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Hypoelliptic Degenerate Evolution Equations
of the Second Order
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§ 0. Introduction

We shall study in this paper the hypoellipticity of the following

partial differential operator,

(0.1) P(x, t; Dx, dt) = d}+A(xy t; DJdt + B(x, t; Dx),

A(x, t;Dx) = i «/(*» t)tlJDp
x-J, (/^O, integer),

2P
B(x, ti Dx)= Z bk(x, i)t™*D2

xt>-\ (mfe^0, integer),
k=0

where d, = 3/3f, Dx=-id/dx, (x, t)eRxx!t, /r = (-l, 1),

a/jc, 0, bk(

For degenerate parabolic differential operators, the study of hypo-

ellipticity has been made by many authors (see [1]~[9]). But for

degenerate ]?-parabolie differential operators, its study has not been made

so detailed (see F. Treves [10]). So we shall give a sufficient condition

for the operator given by (0.1) to be hypoelliptic by constructing very

regular parametrices of the operator (see Y. Kato [2], T. Matsuzawa

[8]). The operator considered here is a special one, but we want to

give an elementary relation between the order of degeneracy of the co-
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1) a(x91)^^(1^^°^} means that a(x, t)^g$™ for any fixed t^7t and infinitely continu-
ously differentiable with respect to t in the usual topology of ,^~, where ^~
= {u(x)<=C°°(Rx)i \d«u(x)\^Ma for any a}.
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efficient and that of derivative, based on the notion of "modified order"

defined in M. Miyake [12]. And for general degenerate p-parabolic
differential operators of type (0.1), our result in this paper will become
a fundamental one (see K. Shinkai [15]).

In Appendix A we shall study the hypoellipticity for the degenerate

parabolic differential operator given by

(0.2) P(x9 t; Dx, dt) = dt+ £ f''0/x, f)Dx
m~J.

In Appendix B we shall see that for the study of hypoellipticity of

degenerate parabolic differential operators the notion of modified order
is a useful one, and we shall be concerned with the operator,

(0.3) P(t\ DX9 dt) = dt + atl°Dx
m + btl*Dx

n
9

where m>n and, a and b are non-zero real numbers.
Finally, we note that our result in section 1 can be extended lo

the operator defined in Rxxlt, and it is given in section 8.

§ I.

Our purpose in this paper is to give a sufficient condition for the
operator P(x9 t; DX9 dt) given by (0.1) to be hypoelliptic. And for this

purpose let us assume:

(i) p is a positive even integer,

(ii) jV('o + l)^(P-./)/((/+ !)» J = 13 2,..., p,
(iii) 2p/(m0 + 2) ̂  (2p — k)/(mk + 2), k = 1, 2,..., 2p,

(H){ (iv) p/(/0 + l) = 2Jp/(m0 + 2), that is, m0 = 2l0,

(v) A2 + fl0(x, OA + fc0(X 0 = 0 has simple roots A = Ai(x, t) (i=l, 2)

or a double root (11=12) in Rx*It> and they satisfy that
( ReA;(x, 0=~^ for some positive constant d.

Then we have

Theorem. Let P(x, t; Dx, dt) be the operator given by (0.1) and let

P satisfy the conditions in (H).

(i) // /0 is a non-negative even integer, then P and its adjoint 1P
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are hypoelliptic in Rxxlt.

(ii) // 10 is a positive odd integer, then *P is hypoelliptic.

We note that under the conditions in (H) we can easily show that

it suffices to consider the following operator instead of P given by (0.1),

(1.1) P(x, *; Dxy dJ = (dt + A(x, t;

A(x, t; DJ=
J=o

where we may assume without loss of generality that ap bj9

^?)-
Then the conditions in (H) are transformed into

i" (i) p is a positive even integer,

(ii) iV(/o + l)£(p-j)/(0+l)> j = l,2,...,p,
(hi) p/(/0 + l)^(2p-fc)/(mjk + 2), fc = l,2,...,2p,

(iv) Rea0(x, 0^^> Refo0(x3 0^^ m Rx
x^t f°r some positive

I constant d.

In fact, it suffices to check that (p-j)/(lj + i)^p/(l0 + l) and (p-fc)/

p/(/o + l) imply (2p-j-k)l(lj + lk + 2)£plVo + U and that (5t

B) + D(x, t; D^ + CCx, t; />x) = (at+4 + D)(5, + JJ)-DB + C.
Hence in this paper we shall prove our theorem for the operator

P given by (1.1) under the conditions in (H). And we shall only prove

Theorem-(i), since the proof of Theorem-(ii) is obtained easily combining

our argument and that of Y. Kannai [1] or Y. Kato [3]. Therefore

throughout this paper we assume that J0 is a non-negative even integer.

In section 2 we shall give an outline of the proof of our theorem

and sections 3-7 are devoted to the proof of our theorem.

§28 An Outline of the Proof of Theorem

As mentioned in section I, we shall prove only Theorem-(i), so we
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assume that 10 is a non-negative even integer.
Let ^r(x, y, t, s) be a kernel defined in RxxRyxItx Is defined by

(2.1)
-l J-oo

where t;(j;5 5) e Cg^ x Js) and £(£, s) denotes the partial Fourier trans-
form of v(y, s) with respect to y, that is,

, s)dy .

