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Eigenfunction Expansions and Scattering
Theory for Dirac Operators
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§ 0. Introduction

In the present paper we are concerned with the Dirac operator

in R3, where a,- and /? are the so-called Dirac matrices and Q(x) is a

Hermitian symmetric potential decaying at infinity with like Ixl"1"'1,

/i>0. More detailed assumptions will be mentioned in §2.

Eigenfunction expansions and scattering problems for Dirac operators

have been investigated by many authors. Titchmarsh [14] verifies the

completeness of eigenfunctions, assuming that Q(x) is a spherically

symmetric scalar function. Eckardt [4], Evans [5] and Thompson

[13] treat the potential 2(x) = 0(|x|~2-/l) (h>0), stimulated by Ikebe's

work [7] on eigenfunction expansions for Schrodinger operators. Mo-

chizuki [10] discusses the perturbation of the absolutely continuous spec-
3 fiQ

trum under the main assumption |Q(x)|+ ]T -^- = 0(|x|~2~;i). Prosser
J = l V*j

[11] proves the existence of wave operators supposing mainly Q(x)

= 0(|x|~1~/?), and shows the unitarity of the scattering operator for a

class of potentials with compact support. Eckardt [3] assures the

existence of wave operators under the condition l2(x)|(l + |x|)~1/2+£

GL2(R3), e>0.

In this paper we deal with the Hermitian symmetric potential <2(x)

~h) and consider expansion formulae, wave and scattering
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operators. It will be found that the scattering operator is unitary

under a condition weaker than Prosser's. Our eigenfunctions are deter-

mined as kernels of linear operators

(x? rco)h(co)dco9 r>0

(v = p, n, ip= +1, in= — 1 and S is the unit sphere),

where <l>° is the eigenfunction of the unperturbed operator (Q(x) = 0)

and R*(X) is the "boundary value9' of the resolvent R(z) of the per-

turbed operator as z-»/l + Of. The above idea is suggested by the works

of Agmon [1], [2] on selfadjoint elliptic operators. The principle of

limiting absorption and Sobolev's imbedding theorems are important

tools for us to study the operator Av(A.±Qi, f). The principle of limiting

absorption is a method to investigate the behavior of the resolvent

R(z) near the real line. A work of the author [15] for the principle

of limiting absorption will be needed in our discussion.

We shall outline the contents of this paper. In § 1 the eigenfunc-

tions and the expansion theorem for the unperturbed operator are

introduced in terms of Fourier transforms. The assumptions on the

potential Q(x) and the principle of limiting absorption will be explained

in §2. In §3 we shall define an operator

Av(z, r)h = (I-jR(z)Q)( 4>J(jc, rco)h(co)do}9 r>0
Js

and research the behavior of Av(z, f) and its adjoint operator as z

tends to the real line. Our eigenfunctions and the eigenfunction ex-

pansions for the perturbed operator are found in §4, Theorems 4.4

and 4.5. In §5 we prove the orthogonality of the eigenfunctions. In

§6 we define the stationary wave operator and show that it coincides

with the time-dependent wave operator and that the scattering operator

is unitary.
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§L The Unperturbed Operator

We shall consider in this section the eigenfunction expansions of the

unperturbed Dirac operator

where a^ and ft are 4x4 constant Hermitian symmetric matrices satisfy-

ing the anti-commutation relations

= 26jkl, j, k = 1 , 2, 3, 4,

(a4 = jS and / is the unit matrix, djk is Kronecker's delta). A complete

set of matrix-valued eigenfunctions is given by

and

for ^eR 3 , where L0(0= E £j&j + P an^ < % •> denotes the inner
j=i

product of M3. The function $°(x, Q satisfies

(1.1) L0<f>v°(x, 0 = tvV
/l?FTr^v

0(x? 0 (v = j>, n),

where TP=+! and T n = — 1, since

as is easily checked by using the anti-commutation relations. Let us set

are symmetric matrices and fulfill

(1.2) <W0' = lW0,

=J and



654 OSANOBU YAMADA

We consider Dirac operators in the Hilbert space o^2=(L2(R3))4,

a class of all C4-valued functions w(x) = (w1(x), u2(x), u3(x), u4(xj) such
that

with the inner product

(u, v)=\ < u(x\ v(x) > dx ,
JR3

where \u(x)\2= X \Uj(x)\2 and <w(x)5 v(x)> = £ w/x)i;/x). The above
j=i j=i

fact (1.2) implies

that is, j£?2 is the orthogonal sum of \j/p&
2 and \lfn£?2, where i^vo£?2

denotes the image of J^2 under the multiplicative operator by i//v(°).

Now we introduce

for/ej^f 2 , where Li.m. \...dx means the limit in the mean of \ ...dx
J J\x\^R

as R-»co. Using the Fourier transform of /(x)

we see immediately that /?(£) = ^v(£)/(f)» which shows that ZJ maps
J^f2-functions into \j/v^

2. Since the Fourier transform maps j^2 onto

j^2
3 the range of Z? is identical with \l/v&

2.

In consequence of the Fourier inversion formula and (1.2) we have

(1.3) /(x)
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for fe &2 and

(1.4)

= (27r)-3/2l.i.m.

for /ejr^R3), where ^(R3) is the Sobolev space of all ^-functions

with the first derivatives in &2. Thus the eigenfunction expansion prob-

lems for the unperturbed operator is completely solved.

