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Hypoelliptic Degenerate Evolution Equations
of the Second Order

By

Masatake MIYAKE*

§0. Introduction

We shall study in this paper the hypoellipticity of the following
partial differential operator,

0.1) P(x, t; D,, 0,)=0%+ A(x, t; D,)o,+ B(x, t; D),
p
A(x, t; D)= X afx, )tDF~, (I;z0, integer),
j=0
2p
B(x, t; D)= Y by(x, t)imD2pr7k, (m, =0, integer),
k=0

where 0,=0/0t, D,= —id[0x, (x, )e R x I, I,=(—1, 1),
aj(x, 1), by(x, )y e e>(I;; BV, I,=[—1, 1].

For degenerate parabolic differential operators, the study of hypo-
ellipticity has been made by many authors (see [1]~[9]). But for
degenerate p-parabolic differential operators, its study has not been made
so detailed (see F. Treves [10]). So we shall give a sufficient condition
for the operator given by (0.1) to be hypoelliptic by constructing very
regular parametrices of the operator (see Y. Kato [2], T. Matsuzawa
[8]). The operator considered here is a special one, but we want to
give an elementary relation between the order of degeneracy of the co-
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1) a(x, t)yee=(I,; A=) means that a(x, t )= B for any fixed ¢ =T, and infinitely continu-
ously differentiable with respect to ¢ in the usual topology of %, where #%
={u(x)=C=(R;); |0%u(x)| <M, for any a}.
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efficient and that of derivative, based on the notion of ‘““modified order”
defined in M. Miyake [12]. And for general degenerate p-parabolic
differential operators of type (0.1), our result in this paper will become
a fundamental one (see K. Shinkai [15]).

In Appendix A we shall study the hypoellipticity for the degenerate
parabolic differential operator given by

(02) P(x, t; Dx9 at)=6t+ ?Zm tljaj(x’ t)D’%m—j .
j=o

In Appendix B we shall see that for the study of hypoellipticity of
degenerate parabolic differential operators the notion of modified order
is a useful one, and we shall be concerned with the operator,

(0.3) P(t; D,, 8,)=0,+atoD2m 4 bt'1D2"

where m>n and, a and b are non-zero real numbers.
Finally, we note that our result in section 1 can be cxtended (o
the operator defined in R?x1,, and it is given in section 8.

§1. Result

Our purpose in this paper is to give a sufficient condition for the
operator P(x, t; D,, ) given by (0.1) to be hypoelliptic. And for this

purpose let us assume:

(i) p is a positive even integer,

(i) p/lo+DZ(p—-NI1;+1), j=12,...,p,

(iii) 2p/(my+2)=(2p—k)/(m,+2), k=1, 2,..., 2p,

(H)< (@) pl(o+1)=2p/(my+2), that is, my=2l,,

(v) A2+4ay(x, )A+by(x, £)=0 has simple roots A=A1,x, 1) (i=1, 2)
or a double root (4;=4,) in R,xI, and they satisfy that

{ Re A(x, 1)< — 6 for some positive constant 6.

Then we have

Theorem. Let P(x, t; D,, 0,) be the operator given by (0.1) and let
P satisfy the conditions in (H).
(i) If l, is a non-negative even integer, then P and its adjoint 'P
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are hypoelliptic in R xI,.
(i) If I, is a positive odd integer, then 'P is hypoelliptic.

We note that under the conditions in (H) we can easily show that
it suffices to consider the following operator instead of P given by (0.1),

(1.1)  P(x, t; D,, 8,)=(0,+ A(x, t; D,))(0,+ B(x, t; D,))+C(x, t; D,),
A(x, 1; D)= 3 tha(x, HDI,
=0

)4
B(x, t; D)= X thb(x, )D57,
=0

2
C(x, t; D)= Zp: 1" (x, D2k

k=1
where we may assume without loss of generality that a; b
B2).

Then the conditions in (H) are transformed into

i by e &2(1;

(i) p is a positive even integer,
(i) p/(lo+D2(p-N/1;+1), j=L2,.,p,
() ] (i) p/(lo+D=QRp—k)/(m,+2), k=1,2,...,2p,
(iv) Reagy(x, )=03, Reby(x, )= in R,xI, for some positive
L constant .

In fact, it suffices to check that (p—j)/(I;+1)=p/([,+1) and (p—k)/
(+1D)=p/o+1) imply @p—j—K)/(;+1,+2)<p/(lo+1) and that (5,
+ A)(0,+ B)+ D(x, t; D,)d,+C(x, t; D,)=(0,+ A+ D)(6,+B)—DB+C.

Hence in this paper we shall prove our theorem for the operator
P given by (1.1) under the conditions in (/). And we shall only prove
Theorem-(i), since the proof of Theorem-(ii) is obtained easily combining
our argument and that of Y. Kannai [1] or Y. Kato [3]. Therefore
throughout this paper we assume that I, is a non-negative even integer.

In section 2 we shall give an outline of the proof of our theorem
and sections 3-7 are devoted to the proof of our theorem.

§2. An Outline of the Proof of Theorem

As mentioned in section 1, we shall prove only Theorem-(i), so we
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assume that [, is a non-negative even integer.
Let o'(x, y, t, 5) be a kernel defined in R, x R, x I, xI; defined by

@y [l n=eo | as” ek & 90 e,
-1 —©
where u(y, s)e C§(R,xI)) and #(, s) denotes the partial Fourier trans-
form of v(y, s) with respect to y, that is,
& 9={" euty, 9ay.

Then from a formal calculation we can obtain a condition on K(x, &,
t, s) that o becomes a fundamental solution of P. Indeed,

Py LA 0] (x, 1)

=@ar (" ds|” e, 15 €4+ D, K (x, & 1, 90 9)de

+@0 [ (7 e 50,4+ BCx, 13 €+ DIKCs & 1, 90, 9)de |

+@R 1@ ACs, 13 DY) [ emeKCx, & 1, 900 9dE |

implies that in order that 2 is a fundamental solution of P (i.e. P[.#v]
=v), it must be hold that

Jp(x, t; E+D,, 0)K(x, &, 1, 5)=0 in —1<s<t<l,
(2'2) K(x$ és t: s)|t=s=09 alK(x! éa t’ s)|t=s=19
IK(x, £ t,5)=0 in —l<t<s<l.

