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Introduction

In this paper, we shall consider the translationally quasi-invariant

measures on infinite-dimensional linear topological spaces, especially on

a rigged Hilbert space Ec:Hc:E*. Let \.i be a measure on E*. We

say that a measure \i is quasi-invariant, if n(A) = Q implies ^(A + e) = Q

for all eeE*. After this definition, in the finite dimensional case we

can characterize \JL as the Lebesgue measure modulo equivalence of ab-

solute continuity. But in the infinite-dimensional case this definition

is unsuccessful, because there does not exist such measure except trivial

one. On the other hand if we consider only those translations which

are defined by the elements of E or H, then there exist continuously

many quasi-invariant measures which are singular with respect to each

other. However the only explicit known example was the measure of

Gaussian type up to the present time. But here we shall give two exam-
ples of translationally quasi-invariant ergodic measures which are es-

sentially different from Gaussian ones. This is the purpose of the present

paper. The author thanks to Professor H. Yoshizawa for the many

valuable comments.

§1. Preliminary Discussions

Throughout this paper, all Hilbert spaces are real and separable.

We follow the usual terminology in the infinite-dimensional measure
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theory. Let E be a Hilbert space with the scalar product <e,f>E

and H be another Hilbert space with the scalar product <hyg>H.

Assume that E is contained in H as a dense subspace and the natural

injection is a Hilbert-Shmidt operator. Let E* be the topological dual

space of E. Then, identifying H with H*9 we can assume EcHciE*.

We shall denote the value of x e E* at e e E by x(e).

For the most part of this paper, the discussion will be performed

in this situation, so we shall state briefly the basic definitions and

theorems with respect to the measure space on E*. The general argu-

ments are found in [1]. Let fi be a d-finite measure on the Borel

cr-field 23(E*), which is generated by all open subsets in E*9 $ be a linear

subspace of E* and T^JM be a transformed measure of ^ for <pE<&.

r9fjL(A) = n(A - (p) for all A e »(E*) .

Definition LI. A measure \i on 23(E*) is called ^-quasi-invariant,

if and only if T^^/I holds for all

Here the relation ^ means the equivalence relation of the absolute con-

tinuity, while }.ii<^2 means that /^ is absolutely continuous with respect

to p2.

Definition 1.2. A measure IJL on 2J(JE*) is called strictly-^-quasi-

invariant, if the following condition is satisfied,

•c9li = IJi if and only if (pe®.

Definition L3B A measure fi on 2J(E*) is called <P-ergodic if the

following two conditions are satisfied.

(1) IJL is ^-quasi-invariant.

(2) For any ^-quasi-invariant measure //, the relation //<^

implies ju' = 0 or // = /x0

Theorem 1.1. Two $-ergodic measures on 93(E*) are equivalent

or singular with each other,

Proof is omitted. See [1].

As any o"-fmite measure is equivalent to a probability measure, we
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shall only consider a probability measure from now on. Let el9 e2,...,

£„,... be elements in E, which are linearly independent and span the

whole space E. Let nn be the mapping from E* to Rn such that

and fin be the image measure of u. by the map nn for each n. Then

we can state a simple criterion for equivalence in the following theorem.

Theorem 1.2. For absolute continuity of v with respect to \i,

it is necessary and sufficient that the following two conditions are

satisfied.

(1) vn<jUn holds as n-dimensional measures for each n.

(2) Put —rJL(y) = pn(y) for y^R", then {^Jpn(nn(x))} forms a Cauchy

sequence in L*(E*).

Proof is omitted. See [1].

§2. Gaussian Measures

Definition 2.1. A probability measure g on 23(E*) is called Gaus-

sian measure with mean vector x0eE* and variance operator S, if

its Fourier-Bochner transformation

g(e)=( exp(ix(e))dg(x)
JE*

has the form $(e) = e\p(ixQ(e) — l/2 ||Se|||) for all eeE, where S is a

positive definite Hilbert-Shmidt operator.

Remark 1. In order that g is a G-additive measure on 2?(£*),

it is necessary and sufficient that S is a Hilbert-Shmidt operator.

This is an assertion of the Sazanov's theorem. See [2].

Remark 2. // S is a degenerate operator, then g is not an E-

quasi-invariant measure.

Remark 3. // a Gaussian measure is E-quasi-invariant, then it
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is also an E-ergodic measure.

Theorem 2.1. Let g be a Gaussian measure on 93(E*) with mean

vector x0e£* and variance operator S. Then in order that g is a

strictly-E-quasi-invariant measure, it is necessary and sufficient that

there exist two positive constants c1 and c2 such that

(1) cJeUgllSell^CzlMlB. for all eeE.