§2. The Assumption on the Potential Q(x) and the

Principle of Limiting Absorption

Throughout this paper we assume the following condition (A) on the

potential Q(x):

(A) Q(x) = (qij(x)) is a 4x4 Hermitian matrix-valued function with

continuously different} able components qtj(x) except at a finite

number of singularities, and there exist positive numbers h, R0

and jp>3, such that

(a.2) i
and

l /2

dQ gconst.
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In our previous paper ([15], Propositions 2.3, 2.4 and Corollary 4.2)

we obtain

Proposition 2.L L0 and L = L0 + Q(x) have unique self-adjoint

realizations H0 and H = H0 + Q9 respectively, with the domain D(H)

= D(H0) = £^
1(R3), where Q is the maximal multiplication operator by

Q(x). The essential spectrum of H0 and H coincides with intervals

(—00, —1] and [+1, +00), while (—1, +1) is contained in the resolvent

set of H0. The set (—00, — 1)U(+1, +00) is the absolutely continuous

spectrum of H0 and H.

Before we proceed, we introduce some functional spaces. For m

a non-negative integer, Hm(Q) denotes the Sobolev space of all L2(Q)~

functions satisfying

0 \ 1/2
2 \D*u\2dx } < + 00

(Q is an open set). For s a real number and m a non-negative integer
we put

); \\u\\H™=((
s \J

We denote by £>2(®), jem(Q\ J^s
2, and 3f™ the product spaces (L2(O))4,

(HW(O))4, (L2)4 and (Hf)4, respectively. When O = R3, the symbol (O)
will be often omitted.

We shall now explain the principle of limiting absorption. Let R(z)

= (H — z)~l be the resolvent of H for every complex number z such

that Imz=£0 (Imz(Rez) is the imaginary (real) part of z). Then R(z)

is a bounded operator on &2 to ^f1. According to [15], Theorem
4.1, for any s>l/2 and -oo<a<fo<- l or + l<a<5< + oo there

exists a positive constant C = C(a, b, s) such that

(2.1) ll^)/ll^

for al l /ej^f2 and ze J+(a, fc)(/_(a, 6)), where J+(a9b)(J.(a9b)) is the
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set of all complex numbers z such that a^Rez^b and 0<Tmz:gl

(— l:glmz<0). The following proposition is also shown in [15], Corol-

lary 4.1.

Proposition 2.2 (the principle of limiting absorption). For every

real A, |A|>1, there exist bounded operators R+(%) and R~(%) on 3?l

to jel.s(s>l/2) such that

s-lim R(z)f=R+(Z)f, s-lim R(z)f=R'(X)f
z-U+Oi z-U-Oi

in ^-s for any feJ?2. For every feJ?2,R(z)f is strongly continuous

in 30? Ls "with respect to zEJ+(ayb)(J-(a9bJ) (the closure of J+(a,b)

(J_0, b)) with the boundary value R+(Z)f(R-(Z)f).

The following property will be frequently used hereafter.

Proposition 2.3. Let l / 2 < f < ( l + A ) / 2 (h is the positive number in

the condition (a.lj). Then the multiplicative operator Q on ^lt to

&1 is compact.

Proof. Take an arbitrary bounded sequence {/}} in «2fir. In view

of Rellich's theorem {/j} has a subsequence converging locally in j£f2,

which we rewrite {/,.}. We separate the integral

into three integrals \ ...dx, \ ...dx and \ ...dx. To
J j x i ^ K o J K O ^ I X J ^ R J |X |^R

the first integral we apply Corollary 2.1 in [15], which asserts that

for any e>0 there exists a positive constant C£ such that

(2.2) \Qu\2dx£e |L0 u\2dx + CE \u(x)\2dx

for all ue^yl(BRQ+l)9 where BR denotes the ball of radius R about the

origin. So we estimate the first integral

\fj-fk\2dx)
| ^U 0 +l /

\ f j - f k \ 2 d x ,
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where the constants Cl9 C2 are independent of j and k. For the second

integral we obtain

( ...dx<C3(R)( \fj—fk\
2dx.

Ji^M^R ~ 3V J)RO^\X\^R J

The condition (a.l) yields for the last integral

\ ...dx^cA (i + M)2'-2-2*l/,-AI2<fr
J\x\^R J \x\ZR

-2-2h > 0 OR-+OO),

where C4 and C5 do not depend on j, k and R. These estimates show

the compactness of Q. Q.E. B,

§3o Auxiliary Lemmas

The greater part of this section is devoted to studying a linear

operator Av(z, r) defined by

js

for r>0 and he<£2(S), where S is the unit sphere about the origin,,

Our aim is to give an expression to R(z)f and R(z)f for feJ?2 (f>l/2)

by means of Av(z, r).

The following proposition is well-known as Sobolev's imbedding theo-

rem (see, e.g., Sobolev [12], p. 85).

Proposition 3.1. (1) For any s>l/2, 0<0<s-l/2 (0^1) and 0<a

<6 there exist positive constants Cs and CSj9 = CSj0(a, b) such that

and

for feHs and argr, rl9 r2^fc, where Hs denotes the class of all tem-

perate distribution whose Fourier transforms are L2 -functions, normed
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by NlH.= l l f l | l L > .
(2) All H2(R3)-f unctions are bounded and uniformly Harder

continuous i.e.,

|/(x)|=g const. ||/||H2

and

for feH2, 0<0<l/2 and xl5 x2eR3 .