Now let {Kj(x, ¢, t,5)}%o be a sequence of approximate solutions
of (2.2) defined by

P(x, t; & 0)Kqo(x, &, t,5)=0 in —1<s<t<l,

2.3) {
Kolt=s=0, 61K0|t=s=17 K0=0 in —1<t<3<1.

P(x, t; & 0)K;=—P(x, t,&; Dy, 0)K;-; in —l<s<t<l,

2.4 {
Kil;=s=0Kjl,-s=0, K;=0 in -—lI<t<s<l, j=1,2,..,
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where P(x, t, ¢; Dy, 0)=P(x, t; {+D,, 0)—P(x, t; &, ).
Then obviously we have

@5 Pu £ 5 90009 | =0l )

[« o]

+@m (" as” Py 1, & D OKLx, & 1 U ML,

for any o(y, s)e C§(R,xI,), where % ; is a kernel defined by oscillatory
integral,

(2.6) A (X, ys 1, s)=(2n)‘lg_wei<x-»’>¢1< 6 & 1, 5)dE
Hence we have

k
(2'7) Px,t[jzofj(xa ya t, S)] =6(x_y) t—S)+Fk(X, Y, ta S)a

Where (aFk) (xa é, t7 5)=P1(X, tu 6; Dx, at)I<k(x’ é, ty S)'

Therefore in order to prove the hypoellipticity of ‘P, it suffices to
show (see L. Schwartz [13]),

Proposition 2.1.
(@) A i(x, y,t,5) are regular in (x, t) and also in (y, s).
(b) A i(x, y, t,5)e C(W), W={(x, y, t, s)e R, x Ry x I, x I ;
|x—yl+[t—s[>0},
(c) For any fixed non-negative integer N, there exists ko, such that
Fux, y, t, ) e CN(R xR, x I, x I) for any kz=k,.

The proof of this proposition is given in section 3 assuming an
elementary Proposition concerning K(x, ¢, t, 5), (j=0, 1, 2,...).
§3. Proof of Proposition 2.1

An elementary proposition for the proof of Proposition 2.1 is the
following,
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Proposition 3.1. Under the assumptions in Proposition 2.1, there
exists a positive constant d, satisfying

G.1)» |6X0EK (x, &, 1, 5)| < Ot —s) (L+ &) 4o

xexp [—g(tlo*t —slot1)|¢]e],
(32 |04 304K | < C(1 + ¢!~

xexp [—g(tlo* ! —shor1)[¢]P],

in —1<s=<t<l1, for some positive constants C and & depending only
on I, v, u and j. We note that the constant d, does not depend on I, v, u

and j.

Remark 3.1. It also holds that

3.3) 030:K;30 as t\s,
34 O 0305K;30 as t\s if u>lIp,
3.5) 0! 0:0%K;—»0 as t\s if [},

where =3 means uniform convergence in x and & In (3.5) its con-
vergence is uniform in x and £ when & varies in a compact set.

The above proposition and remark imply Proposition 2.1 by the
same way as T. Matsuzawa [8]. In fact, let us prove it assuming Propo-
sition 3.1, and Proposition 3.1 will be proved in the following sections.

Proof of Proposition 2.1. At first let us show

Proposition 3.2. The oscillatory integrals

(3.6 A x, p.t, S)=(2ﬂ)'1gw e (x, &, t, 5)dE, j=0, 1,...

2) (3.1) implies immediately
(3.1)" |9504K;| SC(1+|&])~7domamp/ UotD) gxp [ —g(flo+ —stott) £ 7].
In fact, it suffices to note that
t—SéC-Xp/ (to+1), le l -p/ (lo+1)’ ([E{ >C>O),
where X is defined by (4.11).
3) af,szaila{zz) (ll+lz=1)-
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belong to C®(W), where W={(x, y,1,s)e Ry x Ryx I, xI; |x—y|+]t—s]
>0}.

Proof. 1t is obvious that 2j(x, y,t, s) is infinitely differentiable
when t#s. Let us consider

(x—y)u'}{j(xa Vs by S)=(2n)_lgww‘l)’§lei(x_y)§Kj(x’ 59 t, S)d&

—@ay {7 et (=DK€ 1 9)de

Then from Proposition 3.1 and its remark we see that for any fixed
non-ncgative integer N, if we chose p so that u>Np—jd,+1, then for
any I, v, k such that [+v+x=<N we have

lim 0} 030%(x— y)*A (x, y, t, 5)=0,
[AY]
which implics that (x—y)*# ;€ CM(R, xRy x I, x1)). Q.E.D.
Proposition 3.3. £ '(x, y, t, 5) is regular in (x, t) and also in (y, s).

Proof.
(i) The regularity in (x, f) follows immediately {from that

eix{
©

S ij(x; ya t:v S)U()’s S)dyd5=(2n)_l St ldsS
RyxI, )

x Ki(x, &, 1, s)0(E, s)dE  for u(y, s)e CH(R,xIy).

(ii)) For the proof of regularity in (y, s), we use the following

Lemma 3.1. (Hormander [6]) Let a(x, {)e S"(R,XRy),* then for
any v(x)e CZ(R,) and any non-negative integer N we have

€X) {7 exeatx, gux| s catt+jehm

for some positive constant Cy.

4) S™(R;XR,) (=8P, (R;XR,)) denotes the class of symbols of pseudo-differential

operator of order m, S—~= n S™.
m< oo
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Let us now consider

Sw A (x, y, t, SHu(x, t)dx

=(2n)'1Siowe‘i”§<giowei"¢Kj(x, & 1, hux, Ddx )de
=(27t)‘1$°_°we‘inF(£, t, $)dé.

Then from Lemma 3.1, F(, t,5)e&®(d, ; S™), (4,,={(t,5); —1<s=t
<1}) which implies that

SR , A (%, y, t, SHu(x, t)dxdt
=(2n)‘1gl dtgw e"EF(E, 1, $)dE € C=(R, x I,). Q.E.D.

Proposition 3.4. For any fixed non-negative integer N, there exists
ko such that for any k=k, it holds that

@ [” 5Py (x, 1, & D, QKL & 1, 9
€ CM(R xRy xI,xI).
Proof. 1t is obvious from Proposition 3.1 and its remark.

