On the Classification of Some (n-3)-Connected (2n-1)-Manifolds

Dedicated to Professor Ryoji Shizuma on his 60-th birthday

By

Hiroyasu Ізнімото*

Introduction

In the preceding paper [4], the author tried to classify (n-2)-connected 2n-manifolds $(n \ge 4)$ with torsion free homology groups up to diffeomorphism $\mod \theta_{2n}$ by completely classifying the handlebodies of $\mathcal{H}(2n+1, k, n+1)$ $(n \ge 4)$ up to diffeomorphism. As remarked there, the method is also applicable to the case of sufficiently connected odd dimensional manifolds.

In this paper, we try to classify the simply connected (2n-1)-manifolds $(n \ge 6)$ with non-trivial homology groups only in dimensions 0, n-2, n+1, and 2n-1, up to diffeomorphism $\operatorname{mod} \theta_{2n-1}$ by completely classifying the handlebodies of $\mathcal{H}(2n, k, n+1)$ $(n \ge 6)$ up to diffeomorphism. The results are listed up or given as theorems in the next section. Those contain the results of Tamura [10] as a special case, that is, as the case of type O. To classify the handlebodies of $\mathcal{H}(2n, k, n+1)$ $(n \ge 6)$ up to diffeomorphism, we use Wall's classification theorem [11], similarly as in [4].

Throughout this paper, notations are due to those of [4], and manifolds are connected, closed, and differentiable.

Results

Let M be a simply connected (2n-1)-manifold $(n \ge 6)$ satisfying the

Communicated by N. Shimada, May 12, 1975.

^{*} Department of Mathematics, Kanazawa University, Kanazawa, Japan.

hypotheses

- (H_1) $H_i(M) = 0$ except dimensions i = 0, n-2, n+1, and 2n-1,
- (H₂) M is (n-2)-parallelizable.¹⁾ (This hypothesis is satisfied if $n=0, 1, 5, \text{ and } 7 \mod 8$.)

Let $\Phi: H^{n-2}(M; Z_2) \to H^{n+1}(M; Z_2)$ be Adem's secondary cohomology operation associated to $S_q^3 S_q^1 + S_q^2 S_q^2 = 0$. We note that there is no indeterminacy by the homological assumption of M. Let $\phi: H^{n-2}(M) \times H^{n-2}(M) \to Z_2$ be a bilinear form defined by $\phi(x, y) = \langle \Phi x_2 \cup y_2, [M]_2 \rangle$, where the suffixes 2 mean that those are considered in the Z_2 -coefficient and [M] denotes the fundamental class of $H_{2n-1}(M)$. It will be clear in §1 that ϕ is symmetric. So that the type of M is defined as in [4]. That is, M is of type O if type I if $\phi(x, x) \neq 0$ for some $x \in H^{n-2}(M)$ and type I if type I if

Theorem 1. Let M be a simply connected (2n-1)-manifold $(n \ge 6)$ satisfying the hypotheses (H_1) , (H_2) . Then, M is represented $\text{mod } \theta_{2n-1}$ as shown in the following tables 1, 2, and 3.

In these tables, A_{α} , B_{β} denote the (n-2)-sphere bundles over (n+1)-spheres with the characteristic elements α , $\beta \in \pi_n(SO_{n-1})$ respectively such that $\pi(\alpha)=0$, $\pi(\beta)=1$ for $\pi:\pi_n(SO_{n-1})\to\pi_n(S^{n-2})\cong Z_2$ $(n\geq 6)$, the homomorphism induced from the projection. $V\binom{\alpha_1}{\alpha_2}$ is the boundary of $W\binom{\alpha_1}{\alpha_2}$, where $W\binom{\alpha_1}{\alpha_2}$ is a handlebody of $\mathscr{H}(2n,2,n+1)$ such that the link $f_1(\partial D_1^{n+1}\times o)\cup f_2(\partial D_2^{n+1}\times o)\subset \partial D^{2n}$ by the attaching maps f_1,f_2 has the non-zero linking element and the normal bundles of the spheres S_i^{n+1} , with hemispheres $D_i^{n+1}\times o$ and D_i^{n+1} in D^{2n} , i=1,2, have the characteristic elements $\alpha_1,\alpha_2\in\pi_n(SO_{n-1})$ respectively such that $\pi(\alpha_1)=\pi(\alpha_2)=0$. $V\binom{\alpha_1}{\alpha_2}$ never has the homotopy type of the connected sum of the two (n-2)-sphere bundles over (n+1)-spheres (cf. [4], §8 and §1).

¹⁾ This means that M is parallelizable on its (n-2)-skeleton of a triangulation.

 $W\binom{\alpha_1}{\alpha_2}$ is also constructed from (n-1)-disk bundles over (n+1)-spheres \overline{A}_i with the characteristic elements α_i , i=1, 2, by plumbing along $S^1 \times S^1$, where there are imbeddings $f_i \colon S^1 \times S^1 \to S_i^{n+1}$, i=1, 2, with the trivial normal bundles framed so that those Pontrjagin-Thom maps yield non-trivial elements of $\pi_{n+1}(S^{n-1}) \cong Z_2$, and then by attaching two 2-cells with thickness D^{2n-2} and a 3-cell with thickness D^{2n-3} to the boundary. (See [3] p. 494, p. 506.)

For an integer $m \ge 0$, mA_{α} , mB_{β} , $m(S^{n+1} \times S^{n-2})$, $mV\binom{\alpha_1}{\alpha_2}$ denote the connected sum of m-copies of A_{α} , B_{β} , $S^{n+1} \times S^{n-2}$, and $V\binom{\alpha_1}{\alpha_2}$ respectively. We put $k = \operatorname{rank} H_{n-2}(M)$. If M is of type (O+I), $q = \operatorname{rank} \phi$, p = k - q, and we fix the homotopy invariant q. If M is of type II, k = 2r. If M is of type (O+II), $2r = \operatorname{rank} \phi$, p = k - 2r, and we fix the homotopy invariant r. If $\pi_n(SO_{n-1})$ has several direct summands, for example, if $\alpha_i = \alpha_1^i + \alpha_2^i$, i = 1, 2, we denote $V\binom{\alpha_1}{\alpha_2}$ by $V\binom{\alpha_1^i}{\alpha_1^i} \frac{\alpha_2^i}{\alpha_1^2}$.