The following proposition may be a dual statement of Proposition 3.1,

(1).

Proposition 3.2. For any s>l/2, 0<0<s-l/2 (0^1) and Q<a<b

there exist positive constants Cs and CSj9 = C5j9(a, b) such that

(3-2) .,.
(3-3) _ _ , ^

Js

/or heL2(S), a^rl9 r2^b.

Proof. Let 5f be an arbitrary C^-function. Then we have

and

by virtue of Proposition 3.1. Since C§> is dense in Lf, and Lls is the

dual space of L^5 the above inequality shows (3.2). A similar argument

can be applied to get (3.3). (The above proof has been suggested by

Prof. Ikebe.) Q. E. D.

The above proposition is made use of to estimate the integral
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( <f>v°(;c, rw)h(<D)da> in (3.1).
Js

Lemma 3.3. Let l / 2<f<( l+A) /2 . Then every Av(z, r) is a
bounded operator on &2(S) to Jfl,, satisfying

(3.4)

for he&2(S), For each J+(a, b)(J-(a, 6)),

zsZ positive constants C1 = C1(0 an^ C2 = C2(^ 0) SMC/J

(3.5)

(3.6)

for he&2(S), a^r, r^ r2^P, zeJ+(a, b)(J^(a, b)).

Proof. In the first place we shall prove

(3.7)

where the constant C3(0 is independent of r3a^rgjS. The estimate for

the part involving no derivatives in the left-hand side of (3,7) follows

directly from Proposition 3.2. For the first derivatives we see that

(3.8)

Applying Proposition 3.2 again to (3.8) gives (3.7). Next we proceed

to show

(3.9) R(z)Q(x)\ $°(x5 rco)h(co)dco
j s

C4(0 being a positive constant independent of r, a^r^^3 and of z

e J±(a, b). The above inequality is obtained in view of Proposition

2.3 and (2.1). Thus (3.5) is proved, and (3.6) is also proved by similar

estimates. Finally, in order to verify (3.4), we need only to take account
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of (1.1) and (3.8). Then we get

(LQ + Q(x)-z)Av(z,r)h

= (L0-z)( <PV°(*9 r(D)h
Js

<P°(x, ro})h(co)dw. Q.E.D.
s

Corollary 3 A !/2</<(l+A)/2. Let

(*, ra>)h((o)da>
S

for he^2(S) and for every real A swcft that |A|>1. Then we have

\\Av(z, r)h-

for /i6^2(S). (3.4), (3.5) and (3.6) /wld /or zeJ+(a ? fo)(J_(a, ft)).

Proof. As shown in the above lemma, \ ^C^ roj)h(a))da) belongs
Js

to e^1, for r>0, and, consequently, Q(x)\ ^(x, ra)}h(oj)da) belongs
Js

to J^r
2 for r>0 as a result of Proposition 2.3. Proposition 2.2 enables

us to obtain

• , r<d)h(a>)da)
s

in

as z->A±0£. Since the estimates (3.5) and (3.6) are independent of

ze J+(0, fe)(J_(a, fo)), they are also valid on the closure J+(a,

by taking the limit as z-*A + Oi (A -Of). Q.E.D.

Let C§)(R3-{0}) be the family of all C°° -functions with compact

support in R3-{0}3 and »ff = (Cj(R3))4, ^(R3

From now on, we assume l/2<t<(l+K)/2.
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Lemma 3.§0 Let Imz^O and

(3.10) Fv(z)/=(2<r3/2^ ffi/lf^ r*dr (v = p, n)

/or / such that /(^)=/(rco)e ^(JR3 - {0}), w/im? and in wfcaf follows

the integrals are taken in Bochner's sense (cf. e.g., Hille and Phillips

[6], chapter III). Then we have

R(z)f=Vp(z)f+Vn(z)f.

Proof, The integral (3.10) makes sense, for Av(z9 r)/(r-) is a

e?f lf -valued continuous function of r>0 with compact support in

(0, + oo ) (the continuity is ensured by Lemma 3.3 and the smoothness

of/). For any ^e(£?§> we have

(3.11)

by use of the following Proposition 3.6, (2). (1.2) and (3.4) yield

(3.11) = (27r)-3/2(+00r2 dr{ < ( (9*(x, ra)) + $°(x9 rcoj)f(ro})dco9 \l/(x)>dx
JO JR3 JS

= (27i)-3/2(+OCV2 dr( <( ei<x>rto> f(ra))dco, \ls(x)>dx
Jo Jit3 Js

= \ <f(x),\l/(x)>dx.
Jn3

Therefore we have

(3.12) (L-z)(Fp(z)/+ Fw(z)/)=/.

In order to complete the proof we have to show

To this end we arrange (3.12) as

(3.13) (L0 - z) (K,(z)/+ Fw(z)/) =/- Q(Vp(z)f+ Vn(z)f) .
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The right-hand side of (3.13), say g, belongs to j^2 because of Proposi-

tion 2.3. Taking the Fourier transforms of both sides of (3.13), we

obtain

which implies Vp(z) + Vn(z)feJ^ 1, because ge^2. Thus we may replace

L with H in (3.12). Q.E.D.

We summarize several properties of Bochner integrals used in the

paper (for the proof see Hille and Phillips [6], p. 73-p. 83).

Proposition 3.6. Let (S, J% //) be a measure space and X a Banach

space, X* the dual space. We denote by \ x(s)du the Bochner integral

for an X-valued integr able function x(s) defined on FeJ5".