Then from a formal calculation we can obtain a condition on K(x, £,
t, s) that 3f becomes a fundamental solution of P. Indeed,

-l -oo

, & t,

, t ; D "

implies that in order that JT is a fundamental solution of P (i.e.
= u), it must be hold that

= n -

K(x, c, t, s)|r=s = 0, dtK(x, £, t, s)|,=s=l,

(K(x, £, t, s) = 0 in -1

(2.2)

Now let {Kj-(x, ^, t, s)}jL0 be a sequence of approximate solutions
of (2.2) denned by

t P(x, t; £, dt)K0(x, £, t, s)=0 in - l<s<t<l,
(2.3)

I X0|,..=0, dtK0\t=s=l, K0=0 in

r P(x, t; 5, 3,)^= -Pi(x, t, 5; D», 5,)^-! in -
(2.4)

1, 7 = 1,2,...,
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where P^x, t, c; DX9 dt) = P(x, t;£ + Dx, dt)-P(x, i\ & dt).

Then obviously we have

(2.5) PXtt | ^j(x, y, t, s)v(y, s) = v(x9 0
Lj=o J

-l -oo

for any v(y, s) e C<§(Ry x Js), where ^ j is a kernel defined by oscillatory

integral,

(2.6) jf/x, y, t, s) =

Hence we have

(2.7) P,pl[ Zo JT/JC, y, t, s)] =3(x-y, ^-s) + Ffe(x, y, t, s),

where (crFfc)(x, c, r, 5) = Pt(x5 f, f; DX9 dt)Kk(x, f, f, s).

Therefore in order to prove the hypoellipticity of fP5 it suffices to

show (see L. Schwartz [13]),

Proposition 2.1.

a) JTj(x, y, t, s) are regular in (x, t) and also in (y, s).

b) JT/X, y, t, s) e C»(W)9 W= {(x, y, *, s) e Rx x ̂  x /, x Is;

(c) For any fixed non-negative integer N, there exists kQ such that

Fk(x9 y, t, s) e CN(RX xRyx!tx I8) for any k ̂  fc0.

The proof of this proposition is given in section 3 assuming an

elementary Proposition concerning K/x, £, t, s), (j = 0, 1, 2,...).

§3. Proof of Proposition 2.1

An elementary proposition for the proof of Proposition 2,1 is the

following,
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Proposition 3.1. Under the assumptions in Proposition 2.1, there

exists a positive constant d0 satisfying

(3.1)2) I

(3.2)3)

w — l<s^ f< l , /or some positive constants C and e depending only

on I, v5 /i flftd jo Wfe note that the constant d0 does not depend on /, v5 /x

a/irf y.

Remark 3.L It also holds that

(3.3) d^Kj^O as ^\s5

(3.4) 5J+1 S^ICjZjO as f\s if

(3.5) S^SiSgX^O as r\s if /gy,

where z$ means uniform convergence in x and f. In (3.5) its con-

vergence is uniform in A; and f when f varies in a compact set.

The above proposition and remark imply Proposition 2.1 by the

same way as T. Matsuzawa [8]. In fact, let us prove it assuming Propo-

sition 3.1, and Proposition 3.1 will be proved in the following sections.

Proof of Proposition 2.L At first let us show

Proposition 392* The oscillatory integrals

(3.6) jr/x, y, i,s)=(2n)-i(tC e«*-'KKfa t, t, s)d£, j=0, 1,...

2) (3.1) implies immediately
(3.1)' |ai9jJCy|^C(l+|f |)-^o

In fact, it suffices to note that

where X is denned by (4.11).

3) S{,. = 3i^I



HYPOELLIPIIC DEGENERATE EVOLUTION EQUAITONS 697

belong to C™(W), where W={(x, y, t, s)eRxxRyxItx!s; \x-y\ + \t-s\

Proof. It is obvious that JTj(x, y, t, s) is infinitely differentiable

when t^s. Let us consider

Then from Proposition 3.1 and its remark we see that for any fixed

non-negative integer N, if we chose ^ so that n>Np—jd0 + l9 then for

any /, v, K such that / + v + K ̂  N we have

lim SJ.^jCx-^jr/x, y, t, s)=0,
t\s

which implies that (x-y)WjeCN(RxxRyxItxls). Q.E.D.

Proposition 3.3. Jf' j(x, y, t, s) is regular in (x9 t) and also in (y, s).

Proof.

(i) The regularity in (jc, 0 follows immediately from that

)^ for v(y,

(ii) For the proof of regularity in (y9 s), we use the following

Lemma 3.1. (Hormander [6]) Let a(x9 £) e Sm(^ x R^), 4) then for

any v(x) e CQ(RX) and any non-negative integer N we have

(3.7)

for some positive constant CN.

4) Sm(RxxRs) (=S^Q(RxxRs)) denotes the class of symbols of pseudo-differential
operator of order m, S-°°= n Sm.
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Let us now consider

fic, y, t, s)u(x, t)dx

^Kj(x, $, t, S)«(x, f)dx}dt
/-oo \ - o o

Then from Lemma 3.1, F(£, t, s)G<f°°(ZM; S"00), (4sS= {(f, s); - l<s^£

<!}) which implies that

\ Jf /(x, y, t, s)u(x, t)dxdt
JRx*It

, s)d$EC»(RvxIJ. Q.E.D.