Table 1

<i>n</i> (≧6)	Type O				
4t - 1	$A_a \# (k-1)(S^{n+1} \times S^{n-2}), \qquad a \ge 0$				
4 <i>i</i> — 1	$t=2 \Longrightarrow a : \text{even } \ge 0$				
4 <i>t</i> (<i>t</i> : odd)	$k(S^{n+1}\times S^{n-2})$				
4 <i>t</i> (<i>t</i> : even)	$A_{(0,b)} \sharp (k-1)(S^{n+1} \times S^{n-2}), \qquad b=0, 1$				
4t+1 (t: odd)	$A_{(a,0)}^{\sharp}(k-1)(S^{n+1}\times S^{n-2}), \qquad a=0, 1$				
4t + 1	$A_{(a,0,b)} \# (k-1)(S^{n+1} \times S^{n-2}), \qquad a, b = 0, 1$				
(t: even)	$A_{(1,0,0)}^{\sharp}A_{(0,0,1)}^{\sharp}(k-2)(S^{n+1}\times S^{n-2})$				
$4t+2\ (t\geqq 2)$	$A_a \# (k-1)(S^{n+1} \times S^{n-2}), \qquad a = 0, 1, 2, 4$				
6	$k(S^7 \times S^4)$				

Table 2

(9₹) и	Type I	Type (O+I)
47-1	$t \ge 3 \Longrightarrow Nothing$	$t \ge 3 \implies \text{Nothing}$
, ,	$t=2 \Longrightarrow kB_c, c: odd > 0$	$p(S^8 \times S^5) \# qB_c$, c : odd > 0
4 <i>t</i> (<i>t</i> : odd)	kB_1	$p(S^{n+1}\times S^{n-2}) \# q B_1$
	$kB_{(1,0)}, kB_{(1,1)}$	$p(S^{n+1} \times S^{n-2}) \# q B_{(1,0)}$ $p(S^{n+1} \times S^{n-2}) \# q B_{(1,0)}$
4 <i>t</i> (<i>t</i> : even)	$(k-1)B_{(1,0)}^{\sharp}B_{(1,1)}, \qquad k \ge 2$	
	$(k-2)B_{(1,0)}^{*}2B_{(1,1)}, k\geq 3$	$p(S^{n+1} \times S^{n-2}) \#(q-2) B_{(1,0)} \# 2 B_{(1,1)}, \qquad q \ge 3$ $A_{(0,1)} \#(p-1) (S^{n+1} \times S^{n-2}) \# q B_{(1,0)}$
4t+1 (t: odd)	$kB_{(0,1)}$	$p(S^{n+1} \times S^{n-2}) \# qB_{(0,1)}$
	$kB_{(0,1,0)}, kB_{(0,1,1)}$	$p(S^{n+1} \times S^{n-2}) \# q B_{(0,1,0)}$ $p(S^{n+1} \times S^{n-2}) \# q B_{(0,1,0)}$
4t+1 (t: even)	$(k-1)B_{(0,1,0)}^{\dagger}B_{(0,1,1)}, \qquad k \ge 2$	$,1,0)^{\#}B_{(0,1,1)},$
	$(k-2)B_{(0,1,0)}^{\sharp 2}B_{(0,1,1)}, \qquad k \ge 3$	$p(S^{n+1} \times S^{n-2}) \# (q-2) B_{(0,1,0)} \# 2 B_{(0,1,1)}, \qquad q \ge 3$ $A_{(0,0,1)} \# (p-1) (S^{n+1} \times S^{n-2}) \# q B_{(0,1,0)}$
4t+2	Nothing	Nothing

		lable 3
(5≦) <i>n</i>	Type II	Type (O+II)
4t-1	$V\begin{pmatrix} d \\ 0 \end{pmatrix} \# (r-1) V\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \qquad d \ge 0$	$A_a \# (p-1)(S^{n+1} \times S^{n-2}) \# r V \binom{0}{0}, \qquad a \ge 0$ $p(S^{n+1} \times S^{n-2}) \# V \binom{d}{0} \# (r-1) V \binom{0}{0}, \qquad d > 0$
	$t=2 \implies d$: even ≥ 0	$t=2 \iff a, d: \text{ even, } a \ge 0, d > 0$
4t (t: odd)	$\binom{0}{0}$	$p(S^{n+1} \times S^{n-2}) \#_r V \begin{pmatrix} 0 \\ 0 \end{pmatrix}$
4t (t: even)	$V\begin{pmatrix} 0 & d \\ 0 & 0 \end{pmatrix} \sharp (r-1) V\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, d=0, 1$	$A_{(0,b)}\#(p-1)(S^{n+1}\times S^{n-2})\#rV\binom{00}{00}, \qquad b=0,1$ $p(S^{n+1}\times S^{n-2})\#V\binom{01}{00}\#(r-1)V\binom{00}{00}$
4t+1 (t : odd)	$V\begin{pmatrix} d & 0 \\ d & 0 \end{pmatrix} \# (r-1) V\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, d=0, 1$	$A_{(a,0)}\sharp(p-1)(S^{n+1}\times S^{n-2})\sharp_r V\binom{00}{00}, \qquad a=0,1$ $p(S^{n+1}\times S^{n-2})\sharp V\binom{10}{10}\sharp(r-1)V\binom{00}{00}$