Further, under the above assumption,

Proof. Without loss of generality, we can assume x0 = 0. First of

all we remark that for yeE*, tyg — g holds, if and only if y is continu-

ous with respect to the semi-norm \\Se\\ E. This assertion can be found

in [3]. Now we prove the necessity. If g is strictly-E-quasi-invariant,

then for any xeE there exists some yeE such that

(2) <y, Se>E=<x,e>H for all eeE

by the above remark, and y is unique for each x, as S is a non de-

generate operator. Thus we can define a map T on E, x-+y, then T

is closed one to one and onto (in virtue of the strict-E-quasi-invariance),

therefore the closed graph theorem assures that T is a homeomorphic

operator on E. Next we take a c.o.n.s. (complete orthonormal system)

el9 e29...9en,... in E. Substituting ej for x in (2), we get <Tej9 Se>% =

<ej9 e>]f and summing up over j, we get ||T*Se|||=||e|||* for all

eeE. As also T* is a homeomorphic operator on E, we get from the

above equality,

Conversely suppose that the inequality (1) is satisfied for S. We want

to show that the functional j;e£* is continuous with respect to the

norm \\Se\\E, if and only if yeE. But under the condition (1), for yeE*

the above continuity is equivalent with the continuity with respect to

the norm ||e||£+, therefore equivalent with the existence of such zeE*

as

(3) y(e)=<e,z>E*.
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Now let €}, e29. ..9en9.. . be a c.o.n.s. in E, whose elements are eigen-
vectors of the natural injection £->H. Substituting Cj for e in (3), we

get y(ej)=\\ej\\jjz(ej') in virtue of ||e,-||& = \\CJ\\E*- Therefore for an arbitrary
element e e E,

As ^f=1z(ej) ej = %EE, and y(e)= <e, £>H, y is an element of E. Of
course for every £ e E, < e, £ > H is continuous with respect to the norm

||e||j5*. Thus we have proved sufficiency. Lastly we shall consider its
support. Here again we can assume x0 = 0. Let ei9 e29-..9en,... have
the same meaning in the proof of sufficiency. Then,

= {xeE*: Z?=i x2(^)/||ey||J<oo}, and

R-*oo JV-*oo

lim l imJ/ /? £7=i ( x^/lkyll^U)
R-»^JV-»OO JE*

lim l iml/R Z^.IIS^Hi/lk,^
R->00 JV^QO

7=1||cJ& = l. Q.E.D.
]V-»oo

Theorem 2.2. Under the same notation in Theorem 2.1, # is

strictly-H-quasi-invariant if and only if there exist two positive con-

stants c± and c2 such that

Proof is carried out in a quite similar way, so we omit it.

§3. Examples of Translationally Quasi-Invariant Measures

In this section we shall give two examples of translationally E-
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quasi-invariant and E-ergodic measures on 93(E*)9 which are singular

with respect to every E-quasi«invariant Gaussian measure on 33(E*) in

the situation EczJJczE*, We assume that the natural injection e is a

Hilbert-Shmidt operator but It Is not a nuclear operator . Let el9

e2,..., en,... be a e.o.n.s. in E, whose elements are eigen-vectors of t

and put hn = enl\\en\\H for each n. Then h^ h2,...9 hn9...
 ar^ mutually

orthogonal in H. From now on we fix these symbols.

I. Measure of Cauefay Type

Let {a,-} be a square summable sequence of real positive numbers.

We consider the following positive definite function defined on E,

i I <e, ej>E\*j).

Then a unique distribution, which we shall denote by A corresponds to A.

Lemma 3.1, In order that A is a a-additive measure on S(E*)9

it is necessary and sufficient that {a,-} is summable,

Proof of sufficiency. Let {a^el1. Now if we consider this weak

distribution on Ea (algebraic dual of E\ then it is necessarily cr-additive

by the Kolmogorov's consistency theorem. We shall denote it by !„

Then as the a-additiveness of A is equivalent to !(£*) = !, we shall

estimate its value.

= lim MmA(x: S£=i x2

- -

R-*ao N-+OO

exp (//jR
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exp (~?2/2) exp (~' ' ' Kj'/

Here we put,

(4) p(a)

Then, 1 -p(a) = 1-2/^271 exp (a 2/2)f°° exp (-t2/2)dt=O(a) (a->0). As {a;}
Ja

G/ 1 , we get £jP=i(l — p(aj))<oo, so the above product converges to a

non zero number and tends to 1 as J?-»oo. This shows that !(£*) = !.