Proposition 3A For any fixed non-negative integer N, there exists

k0 such that for any k^k0 it holds that

^x, t, $; DX9 dt)Kk(x, ^ t,

Proof. It is obvious from Proposition 3.1 and its remark,

Summing up the aboves, the proof of Proposition 2.1 is completed.

Consequently, the hypoellipticity of *P is obtained. The hypoellipticity

of P follows if we repeat the same reasonings for the operator fP(X

§4B Study of K 0 (x 9 f 9 t 9 s)

Remember that K0(x3 ^ t, s) is the solution of the equation (2.3).

We shall prove Proposition 3.1 for K0 dividing many steps.

4.1. Preliminary. At first, let us consider the following ordinary

differential equation,
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P0(x, & t; dt) v=(dt+A(x, t; &)(dt + B(x, t;t;))v=Q

(4.1) < in -Ks<f<l ,

Uu = 0, 3,i>U=l-

Then the solution of (4.1) is given by

(4.2) v(x, & /, s)= {'ex? \('B(X, a; t;)da + (' A(x, <r; Qda] dt ,
Js LJ-c Js J

in — l < s r g f < l . Then for v(x, £9 t, s) we have

Proposition 4.1. Under the assumptions in Theorem-(i) we have

(4.3) \

(4.4) l

/or so/rze positive constants C and e depending only on /, v

Moreover the facts stated in Remark 3.1 a /so /ioW for v.

For the proof of this proposition, we prepare the following two

lemmas.

Lemma 4.1. (M. Miyake [12]) The conditions that

= l > 2 , . . . 9 p ) imply that

(4.5)

(4.6)

for —l<s^t<l, where C is a positive constant independent of t and s.

Lemma 4.2. Let us assume the conditions in Lemma 4.1 and let

A(x9 t; £) be given in (4.1). Consider now

(4.7) E(x; £, r, s) =

if Rea0(x, 0 = ^ for some positive constant 6, we have
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(4.8) |21jS^£|^C(l + |^|)'p-"exp[-s(^+'-S'o^)l^lp].

Moreover we have

(4.9) |3{fSajSjjE|:30 as t\s when f i > l p .

Proof, dl
tjS8^d^E is expressed by a linear combination of terms,

(4.10) JS(x, & t, s)x n dydA(x, T; OdrxD

. |^/, where |I| denotes the
i j k i j k

number of elements in J. Without loss of generality, it suffices to assume

that |£|>c>(X Let

(4.11) Jf = (^+1-s'0+1)1/pl5|.

then using the assumptions and Lemma 4.1, we obtain

(4.12) |E(jc, £ t9 s)| g const, exp [-

On the other hand we have easily that

(4.13) , T;

j=o

(4.14) max {\d\d^A(x9 t; Q|, |5^5^(x? s;

Combining from (4.12) to (4.14), we have the desired inequality (4.8).

Finally, (4.9) is now obvious, since from the assumption that

in (4.10) there exists at least one of terms of Sj'SjM A(x9 T;
Js

Q.EO

Proof of Proposition 4.L Let

(4.15) G(x, {, r, T, s) = exp fl(x, a; Qd(j + X(x, cr;
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Then from Lemma 4.2, we have easily that

which implies immediately the inequality (4.3).
In order to prove (4.4), we use the following,

Lemma 4.3. (T. Matsuzawa [8]) Let f(t, T, s)eQ°T>s, (sgt^O* then

(4.16) 3f 3J ( j V(r, T, S)dr)= J V,3*/C, T, s)dr

^

+

Now we remark that we have by the same way as the proof of
Lemma 4.2 that

(4.17) |3{ftfSfl;3SG(x, 5, t, T, s)|

Hence, in order to evaluate 3{^flj3^ v it suffices only to consider

(4.18)

Now without loss of generality we may assume that 8l
t+s

L=dl
tsSdt, then

dl
tiSdtd^G(x, £, r, T, s) is expressed by a linear combination of terms,

3l't&'d$'B(x, t; Qxdtt'drv'd$-»'G, (l'£l, v'^v,

Considering (4.17), it suffices only to consider the term,

(4.19) dl'ff%B(x9 t; S)dlfJdrv'^'G(x9 §, f, T, s)
Js

On the other hand, we can show from Lemma 4.1 that
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*'B1'B(x9 t; 0|gC(f-s)( f
j=o

which implies immediately the inequality (4.4). Q.E.D.

4o2e Integral equation,, We note that the solution K0(x, £, t, s) is
also the solution of the following integral equation,

(4.20) K0(x, t, t, s) = v(x, t, t, s)-('v(x9 t, t, r)C(x, T; 0
Js

x K0(x, £, T, s)dr.

And the solution K0 of (4.20) can be approximated as follows,

(4.21) K\?+l\X,t,t,S) = v(X,t,t,s)

-{'v(x, £, t, T)C(x, T; g)Kk\x, t, -c, s)dt, n=0, 1,.
Js

Using (4.16) and (4.17) we shall prove Proposition 3.1.