Summing up the aboves, the proof of Proposition 2.1 is completed.
Consequently, the hypoellipticity of ?P is obtained. The hypoellipticity
of P follows if we repeat the same reasonings for the operator *P(x,
—t; D x> _at)‘

§4. Study of K,(x,&,t,5)

Remember that Ky(x, &, t,s) is the solution of the equation (2.3).
We shall prove Proposition 3.1 for K, dividing many steps.

4.1. Preliminary. At first, let us consider the following ordinary

differential equation,



HyPOELLIPTIC DEGENERATE EVOLUTION EQUATIONS 699
{ Po(x, &, 15 0) v=(0,+ A(x, t; £)) (0, + B(x, t; £)) v=0
4.1 ‘ in —-l<s<t<l,
Lu li=s=0, 0w |,==1.
Then the solution of (4.1) is given by
42 o & 1, s)=S:exp B:B(x, o; &)do+ S:A(x, o; é)do] de,
in —1<s=t<l1. Then for v(x, &, t, s) we have

Proposition 4.1. Under the assumptions in Theorem-(i) we have
4.3) [0x0u(x, &, 8, S SC(t—s)(1 + &) exp [—e(t'o* ! —sto*t 1) [¢]7],
4.4) 071 0x05v| = C(L+ &)~ exp [—g(t'ort —sto* 1) [£]F],

for some positive constants C and ¢ depending only on l,v and pu.
Moreover the facts stated in Remark 3.1 also hold for v.

For the proof of this proposition, we prepare the following two
lemmas.

Lemma 4.1. (M. Miyake [12]) The conditions that p/(lo+1)=(p
-DILi+1), (j=1, 2,..., p) imply that

@.5) [fetvdescort —stortyemivm, j=1,2,...p,

t
“.6) max {(t=s5) 1% (t=s) 151} £ fel e,
for —1<s=t<1, where C is a positive constant independent of t and s.

Lemma 4.2. Let us assume the conditions in Lemma 4.1 and let
A(x, t; &) be given in (4.1). Consider now

4.7 E(x & 1, s)=expi[—S'A(x, T 5)5@, l<ssi<l,

then if Reay(x, t)=6 for some positive constant 6, we have
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4.8) 01,0305 E| < C(1 + [£])'7~exp [—g(t!o* ! —slo* ) [&]P].
Moreover we have
4.9) [0} 030%E|=30 as t\,s when pu>Ip.
Proof. 0} ,030%E is expressed by a linear combination of terms,
410 Ex &t 9x T1 6;f6‘g*S:A(x, v Qe x [ GBOYOUACE, 13 O
xlg(a;ka;kagm(x, s; ),

Zv +Zv +ka—v Zu,+ Z/LJ+ Zuk—,u, |[J]+|K|£1, where |I| denotes the
number of elements 1n I. Wlthout loss of generality, it suffices to assume
that |£|>c¢>0. Let

(4.11) X =(flo+1 —glo+1)Up|¢|

then using the assumptions and Lemma 4.1, we obtain
)4

4.12) [E(x, &, t, s)|<const.exp[—cXP+c' Y, XP~7].
=1

On the other hand we have easily that

(4.13)

ov0% StA(x, t: &de| <const. (1+ |5|)~u{'f§; S' Itl’fdrml"f}
s j=0Js

<const.’ (1+ [€)~{ _io xvi},
2

(4.14) max {|0;030:A(x, t; &), 1030302 A(x, s; O} =CA+]E)P.

Combining from (4.12) to (4.14), we have the desired inequality (4.8).
Finally, (4.9) is now obvious, since from the assumption that u>lIp,
in (4.10) there exists at least one of terms of 6;*6‘giStA(x,1:; &)dr.
’ Q.E.D.

Proof of Proposition 4.1. Let

415  G(x, & 1,1, s)=exp [S:B(x, o; é)do-+S: A(x, o f)da:l.
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Then from Lemma 4.2, we have easily that
[0305G(x, &, 1, T, s) S C(1+|E]) exp [ —g(tle*! —sto* 1) |£]r],

which implies immediately the inequality (4.3).
In order to prove (4.4), we use the following,

Lemma 4.3. (T. Matsuzawa [8]) Let f(t, 1,5)eCP,  (s<T=1), then

(4.16) 6?6§<Stj(g t,s)dr>==gt6€6§j(n 7, s)dr
—L 3 €481 f(t, 7, 5)].ms
j=1

+ 3 CLIOTHOE @40, T, e
k=1
where C?=p!/kl(p—k)!.

Now we remark that we have by the same way as the proof of
Lemma 4.2 that

4.17) 0} ., 0%0%G(x, &, t, 1, s)|
SCQAH+[EDtrrexp [—e(tlott —slot ) |E]P],

Hence, in order to evaluate 0%,'030% v it suffices only to consider

(4.18) S’agjsla;agc(x, & t, T, s)dr.

Now without loss of generality we may assume that 0}}!'=0! 0, then
0} ,0,0305G(x, &, t, 7, 5) is expressed by a linear combination of terms,

01,0y 4 B(x, 13 ) x DV Oy Ok IG, (ISL v Sv, W ).

Considering (4.17), it suffices only to consider the term,
4.19 S'a;'ag'B(x, t; £)0! 03V o G(x, &, t, T, s)dT.

On the other hand, we can show from Lemma 4.1 that
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P . ,
(t—s)10%'0% B(x, t; O =C(t—s)( Zoltl’fléll“’)(l+Iél)“‘
j=
SC(E Xr)U+ED™,
j=

which implies immediately the inequality (4.4). Q.E.D.

4.2. Integral equation. We note that the solution Ky(x, &, t, s) is
also the solution of the following integral equation,

(4200 Ky(x, & t, s)=v(x, &, t, s)—S:v(x, & t, DC(x, 75 &)
x Ko(x, &, 1, s)dr.

And the solution K, of (4.20) can be approximated as follows,
KP(x, &, 1, 5)=0(x, &, 1, 5),

4.21) K§t(x, &, 1, s)=uv(x, &, 1, 5)
—{lon & 1, D0, T OKP(x, & 7, e, n=0, 1.

Using (4.16) and (4.17) we shall prove Proposition 3.1.
4.3. Estimate of 9:0:K,. For this purpose let us prove
(4.22) 10305 {KG* 1 (x, &, 1, )—KG(x, &, 1, )}
S(t=s)(1+[ED) 7 exp [—e(tle* !t —sle* 1) [£]7]
x {MC(t, s, &)} 1(1—s5)2=+D2(n+1)),

n=0, 1, 2,..., for some positive constants C, M and &, where C(t, s; &)
is defined by

2p 2p
C(t, 55 )=max{ 2 [tI™[S2P7%, 2, [s|™[¢[2P74}.