		1 (2 > 2))# (INTAILLIUINS OF LYPE II).
	$V(\frac{a}{d00})^{*}(r-1)V(\frac{0}{000}),$	$A_{(1,0,0)}\#(p-1)(S^{n+1}\times S^{n-2})\#V\Big(\begin{smallmatrix}0.0&d\\0.0&0\end{smallmatrix}\Big)\#(r-1)V\Big(\begin{smallmatrix}0.00\\0.0&0\end{smallmatrix}\Big),$
4t+1	$V\Big(egin{array}{c} 001 \\ 00d \end{array} \Big) \# (r-1) V\Big(egin{array}{c} 000 \\ 000 \end{array} \Big),$	$A_{(0,0,1)}^{\sharp}(p-1)(S^{n+1}\times S^{n-2})^{\sharp}V\Big(egin{array}{c} d\ 0\ 0 \ 0 \ d\ (r-1) V\Big(0\ 0\ 0 \) \ , \end{array}$
(t: even)	$V(\frac{100}{100}) \# V(\frac{001}{003}) \# (r-2) V(\frac{000}{000}).$	$A_{(1,0,1)}^{\sharp}(p-1)(S^{n+1}\times S^{n-2})^{\sharp}V\left(\begin{array}{c} d\ 0\ 0 \\ d\ 0\ 0 \end{array} \right)^{\sharp}(r-1)V\left(\begin{array}{c} 0\ 0\ 0 \\ 0\ 0\ 0 \end{array} \right),$
	$\sqrt{100}$ $\sqrt{000}$ $\sqrt{000}$	where $d=0, 1$.
		$A_{(1,0,0)}^{\sharp}A_{(0,0,1)}^{\sharp}(p-2)(S^{n+1}\times S^{n-2})^{\sharp}rV\binom{000}{000}$
	$V\binom{d}{x} \# (r-1)V\binom{0}{0}, \qquad d=0,4$	$p(S^{n+1} \times S^{n-2}) \# V \begin{pmatrix} d \\ d \end{pmatrix} \# (r-1) V \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \qquad d=0, 4$
$4t + 2$ $(t \ge 2)$		$p(S^{n+1} \times S^{n-2}) \# V \binom{d}{0} \# (r-1) V \binom{0}{0}, \qquad d=1, 2$
	$V\begin{pmatrix} a \\ 0 \end{pmatrix} \# (r-1)V\begin{pmatrix} 0 \\ 0 \end{pmatrix}, d=1, 2$	$A_a \# (p-1)(S^{n+1} \times S^{n-2}) \# rV \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \qquad a=1, 2, 4$
9	$rV\begin{pmatrix}0\\0\end{pmatrix}$	$p(S^7 \times S^4) \# rV \begin{pmatrix} 0 \\ 0 \end{pmatrix}$

The homotopy groups $\pi_n(SO_{n-1})$ $(n \ge 6)$ are given as follows (Kervaire [5], Paechter [8]) and are identified with those groups under some bases (cf. § 2).

$$\frac{n \ (\geq 7)}{\pi_n(SO_{n-1})} \begin{vmatrix} 8s-1 & 8s & 8s+1 & 8s+2 & 8s+3 & 8s+4 & 8s+5 & 8s+6 \\ \hline Z & Z_2+Z_2 & Z_2+Z_2+Z_2 & Z_8 & Z & Z_2 & Z_2+Z_2 & Z_8 \\ \end{matrix},$$

and $\pi_6(SO_5) = 0$.

The type of a handlebody W of $\mathcal{H}(2n, k, n+1)$ $(n \ge 6)$ is defined by the bilinear form λ of the corresponding $(H; \lambda, \alpha)$ -system. (See [4] p. 222.) We have

Theorem 1'. Let \overline{A}_{α} , \overline{B}_{β} be the (n-1)-disk bundles over (n+1)-spheres associated with A_{α} , B_{β} respectively. In the above tables, if we replace $S^{n+1} \times S^{n-2}$, A_{α} , B_{β} , $V\binom{\alpha_1}{\alpha_2}$, and \sharp respectively by $S^{n+1} \times D^{n-1}$, \overline{A}_{α} , \overline{B}_{β} , $W\binom{\alpha_1}{\alpha_2}$, and the boundary connected sum operation \sharp , then Table 1, Table 2, and Table 3 give the complete classification of handlebodies of $\mathscr{H}(2n, k, n+1)$ $(n \geq 6)$ up to diffeomorphism.

Theorem 2. In Theorem 1, the representation of M is unique $mod \theta_{2n-1}$ in each of the following cases when

- (i) M is of type O,
- (ii) M is of type I, $n \neq 8s$, and $n \neq 8s+1$,
- (iii) M is of type (O+I), $n \neq 8s$, and $n \neq 8s+1$,
- (iv) M is of type II and n=4t-1 or 8s+4 or 6,
- (v) M is of type (O+II) and n=4t-1 or 8s+4 or 6, and especially, in the above (i)-(v),
 - (vi) when n=4t-1 or 6.

Corollary 3. Let n=4t-1 $(t \ge 2)$ and let M be a simply connected (2n-1)-manifold satisfying (H_1) , and (H_2) if t is odd. Then M is determined by Adem's secondary cohomology operation $\Phi \colon H^{n-2}(M; Z_2) \to H^{n+1}(M; Z_2)$ and the Pontrjagin class $P_t(M)$ up to diffeomorphism $\operatorname{mod} \theta_{2n-1}$.

1. Proofs of the Main Theorems

Let M be a simply connected (2n-1)-manifold $(n \ge 6)$ satisfying the hypotheses (H_1) , (H_2) . Then there exists a handlebody W of $\mathcal{H}(2n, k, n+1)$, where $k = \operatorname{rank} H_{n-2}(M)$, and a homotopy (2n-1)-sphere Σ such that $M = \partial W \# \Sigma$ (Ishimoto [3], p. 509).