(1) (Pettis) If X is separable, then strong and weak measurability

are equivalent notions.

(2) For any x*eX*9

<x*,\ x(s)du> = \
JF J

where <•,•> denotes the dual pairing of X* and X.

(3) Let T be a closed operator in X. If x(s)eD(T) (the domain

of T) and x(s), Tx(s) are integr able on F, then \ x(s)dueD(T) and
JF

T \ x(s)dn \=\ Tx(s)du.
LJF J JF

We shall consider the adjoint operator A*(z, r), mapping the dual

space e^fV1 of J^Lt to ^f2(S). Jf7^1 can be regarded as the completion

of &% with the norm

11^-1= sup \ <9(x),f(x)>dx
JR3

Noticing that ^i^cjgf^ an(j ||u||^2 ^||M||^I_ for u e J f L t , we have

^fa^ji and
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(3.14) Njrv^NI*?

for veJ??. The above inequality (3.14) shows that the restriction
of A*(z, r) on J^2 is continuous.

Lemma 3.7* For every /e JS?2

(3.15)

Proof, Let us take an arbitrary /GJ^2 with compact support-
Then we obtain

\ <^v(z3 r)h,f(x)>dx
Jm3

C <£?(*, r<o)h(a>)dm, /(*) - Q(x)R(z)f> dx
JS

( - x, rco) (f(x) - Q(x)R(z)f)dx > dw

= <

for he£*2(S), where we used Fubini's theorem by virtue of the absolute
integrability

gconst. ||/i||^S(|/(x)| + |e(x)U(z)/|)£/x< + ex)

(the summability of Q(x)R(z)f will be shown below). Thus (3.15) holds
good for /ej^2 with compact support. Since the aggregate of those
functions is dense in J^f2, (3.15) is valid for every /e«£?2 in view of
Proposition 3.15 (1). Finally we shall prove

(3.16) \Q(x)R(z)f\dx<
JB3

for/ejS?2 with compact support. Put u = R(z)f. Then we have

(3.17) <(L0 + G(*)Xx), *(*> -z\u(x)\2= <f(x), u(x)> .
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Integrating (3.17) by parts over r0^\x\^R(r0 is sufficiently large so

that Sro = {xi |x| = r0} encloses the support of /(*)) and taking the

imaginary part, we obtain

(3.18) (Imz)J < \u(x)\2dx

R2 C 3

= —7r-\ < S a>i<XjU(Ra))9u(Ra))>da)
2 Js j=i J

r2 r 3
_y_\ < ^ cDjOCjU^QO}), u(r0co)>dcD .
^ JS j=l

Since i i E ^ f 2 and, consequently, there exists a sequence {JR^} such that

RJ-+OO and K)( |M(^G))|2da}->0 (j->oo), we have from (3.18) that

(3.19) (lmz)( > \u(x)\2dx

r2 ( 3

2 Js j=i

This implies that

(3.20) ^ \u(x)\*dx<

and, by integrating (3.20) with respect to r0 from r to infinity,

u(x)\2dx.
\x\*r m Z J\x\*r

Repeating the integration we see

(3.21) \x\m\u(x)\2dx< + ao (m = l, 2,...).
Jn3

Since Q(x) is bounded in |x|^£0 (see the assumption (A) in §2), we have

\Q(x)u(x)\dx

g const. (( (l + \x\THldx)l/2(( ({ + \x\)m\u(x')\2dx}1/\
\J\X\^RO / \Jlx\^RQ /
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where m>3. Proposition 2.3 yields that

and, accordingly, that Q(x)u(x) is locally integrable. Hence we obtain

\Q(x)u(x)\dx< + ao
0

Thus (3.16) follows from these estimates. Q.E. D.

The following fact is obtained directly from Proposition 3.1, (1),

and Lemma 3.7.

Lemma 3o8. For each J+(a, b)(J,(a, b)), 0<0<f- l /2 and

there exist positive constants C1 = C1(f)y C2 = C2(t, 0) and C3 = C3(f)

such that

(3.22) \\A*(z,

(3.23) \\A*(z, rjf-AXz,

and

(3.24) \\A*(zt, r)f-A*(z2,

for fe^f, agr, rl5 rz^, z, zlt z2eJ+(a, 6)(J_(a, b))

Corollary 3.9. For fe&f and r>0

M*(z, r)/-A*a±Oi, r)/||^2(S) - > 0 (

and

(3.22)-(3.24) of Lemma 3.8 hold with z3 zl9 z2eJ+(as b)(J.(a, b)).

Proof, As a result of Corollary 3.4, ^4v(z9 r)ft converges in

to y4v(/l±0i, r)ft as z-»A + Oi for each /iej^2(S), which suggests that

z, r)/ tends weakly in ^2(S) to A*(A±0/, r)/ for fe&f. On the
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other hand v4*(z, r)/ is a Cauchy sequence in J^2(S) for /e^ f
2 by

means of Proposition 2.2 and (3.24) in Lemma 3.8. Thus we have

\\A*(z, r)/-^*(A±0/5 r)/||^2(S) - > 0

for /ej£%2. The last assertion of our corollary follows from the limiting

procedure. Q. E. D.