In fact, let us show (4.22) by induction on n. Since

KO —KE == o(x & 1, 90, 75 Dolx, & 7, 94dr,
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Y0E{KGV — K] is expressed by a linear combination of terms,
t
S 0310510 832042 C 0y20%3vdt, vi+Vvy+Vv3=V, U+l +us=p.
s

Hence using Proposition 4.1 we can obtain the desired inequality (4.22)
for n=0. We note that ¢ and M can be taken independently in v, u
if |v], |Ju/SN for fixed N. Considering that K{" are determined by
(4.21), we can easily obtain (4.22) by induction on n. (4.22) implies
immediately that

(4.23) 030K o(x, &, 1, )| S C(t—s) (1+|E))7*
x exp [—e(t!ot ! —slo+ 1) [E[P +(t —5) ./ MC(2, s; E)].
Lemma 4.4. Under the assumptions in Theorem-(i), it holds that
max {(1 —s)2[t|"™*, (t—s)?|s|"k} S C(t1o+! —slo* 1)2P=R)/p,
k=1, 2,...,2p, for some positive constant C.

This is a special case of Lemma 5.2.
Then from Lemma 4.4 we can show that

—g(tho+1 —slo* 1) |¢|P+ C(t—s5)/C(1, s; &) Sconst.,
which implies
(424) 030K o(x, &, 1, )| S C(t—s) (1 + &) exp [—g(tlo* ! —slo+ 1) |£]F],
for some positive constants C and e.

4.4. Estimate of 0,0)0:K,. Differentiating both sides of (4.20) with
respect to ¢, we have

a,K0=a,u—S'a,u-c-K0dr.
Now in view of (4.24) and Proposition 4.1, we have
10,0305 Kol S C(1 + ) # exp [ —g(to* ! —sto* 1) |£[7]

+CA+EDTHC, 55 ) (t—s)? exp[—g(tlot ! —slo+ 1) [£]7].
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On the other hand, from Lemma 4.4 we have

4.25)  (t—s)2C(t, s; E)exp[—&'(tlot ! —slot1) |£|P] < const.,
which implies

(4.26) |0,0%0%K o| < const. (14 |E[)#exp [ —g(tlot 1 —slot 1) |€|P],
for some positive constant e.

4.5. Estimate of 0,010:K,. Differentiating both sides of (4.20)
with respect to s, we know that J,K, should satisfy the following integral
equation,

0.Ko(x, &, 1, )=0(x, &, 1, ) —S'v(x, £ 1, 1)C(x, 75 &)
x 0,Ko(x, &, T, s)dt.

Then using Proposition 4.1, we can show by the same way as the
estimate of 030K, that

4.27) 10,0305 Ko| < C(L+ €)™+ exp [—e(to*! —slor 1) [£]P].
4.6. Estimate of 9! ,0,0.0;K,. At first we note that
(4.28) (t—=95)C(t, 55 Hexp[—e(tlot —stor ) |EPT< C(1+|E])P .

Let operate 0! 0, both sides of (4.20), and then using Lemma 4.3, the
assumption of induction on I, (4.25) and (4.28) we have easily obtain
the desired inequality,

(429)  10},0,0%05Ko| < C(1+|E)'P~rexp [—e(tlott —stor 1) [¢]],
for some positive constants C and s.

4.7. Estimate of 9'*1070%K,. Let operate d;*' to both sides of
(4.20), then we can show that 0}*1K, should satisfy the following integral
equation,

430) O Ky(x, & 1, )=G(x, & 1, 3) —S’v(x, £ 1, DC(x, 7; &)

x 01K (x, &, 1, s)dz.
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Then from the assumption of induction we have
(431)  |OW0EG(x, &, 1, )| S C(1+[E])'Prexp [—e(t'ot ! —slo* 1) [¢]7].
Hence using (4.31) we can get the desired inequality,
(4.32) 05710305 Ko| < C(1 +E)'P#exp [ —e(t'o*  —slo* 1) [{]P],
for some positive constants C and e.

Summing up the aboves, Proposition 3.1 for j=0 is proved. On
the other hand, the facts stated in Remark 3.1 are almost obvious
considering (4.9) and the proof of our proposition.

§5. Preliminary for the Study of K, j=1,2,...

Let us remember that K;, (j=1, 2,...) is the solution of the equation
(2.4). On the other hand, we know that K; is given by

5.1) Kix, & t,8)= —StKo(x, & t, Py(x, 1, &; D, 0)K;_4(x, &, 1, s)dt,
in —1<s=t<l1. Where P, is given by
(5.2 Py(x, t, &; Dy, 0)=P(x, t; £+ Dy, 0)—P(x, t; £, 0,).

We shall prove Proposition 3.1 by induction on j. Then from the as-
sumption of induction and conditions in (H), it suffices to prove the
inequalities in Proposition 3.1 when we put the following operators
instead of P,

(5.3) a(x, )ttigr=io,,  pl(lo+1)>(p—i/1;+1),
(54 a(x, yrmee2e=k,  pl(lo+1)>Q2p—k)/(my+2),

where a(x, 1) e £°(1,; B%).
Hence in the followings we shall study the following two integrals,

(5.5 HP(x, & 1, s)=S:Ko(x, £, 1, Drika(x, DEE Ky (x, & 7, ),
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where p/(lo+1)>(p—k)/(I,+1), k=1, 2,..., p.
(5.6) I¥(x, ¢, s)=SIK0(x, & t, tyrmka(x, 1)E2PRK;_(x, &, 1, s)dT,

where p/(lo+1)>Qp—k)/(m;+2), k=1, 2,..., 2p.
Let us now give two lemmas which are important to our purpose.
Let R (>1) be defined by

6.7 R=max {r; (p—r/(;+ D) =p/(o+1), (p—)r=p,
@p—kyr/(m+2)=p/(lo+1), Cp—k)r=2p}.

Lemma 5.1. Let R be the number defined by (5.7), then

(5.8) ({1e1varz curor —storyeimin, j=12,... p,

for some positive constant C independent on t and s.

Its proof is essentially given in M. Miyake [12].

