0 ,
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Proof. Let us put V0 = Rv(tyA(av)F0 and V^R^^F^ If Qv n

, then by Corollary 2 of Theorem 9,

because £^av = £vav

because of Theorem 9

o) because jSv£wav = £vav

o^o) because of Theorem 9

because

(6.8) ||(^HA)-iay)
s^51^o>ll^c||(^HA)-^)s^

^p^A^VJ because jSv^(av) =

^^Vp0v(^i) because of (6.8)

^Cgy/l'VivC^^i) because of Theorem 9

Summing up these in ^ and v we obtain Lemma 6.6. End of proof.

Lemma 6.7, There exists As for s^r0 suc/i rftat for A ^ A S I — T0

+T! are isomorphisms on 0\(A,9 Q) and 0S
Q(^ Q\ respectively. So,

(J-To)-1^) and R'WV+TJ-1 a™ left and right inverses of the

minimal closed extension °f ( c\ D) with the definition domain H%(Q)

from 6>o(A3 ^) to ® 1(^-9 ^)- Therefore they are same.

Proof. This lemma follows immediately from Lemma 6.6.

End of proof,
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This lemma means (i.l) has the unique solution in 0o(A5 O) for data

given in 0\(k, Q). So we complete the proof of Theorem 1 if we show

this solution belongs to H%(Q) when the data is given in H%(Q)xHf(dQ).

We shall show it locally on Q. It is clear at the inner point of Q. So,

we can assume Q = R^+1- because, if Ue0s
0(k, Q) is a solution of (1.1)

for a datum F given in 0\(h Q), <pU E0s
0(li, Q) is a solution of (1.1) for

a datum F - A(<p)U e 0\(^ O), where <p6Cg>(S). In Lemma 6.5, (A, 6)

has the inverse R(X) for A^A0 . Corollary 2 of Theorem 9 shows R(l)

is also a bounded operator from 0\(h9 Rl+1) to es
0(A, R?.+ 1) for A^A0 .

Lemma 6.8. // s^r0,
+1) /or A^A 0 (A0 does not

depend on s), w/ierc ^eCffC^1), ^° = ̂ |,=0, F = (/i,/2)

Let us put Go = ' i *"• Then G0 e Hs(R'l+ A) x

HS+1/2(R») and ^G0EHs+lf2(R^+1)xHs+1(R"). (Refer Lemma 3.19 and

Definition 6.2.) Thus,

and

(Refer Definition 6.1 for g".) By Corollary 1 of Theorem 9

and \l/U0£Hs+1!2(Rl+1)xHs(Rn). Since U = R(X)F = N 0U Qy we obtain

l/e0s
0(A,^+1) and ^I7G0S

0
+1/2(A5 ^

+1). End of proof.

Lemma 6.8 means that, if F e H£(Q0) x H?(Q0 n K") n 0!(A, E!̂ + 1)3

u = R(X)FeH%(K) for any compact set of K Q0 which is an open set in

Rf1. Thus the equation (1.1) has the unique solution u in 6^ (A, Q)

for data F = (f, g) in ©j(A, O) if A^A0 and s^r0, and
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sing supp u = sing supp F = sing supp/ U sing supp gc:Q.

We complete the proof of Theorem 1.

§ 7. Remarks

1. (A9 B) is properly linked by A if (A, B) is strongly linked by L

(A, B) is strongly linked by A if and only if (A, B) is linked by A and

coercive.

2. At the example in the section 1 we can verify it is properly linked

by L It is finally enough to make it sure for ^{j/~l+(p to satisfy the

conditions of Assumption (A), where ^ = (%£i£/ + A2)1/2 (VO if £ = (£, A)

7^0). We use the well known property that |gradcp|2:g2|(p|sup|hess(p|

if (?^0. Then, it is clear that lAi/r1 +^|^cA|C|~1
? Igrad^A^1 +<p)| ^

|Ai/r-2 grad^l + lgrad^lgcaAi/f-M + l^l172)^^^-^^!1/2 and Ig

We give next a more general type of boundary conditions. Let O be
/ d \2 d2

Rf1, A = (-~r-} + £ atj^^ -an+iX
2 + dl be a second order ellip-

\°y J l^i,j^n JGXiCXj

tic operator with real coefficients and B = b0-^ — ̂ Jlbt-^ — +bn+lk + d2oy i=1 ox i
be a boundary operator with real coefficients, where di and d2 are

lower order terms. We put cr=i(Z f lu^j + an+i^2)1/2^ — (^ ^)
n

« = the minimum of (j(Q on ^b£i = Q. If we assume that

n+l, \bi\2^cb0 f = l,..., ft and

on

then we have same results as for the example. The last inequality is

satisfied if |gradAI2^o or if (bj = b(6j such that El f i fc l 2 = l and

3o In this paper we have considered the boundary value problem.