Let $W=D^{2n}\bigcup_{\{f_i\}}\bigcup_{i=1}^kD_i^{n+1}\times D_i^{n-1}\}$ and let $\lambda_{ij}\in Z_2\cong\pi_n(S^{n-2})$ $(n\geq 6)$ be the linking element (Haefliger [2]) defined by $f_j(S_j^n\times o)$ in $S^{2n-1}-f_i(S_i^n\times o)$ if $i\neq j$, and defined by $S_i^{\prime n}$ in $S^{2n-1}-f_i(S_i^n\times o)$ slightly moved from $f_i(S_i^n\times o)$ if i=j. Let $\varepsilon_i\in H^{n-2}(\partial W;Z_2),\ i=1,2,...,k$, be the canonical generators which are dual to the homology classes $(x_i\times S_i^{n-2})\in H_{n-2}(\partial W;Z_2),\ x_i\in\partial D_i^{n+1},\ S_i^{n-2}=\partial D_i^{n-1},\ respectively.$ Then we have the relation $\lambda_{ij}=<\Phi\varepsilon_i\cup\varepsilon_j,\ [\partial W]_2>$ for all i,j, where $[\partial W]_2$ denotes the mod 2 fundamental class of $H_{2n-1}(\partial W;Z_2)$ (cf. [4], Lemma 8.2 and Remark 1 of p. 251). Let $\lambda:H_{n+1}(W)\times H_{n+1}(W)\to Z_2\cong\pi_{n+1}(S^{n-1})$ be the corresponding pairing of W and let $\{e_1,\ldots,e_k\}$ be the canonical base of $H_{n+1}(W)$. Then the relation $\lambda(e_i,e_j)=S\lambda_{ij}$ holds by Lemma 7 of Wall [11]. So that, we have the following commutative diagram:

where i_* is the isomorphism induced from the inclusion map i and D denotes the Poincaré duality. (cf. Theorem 8.3 of [4]). Thus, the type of W defined by the bilinear form λ of the corresponding $(H; \lambda, \alpha)$ -system coincides with that of M. Therefore, we have Theorem 1 by the complete classification of the handlebodies of $\mathcal{H}(2n, k, n+1)$ $(n \ge 6)$ up to diffeomorphism, which has been performed in the following sections, using Wall's classification theorem [11]. Theorem 1' is the collection of the results.

If the membrane W of M is unique up to diffeomorphism, then also

M up to diffeomorphism $\operatorname{mod} \theta_{2n-1}$. If W_i , i=1, 2, are handlebodies of type O of $\mathcal{H}(2n, k, n+1)$ $(n \ge 6)$ and if ∂W_1 is diffeomorphic to ∂W_2 $\operatorname{mod} \theta_{2n-1}$, then W_1 is diffeomorphic to W_2 , similarly as Theorem 9.1 of [4]. So that, if M is of type O, the representation of M in Table 1 is unique $\operatorname{mod} \theta_{2n-1}$.

Let ξ be an orientable (4t-2)-plane bundle over the 4t-sphere $(t \ge 2)$ with the characteristic element $\gamma \in Z \cong \pi_{4t-1}(SO_{4t-2})$. Then, the Pontrjagin class $P_t(\xi)$ satisfies the relation $P_t(\xi) = \pm (c_1 \gamma) \cdot \bar{\mu}$, where

$$c_{1} = \begin{cases} 24 & \text{if } t = 2, \\ 2(2t-1)! & \text{if } t \text{ is odd } \ge 3, \\ (2t-1)! & \text{if } t \text{ is even } \ge 4, \end{cases}$$

and $\bar{\mu}$ is the fundamental class of $H^{n+1}(S^{n+1}; Z)$. For, since $P_t(\xi) = P_t(\xi \oplus \varepsilon) = \pm c(S\gamma) \cdot \bar{\mu}$ where c is the number defined in [4] (p. 254) or [10] (p. 378) and $S: \pi_n(SO_{n-1}) \to \pi_n(SO_n)$ is the suspension homomorphism, the relation is obtained by the fact that $S\gamma = \pm \gamma$ if $t \ge 3$ and $S\gamma = \pm 2\gamma$ if t = 2, which is known from the following exact sequence

where $\pi_{4t-2}(SO_{4t-2}) \cong Z_4$ if $t \ge 3$, $\pi_6(SO_6) \cong 0$, and $\partial(1) = 2$ if $t \ge 3$. (See [4] Lemma 2.1.)

Let n=4t-1 $(t\geq 2)$ and let W be a handlebody of $\mathscr{H}(2n,k,n+1)$ with the system $(H;\lambda,\alpha)$. Then, similarly as Lemma 9.2 of [4], we have $\alpha=\pm\frac{1}{c_1} < P_t(W), \ >=\pm\frac{1}{c_1} < P_t(\partial W), \ i_*^{-1}(\)>,$ where i_* is the isomorphism induced from the inclusion map $i\colon \partial W\Rightarrow W$. If $\partial W_1\sharp \sum_1=\partial W_2\sharp \sum_2$, where $W_i\in \mathscr{H}(2n,k,n+1),\ i=1,2,$ and \sum_i are homotopy (2n-1)-spheres, there exists a homeomorphism $g\colon \partial W_1\to \partial W_2$ such that $g^*(\tau(\partial W_2))=\tau(\partial W_1)$ (Shiraiwa [9]). So that we know the uniqueness of the representation of M mod θ_{2n-1} when n=4t-1 $(t\geq 2)$ (cf. Theorem 9.3 of [4]).

This completes the proof of Theorem 2. The corollary is clear from the above.

2. Calculations of ∂ and π

Let $\partial_n \colon \pi_{n+1}(S^{n-1}) (\cong Z_2) \to \pi_n(SO_{n-1})$ be the boundary homomorphism in the homotopy exact sequence of the fibering $SO_{n-1} \to SO_n \to S^{n-1}$, and let $\pi_n \colon \pi_n(SO_{n-1}) \to \pi_n(S^{n-2}) (\cong Z_2)$ be the homomorphism induced by the projection of SO_{n-1} to $S^{n-2} = SO_{n-1}/SO_{n-2}$. We note that the suffix "n" of ∂_n and π_n implies that we consider at $\pi_n(SO_{n-1})$, though it is irregular use.

The groups $\pi_n(SO_{n-1})$, which were calculated by Kervaire [5], are given previously in the table. Using Kervaire [5] and Paechter [8], we can find the bases of the groups $\pi_n(SO_{n-1})$ such that the following relations hold under the identification of the groups, where 1 denotes the (standard) generators of the cyclic groups Z_2 , Z_8 , and Z.

Lemma 2.1.