Lemma 5.2. Let R be the number defined by (5.7), then
(59 max{(t—9?im, (1= s)2lslm S Ottt —slor)@rbRip,
k=1,2,...,2p, for some positive constant C independent on t and s.

Proof. 1t suffices to prove our lemma when 0<s<t<1.
(i) The case where 0<s=<2s=<t. From the assumption, we have easily
that

(t_S)ZItlmkétmk'l-Z and tlo+1 —Sl°+lgctl°+1 .

On the other hand, in view of the determination of R, it holds that
m+22(lo+1)2p—k)R/p which implies immediately the inequality (5.9).
(il) The case where O0<s<t<2s. Since tlotl—glot1>(t—g)slo, it holds
that

(¢lo+1 — glo+1)(2p=lR/p > {(f — 5)5l0} (25=W)R/p |
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Now becausc of that <(t—s)2<c(t—s)2s™ and that (2p—k)R<2p and
t—s<s, it follows

(it — )2 < c{(t— s)slo} 2P—BRIp_gip(mict2)=(o+ 1)(2p-K)R}[p

From the determination of R we know that p(m,+2)=(lo+1)(2p—k)R,
hence we get

tmk(t_s)z éc{(t_s)slo}(ZP‘k)R/P ,

which implies the inequality (5.15). Q.E.D.

§6. Study of H®(x, §,t, s)

We shall study H{® dividing many steps.
6.1. Estimate of §.0%H(”. Recall that H{") is given by
60 HP={ Ko, & 1, Dtate, 90K, (5 € 7 ),

where p/(lo+1)>(p=k)/(l,+1), k=1, 2,..., p.
At first we note that Lemma 5.1 implies that

(6.2) max {(t—s)s|', (t—s) |1’} S CXPRR|E= @70,

where X is defined by (4.11) and R is the number defined by (5.7).
Then from the assumption of induction and (6.2) we have

w;agH(ng)léC(t_s)(l+‘fl)—(p—k)(R—1)—(j—1)do—u
x exp [—g(tlo+! —sto* 1) |]P].
Hence, for any d, such that
(6.3) O<dy<min{p/(ly+1), (p—k)(R-1); k=1,..., p—1},
it holds that
(6.4) 030t HP|SC(t—s)(L+ €)7o exp [—e(tlot ! —slo+ 1) [&|r].

6.2. Estimate of a,&;a‘éHf,-"’. Differentiating both sides of (6.1)
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with respect to ¢ we have
t
O H = S 0Ky Tika EH0.K,_ ydv.
s

Hence by the same way as the above we obtain
(6.5) 10,0505 H{P| < C(1+ ¢y~ 740~ mexp [ —g(tlo ! —slot1) [¢7],
for d, defined by (6.3).

6.3. Estimate of a,a;agH;H. In this case, we can not obtain the
desired inequality from the representation (6.1). So we rewrite it by

6.6) HP, & 1, 5) == 0.0Ko(x, & 1, DetvaCs, D3>

xK;_(x, &, 7, s)dr.

In order to study (6.6) we divide it into two cases:
(A) The case where (p—k)R=Zp/(lo+1). In this case without loss of
generality we may put [,=0.
(B) The case where (p—k)R>p/(lo+1).

At first we consider the case (A). In this case (6.6) can be rewritten
by

6.7) —H =§:b(x, DKo(x, &, 1, DEK,_1(x, &, T, s)d

+Sta(x, D0.Ko(x, & 1, DEHK;_1(x, &, 7, s)dt

=I0(x, &, t, $)+1I®(x, &, 1, 5).

Therefore it suffices only to study the part II®. Then from the
assumption of induction, we have

|0,0%0L T < C - (1—s) [E[P K (1 +[E)~ 0~ Ddomn
x exp [ —g(t'o* ! —stor 1) |¢]F].

Considering that (t—s)<CXp/UotD).|E|=p/Uo* D) (|¢|>¢>0), for such d,
satisfying
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(6.8) 0<do<p/(lo+1)—(p—k)
it follows that
6.9) 10,0301 1W| < C(1+|&[) I 4o~k exp [ —g(tlo™ ! —stot 1) [E]7].
Next let us consider the case (B). Let

610)  HP(x, & 1,5)

=Sttlk_1b(xa T)fp_k KO(xa 55 L, T)K1~1(xa 61 T, S)dT

+ 0.Ko(x, & 1, etae, DK, & 7 e

=10 4 [J)

At first we consider I®. The following inequality is obtained im-
mediately,

10,006 1®| < Cmax {(t—s) [s|"1, (t—s)|t|'*~1}
X [E[PmH(L 4 [&[)mp/or U= Ddomrexp [ —g(tlo™ L —sto+ 1) [£]P].
Without loss of generality, we may assume that
6.11) p—k>pl(ly+1).

In fact, in the case where p—k=p/(l+1) we can easily see that our
reasonings in the following are applicable for such d, satisfying 0<d,
<p/(lo+1). From the assumption that (p—k)/(l,+1)<p/(l,+1) and
(6.11), we have

(p—k)—plUs+1) p
(6.12) Y A o

Now let
(6.13)  1<Ro<min{R, R'; {(p—k)—p/(lo+ D}R'[L = p/(lo+ 1),

{—K)—pl(lo+DIR =p},

then by the same way as the proof of Lemma 5.1 we have
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t
max {(t—s) Isllk_l, (t=s) [t)=1} écg |t 1dt
s
< C'(glot 1 — glo+1){(p=k)=p/(lo+ 1)}Ro/p
= C' X{(=)=p/(lo+1)}Ro_ | £|~{(p=k)=p/(o+1)}Ro

Hence for such d,, satisfying

(6.14) 0<d0<{(p—k)——lo—1_7*_—T}(R0—1),

it holds that
(6.15) |0,0305 10| < C(1 4 |¢])ddo-mexp [ —g(tlot! —stot 1) |E]r].

Next we consider II‘®), In this case we can easily show that for
such d, satisfying (6.3)

(6.16) 10,6301 1) S C(1+ &)~ 4o~k exp [—g(to+ ! —sto* 1) []P].
Summing up the aboves we have

(6.17) 0,030 HF| < C(1+ |&[)~ido~nexp [ —g(tlot ! —slo+ 1) |¢|7],
k=1, 2,..., p.

6.4. Estimate of §!},'@ 0 H{ In this case, if we repeat the above

reasonings we can obtain the desired inequality,
(6.18) |0} 0308 H | < C(1 + |&|)'p~7do~rexp [ —g(tlot ! —slot 1) [¢]r].