Lemma 3.10. Let Imz^O. Then

(3.25)

/or

„

Proof. Lemma 3.5 and Proposition 3.6, (2), lead us to

(3.26) (R(z)g, /) ^

for ^e^?§)(R3-{0}). Noting that

(R(z)f, g)^ = (g, R(z)f)*r2 = (0, R&f)**,

we can complete the proof in view of the arbitrariness of g. Q. E. D.

§4 Expansion Theorems

Let E(A) (E0(fy) be the right-continuous resolution of the identity

associated with the selfadjoint operator H = H0 + Q (H0). We know that

H has at most a countable number of discrete eigenvalues in ( — 1, +1)

(Proposition 2.1). We denote by /il9 ^2,... the eigenvalues of H in [—1,

+ 1], counted repeatedly according to the multiplicity, and by <pl9 (p2,-..
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orthonormalized eigenfunctions for /£19//2,... „

Definition 4.1. Let F*(r) = Av(tv^/r2 + l+Qi, r) for r>0. We define

the generalized Fourier transform /J(r) 0//eJ^f
2 foy

Theorem 4.2. For /e jgP ,2

Proo/. We shall show for l<a</J< + oo and - oo <«'</?'< -1 that

(4.2) ((£(/Q -£(«))/,/) = ( _ H/;(r)||i.2(S)r2dr,

(4.3)

and

(4.4) ((£(])-£(- 1 -O))/, /)=

from which our assertion (with the upper sign) follows, if we bring

a, a', ft, ($' to +1, — oo, +00, — 1, respectively ((4.1) with the lower

sign is similarly obtained). To prove (4.2) we make use of

Since (£(/L)/9/) is (absolutely) continuous with respect to A in (— oo9

— 1) and (+1, +00) (see Proposition 2.1), we have, using the resolvent

equation R(zJ - R(z2) = (zl - z2)R(z1)R(z2), that

i j i O
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Now let us select a non-negative Cj-function y(x) = y(\x\) such that

= 0, |x|g^/a2-1-2(5,

, gl, otherwise,

where § is a sufficiently small, fixed, positive number. Then we have

.5) = 4-limM'lK/7^^
*fc rj 10 ( Jet Jo. )

We shall derive

(4>6)

First we prove that lim/2(^) = 00» / i o

Set u = u(fjL9Yi9f) = RQi + iri)f9 so that

(4.7) (H0-n-irj)u=f-Qu.

On the other hand it follows from Propositions 2.2 and 2.3 that

(4.8) liewfe^ll

where the constant C1 does not depend on /.i+ifje J+(a, jS). Therefore,

taking the Fourier transforms of both sides of (4.7) leads us to

where C2 = C2(a, jS) is independent of ^ + f/;eJ+(a, jS) as a result of our
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choice of y(x). Hence we obtain

P
J20/) = *7\ V1"

J ct

which shows limI2(?7) = 0.

To study Ii(rj) we prepare a proposition (see Ikebe [7], p. 253 where

the same result appears).

Proposition 43, Let /(/:«, r\) be a continuous function defined on

[a, jS] x [09 ?70] (a<^, ?70>0). Then the following relation holds;

' 0, /l>/? or

2

Let us return to the proof of (4.6). From Lemma 3.10 we get

f+a

=(2<r3
Jo

VZ. r2dr

where we have used

(X*(z, r)/, ^*(z? r)/)^2(S) = (A*(z, r)/, ^*(z, r)/)^2(S) = 0 ,

which follows from (1.2) in §1 and (3015) in Lemma 3.7. In view of

Proposition 4.3 and Lemma 3.8 we have
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and that

is uniformly bounded for 0<?j?gl and resuppy, and converges to

0, >/r2 + 1<a or \/r2 + 1>£

as ?? i 0. Therefore we obtain from Fubini's theorem and Lebesgue's

convergence theorem that

lim/,(//)
i / 1 0

The argument for (4.3) is almost the same as the above. (4.4) reduces

to the well-known Parseval's equality of Fourier series. Q.E. D.

The above result shows us that

IIJ,, (v = p, n)

for /ejS?r
2. Since g^ is dense in j^2, there exists a bounded operator

ZJ in ^2 such that

(4.9) (Z±/) (ro) = (/±(r)) (o>) = (27i)-3/2(F±(r)*/) (o>) (co 6 S)

Theorem 4.4, Z* is a partially isometric operator on J?2 with

the range in \j/v^
2 such that
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(4.10) \\Z*f\\ = \\(I-E(lWl ||Z±/II = I|£(-1

for feJ£2
9 or equivalently

(4.11) (Z±)*Z± = /-£(!), (Z±)*Z± = E(-1-0).

(4.12) II / I I 2

(4.13) /=(

Let 0 be any 3P2-function with compact support not containing the

$+0

o
exists and belongs to &2, satisfying

(4. 14) (Z *)*g = (2n)~3/2 F*(r)g(r • )r2dr .
Jo

Proof. Since J^f
2 is dense in &2, we have from (4.2), (43) and

(4.4) that

and

for /ej^2. (4.10)-(4.13) follow directly from these relations. As

(/±(r))(a>)(/eJSf2) is in \l/v^
2 by Lemma 3.79 the range of ZJ is in-

cluded in \l/v^
2, for the range of a partially isometric operator is closed

(see Kato [9], p. 258). In order to prove our last statement (4.14) we

have first to see that the integral exists. For the strong measurability

we need only to assure the weak one by means of Proposition 3.69

(1), for jflt is separable. For each /e 3?2

(F*(r)g(r-),f)#2 = (g(r')9 F±(r)*/)^(S) (r>0)

is a Lebesgue measurable function with respect to r by virtue of Corol-

lary 3.9. For /e.^71 there exists a sequence {./}}<= ̂ 2 such that

Then
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j-»oo

is measurable as a limit of measurable functions convergent almost

everywhere on (0, +00). Thus we have proved the measurability. Since

the compact support of g has no intersection with the origin, we obtain

g const. \\g\\#29

where the constants depends on the support of g. This guarantees the

S+ oo
F$(r)g(r-)r2dr, Then (4.14) is

o
seen from

for/eJS??. Q.E.D.