43. Estimate of 5;5gK0. For this purpose let us prove

(4.22) |djaS{*i»+i>(x, £ f, s)-*^*, §, r, s)}\

« = 0, 1, 2,..., for some positive constants C9 M and e9 where C(r, s;
is defined by

In fact, let us show (4.22) by induction on n. Since

= -\'v(x9 ^ t, t)C(x, T; £Xx, ^ T, s)dt?
Js
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— K(Q°y] is expressed by a linear combination of terms,

Hence using Proposition 4.1 we can obtain the desired inequality (4.22)

for n = 0. We note that c and M can be taken independently in v, \JL

if |v|, \fJ,\^N for fixed N. Considering that K(
O

M) are determined by

(4.21), we can easily obtain (4.22) by induction on n. (4.22) implies

immediately that

(4.23) |

Lemma 4.4. Under the assumptions in Theorem-(i), it holds that

/c = l, 2,...,2p, /or so???e positive constant C.

This is a special case of Lemma 5.2.

Then from Lemma 4.4 we can show that

which implies

(4.24) |3j3JX0(x, {,

for some positive constants C and £.

4.4. Estimate of dtd
v
xd%K0. Differentiating both sides of (4.20) with

respect to t, we have

dtK0 = 8tv- dtv - C - K0 dt .
Js

Now in view of (4.24) and Proposition 4.1, we have
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On the other hand, from Lemma 4.4 we have

(4.25) (f-s)2C(f, s; £)exp[-£'(^0+1 -s1'*1)!^]^ const,

which implies

(4.26) |5r^X0|^const(l + |^|)^exp[-8(^+1-s^+1)|^p],

for some positive constant e.

4,5, Estimate of d.d;dgK0. Differentiating both sides of (4.20)
with respect to s, we know that dsK0 should satisfy the following integral
equation,

dsK0(x, £, t, s) = dsv(x, £, t, s) - (*v(x9 f , t, T)C(x, T; 0
Js

x dsK0(x, ^ T, s)dT.

Then using Proposition 4.1, we can show by the same way as the

estimate of d*d%KQ that

(4.27) |a55^

4.6. Estimate of dJB-dtflj3{jlC0. At first we note that

(4.28) (f-s)C(f, s; Qexp [-8(^+1 -

Let operate 5{sS5f both sides of (4.20), and then using Lemma 4.3, the

assumption of induction on I, (4.25) and (4.28) we have easily obtain
the desired inequality,

(4.29) |^A^K0|

for some positive constants C and e.

47, Estimate of dl
s
+ldv

xd1K0. Let operate 5i+1 to both sides of

(4.20), then we can show that dl
s
+1K0 should satisfy the following integral

equation,

(4.30) 5i+1K0(x, {, t, s)=G(x, £, t, s) - t<x, f , t, t)C(x, T;
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Then from the assumption of induction we have

(4.31) |3j3gG(;c, & f, s)|^C(l + |^|)^^exp[-8(^-M_s^o+i)|^|P].

Hence using (4.31) we can get the desired inequality,

(4.32) Ifli+^^Kol^Ca + l^-MexpC-eC^+i-s'o+^l^p],

for some positive constants C and e.

Summing up the aboves, Proposition 3.1 for j = 0 is proved. On

the other hand, the facts stated in Remark 3.1 are almost obvious

considering (4.9) and the proof of our proposition.

§5. Preliminary for the Study of KJ9 j = l, 2,...

Let us remember that KJ9 (j = l, 2,...) is the solution of the equation

(2.4). On the other hand, we know that Kj is given by

(5.1) Kj(x, £, t, s)= - KQ(x9 ^ t, !)?!(*, T, 5; D» d,)Kj.,(x9
Js

in — l < s ^ f < l . Where Pt is given by

(5.2) P±(x9 t, f ; D,, af) = P(x, f; { + D,, dt)-P(x, t; ^ 8t).

We shall prove Proposition 3.1 by induction on j. Then from the as-

sumption of induction and conditions in (H), it suffices to prove the

inequalities in Proposition 3.1 when we put the following operators

instead of Pl9

(5.3) a(x,

(5.4) a(x,

where a(x,

Hence in the followings we shall study the following two integrals,

(5.5)
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where P/(l0 + l)>(p-k)l(lk + l), k = l, 2,..., p.

(5.6) I(f(X, £, (, S)= ('K0(X, £, t, T)T»*fl(x, t
Js

where p/(/0 + l)>(2p-fc)/(mfc + 2), fe=l, 2,...,2p.
Let us now give two lemmas which are important to our purpose.

Let £(>!) be defined by

(5.7) J*

Lemma 5.1. Le£ JR be ?/ie number defined by (5.7),

(5.8) f' | T | ̂ T^ C(/'«+1 -^^+i)(p-j)K/p9 j= i929...9 p 9
Js

for some positive constant C independent on t and s,

Its proof is essentially given in M. Miyake [12],

Lemma 5.20 Let R be the number defined by (5.7), then

(5.9) nwx{(f-s)2|f|»s(f-s)2|sM

fc = l, 2,..., 2p, /or some positive constant C independent on t and s.