We only remark that for the proof of (6.18) in the case where of!
=0l*! we use (6.6) for the representation of H{®.

Finally we have to remark that it is easy to see that for H(j")
the same facts stated in Remark 3.1 hold.

§7. Study of I'¥(x, §,1,5)

Recall that I{¥) is given by

@D IP= Kol &t Demals DL (5 6 . ).
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where 2p—k)/(m+2)<p/(lo+1).
Since our desired inequalities are obtained by repeating the argu-
ments in section 6, we only check different points. Lemma 5.2 implies

(72) (I—S)Zlflmké C X(2p—k)R. Ia—(lp—k)R s Séfé t,
where X is defined by (4.11). Hence for such d, satisfying

(1.3)  0<d,< min {—P~, (2p—k)(R—1);k=1,2,...,2p—1}
Io+i

we can obtain the desired inequalities (3.1) and (3.2) for 03041,
0,03041% and 0,02041%%.

Let us consider now 0} 19304I", and we may assumc without loss
of generality that 0}%!=0! 0, Let operate 0! 0,=0}'0\"!10, to both sides
of (7.1), then we have

t
(1.4) a:,sa,1§k>=gsa;nﬂKormm@zﬂ-kag-lxK,._ldc
-1
~ X Crhob a0l 2 Kot ad K ] oy
L s
+ 3 CHI0b 101 {9, K oemal? 0l K- Y] ey
=1y 1y
=W+ IR+ 3 IV
i=1 i=1

In order to study I, we divide it into two cases.
(A) The case where 9! =0!. In this case, in view of (7.2) we
have for such d, satisfying (7.3)

(7.5) [030EI W< C(L+ |E])'Pm I~k exp [—g(tlo* ! —sto* 1) |£]7].

(B) The case where 0! =00, (I—-1;=1). Considering that
(t—s)|t|m S C X(2p~BIR/2|F|=(2p~KR/2 | we can also obtained the inequality
(7.5) for such d, satisfying

ol p @r-k)R-1  k
(7.6) 0<dy< mm{lo_i_1 , 5 +—53
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The study of II{¥ is more easy, so we omit it. Finally let us
consider III{¥. 1In this case, using the following inequality we can get
the desired inequality,

|¢70304K ;4] S C(1+|E)~(2PmRIZ=U= Do

xexp [—g(tlo*t —stor 1) |]P],

Summing up the aboves we have obtained
(7.7 |0HK 0305 1§V | < C(1+ &) Pmido~mexp [ —g(tlot 1 —slo+ 1) [£|P] .

Finally we have to note that the facts stated in Remark 3.1 also
hold for 1.

§8. Extension to the Operator Defined in Rz x I,

Our theorem stated in section 1 can be extended to the operator
defined in R:x1,,

8.1)  P(x, t; Dy, 0)=07 + A(x, t; D)0+ B(x, t; D),

p
A(X, t; Dx)'__ j;otljap—j(xs t; Dx)a ap—j= ['1|=Zb—f azz,j(x’ t)D; H

2p
B(xs L Dx)= kgotmkap—k(xa t; Dx): b2p—k= Zp_kbﬂ,k(xs t)DJﬂc 5

181=2

where 0,=0/0,, D,= —i(0/0x,,..., 8/0X,), @y, j, bs, € E°(I,;; BP), and [; and
m, are non-negative integers.

Then under the same conditions in section 1, we can obtain the
results in our theorem. In fact, let us assume,

(i) p is a positive even integer,

(i) p/lo+D2(P—-N/I;+D), j=1,2,...,p,

@iii) 2p/(mo+2)22p—k)(m+2), k=1,2,...,2p,

8.2
¢ | () plo+1)=2pI(mo+2), ie., mo=21,,
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{ (V) A2+ay,(x, t; E)A+b,,(x, t; £)=0 has simple roots A= A(x, t; &),
(i=1, 2) or a double root (i.e. ;=4,) in R:xI, and they
satisfy that ReA/(x, t; £)< —4|&|P for some positive constant §.

Then we have

Theorem 2. Let the operator given by (8.1) satisfy the conditions
in (8.2), then
(i) If ly is a non-negative even integer, then P and its adjoint operator
‘P are hypoelliptic.
(ii) If Iy is a positive odd integer, then *P is hypoclliptic.

The proof of the above theorem performed exactly by the same way
as in section 2, except the proof of Proposition 3.1. For the proof of
Proposition 3.1, we have to consider the following two cases,

(a) the case where |£]| is bounded,

(b) the case where || is unbounded.

The later case (b) is not troublesome, since the reasonings in the
previous sections are applicable. So we have to check the facts in Re-
mark 3.0 for Ky(x, &, t,s) when |&] is bounded. Now for this purpose,
let us transform K, to u(x, &, t, s) by

(83)  Kolx, &1, )= exp| ——3- | Ax, 13 0t oix, &1, 9),

then we can easily see that v should satisfy the following ordinary differ-
ential equation,

0?v=F(x, t; &)v in —l<s<it<l,
8.4) [

0|=s=0, Opl-,=1

where

(85) F(x'.- t; é) = ZZP tmkf2p—k(x’ L é)a f2p-—k= _Z fﬂ,k(x3 t)éﬂ H
k=0 Bl=2p—k

pllo+1)2Q2p—k)/(m,+2), k=0, 1,...,2p. We note that in view of the
proof of Lemma 4.2, we have
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Lemma 8.1. If |u|>Ip, then
[ 1 (¢

(8.6) 0% ,0%0% exp| ——’fg A(x,t; C)dr] 30 as i\,
L — s

where =3 means uniformly convergence in x and & when ¢ varies in a

compact set.
On the other hand, for the solution v of (8.4) it holds
Lemma 8.2. If |u|>lp, then

8.7 |0iK1030%0|30 as  t\s,

(8.8) |0x0%0| 30 as £\,

where 33 indicates the same meaning in Lemma 8.1.