Z* and Z~ have the following integral representation with generalized

eigenfunctions.

Theorem 4.5. Let %={yj}j=i,2 ..... a be the set of all the singurarities
of Q(x). Then there exists a 4x4 matrix $*(x, r, co) such that

(4.15) F*(r)h = ^±(x, r, Q))h(co)dco
j s

for hG^2(S). 4>J(x, r, •) consists of L2(S)-components, locally Holder

continuous in L2(S) with respect to x e R 3 — Z and uniformly bounded

in L2(S) for u^r^P (0<a<j5<oo). Z± w

(4.16)

for /ej§?2 wf^/i compact support in R3— I1, ^(x, r, co) 77203; ^ called

generalized eigenfunctions in the following sense:
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(4.17) (Lo + Q(x))( *±(x, r, co)/z(o>)<to
Js

= tv^r2 + l \ $*(*, r, co)h(co)dcD

for any he^2(S).

Proof. Let us take an arbitrary y^eCgXR3 —I) such that y(x)
xeJa, for a positive number a, where

*; |;t| ^a and max \x-yj\gz—L

We recall the definition

for heJ?2(S). Multiplying the above equation by y(x) and operating

L0, we have

(4.18)

(
J

and, consequently,

for agrgj?, where Cx is independent of he&2(S) and agr^jg. We

operate L0 again to (4.18) and use the differentiability of Q(x) except

on I1. Then we have in the same manner

(4.19) \\L%(yF*(rm**£C2\\h\\#2(Sy .

Sobolev's imbedding theorem (Proposition 3.1, (2)) and L§=—

imply that
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(4.20)

and

(4.21)

for x, x'eJ f l3 agr^jg and 0<0<l/2. It follows from (4.20) that the

mapping

h — (F±(r)fc)m(*) (m = l ,2,3,4)

is a bounded linear functional on &2(S) for each x e R 3 — Z and r>09

zm denotes the m-th component of z. According to Riesz's representa-

tion theorem there exists a vector (p$ttn(x, r, -)e J^2(S) (xeR3 — I, r>0)

such that

(4.22)

So we set

<p± f l (* f r , o>) \

\ <p± 4(*, r, co) /

which yields (4.15). (4.20) and (4.22) give us that

4 r
:, r, co)|2dco= ^ \ |c/)Jm(x, r, co)\2d

m=l Js

4 /f ,. - , V/2

?n=l ' \Js

Therefore we have

(4.23)

for xeJa and x^r^p. Similarly we get from (4.21)
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(4.24) ||*±(x, r, •)-

for x, x' eJa and a^r^g/? (the idea of the above proof is due to Agmon
[2], Lemma 2.1). In order to see (4.16) we take any /ej^2 with com-

pact support in some Ja, Then we have

(4.25)

where we have used Fubini's theorem, which is possible because

SUP !!
xesupp[/]

Thus we obtain

(4.17) is seen by substituting Tv^/r2 + l + 0i for z in (3.4):

(4.26) (L0-

= (L0 + Q(xj)F*(r)h = (L0 + QOOMvfo Jr^+i + Of, r)h

= TV ->/r2 + 1^4V(TV -s/r2 +1 + Of, r)ft

= TvX/r2 + i\ ^J(x? r, (&)h((D)d(D .
Js

Thus the proof is complete. Q. E. D.

§5* Orthogonality Eigenfunctions

Theorem 5el0 The image of the patially isometric operator Z*

on J?2 coincides with \l/v<g2.
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Proof. We shall give the proof for Z+ alone (the other operators

can be treated similarly). We know in Theorem 4.4 that the range of

Z+ is contained in \l/p^
2. To prove that Z+ maps onto ^J^2, it suf-

fices to verify

(5.1) 9=Zt(Z+)*g

for every gEil/p3P2. If we assume the contrary to (5.1), there would be

gG\l/^2 such that

(5.2) h = g-Z+(Z+

Then let us put

I h(x), l/n<\x\<n

0, otherwise .

Since hn tends to h in J?2 as n->oo, we have from Theorem 4.4

(5.3) s,,=(zp+)*/zn — (z+)*/,=(zp
+)*s -(zj)*z;(z+)*0

=(z+)*flf-(z;)*g=o.