Proof. It suffices to prove our lemma when 0:gsgjf

(i) The case where 0:gsg2s:g£. From the assumption, we have easily

that

(t-s)2\t\mk^tnik+2 and tlo+l-slo+1^ctlo+1 .

On the other hand, in view of the determination of JR, it holds that

mk + 2^(l0 + l)(2p — k)R/p which implies immediately the inequality (5.9).

(ii) The case where 0<s<a<2s. Since tlo+l-slo+l>(t-s)sl°9 it holds

that
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Now because of that ttnk(t-s)2<c(t-s)2smk and that (2p-k)R^2p and

t — s<s, it follows

From the determination of R we know that p(mk + 2)^(l0 + l)(2p — k)R,

hence we get

which implies the inequality (5.15). Q.E. D.

§6. Study of H^)(x,§,t,s)

We shall study li^fc) dividing many steps.

6.1. Estimate of dJdgH^. Recall that ff(/> is given by

(6.1) ff <*> =

where p/(/0 + l)>(p -&)/(/*+ J), fc=l, 2,..., p.
At first we note that Lemma 5.1 implies that

(6.2) max{(i-s)|s|'s(^-5)|f|'k}^CX^-k)R|^r^-fc>K,

where ^ is defined by (4.11) and R is the number defined by (5.7).

Then from the assumption of induction and (6.2) we have

Hence, for any d0 such that

(6.3) 0<d0<min{p/(

it holds that

(6.4) |<%df^fc)|^C(^

6,2. Estimate of 3,3jd5JH^fc). Differentiating both sides of (6.1)
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with respect to t we have

Hence by the same way as the above we obtain

(6.5) |W^jfc)|gCa

for d0 defined by (6.3).

6.3. Estimate of dsd
v
xd^H(jk\ In this case, we can not obtain the

desired inequality from the representation (6.1). So we rewrite it by

(6.6) H^X, $, f, S) = - at{X0(x, £, t, T)Tf*fl(jC,

, £, T,

In order to study (6.6) we divide it into two cases:

(A) The case where (p — k)R^p/(l0 + l). In this case without loss of

generality we may put lk = Q.

(B) The case where (p-k)R>p/(l0 + l).

At first we consider the case (A). In this case (6.6) can be rewritten

by

(6.7) - H<f> = b(x, T)K0(x, 5, t, T){*-*K,_ !(*, & T, s)dT

(x, T)5tK0(x, £, t, ^"-kKj^(x, £, T, s)dx

Therefore it suffices only to study the part //(fc). Then from the

assumption of induction, we have

gC • ((-s) |{|*

Considering that (t-s)gCX*/<I«+1)-|{|-*/(|«+1), (|{|>c>0), for such d0

satisfying
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(6.8)

it follows that

(6.9) \ds8
v
x8%Hw | ̂  C(l + |£|)-./d°-0 exp [-

Next let us consider the case (B). Let

(6.10) #<*>(*, f, f, 5)

*-iK*, T)ffc K0(x, f, f, T^.^X, C? T,

tK0(x, §, t, x}x«a(x, -i)t'-*Kj-i(x, §, T, s)dr

=/(*)+//(*).

At first we consider 1(&). The following inequality is obtained im-
mediately,

/^^

Without loss of generality, we may assume that

(6.11) p

In fact, in the case where p — k^p/(l0 + [) we can easily see that our
reasonings in the following are applicable for such d0 satisfying Q<d0

<Jp/(/0 + l). From the assumption that (p — k)/(lk+l)<p/(l0 + l) and
(6.11), we have

Now let

(6.13) KR0<mm{R, R'; {Cp-fc)-p/(/0

then by the same way as the proof of Lemma 5.1 we have
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Hence for such dQ satisfying

(6.14)

it holds that

(6.15) |as^/<fc>|^C(l + |^

Next we consider I/(fc). In this case we can easily show that for

such d0 satisfying (6.3)

(6.16) |ds^/I<fc>|^C(l + |£^^

Summing up the aboves we have

(6.17) |585j5gfljk)| ^ C(l + 1£|)- -f^-* exp [- e(rz°+ * - s'°+ A) |{p] ,

fc = l, 2,..., p.

6e4» Estimate of 3f+15];3|fl(/) In this case, if we repeat the above

reasonings we can obtain the desired inequality,

(6.18) la^af^iga^

We only remark that for the proof of (6.18) in the case where dl
t+s

l

= dl
s
+1 we use (6.6) for the representation of H(jk\

Finally we have to remark that it is easy to see that for

the same facts stated in Remark 3.1 hold.

§7, Study of I^G*, ^9 *, a)

Recall that I^-ft) is given by

(7.1) /<*>
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where (2p-/

Since our desired inequalities are obtained by repeating the argu-

ments in section 6, we only check different points. Lemma 5.2 implies

(7.2) (t-s)2\T;\

where X is defined by (4.11). Hence for such d0 satisfying

(7.3) 0«/0< min

we can obtain the desired inequalities (3.1) and (3.2) for 3*<3|/jfc)
9

dtdld$I<jk> and d^d^.