- (i) $\partial_{4t-1} = \partial_{4t} = 0$ for $t \ge 1$.
- (ii) $\partial_{4t+1} \neq 0$ for $t \geq 1$, more precisely, $\partial_{8s+1}(1) = (1, 0, 0) \in Z_2 + Z_2 + Z_2$ for $s \geq 1$,

and
$$\partial_{8s+5}(1) = (1, 0) \in \mathbb{Z}_2 + \mathbb{Z}_2 \text{ for } s \ge 0.$$

(iii)
$$\partial_{4t+2}(1)=4\in \mathbb{Z}_8$$
 for $t\geq 2$, and $\partial_6=0$.

Lemma 2.2.

- (i) $\pi_{4t-1} = 0$ for $t \ge 3$, and $\pi_7(1) = 1$
- (ii) $\pi_{4t} \neq 0$ for $t \geq 1$, more precisely, $\pi_{8s}(1, 0) = 1$, $\pi_{8s}(0, 1) = 0$ for $s \geq 1$,

and
$$\pi_{8s+4}(1)=1$$
 for $s \ge 0$.

- (iii) $\pi_{4t+1} \neq 0$ for $t \geq 1$, more precisely, $\pi_{8s+1}(1, 0, 0) = \pi_{8s+1}(0, 0, 1) = 0$, $\pi_{8s+1}(0, 1, 0) = 1$, for $s \geq 1$,
- and $\pi_{8s+5}(1, 0) = 0$, $\pi_{8s+5}(0, 1) = 1$ for $s \ge 0$.
- (iv) $\pi_{4t+2} = 0$ for $t \ge 1$.

Proof. These lemmas are obtained, except precise informations of π_{8s} , π_{4t+1} , and ∂_{4t+1} , by the results of Kervaire [5], using the homotopy exact sequence of the fibering $SO_{n-1} \rightarrow SO_n \rightarrow S^{n-1}$.

If n=8s+4 ($s \ge 1$), the generator of $\pi_n(SO_{n-1})$ is unique. If n=4t-1

 $(t \ge 1)$ or 4t+2 $(t \ge 1)$, we need not choose a special generator of π_n (SO_{n-1}) since the lemmas remain valid for any choice of the generator of $\pi_n(SO_{n-1})$.

Let n=8s ($s \ge 2$). By Kervaire [5], there is the sequence

$$0 \longrightarrow \pi_{8s+1}(V_{m,m-8s+1}) \xrightarrow{\partial_*} \pi_{8s}(SO_{8s-i}) \longrightarrow \pi_{8s}(SO_m) \longrightarrow 0$$

which is exact and splits for $i \le 4$, $s \ge 2$, where m is to be large. Since $\pi_{8s+1}(V_{m,m-8s+4})=0$, $\pi_{8s}(SO_{8s-4})\cong\pi_{8s}(SO_m)\cong Z_2$. Let θ_1 be the generator of $\pi_{8s}(SO_{8s-4})\cong Z_2$ and ω_1 be the image of θ_1 by the suspension homomorphism $\pi_{8s}(SO_{8s-4})\to\pi_{8s}(SO_{8s-1})$. Let μ be the generator of $\pi_{8s+1}(V_{m,m-8s+1})\cong Z_2$ given by Paechter [8] and let $\xi=\partial_*(\mu)$. Then, $\{\xi,\omega_1\}$ forms a base of $\pi_{8s}(SO_{8s-1})\cong Z_2+Z_2$ for $s\ge 2$. We adopt this. Thus, $\pi_{8s}(\omega_1)=0$, and $\pi_{8s}(\xi)\ne 0$ since $\pi_{8s}\ne 0$.

Let n=8, and let v_5 be the generator of the 2-primary component of $\pi_8(S^5)$. We note that $q_*: \pi_8(SO_6) \to \pi_8(S^5)$, the homomorphism induced from the projection $q: SO_6 \to S^5$, is an isomorphism. It is well known that $\pi_8(SO_7) \cong Z_2 + Z_2$ is generated by the homotopy class $(\rho_7 \circ \eta_7)$ and $i_*(q_*^{-1}v_5)$, where $\rho_7(c)c' = c \cdot c' \cdot \bar{c}$ for Cayley numbers $c \in S^7$, $c' \in S^6$, $\eta_7 = E^5\eta_2$ $(\eta_2: S^3 \to S^2)$ is the Hopf map), and $i: SO_6 \to SO_7$ is the inclusion map. We adopt $\{(\rho_7 \circ \eta_7), i_*(q_*^{-1}v_5)\}$ as the base of $\pi_8(SO_7)$. Then, $\pi_8(i_*(q_*^{-1}v_5)) = 0$, and $\pi_8((\rho_7 \circ \eta_7)) \neq 0$ since $\pi_8 \neq 0$.

Let n=4t+1 $(t\geq 1)$. Let $\{\mu'_1, \mu'_2\}$, $\{\mu_1, \mu_2\}$, and μ'' be the generators of $\pi_{8s+6}(V_{m,m-8s-3})\cong Z_2+Z_2$ $(s\geq 1)$, $\pi_{4t+2}(V_{m,m-4t})\cong Z_2+Z_2$, and $\pi_{4t+2}(V_{m,m-4t-1})\cong Z_2$ respectively which are given by Paechter [8], and denote, both by μ' , the generators of $\pi_6(V_{m,m-3})\cong Z_2$ and $\pi_{8s+2}(V_{m,m-8s+1})\cong Z_2$ $(s\geq 1)$ also given by Paechter [8], where m is sufficiently large and μ'_1 , μ_1 correspond respectively to the generators $(i_{8s+4,4}\circ h_{8s+3,8s+6})$ $(s\geq 1)$, $(i_{4t+1,3}\circ h_{4t,4t+2})$ of Paechter [8]. Then, examining those generators, we know that $p'_*(\mu'_1)=0$, $p'_*(\mu'_2)=\mu_1$, $p'_*(\mu')=\mu_1$, $p_*(\mu_1)=0$, and $p_*(\mu_2)=\mu''$, where $p': V_{m,m-4t+1}\to V_{m,m-4t}$, $p: V_{m,m-4t}\to V_{m,m-4t-1}$ are the projections. In the homotopy exact sequence of the fibering $SO_{4t}\to SO_m\to V_{m,m-4t}$, let $\xi_1=\partial_*(\mu_1)$ and $\xi_2=\partial_*(\mu_2)$.