Proof of necessity. Let A be a a-additive measure on 23(£*). Then,

0<f exp (-1/2 Zy=iX2(^))dA(x)=lim( exp(-I/2 Z3U*2(*,))dA(x) =
j£* JV->oo j£*

limny=iP(aj)j where p(a) is defined in (4). Therefore, it is necessary
JV-»oo

that

(5) Z5Li(l-p(

Since l-p(a)=0(oc) (a-»0), from (5) we conclude Sy=iaj<°o- Q-E.D.

Remark 1. For {ctj}el2
9 if we set p(e)=^JL1\<e9 ej>E\ocp then

p is a norm on E and Sy=ijP2(ej)<°°- This shows l(e) is continuous
with respect to a Hilbert-Shmidt norm. But p is not Hilbertian norm.

So we cannot apply the Sazanotfs theorem. This remark is due to

professor Yamasaki.

Now we call these measures A(I>a_ /<oo) Cauchy type, as their one-

dimensional projection measures are Cauchy measures.

Lemma 3.2. Under the same notation in Lemma 3.1, A(H) = 1

is equivalent to Zf=i a j / lkjl lf j< 0 0-

Proof. The assertion can be proved in a quite similar way, so we

omit it.
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Lemma 33. Let ^eE*3 nj = rl(ej) for each e/eE, and X be a meas-
ure of Cauchy type with ^f=i o/<oo. Then iyl~/l holds if and only

Proof. We shall investigate the condition of Theorem 1.2. Let

nn be a map from E* to Rn such that nn(x) = (x(e1),...9 x(ett)) and Aw (A*)

be the image measure of A (r^A) by the map nn. Then, for y=(yl9

ln(y)=\
^ un

= 7c~"a1---aB^Bn3=i(x? + ay)~1exp(iT3=i^j)^

Therefore, d^(x)= *l'"*n
 nn (

1
2 2.dxldx2--dxn. In the same way,

" Iij = il-^j ~r %j )

Thus

We put

Then,

= 2- 2

2_2
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Here we put

a n d W ' = ~ •
Then in order that {ffn(nn(xj)} forms a Cauchy sequence, it is necessary

and sufficient that Yl™=iP(Wj) converges to a non zero number, which

is equivalent to £jP=i(l — p(wj-))<oo. Therefore we have only to estimate

its order at 0. After some calculations, we get p(w) = 1 + 1/2 p"(6w)w2,

p"(Q) = — 1/8 (0<0<1) and p"(w) is a continuous function of w. Thus,

1— p(w)= 0(w2) (w-»0). From this we get a desired conclusion.

Q.E.D.

From now on we put a7.= ||̂ ||J for all j. Then the measure A0

corresponding to {||e/||jf} has the following properties in virtue of the
preceding Lemmas.

(1) A0 is a a-additive probability measure on S(£*) and A0(H)

= 0.

(2) 10 is a strictly-E-quasi-invariant measure.

For, T;;A0^/10 holds if and only if Zj )=i^2(ej)/llejilH<0°5
 m virtue of

Lemma 3.3. This shows firstly Zy=i^2(^j)<00
5

 so putting ^=^f=irj(hj)hj

e/f, we have i](e)=<e^>H for all eeE. And secondly, n(ej) = 1l(hj)\\ej\\H

shows Zj )=i^j)2 /He j l lH<°o- Therefore,

Conversely, if r\eE,r\=^J=lrijej with {̂ .} 6 J2
9 then

for each 7, and

Lemma 3A A0 fs an E-ergodic measure.

Proof. For the proof of ergodicity, we refer the following pro-

position.

(P)* Le^ 3^ = ^ i^ iH ----- h^eneE. Then in order that A0 is E-ergodic9

it is sufficient that there exists Borel function fn for each n such that
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In the present case this condition is assured by (6) in Lemma 3.3,

Q.E.D.

Lemma 3.5. For every yeE*,

Proof. We put yj = y(hj). Then,

R-*ao JV-»oo

^elim lira {
R-»oo JV->oo j

gelim lim ( ( exp (i/R
R-*<x> N-*ao J E* JRN

^e]im lim (
H-*CX3 2V-^CXD J

gelim li

Here we put

00 exp (ij;^) exp (-||^||fl|

Then p; ^p( ||^||H/U) for each j and ny=iP(lkjllH/^) = 0 from the
order of p(a) at 0. Q. E, D0

Theorem 3d. Let A0 fee the probability measure on S(£*)5 whose

Fourier-Bochner transformation is

E^il<^ ej>E\ II^Hi).

(1) A0 Is a strictly-E-quasi-invariant and E-ergodic measure.

* This proposition is found as a note In [1],
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(2) A0 is singular with respect to every E-quasi-invariant Gaussian

measure.