Let us consider now dl
t^s

ld^Ijk\ and we may assume without loss

of generality that dI
t+s

1=dl
tfSdt. Let operate dl

t}Sdt = d l l d l
s ~ ! i d t to both sides

of (7.1), then we have

(7.4)

t=i

In order to study I(k\ we divide it into two cases.

(A) The case where dl
tiS = d[. In this case9 in view of (7.2) we

have for such dQ satisfying (7.3)

(7.5) \dld\iw\ ^ C(l + \£\)IP-J**-* exp [- e(^+ * -

(B) The case where 5{fS = 3{13J"Zl, (/-/^l). Considering that

0-s)|T|'"^CX(2^-^K/2|^|-(2^-fe^/2
5 we can also obtained the inequality

(7.5) for such d0 satisfying

(7.6) _ .

k= 1,2,. . . . 2 / » - l .
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The study of l/^fc) Is more easy, so we omit it. Finally let us
consider I//Jfc). In this case, using the following inequality we can get
the desired inequality,

Summing up the aboves we have obtained

(7.7) |^^d|/jfe)|^C(l + ̂ ^

Finally we have to note that the facts stated in Remark 3.1 also
hold for I(jk\

§8. Extension to the Operator Defined in K"xfg

Our theorem stated in section 1 can be extended to the operator
defined in ,R£x/ f,

A(x, t; Dx)= tl'ap.j(x9 t; DJ, ap_,-= £ a^x, t)D*,
j=o l«I=p- j

2P
B(x, f, Dx}= Z r-fc2p_t(x, t; Dx\

k=0 P \P\ = 2p-k

where dt = d/dt, Dx= -i(dldXl,..., d/dxj, axj, &Me*«(/,; J--), and /7 and
mt are non-negative integers.

Then under the same conditions in section 1, we can obtain the

results in our theorem. In fact, let us assume,

' (i) p is a positive even integer,

(ii)

(iii) 2p/(m0+2)^(2p-k)/(mk+2), k=l,2,...,2p,
(8.2)

(iv) p/(/0 + l)=2p/(m0+2), i.e., w0=2/0,
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(v) !2 + ap(x, t\ £)A + b2p(x, £; £) = 0 has simple roots l = li(x, t; £),

(i = l, 2) or a double root (i.e. ̂ i=^2)
 m ^2 X A> and triev

satisfy that ReAf(x, t; ^)^ — ̂ |^|p for some positive constant 6.

Then we have

Theorem 2e Le£ the operator given by (8.1) satisfy the conditions

in (8.2), then

(i) // /0 fs a non-negative even integer, then P and its adjoint operator

*P are hypoelliptic.

(ii) // /0 is a positive odd integer., then tP is hypoelliptic.

The proof of the above theorem performed exactly by the same way

as in section 2, except the proof of Proposition 3.1. For the proof of

Proposition 3.1, we have to consider the following two cases,

(a) the case where |£| is bounded,

(b) the case where |£| is unbounded.

The later case (b) is not troublesome, since the reasonings in the

previous sections are applicable. So we have to check the facts in Re-

mark 3.1 for K0(x, £, ty s) when |£| is bounded. Now for this purpose,

let us transform K0 to v(x, £, t, s) by

(8.3) K0(x, C , / , s)= QXp\L--~^A(x, T; £)di\v(x, ^ /, j) ,

then we can easily see that v should satisfy the following ordinary differ-

ential equation,

f d?v=F(x, t; £)v in —

where

(8.5) F(x, t;®=E ^f2p.k(x9 t;
k=0

l0 + l)^(2p-k)/(mk + 2\ fe=0, 1,...,2]7. We note that in view of the
proof of Lemma 4.2, we have
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Lemma 8.1. // \fj,\>lp, then

(8.6) 3{ i 43jfl5exp— i - ( x , T ; 0 ^ z t O as t\s ,

vv/tere it means uniformly convergence in x and £ when £ varies in a

compact set,

On the other hand, for the solution v of (8.4) it holds

Lemma 8.2. // \fi\>lp, then

(8.7) \d^d^v\=tO as *\s,

(8.8) \dv
xdlv\^0 as t\s,

where =$ indicates the same meaning in Lemma 8.1.

Proof, We can show that v should satisfy the following integral

equation,

v(x, & t, s) = (t-s)+(t-i;)F(x, T;
./s

Then in view of the arguments in section 4, we have

for some positive constants C and M, and C(t, s; £) is defined by

C(f, s; ^) =
k=0 k=0

Therefore by induction on I, we can prove (8.7) and (8.8). Q. E. D.

Combining the above two lemmas, we can prove the facts stated

in Remark 3.1 for K0 when |£| is bounded.

Appendix A.

In this appendix we shall give a sufficient condition for the follow-
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ing operator to be hypoelliptic,

2m
(A.I) P(x, ti DX9 3,) = 3,+ L^'fl/x, 0£?W'-J' ,

where (x, i)eRxx!t, It = (-l, 1), a^^(lt\ &").

For the operator given by (A.I), (or more general operator) the study
has been made by many authors and detailed results are obtained. So

we only give a result which is not covered in another paper.

Let us assume:

There exists a sequence of integers {/w^ij satisfying,

(i) Q =
(A.2)

(ii) 2(m-mj)l(l2m. + l)= max (2m -i)/(/, +1),

(iii) Re02(»-»,)^>0 in Rxxlt,j = 0,...9k.