If t=2s+1 ($s \ge 0$), there are the following exact sequences

$$0 = \pi_{8s+6}(SO_m) \longrightarrow \pi_{8s+6}(V_{m,m-8s-i}) \xrightarrow{\partial_*} \pi_{8s+5}(SO_{8s+i}) \longrightarrow \pi_{8s+5}(SO_m) = 0,$$

i=3, 4, 5, where m is sufficiently large. We adopt $\{\xi_1, \xi_2\}$ as the base of $\pi_{8s+5}(SO_{8s+4}) \cong Z_2 + Z_2$ ($s \ge 0$). Then, we know the precise correspondence of the homomorphisms

$$\pi_{8s+5}(SO_{8s+3}) \xrightarrow{i'_*} \pi_{8s+5}(SO_{8s+4}) \xrightarrow{i_*} \pi_{8s+5}(SO_{8s+5})$$

equivalent to p'_* and p_* respectively, where i', i are inclusion maps.

If t=2s ($s\ge 1$), by Kervaire [5] we have the following sequence which is exact and splits for $s\ge 2$, $i\le 3$ and s=1, $i\le 2$:

$$0 \longrightarrow \pi_{8s+2}(V_{m,m-8s+i}) \xrightarrow{\partial *} \pi_{8s+1}(SO_{8s-i}) \longrightarrow \pi_{8s+1}(SO_m) \longrightarrow 0,$$

where m is to be large. Since $\pi_{8s+2}(V_{m,m-8s+3})=0$ for $s\geq 1$ and $\pi_{10}(V_{m,m-6})=0$, we know that $\pi_{8s+1}(SO_{8s-3})\cong \pi_{8s+1}(SO_m)\cong Z_2$ ($s\geq 2$) and $\pi_9(SO_6)\cong \pi_9(SO_m)\cong Z_2$. Denote those generators both by θ_2 and let $\omega_2\in \pi_{8s+1}(SO_{8s})$ ($s\geq 1$) be the image of θ_2 by the suspension homomorphism. Then, $\{\xi_1, \xi_2, \omega_2\}$ forms a base of $\pi_{8s+1}(SO_{8s})\cong Z_2+Z_2+Z_2$ for $s\geq 1$, and we adopt this. So that, by p'_* and p_* , we know the precise correspondence of the homomorphisms

$$\pi_{8s+1}(SO_{8s-1}) \xrightarrow{i'_*} \pi_{8s+1}(SO_{8s}) \xrightarrow{i_*} \pi_{8s+1}(SO_{8s+1}) \,,$$

where i', i are inclusion maps.

Thus, the precise correspondences of ∂_{4t+1} and π_{4t+1} is known by the following exact sequences

$$0 \longrightarrow \pi_{4t+2}(S^{4t}) \xrightarrow{\hat{\theta}_{4t+1}} \pi_{4t+1}(SO_{4t}) \xrightarrow{i*} \pi_{4t+1}(SO_{4t+1}) \longrightarrow 0,$$

$$\parallel \vdots \\ Z_2 \qquad \downarrow \\ \pi_{4t+1}(S^{4t-1}) \cong Z_2$$

$$\downarrow 0$$

and this completes the proof.

3. Classification of Handlebodies of Type O

Let W be a handlebody of $\mathcal{H}(2n, k, n+1)$, $n \ge 6$. W is of type O

if and only if the bilinear form λ of the corresponding $(H; \lambda, \alpha)$ -system is trivial. So that, classifying the handlebodies of type O up to diffeomorphism comes to classifying the homomorphisms $\alpha: H \to \pi_n(SO_{n-1})$ up to equivalence, where H is a free abelian group of rank k and the homomorphisms $\alpha_i: H \to \pi_n(SO_{n-1})$, i=1, 2, are equivalent if and only if there exists an isomorphism $h: H \to H$ such that $\alpha_1 = \alpha_2 \circ h$.

Theorem 3.1. The handlebody W of type O of $\mathcal{H}(2n, k, n+1)$ $(n \ge 6)$ is uniquely represented up to diffeomorphism as follows:

(i) If
$$n=4t-1$$
 $(t \ge 2)$,
 $W = \overline{A}_c + (k-1)(S^{n+1} \times D^{n-1})$.

where $a \in Z \cong \pi_{4t-1}(SO_{4t-2})$, $a \ge 0$, especially $a \in 2\mathbb{Z}$, $a \ge 0$, if t=2.

(ii) In the case when
$$n=4t$$
 $(t \ge 2)$, if $n=8s+4$ $(s \ge 1)$,

$$W=k(S^{n+1}\times D^{n-1}),$$

and if
$$n = 8s (s \ge 1)$$
,

$$W = \overline{A}_{(0,b)} \xi(k-1) (S^{n+1} \times D^{n-1}),$$

where $(0, b) \in Z_2 + Z_2 \cong \pi_{8s}(SO_{8s-1})$.

(iii) In the case when
$$n=4t+1$$
 $(t \ge 2)$, if $n=8s+5$ $(s \ge 1)$,
$$W = \overline{A}_{(a,0)} \natural (k-1) (S^{n+1} \times D^{n-1}),$$

where
$$(a, 0) \in \mathbb{Z}_2 + \mathbb{Z}_2 \cong \pi_{8s+5}(SO_{8s+4})$$
, and if $n = 8s+1$ $(s \ge 1)$,

$$W = \overline{A}_{(a,0,b)} \sharp (k-1) (S^{n+1} \times D^{n-1}),$$

or
$$W = \overline{A}_{(1,0,0)} \sharp A_{(0,0,1)} \sharp (k-2) (S^{n+1} \times D^{n-1}),$$

where $(a, 0, b), (1, 0, 0), (0, 0, 1) \in \mathbb{Z}_2 + \mathbb{Z}_2 + \mathbb{Z}_2 \cong \pi_{8s+1}(SO_{8s}).$

(iv) In the case when n=4t+2 $(t \ge 1)$, if $t \ge 2$,

$$W = \overline{A}_a \, h(k-1) (S^{n+1} \times D^{n-1}),$$

where
$$a=0, 1, 2, 4 \in \mathbb{Z}_8 \cong \pi_{4t+2}(SO_{4t+1})$$
, and if $t=1$,
 $W=k(S^7 \times D^5)$.