Proof. We can show that v should satisfy the following integral
equation,

o, & 1, ==+ | (= DFCx, 75 Ot & 7, ).
Then in view of the arguments in section 4, we have
|030%0] < C(t—5) (1 + &) exp[(t—5)y M - C(t, 55 &)1,
|01 0x0%0l < C(L+ ¢ e mexp [(t—3)/M - C(t, 55 8],
for some positive constants C and M, and C(t, s; &) is defined by
2p 2p
c(, s; €)=max{k§01tl’”klélz""‘, k:ZOISI'”"MIZ""‘}-
Therefore by induction on [, we can prove (8.7) and (8.8). Q.E.D.
Combining the above two lemmas, we can prove the facts stated
in Remark 3.1 for K, when |&| is bounded.
Appendix A.

In this appendix we shall give a sufficient condition for the follow-
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ing operator to be hypoelliptic,
” 2m .
(A.1) P(x, t; Dy, 0)=0,+ 2 thayx, )D" 7,
j=o0

where (x, f)e R, xI, I,=(—-1, 1), aje &°(,; #P).

For the operator given by (A.1), (or more general operator) the study
has been made by many authors and detailed results are obtained. So
we only give a result which is not covered in another paper.

Let us assume:

There exists a sequence of integers {m;}%%{ satisfying,

(i) O=mou<m;<---<m <My, =m,
(A2)
(i) 2(m—m)/(lyy,+1)= max Cm-=0/(l;+1),

2m;Lis2mjy—1
(i) Redy-m,26>0 in R,xI,j=0,..,k

)
]
|
\

Then we have

Theorem A. Ler the operator P given by (A.1) satisfy the con-
ditions in (A.2), then
®) If L, (j=0,1,...,k) are even integers, then P and its adjoint
operator 'P are hypoelliptic.
@) If L, (j=0,1,...,k) are odd integers, then 'P is hypoelliptic, but
P(t; D,, 0,) is not hypoelliptic.

Theorem A is proved by the same way as T. Matsuzawa [8] (see
also section 2). Without loss of generality, we assume that I,,, are
even integers. Let {Kj(x, ¢, t, 5)}%%o be a sequence defined by

P(x, t; &, 0)Ko(x, &, t, 5)=0 in —l<s<t<l,
(A.3) l
Koli=s=1, Ky=0 in —l<t<s<l,
P(x, t; &, 0)K;=—P(x, t, &; DYK;_, in —l<s<t<l,
(A.4) {
K;l,-s=0, K;=0 in —l<t<s<l, (j=1,2,..),

Where P(X, 1 £+st at)=P(x’ t; 65 6,)+P1(X, t, 65 Dx)' Then for {Kj}j'o=0
we have
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Lemma A.1. There exists a positive constant dy such that

(A.5) |0, D204K ;| < C(1+|E[)2mi=sdo—n
X exp I:___s i (tlzmj+1 —'Slzmj+1) I é l 2(m—1nj)] ,
j=0

in —1<s=t<1, for some positive constants C and ¢ depending only on
I,v, u and j. Moreover it holds that

(A.6) 0! 0¥0:K;30 as tN\s if pu>2ml,
(A.7) 0t 0305K;—0 as t\s if 0=I<j,

where the convergence in (A.7) is uniform in x and & when ¢ varies in
a compact set.

Its proof is done by the same way as that of Lemma 4.2. In
fact, it suffices to define X, (j=0, 1,..., k) by

(A8) Xy=(thmt 1 —slamg 4 1)1/200mp g, j=0, 1,..., k,

instead of X defined by (4.11). So we omit the proof.

Appendix B.
B.1. Introduction

We shall study in this appendix the hypoellipticity for the following
operator,

(B.1.1) P(t; D, 8,)=0,+at'+D2™ + bt'2D2",

where m>n, I; (i=1, 2) are non-negative integers and a and b are non-
zero real constants.

The study of hypoellipticity for degenerate parabolic operators are
concentrated in the point that how the principal part control the lower
order terms. That is, if

(B.1.2) 2m)(l,+1)=2n/(,+1),

then P is hypoelliptic in a neighborhood of t=0 iff d,+at'1D2?™ is hypo-
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elliptic. (Y. Kato [3]). And the straight extensions of this result are
given in Appendix A. But in the case where

(B.1.3) 2m)(1, +1)<2n/(1,+1),

the situation is quite different from the former case. So we shall study
the hypoellipticity assuming (B.1.3). Now our results are stated as
follows.

Theorem B.1. If P is hypoelliptic in a neighborhood of t=0,
then 8,+bt'2D2" is hypoelliptic.

Theorem B.2. If ab>0 and a<O0, then P is hypoelliptic.

B.2. Proof of Theorem B.1

We shall prove by contradiction, so we assume that J,+ bt'2D2"
is not hypoelliptic, i.e., we assume that

(B.2.1) I, is an odd integer and b>0.

In view of Appendix A, our theorem is obvious when [, is an odd
integer and a>0, therefore it suffices to consider the following two
cases,

Case I. [ is an even integer.

Case II. [ is an odd integer and a<0.

At first, let us consider the Case I. Without loss of generality we
may assume that a>0. In fact, if a<O0 it suffices only to change the
coordinate ¢t by —t. Now we remark that from Petrovsky’s theorem
forward Cauchy problem for P is uniformly well posed in &’ in the
interval [0, 1] and also in [—1, —e&] for any fixed positive &. But in the
interval [—1, 0] it is not uniformly well posed. This fact implies that
there exists f~(x, H)e&P(¥,), te[—1,0] such that the solution of the
Cauchy problem,

Pu—=f(x, 1) in (—1,0)
(B.2.2)

Ul=-1=0
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satisfies that u-e&?(#,), (te(—1,0) and u(x, —0)=lim u=(x, t) ¢
170

C=(R,). Let us now prove this fact. We note that for a given f~(x, 1)

the solution of (B.2.2) should be given by

- = F-1 ! [__a_ 1141 _ ol1+1)£2m
(B2.3) u(x,1)=; (g_lexp o st

b
L+1

(#2tt — s’z“)fz"]f'(f, s)ds)

=Fa"(¢ 0],

where &#;! denotes the Fourier inverse transform and f(¢, t) denotes
the partial Fourier transform of f~(x, t) with respect to x. Now let us
define f~(¢, 1) by

{ 0 when ¢&<0,1tZ0

£ =J __a Li+tgam_ b 1+1 2":l
(B24) - 1) lexp[ At b
x @(t£2m/(L1i+1)) when t<0, £>0,
where ¢(1) e CF(R,), ¢(t)=0 and supp [(p(t)]c[—%, —%J Considering
that a>0, b>0 and the assumption (B.1.3), it is easy to show that

y/rg 0J0%f~(£, )=0 in &, for any j and k.