Proof. The first part was proved by the preceding several Lemmas.

As for the second part, if >10 is not singular with respect to some E-

quasi-invariant Gaussian measure g with mean vector x0eE* and variance

operator S, then by Theorem 1.1 and by Remark 3 after Definition

2.1, g must be equivalent with A0. So g is a strictly-E-quasi-invariant

measure. Thus, g(H + x0) = l in virtue of Theorem 2.1. But on the

other hand Lemma 3.5 shows that /l0(H + x0) = 0. Therefore 10 must

be singular with respect to g. Q.E. D.

28 Measure of Laplace Type

In the preceding example, we used the fact that

But herein we use the converse relation,

We consider the following positive definite function on E,

where {a,-} G I2, whose components are real positive numbers. In this

case, the corresponding weak distribution v is a cr-additive probability

measure on 23(E*). Further, v(H) = l is equivalent to Zj3=i^/lkjllH<°o-
These assertions are shown in the same manner as before.

Lemma 3.6. Let rjeE*. Then T,fv = v holds, if and only if

Proof. As before, let nn be the map from E* to Rn such that

nn(x) = (x(e1\x(e2),...,x(en)\ and vn(vl) be the image measure of v

(V) ky the map nn, respectively. Then for y = (yly y2,--> ytt)eRn
9
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vvn(y)= \ ei(Xiyi+'-+Xn

JE*

TJn _ 111'-1 l+ajyj

Therefore,

,,
Z, O

In the same way,

where we put ?;y = ^(^.). Thus,

Now let

and we shall investigate the conditions of Theorem 1.2.

J E0n(nn(xy)<rm(nm(x))dv(x)

Here we put

Then,
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and 1 — pj=O(wj) (W,— >0), where wJ- = /7J-/a</. From the above arguments

we conclude that, in order that {ffn(nn(x))} be a Cauchy sequence in

LJ(£*), it is necessary and sufficient that {^-/a,-} e /2. Q.E. D.

From now on, we put a/=||e/| |H for each 7 and denote the corres-
ponding measure by v0. We call it Laplace type. Then v0 has the fol-

lowing properties.

Theorem 3.2.

(1) v0 is a o-additive probability measure on S3(E*), and v0(//) = 0.

(2) v0 is a strictly-H-quasi-invariant and E-ergodic measure.

(3) ^ x(e)x(f)dv0(x) = 2<e,f>U9 for all e and feE.

(4) v0 is singular with respect to every E-quasi-invariant Gaussian

measure.

Proof. (1) is assured by the arguments in the first part of this

paragraph. For (2), we have shown that in the last Lemma, T ; ;VO^VO

holds if and only if

which is equivalent to j /e / f . The assertion of ergodicity can be proved

by the proposition (P) in Lemma 3.4 and (7) in Lemma 3.6. For

(3),

1 f°° exp(- \x\l\\e j\\u)x
2dx

= 1/2 llej]

holds for each j. As x(e1), x(e2),...,x(en),... are stochastic independent

random variables for v0, for arbitrary real numbers cl3 c2,...

Now we can extend the above equality to an arbitrary element eeE

by the continuity of both sides. From this we can easily derive the

requested result. Lastly we shall prove (4). But before it, we state a
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lemma.

Lemma 3.7 a Let Aj = {x: \x(hJ)\^Logj} for each j. Then for any

*9 v0(ltmAj + x0) = l, while g(timAj)==Q for every strictly-H-

quasi-invariant Gaussian measure g with mean vector 0 and variance

operator S.

Proof. v0(^4/ + x0) = l/2\ e~Wdt^l/2j is an easy calcu-
J\t-x0(hj)\*LogJ

lation. As {Aj + x0} (J = 15 2,...) is a stochastic independent sequence

of sets for v0, v0d5m(Aj + x0)) = l holds by the Borel-Cantelli's lemma.

As for g, S must satisfy c1||e||H^||Se||jB^c2||e||H for all eeE, in virtue

of Theorem 2.1. Now,

x2 \

~2pOT/ =

In the last step we used the relation c1^\\Shj\\E^c2* Again using

the Borel-Cantelli's lemma, we get (̂115̂ ) = 0. Q.E. D.

Returning to the proof of (4), if v0 is not singular with respect

to an £-quasi-invariant Gaussian measure g with mean vector x0e£*

and variance operator S9 then v0 and g must be equivalent with each

other as before. Therefore g is a strictly-H-quasi-invariant measure.

But Lemma 3.7 shows that there exists a set A such that g(A + Xo)=Q,

while VO(A + XQ) = I. This is a contradiction. Q.E.D.
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