Now we shall consider the following integral

f+co ,.2
+l_

where Imz^O. SB(z) satisfies

(5.4) (

Indeed, it follows from Corollary 3.4 that

l/n ^/rz + l— Z

i /«\ / / - 2 + l— z
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= (sn,
l / n

for (p e<g<§. Proposition 2.3 and (5.4) yield

which means that SM(z)ee^
71 and Sn(z) = .R(z)sB. We notice here that

Sn(z) converges to 0 in J^2 as n-»oo, because of (5.3). Let us take

an arbitrary compact set D in R3 — I. Then we obtain from the above

fact

(5.5) li
n-

On the other hand we have

(5.6) ( Sn(z)dx = (2n)-*l2\n -7^ - dr\ F+(r)h(r.)dx .
JD Jl/n^r2 + l—Z JD y

(4.16) in Theorem 4.5 and (4.25) in its proof shows that

0 = 1, 2, 39 4),

where Xj is a vector-valued function such that the j-th component is

a characteristic function of D and the other components equal 0 identical-

ly. This implies that

°°K F+(r)h(r-)dx

Thus we can take the limit of (5.6) as «-»oo5 and obtain

(5.7) P-TTTT - dr\Jo /r2^! — z JD

for Imz^O. Putting z = A±ie into (5.7), integrating over [a2 + !3j82

with respect to A(0<a<j8) and making e 4 0, we have, from Proposition

4.39 Fubini's theorem and Lebesgue's convergence theorem,
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Va 2 +l

_

Ft(r)h(r • }dx .
a JD

^rf A 2r f rf Fp+(

c2 / Jz>

Hence we obtain

(5.8) F+(r)h(r-) = Ap(^/r2 +1 — Of, r)/i(r-) = 0

for almost every r>0. Now we define

u(x9 r) = \ $? (.x, ra))h(ro})do},
)s

which belongs to 3?\t for a.e. r>0 (a.e. = almost every) in view of

Proposition 3.2. Then u(x, r) satisfies

(5.9) L0u = ̂ r2 + lu

for a.e. r>0. On the other hand it follows from (5.8) and the de-

finition of Ap that

that is, u(x, r) is the limit of

as e 1 0 in the topology of 3F Lt. uE(r) fulfills, from the above de-

finition,

- IC)MB = Q(u - UE) ,

and, as a result of Proposition 2.39

n

Then we can prove w ( - ? r ) e ^ f 2 for r>0 by the same argument as

appears in the proof of Theorem 4.1 of [15]. In view of (5.9) we see
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u(x, r) = 0 for xeR 3 and a.e. r>0. Thus we obtain from (1.3) and

which contradicts our hypothesis (5.2) (/z^O). (The above proof is
along the line of Ikebe [8].) Q.E.D.

Theorem 5.2. fe^C2 belongs to the domain D(H) if and only

if VI?F+T(Z±/)«)e^2(v=P and n). For feD(H)

(5.10) Hf= (Z±)*{ VRFTT(Z± /) (^)} + (Z±)*{ -

(5.11) (

Proo/. An application of (4.2) and Theorem 4.4 gives

and, therefore,

(5-12) -£

for ju>l and/eJ^f2 . The above fact (5.12) implies

(5.13) \\Hf\\2^+"ii2d\\E(M\\2 = ^

for feD(H). Therefore it turns out that

for /e D(H). Similarly we have
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for feD(H). Thus the "only if" part of our first assertion is proved.

Before proving the "if" part, we show (5.10) and (5.11) for /eD(H).

It follows from a calculation similar to (5.13) that

/,,)=(,
JR3

for feD(H) and ge^2
e Noting that /|£|2 + l(Z±/)(£)e J£?2 for feD(H)

we have

(5.14)

for/eD(H). In the same manner we obtain

(5.15) £(-i«0)H/=(Z±)*{-vT?F

for feD(H). According to the expansion theorem for Fourier series

we have

(5.16)

for feD(H). Thus (5.10) follows from (5.14), (5.15) and (5.16). Since

Z* and Zj are partially isometric operators with the initial sets (I

and E(-l-O)^2, respectively, as a result of Theorem 4.43

we have

Z±(Z±)*=Z*(Z±)*=0,

Therefore (5.11) is verified from (5.1) and (5.10) as

±/) (0 .

Finally we prove that/e.2?2 is contained in D(H) if
2(v = p, n). Let

(5.17) fl/= (Z±)*{ VHFH(Z±/) (0} + (Z J)*{ -



682 OSANOBU YAMADA

for fe&2 such that ^RpT^Z^XOe^2 (v = p, n). Since

for fe^2 (because of |/^-|^l), the third term in the above definition

(5.17) makes sense in j^2. From the definition, H is obviously a sym-
metric operator in jSf2. Moreover, the domain D(H) includes D(H),

as has been seen at the beginning of our proof. Therefore, H is a sym-

metric extension of the self adjoint operator H. Hence H must coincide
with H (see Yosida [16], p. 350). Q.E.D.

Remark 5S30 For every real t

for/e^2, where eitH = (eit^dE(X).

The proof of the above remark can be given along the same line

as the proof of Theorem 5.2.

§69 Wave and Scattering Operators

The wave operators are defined as

Q± = s- lim eitHe-itH°9
f-»±oo

when the right-hand strong limits exist. Then S = O$O_ is called the
scattering operator. According to Kato [9], Theorem X-3.2, the wave

operator, if it exists, is isometric with the final set included in (I—

The following proposition is proved by Prosser [11].

Proposition 6.1. Let Q(x) be a 4x4 matrix-valued function such

that its components are locally in L2(R3), and
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Then if f(x) is infinitely differentiate with compact support,

(6.1)

In consequence of the above proposition and Theorem X-3.7 in Kato
[9], the wave operators Q± exist for our Dirac operator satisfying the
condition (A) in §2. Our goal in this section is to show

Q±/=(Z±)*Z°/+(Z±)*Z°/

for every /eJSf2, and that the scattering operator is unitary. To this

end we prepare several lemmas.