On the other hand, it is easy to see that
ﬁ_(€9 t) € épo%(ylg)a te [_' 1’ 0] .

In fact, it suffices to see that

Q- (&, 1) = E-2m/(+ 1) CXP[—l—a——
1

+1 t11+1§2m_l b tlz"l’lézn—]

2t+1

rg2my(ly+ 1)
xS o(t)d.

_§2ml(ll+ 1)

Hence for sufficiently large >0, lim fi—(¢, t)=S(p(r)d‘r-é‘2"‘/”l+1), which
t70
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shows that ]1m u~(x, )¢ C*(R,). Under the above preparation, let us
define f(x, 1), te[—l 1] by

0,120,
(B.2.5) f(x, )=
f(x, 1), t<0.

Then the equation Pu=f has a solution u(x, t) given by

(u=(x, t) in t<0 given by (B.2.3)
u(x, )= | u(x, t) in t>0, the solution of Pu=0

| with Cauchy data ul,—,=1lim u=(x, f).
170

This proves the non-hypoellipticity of P.

Let us consider the Case II. In this case also we shall construct
flx, )e &2(&,) such that the equation Pu=f has a non-smooth solu-
tion. Under the assumption of Case II we can easily see that the
forward (or the backward) Cauchy problem for P is uniformly well
posed in the interval [—1, —e] (or [e, 1]) for any fixed positive ¢ but
not in [—1,0] (or [0,1]). Hence from the arguments in the above,
there exists f~ed&U(S,), te[—1,0] (or f*eé&%(L,), te[0, 1]) such that
the equation Pu~=f~ (or Put=f*) has a solution u~e&%(#,), te (—1, 0)
(ute&s(y), te(0, 1)) but hm u ¢Cc® (hm ut¢C®). Let us now show
that we can choose f* and f~ so that lim u~ —hm ut. Indeed, let
f(¢,t) be given by (B.2.4), then it suffices t/t‘g give f+(é, 1) by f*(, 1)
= —f~(& —1),t>0. This implies immediately the non-hypoellipticity of
P. Q.E.D.

B.3. Proof of Theorem B.2

At first we note that under the assumption of Theorem B.2, it fol-
lows immediately that the solution of Pu=fe C®(Q), (0e Q<R2,) belongs
to C°(Q,), (Q,={(x,1)eQ;t=0}) by the usual method developed in
[1] or [3]. But we can not prove that ueC®(Q.), (2.={(x,)eQ;
t<0}) by the method of fundamental solution. On the other hand, if
we can show,



720 MASATAKE MIYAKE

(B.3.1) lti;% u(x, H)=u(x, —0)e 2'(Qn {t=0}),

then we have ueC®(Q). In fact if (B.3.1) is proved, let us decompose
u(x, t) as follows (see [13]),

(B.3.2) u(x, )=H(®u(x, )+ H(—tu(x, 1)+ g:o DD ®v,(x)

for some vi(x)e 2'(I,), (I,€2n{t=0}), where H(f) denotes Heaviside’s
function. Then

Pu=H(f)Pu+H(—1)Pu+3(1)®{u(x, +0)—u(x, —0)} + ﬁo(swl)(t)@u (%)

+ 3 a6 DO@DIM(x)+ 3 b I(H@ D).
Jj= Jj=

Considering that Pu=fe C®(Q), it follows that vy_,(x)=0, (I=0, 1,..., N).
Therefore, ()@ {u(x, +0)—u(x, —0)}=0, that is, u(x, +0)=u(x, —0).
Thus we have u(x, )e&YU2'(l,)), te(—c, c) for some positive constant
c. Consequently u(x, £)e&P(2'(l,), which implies immediately that
u(x, ) e C*(I,x(—c, ¢)).

Hence our purpose in the followings is to show (B.3.1). Without
loss of generality we may assume that

(B.3.3) u(x, £)=0{0%uv(x, t), where v(x, t)e L1(Q).

Since ue C*(2,), we can easily show that

(B.3.4) ling 0l 10ku(x, )=vU"bR(x) e 2'(1,), =0, 1,...,J.
™

Indeed, 0i~'0%v(x, t) can be represented by

di=10ku(x, t)=S' dt, Stldtz---gh_lu(x’ 7)dt
0 o 0

+ Zt v(x)t'¢/(1-1i)!, for some v;€2'(,),>0).
i=1

Let us now rewrite v(x, t) as follows,

v(x, t)=1i}rg {H{t—&v+H(—t—¢e} in 2'(Q).
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Then we have
Pu=lim {H(t—¢)Pu+ H(—t—¢g)Pu+6()®@u(x, £)—_ ()@u(x, —¢)
eNo

+3 6D @0i0k(x, ) — 3 8D (B)@!-0kv(x, —e)
i=1 1

i=

+ Zj‘,l ath1 8- V() ®0{710kD2mv(x, €)
— 3 @G0 @01-194D M (x, —8)+ -} .
i=1

On the other hand, we know from (B.3.4) that lim 8-igk+* p(x, &)
eNo

exists in 2'(1,) for any k'=0, therefore

lim i M@ {0i-rdkv(x, —e&)+(linear combination of
ENO p=0
oI~ W oK u(x, —e), 1> )}

has to exist in 2’. If we take as test function ¢(x, ) such a form as
o(x, )=f(x)g(t), where g(t)=1 in a neighborhood of =0, we see
that

lim {9{0%v(x, —&)+(linear combination of
eNO
01 0k u(x, —g), u'>0)}

exists in 2'(l,). Inductively we can prove that if we take as test
function ¢(x, t) such a form as ¢(x, £)=t*f(x)g(f), where g(t)=1 in a
neighborhood t=0, then

lim {9]~#0%v(x, —e&)+(linear combination of
eNO
0w K v(x, —e), p'>p)}
exists in 92'(I,), consequently, lim d*v(x, —&)e 2'(I,). Conversely the
N

&
above procedure, we can conclude that lim u(x, f) exists in 2'(l,),
t70

which proves (B.3.1). Q.E.D.

Finally we note that recently R. Rubinstein [14] has studied an
operator,
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(B.3.5) L=0,+1t"D}—1"D,, (n; even).

He proved that L is not solvable under the same assumption with
(B.1.3), that is, if

2 1
(B.3.6) Wl SmAl’
then L is not solvable.
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