Then we have

Theorem A. Let the operator P given by (A.I) satisfy the con-

ditions in (A.2), then

(i) // I2mj, (j = Q, },..., k) are even integers, then P and its adjoint

operator 1P are hypoelliptic.

(ii) // l 2 m j 9 ( j = Q,l,...9k) are odd integers, then 1P is hypoelliptic, but

P(t; Dx, dt) is not hypoelliptic.

Theorem A is proved by the same way as T. Matsuzawa [8] (see
also section 2). Without loss of generality, we assume that I2mj are

even integers. Let {Kj(x9 £, t, s)}J=0 be a sequence defined by

f P(x, t; £, dt)K0(x, £, t, s) = Q in -
(A.3)

[ K0\t=s=l, K0 = Q in -

( P(x, f, £, dt)KJ=-P1(x, t, & DJKj-t in -l<s<t<l,
(A.4)

( Kj\t=. = Q, Kj = 0 in - l<t<s<l , (7 = 1,2,...),

where P(x, ti £ + Dx, dt) = P(x9t; ^ d^ + P^x, t, f; Dx). Then for {Kj}f=0

we have
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Lemma A810 There exists a positive constant d0 such that

(A.5) \d\

xexp[-e (/'2»J+i-j'2»</
j=o

ira — l<s^£<l, /or some positive constants C and & depending only on

I, v, jii awd j. Moreover it holds that

(A.6) 3}i53j3gX,.:30 as £\s i/ fi>2ml9

(A.I) d\iSdldlK^ as t\s if Q£l

where the convergence in (A.I) is uniform in x and % when £ varies in

a compact set.

Its proof is done by the same way as that of Lemma 4.2. In

fact, it suffices to define XJ9 (j = 0, 1,..., k) by

(A.8) ZJ. = (^^J-+l_^2mj-

instead of X defined by (4.11). So we omit the proof.

Appendix BL

B.L Introduction

We shall study in this appendix the hypoellipticity for the following

operator,

(B.I.I) P(t; DX9 dt) = dt+atl

where m>n, /f (i = l? 2) are non-negative integers and a and b are non-

zero real constants.

The study of hypoellipticity for degenerate parabolic operators are

concentrated in the point that how the principal part control the lower

order terms,, That is, if

then P is hypoelliptic in a neighborhood of t = 0 iff dt + atllD*m is hypo-
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elliptic. (Y. Kato [3]). And the straight extensions of this result are

given in Appendix A. But in the case where

(B.1.3) 2m/(/1 + l)<2n/(72 + l),

the situation is quite different from the former case. So we shall study

the hypoellipticity assuming (B.1.3). Now our results are stated as

follows.

Theorem B.I. // P is hypoelliptic in a neighborhood of f = 0,

then dt + btl2D*n is hypoelliptic.

Theorem B.2. // ab>Q and a<0, then P is hypoeUiptic.

B.2, Proof of Theorem B.I

We shall prove by contradiction, so we assume that dt + btl2D%n

is not hypoelliptic, i.e., we assume that

(B.2.1) /2 is an odd integer and b>Q.

In view of Appendix A, our theorem is obvious when /t is an odd

integer and a>0, therefore it suffices to consider the following two

cases,

Case I. /! is an even integer.

Case II. /! is an odd integer and a<0.

At first, let us consider the Case I. Without loss of generality we

may assume that a>0. In fact, if a<0 it suffices only to change the

coordinate t by — t. Now we remark that from Petrovsky's theorem

forward Cauchy problem for P is uniformly well posed in &" in the

interval [0, 1] and also in [—1, — e] for any fixed positive 8. But in the

interval [—1,0] it is not uniformly well posed. This fact implies that

there exists /~(x, t)e^f($^x)9 te [-1, 0] such that the solution of the
Cauchy problem,

pu-=f-(x, 0 in (-1,0)
(B.2.2)
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satisfies that u~ e £?(Sfx)9 (t e ( - 1 , 0)) and tr(x, - 0) = lim ir (x, 0 <£
r/-o

C00^). Let us now prove this fact We note that for a given /~(x, 0
the solution of (B.2.2) should be given by

(A2.3) t/-(^r) = £2m

where J^1 denotes the Fourier inverse transform and /"(£, 0 denotes

the partial Fourier transform of /~(x, 0 with respect to x. Now let us

define /-({, 0 by

r 0 when £^0, rg

(B.2.4) /-«, 0=

), when ?<09 ^>09

where ^(T) e Cg3^), ^(T)^O and supp [^?(T)] c= I — — 9 — — . Considering

that a>0? b>0 and the assumption (B.I. 3), it is easy to show that

lim d/3S/-(& 0 = 0 in <^ for any j and fc.
tso

On the other hand, it is easy to see that

fl-(£,0e*°!(*%), ^ [-1,0].

In fact, it suffices to see that

--^^

^(T) di .
2 m / ( l 1 + l )

Hence for sufficiently large £>0, lim fl-(^, 0= U(T)dfr2w/(ll+1)
3 which

r/o J
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shows that lim i/~(x, f^C^ORJ. Under the above preparation, let us
r/'O

define/(x, f), f e [ - l , 1] by

(B.2.5)
>c, r), f <0.