Lemma 6.2. Let us define

for feJ?2. Then W± is an isometric operator from £?2 onto (/ — £(!)
2

3 satisfying

(6.2)

(6.3)

(6.4)

(The isometric operator W+ is called the stationary wave operator.)

Proof. Since Z±(Z,y) are partially isometric operators with the

initial set (I-E(IJ)£>2(E(-1-Q)&2) and the final set
W± are isometric operators, that is,

Furthermore we have

Z? W*± = Z?(ZP°)*Z± + Zv°(Zn°)*Z,f = Z±
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In order to prove (6.3) we make use of Theorem 5.2 to get

W*±Hf= (Z°)*Z±H/+ (Z°)*Z*Hf

for feD(H), which gives PFJ//" dH0fF$. The other inclusion is obtained

by an application of Theorem 5.2 again. If W%f is contained in the

domain D(H0) = ̂ T1(R3), then

(v = p, n),

which implies /eD(H) by means of Theorem 5.2. Hence we have

D(H0W£)cD(W$ir). Thus (6.3) is proved, and (6.4) is a well-known

consequence of (6.3) (see the proof of Theorem X-3.2 in Kato [9]).

Q.E.D,

Lemma 63. Let f belong to D(H0). Then

in

for Imz^O and —

The proof of the above lemma is given by straightforward calcula-

tions in view of Proposition 2.3.

Lemma 6A For any real 1 such that |/1|>1

Proof. The lemma is almost trivial from Propositions 2.2 and 2.3

and the (second) resolvent equation

for non-real z. Q.E. D,
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The following lemma is evident from Lebesgue's convergence theorem.

Lemma 6.5, Let <p(s) be an integrable function on [0, +00).

Then

S t C + oo
(p(s)ds = Mm \ e~ES(p(s)ds.

0 elO Jo

Theorem 6.6. W± (defined in Lemma 6.2) coincides with the wave

operator Q±9 i.e.,

JF±=s-lim eitHe~itH° .
f-»±oo

Proof. It is enough to show FF|O± = 7, because then, by Lemma

6.2,

Since

~

in ^2 for every feD(H) = D(H0\ we have

(6.5) (WfeitHe-itn°f, g)-(W$f, g) = & (W^eisHQe~isH°f, g)ds
JO

for feD(H) and ge£>2. Lemma 6.2, (6.4), yields

(6.5) = i (eisH«W%Qe-isH»f, g)ds .
Jo

By Remark 5.3 and (6.2) in Lemma 6.2 the above integrand can be

changed into

(eisH°W*Qe-isH°f, g)

v=p,n

v=p,«jR3
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Hence we have

(6.6) (w^e'^e-'^f, g) - (W*+f, g)

= i[ ds -£ \
JO v=p,n JK3

Take the limit of (6.6) as t-*co. Then we see from Lemma 6.5 that

= lim i
e iO JO

= lim/
r+oo r+oo
\ i-2 J/-\ (Z+ee-''
JO Jo

where we have used Fubinfs theorem. Let us recall the definition

(4.9) of Z+3 and note Qe~isHQfE^ for feD(H0), because of e~isHQf

eD(H0) and Proposition 2.3. Then we have

E;o v Jo Jo

for/eD(H0) and ge^C2. Lemma 6.3 yields that

f, g)-(Wlf, g)
C + QO C + OD

S\ r2dr\
slO v JO JO

eiO v JO

Since

f + fe)/ll^(s)^C(flf t)||/||^2
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by virtue of Lemma 3.8, we obtain

(6.7)

= (2n)~3 /2 Z
v J 0

for feV$^D(H0)n&} and # E^o°(R3-{0}). It follows from the
definition of W+ that

(6.8) (W$f, 0)

v JO

for/ejS? r
2 and gG&2. (6.7) and (6.8) are combined to show

^^v Jo

Corollary 3.9, Definition 4.1 and Lemma 6.4 give that

i) (/+ e^s

where J5" denotes the Fourier transform. Thus we have finally

(W*Q+f, ff)=
v JO

o0 and £e^o°(R3-{0}). As &$ and ^o°(R3-{0}) are dense in

c^f2, we have WfQ+=I. A similar argument applies to show W*Q_

= /. Thus we have completed the proof. Q.E.D.

Theorem 6.7. The scattering operator is unitary.
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Proof. Since the Image of the isometric operator W-(W+) is (I

-£(l) + £(-l-0))j^2 and the adjoint operator W$ (of the isometric
operator W+) maps (I-E(l) + E(-i-0))jS?2 onto J^2 in consequence
of Lemma 6.2, the scattering operator

is unitary. Q.E.D.

In concluding this paper we give the final remark.

Remark 6.80 One of our assumptions on Q(x) (in §2)

(a.3)

for some p>3, can be replaced by a somewhat weaker condition

fa iv SUP \ i^JH+e dy< + co
(a«3) xeB£+J\X-y\*l \ X - y \ l + 0

for some 0<0:gl. The condition (a.3) is assumed in the present paper

and [15] merely to obtain

\u(x)\*dx
Q+1

for any s>0 and ue^yl(BRo+1). Evans [5] in his Lemma 7 (which
came to the author's attention after the completion of [15]) proves (2.2)
under the condition (a.3)'. Therefore all our assertions hold without

any modifications, supposing the conditions (a.l), (a.2) and (a.3)'0
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