Proof. Since $s\pi\alpha(u_i)=\lambda(u_i,u_i)=0$ for each basis element u_i of H, $\alpha(H)$ is contained in Ker π , where $S\colon \pi_n(S^{n-2})\to \pi_{n+1}(S^{n-1})$ $(n\geq 6)$ is the suspension isomorphism. Ker π is known by Lemma 2.2, and we can simplify and characterize α by replacing the basis of H. Those are similar to that of Theorem 3.1 of [4]. Only a difference is the case when n=4t+2 $(t\geq 2)$. In this case Ker $\pi=Z_8$. If $\alpha(H)\subset\{0,2,4,6\}\cong Z_4$, the case is similar to [4]. If $\alpha(H)\neq\{0,2,4,6\}$, there exists a basis $\{u_1,\ldots,u_k\}$ of H such that $\alpha(u_1)=1$ and $\alpha(u_i)=0$ for $i\geq 2$. So that we have the result.

4. Classification of Handlebodies of Type I

In this section, we classify the handlebodies of type I of $\mathcal{H}(2n, k, n+1)$ $(n \ge 6)$ up to diffeomorphism, that is, the $(H; \lambda, \alpha)$ -systems of type I with rank H = k up to isomorphism. If $(H; \lambda, \alpha)$ is a system of type I, there is a basis of H which is orthogonal with respect to λ .

Theorem 4.1. Let n=4t-1 $(t \ge 2)$. If $t \ge 3$, the handlebodies of type I of $\mathcal{H}(2n, k, n+1)$ do not exist. If t=2, i.e. n=7, the handlebody W of type I of $\mathcal{H}(2n, k, n+1)$ is uniquely represented up to diffeomorphism as $W=k\overline{B}_c$, where c is a positive odd integer of $\pi_7(SO_6) \cong Z$.

Proof. The proof is quite similar to that of Theorem 4.1 of [4].

Theorem 4.2. If n=8s+4 ($s\geq 1$), the handlebody W of type I of $\mathcal{H}(2n, k, n+1)$ is unique up to diffeomorphism and is represented as $W=k\overline{B}_1$, where $1\in Z_2\cong \pi_{8s+4}(SO_{8s+3})$.

Proof. We know that $\alpha(v_i)=1$ for any orthogonal basis $\{v_i\}$ of H since $\lambda(v_i, v_i)=s\pi\alpha(v_i)=1$ and π_{8s+4} is an isomorphism by Lemma 2.2. So that, the $(H; \lambda, \alpha)$ -system of type I is unique up to isomorphism.

Theorem 4.3. If n=8s ($s \ge 1$), the handlebodies of type I of $\mathcal{H}(2n, k, n+1)$ are uniquely represented up to diffeomorphism as follows:

- (i) $k\bar{B}_{(1,0)}$,
- (ii) $k\bar{B}_{(1,1)}$,
- (iii) $(k-1)\overline{B}_{(1,0)} \not= \overline{B}_{(1,1)}$ $(k \ge 2)$,

(iv) $(k-2)\overline{B}_{(1,0)}$ $\nmid 2\overline{B}_{(1,1)}$ $(k \ge 3)$, where the characteristic elements belong to $\pi_{8s}(SO_{8s-1}) \cong Z_2 + Z_2$.

Proof. Let W be a handlebody of type I and $(H; \lambda, \alpha)$ the corresponding system. Since $\partial_{4i}=0$ by Lemma 2.1, $\alpha: H \to Z_2 + Z_2 \cong \pi_{8s}$ (SO_{8s-1}) is a homomorphism. By Lemma 2.2, $\pi_{8s}^{-1}(1)$ consists of (1,0) and (1,1). So that, W is diffeomorphic to a boundary connected sum of some copies of $\overline{B}=\overline{B}_{(1,0)}$ and $\overline{B}'=\overline{B}_{(1,1)}$. Let $\alpha=(\alpha^{(1)}, \alpha^{(2)}), \alpha^{(i)}=p_i\circ\alpha$ (i=1,2), where p_i is the projection of Z_2+Z_2 to the i-th direct summand. Then, using the homomorphism $\alpha^{(1)}, \alpha^{(2)}$, the $(H; \lambda, \alpha)$ -systems are classified up to isomorphism, similarly as in Theorem 4.5 of [4] (We note that Assertion 1, 2, and 3 of Theorem 4.5 of [4] are shown by $\alpha^{(2)}, \alpha^{(3)}$ of $\alpha=(\alpha^{(1)}, \alpha^{(2)}, \alpha^{(3)})$.)

Theorem 4.4. If n=8s+5 ($s\geq 1$), the handlebody W of type I of $\mathcal{H}(2n, k, n+1)$ is unique up to diffeomorphism and is represented as $W=k\overline{B}_{(0,1)}$, where $(0, 1)\in Z_2+Z_2\cong \pi_{8s+5}(SO_{8s+4})$.

Proof. Since $\partial_{8s+5}(1)=(1,0)$ and $\pi_{8s+5}^{-1}(1)=\{(0,1),(1,1)\}$, the situation is quite similar to that of Theorem 4.4 of [4].

Theorem 4.5. If n=8s+1 ($s \ge 1$), the handlebodies of type I of $\mathcal{H}(2n, k, n+1)$ are uniquely represented up to diffeomorphism as follows:

- (i) $k\bar{B}_{(0,1,0)}$,
- (ii) $k\bar{B}_{(0,1,1)}$,
- (iii) $(k-1)\overline{B}_{(0,1,0)} \not= \overline{B}_{(0,1,1)}$ $(k \ge 2)$,
- (iv) $(k-2)\bar{B}_{(0,1,0)} \nmid 2\bar{B}_{(0,1,1)}$ $(k \ge 3)$,

where the characteristic elements belong to $\pi_{8s+1}(SO_{8s}) \cong Z_2 + Z_2 + Z_2$.