Then the equation Pu =/ has a solution «(x, t) given by

(w~~(x, t) in t^Q given by (B.2.3)

w(x, t)= I u(x, t) ill £>0, the solution of Pw = 0

( with Cauchy data w| r=0 = lim M~(X, f).

This proves the non-hypoellipticity of P.
Let us consider the Case II. In this case also we shall construct

/(x, 0 e ^"(^jc) sucn tnat tne equation Pu=f has a non-smooth solu-
tion. Under the assumption of Case II we can easily see that the

forward (or the backward) Cauchy problem for P is uniformly well
posed in the interval [—1, — e] (or [e, 1]) for any fixed positive e, but
not in [—1,0] (or [0,1]). Hence from the arguments in the above,

there exists /~e^°?(5%), f e [ - l , 0] (or /+ e^°?(«$%), te [0, I]) such that
the equation Pu"=/" (or Pw+=/+) has a solution ir e £ °?C9%), re (-1,0)

(M+ e ^°?(«^jc), f e(0, 1)) but lim «~£C°° (lim w+^C°°). Let us now show
t/'O t\0

that we can choose /+ and /"" so that lim w~ = lim u+. Indeed, let

/-(£, 0 be given by (B.2.4), then it suffices 'to give'/+(£, 0 by /+(^, t)

= —f~(£,—i),t>Q. This implies immediately the non-hypoellipticity of

P. Q. E. D.

B.3. Proof of Theorem B.2

At first we note that under the assumption of Theorem B.2, it fol-
lows immediately that the solution of Pw =/e C°°(£2), (OeflcjRjJ^) belongs

to C°°(O+), (Q+ = {(x, t)eQ; t^Q}) by the usual method developed in
[1] or [3]. But we can not prove that weC°°(O_), (O_ = {(x, t)efi;

t^O}) by the method of fundamental solution. On the other hand, if
we can show,
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(B.3.1) Mm u(x, t) = u(x, -®)e@f(Q n {* = ()}),
tso

then we have weC°°(O). In fact If (B.3.1) is proved, let us decompose

u(x, f) as follows (see [13]),

(B.3.2) u(x, t) = H(t)u(x, t) + H(-t)u(x, t)+ £
j=0

for some VJ(X)E@'(I^), (IX(&Q n {£ = 0})3 where H(f) denotes Heaviside's
function. Then

-ii(x, -0)}+
j=o

J=0 j=0

Considering that Pu=feC°°(Q\ it follows that %_,(x) = 0, (Z = 0, 1,..., N).

Therefore, 5(0® {M(^, +0)-n(x, ~0)} = 05 that is, w(x, +0) = w(x3 -0).
Thus we have u(x, i)e£°t(&'(Ix))9 te( — c, c) for some positive constant

c. Consequently u(x, t)e^f(^r(Ixy)9 which implies Immediately that

u(x, OeC«(/,x(-c,c)).
Hence our purpose in the followings is to show (B.3.1). Without

loss of generality we may assume that

(B.3.3) u(x, i) = d{d*v(x, t\ where v(x, f)eLl(Q).

Since ueC00(O+), we can easily show that

(B.3.4) Mm 3/-'SX^ O^'^OOe
f\0

Indeed, dj
t~

ld*v(x, f) can be represented by

o Jo Jo

I
)tl~ll(l-i)\, for some vte@'(Ix),(t>Q)0

Let us now rewrite t;(x, 0 as follows,

v(x9 0 = um {H(t — e)v + H(—t—s)v} in ^'(Q).
e lO
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Then we have

f-e)Pw + (5/0®Kx> fi)-<5_e(0®w(x, -e)
£\0

t, e)- X d(-il(t)®d{-idkv(x, -e)

nii(-r P\V\X9 b)

i=l

On the other hand, we know from (B.3.4) that lim d{-ldk+kt v(x, e)
E\0

exists in ^'(/x) for any ^'^0, therefore

j
lim X ^-^(O®!^/"'1^*^, —s) +(linear combination of
£\0 U=0

has to exist in ^'. If we take as test function (p(x, r) such a form as

<p(x, t)=f(x)g(i), where fif(0=l in a neighborhood of ? = 0, we see

that

lim {d{d*v(x9 — e)+ (linear combination of
£\0

dJ-»'d*+k'v(x, -e), ^

exists in @'(IX). Inductively we can prove that if we take as test

function <p(x, t) such a form as (p(x, t) = tllf(x)g(t), where 0(0=1 in a

neighborhood £ = 0, then

lim {d{~^dkv(x9 — s) + (linear combination of
£\0

exists in &'(IX\ consequently, lim dxv(x, — e)e^/(^jc)- Conversely the
E\0

above procedure, we can conclude that lim w(x, 0 exists in ^f(Ix)9tso
which proves (B.3.1). Q.E.D.

Finally we note that recently R. Rubinstein [14] has studied an

operator,
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(B.3.5) L = dt + tnD*-tmD^ (n;even).

He proved that L is not solvable under the same assumption with

(B.I.3), that is, if

(B.3.6)
»+l m+l'

then L is not solvable.
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