The discussion in the section 4 shows us the way to give a sufficient

condition for solvability and hypoellipticity of non-elliptic pseudo-differ-

ential operators if we watch pseudo-differential operators only on the
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boundary jR" of Rf1. Let us consider M(x, Q mxm matrix of infinitely

differentiable functions on Rn x {jR?.+ 1-(0, 0)} which independent of x

outside a bounded set of JR" and a homogeneous function of order 1

in £. We assume that M(x, Q satisfies A|ft|^c|M(x, C)ft|, |grad(JCj5)M(x,

0/»|2^c|M(x, Q/?| and |grad(jei§)M*(x, Qfc|2^c|M*(x, Q/i| for fteC"1, C

= (£, A), |/i| = l and |C| = 1. Then, the equation M(x, 3, A)w=/ on £"

has the inverse R(X) on H-«>(Rn)9 R(X)u eH(s, k, %) if feH(s, k, %), and

it holds that pfcWA^^c^A-^^ + c^A-3/^.^/), where X is a
system of infinitely differentiable functions such that %={%p 7=0, 1, 2,...;

Xo = l> ;0=l or eCg'OR"), and xyX7 + i= /y+i}» and H(s, fe, /) stands for

the completion of Cg1 '̂1) by the norm p^(/) = ( Z \\As+J'i2(X)Xjf\\2)l/2.
j=o

Moreover if M1(x, 5, A) is a composition of pseudo-differential operator

which satisfies pk(M,(x, d, A)/) ̂  csfcp^ (/) + csk(x)^~ i/2pk- A(/). Then, we
obtain the same result for {M(x, 5, A) + M1(x, 5, A)}w=/.

48 There exists a constant A0 such that A2 — cp2A is solvable and hypo-

elliptic for A^AQ if <p is a non-negative infinitely differentiable function.

h—i\l/A(X) + i[A(X),\l/] and A+f^/l(A) satisfy the conditions of the previ-

ous remark 3 and so its results, where \l/ = (p(l + cp2)~ 1 f 2 . We consider

the product of them. (l-\l/2)-1(^i\l/A(X) + ilA(X)9 ^])(A+£>/l(A)) = A2

— cp2A+N because y!2(A) = A2 — A. We have also the same results for

this operator and so for A2 — cp2A since N is a negligible term.

5, We give an example of non-hypoelliptic differential operator. We

construct it by the following procedure.

I 0, otherwise

er; cr^O, \(jdx = l and suppac:( — jc/16, rc/16)

= z c-
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= X *KU)
-

sn x

/(v)E=0(v)/

(p = sin x (cos x — sin x)~ l\l/

A-l

0

Then3 (p-r—f(v) = A,vf(v) + h. cp and ft are infinitely differentiable but

/(v) is not so at the neighborhood of origin. Thus, \9^~~^v) ls not

hypoeiliptic if 1 is positive integer and v is one of (— l)*2~fj. Using

this differential operator we can easily construct the boundary value

problem which is linked by /I but not properly linked by L

6, Let A be a symmetric system of first order and elliptic. Let kerJ3

be a maximal dissipative boundary condition with respect to A. Then

(A + l, B) is linked by L Moreover it satisfies (1.7). But it is not true

to be properly linked by L

70 We can give weaker conditions if it is not necessary to permit per-

turbations as large as at the remark 3. Let M(xy Q be the same one

but its homogeneous order in f be 0. 1) M(x, 0 is invertible if A>0

and |CI = 1- 2) For each (x,0(|(| = l and A = 0) there exist its neighbor-

hood Q(x, 0 and positive real number d and e such that 0<d<
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c, Agc|M(x3 Qw|£ and |5|5g5JM(x, Qw|^c|M(X 0 M | i -« l /H-<=-a) l« l - (2=-a )y on

G(x, Q n {A ̂  0} for all multi-indices (a, /?, 7) satisfying <5|j8| + (e - 5) |a|

+ (2e-<5)y<l if t i eC™ and |u| = l.
If we assume 1) and 2), then we conclude that there exists a positive

A0 such that M(x, d, A) has a solution in £P for any data in £f when

A^A0 . On the other hand if the adjoint symbol M*(x, C) satisfies 1)

and 2), then we can find A0 such that sing supp M(x, d, X)u = sing supp u

for any UE&" when A^A0 . Let & stand for a ring consisting of sym-

bols C(x, Q such that C(x, Q is a m x m matrix valued infinitely differ-
entiable function on jR"x {R$+1 — (0)}, which is independent of x outside

a bounded set in R", and satisfies |dfd£C(x, 0|^caj,|C|~|a| for all multi-
indices (a, /?). Let «£? and ^ stand for the left and right ideals of tf

generated by {3|5£flJM(x, 0 ; 1 ^ | )8 1 ^ | a | + y}, respectively. For M(x,
5, A) + C(x, d, A) we have same results with another constant A0(C) if

C(x, Q is an element of & or ^ and if we assume 1) and 2) to its

principal part M(x, Q or the adjoint M*(x, 0, respectively.

8« We can find out some well known hypoelliptic partial differential

operators by using the conditions at the remark 7. A2 — cp2A we noted

at the remark 4 is also proved to be hypoelliptic by the remark 7. We

have a similar example. ^3J + /A2, where \l/ is a real valued C°°-func-

tion, is also hypoelliptic and solvable for large A. We can show that a

parabolic equation -^r + a(x9 dx) is hypoelliptic and solvable, where a(x,

djc)= Z flaW^S is an elliptic operator of order 2m >0 with real co-
|a| = 2m

efficients. We may assume a(x, 0^0- Let M be a solution of the

parabolic equation. Consider the equation which is satisfied by e~*fu(t/

A2'"-1,*). Then, we have A2'» + A2m-1-^- + a(x, dx\ which satisfies the

conditions at the remark 7.

9, We have receipt two preprints [15] and [16] closely related to our

results. We note here they have given some interest results for second

order elliptic equations.
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