Proof. By Lemma 2.1 and Lemma 2.2, $\partial_{8s+1}(1)=(1, 0, 0)$ and $\pi_{8s+1}^{-1}(1)=\{(\gamma, 1, \delta); \gamma, \delta=0 \text{ or } 1\}$. So that the situation is quite similar to that of Theorem 4.5 of [4].

Theorem 4.6. If n=4t+2 $(t \ge 1)$, there are no handlebodies of type I of $\mathcal{H}(2n, k, n+1)$.

Proof. Since $\pi_{4t+2}=0$ by Lemma 2.2 and $\lambda(v_i, v_i) = s\pi\alpha(v_i) = 1$ for

any orthogonal basis $\{v_t\}$ of H, there arises a contradiction for any $(H; \lambda, \alpha)$ -system of type I if n=4t+2, $t \ge 1$.

5. Classification of Handlebodies of Type (O+I)

In this section, we classify the handlebodies of type (O+I) of $\mathcal{H}(2n, k, n+1)$ $(n \ge 6)$ up to diffeomorphism, that is $(H; \lambda, \alpha)$ -systems of type (O+I) with rank H=k up to isomorphism. For a handlebody W of type (O+I) of $\mathcal{H}(2n, k, n+1)$ $(n \ge 6)$ and the corresponding system $(H; \lambda, \alpha)$, $q = \operatorname{rank} \lambda$ and p = k - q are the diffeomorphism invariants of W, more precisely, the homotopy invariants of ∂W . We call rank λ briefly the rank of W.

Theorem 5.1. Let n=4t-1 $(t\geq 2)$. If $t\geq 3$, the handlebodies of type (O+I) of $\mathcal{H}(2n,k,n+1)$ do not exist. If t=2, i.e. n=7, the handlebody W of type (O+I) of $\mathcal{H}(14,k,8)$ with rank q is uniquely represented up to diffeomorphism as $W=p(S^8\times D^6) \, \, | \, q \, \overline{B}_c$, p+q=k, where c is a positive odd integer of $\pi_7(SO_6) \cong Z$.

Proof. Since $\pi_{4t-1}=0$ $(t \ge 3)$ we have the former half of the theorem, and since $\partial_{4t-1}=0$ $(t \ge 1)$ the latter half similarly to Theorem 5.2 of [4].

Theorem 5.2. If n=8s+4 ($s\geq 1$), the handlebody W of type (O+I) of $\mathcal{H}(2n, k, n+1)$ with rank q is unique up to diffeomorphism and is represented as $W=p(S^{n+1}\times D^{n-1}) \natural q\overline{B}_1$, p+q=k, where 1 is the generator of $\pi_n(SO_{n-1}) \cong Z_2$.

Proof. The handlebody of type O and the handlebody of type I are unique up to diffeomorphism by Theorem 3.1 and Theorem 4.2. Since W is the sum of such handlebodies, we have the result.

Theorem 5.3. If n=8s ($s \ge 1$), the handlebodies of type (O+I) of $\mathcal{H}(2n, k, n+1)$ with rank q are uniquely represented up to diffeomorphism as follows:

- (i) $p(S^{n+1} \times D^{n-1}) \natural q \overline{B}_{(1,0)}$,
- (ii) $p(S^{n+1} \times D^{n-1}) \not = q \overline{B}_{(1,1)}$,

- (iii) $p(S^{n+1} \times D^{n-1}) \natural (q-1) \overline{B}_{(1,0)} \natural \overline{B}_{(1,1)} \qquad (q \ge 2),$
- (iv) $p(S^{n+1} \times D^{n-1}) \natural (q-2) \overline{B}_{(1,0)} \natural 2\overline{B}_{(1,1)} \quad (q \ge 3),$
- (v) $\overline{A}_{(0,1)} \sharp (p-1) (S^{n+1} \times D^{n-1}) \sharp q \overline{B}_{(1,0)}$,

where p+q=k and the characteristic elements belong to $\pi_{8s}(SO_{8s-1})$ $\cong Z_2+Z_2$.

Proof. The proof is similar to that of Theorem 5.4 of [4].

Theorem 5.4. If n=8s+5 ($s\geq 1$), the handlebody W of type (O+I) of $\mathcal{H}(2n, k, n+1)$ with rank q is unique up to diffeomorphism and is represented as $W=p(S^{n+1}\times D^{n-1}) \, \exists \, q \, \overline{B}_{(0,1)}$, p+q=k, where $(0,1)\in Z_2+Z_2$ $\cong \pi_{8s+5}(SO_{8s+4})$.

Proof. By Theorem 3.1 and Theorem 4.4, a handlebody of type (O+1) of $\mathcal{H}(2n, k, n+1)$ with rank q has a representation such as $p(S^{n+1} \times D^{n-1}) \nmid q \overline{B}_{(0,1)}$ or $\overline{A}_{(1,0)} \nmid (p-1)(S^{n+1} \times D^{n-1}) \nmid q \overline{B}_{(0,1)}$. Let $\{u_1, \dots, u_p; v_1, \dots, v_q\}$, p+q=k, be the admissible basis of H which corresponds to the latter representation. Then, $\alpha(u_1)=(1,0), \alpha(u_i)=(0,0)$ if $i>1, \alpha(v_1)=\dots=\alpha(v_q)=(0,1)$. Replace u_1 by $u_1'=u_1+2v_1$. Then, by Lemma 2.1, $\alpha(u_1')=(0,0)$. So that, there exists an admissible basis $\{u_1', u_2, \dots, u_p; v_1, \dots, v_q\}$ of H which corresponds to the former representation. This implies that those representations are equivalent.

Theorem 5.5. If n=8s+1 ($s \ge 1$), the handlebodies of type (O+1) of $\mathcal{H}(2n, k, n+1)$ with rank q are uniquely represented up to diffeomorphism as follows:

- (i) $p(S^{n+1} \times D^{n-1}) \natural q \overline{B}_{(0,1,0)}$,
- (ii) $p(S^{n+1} \times D^{n-1})
 atural q \overline{B}_{(0,1,1)}$,
- (iii) $p(S^{n+1} \times D^{n-1}) \natural (q-1) \overline{B}_{(0,1,0)} \natural \overline{B}_{(0,1,1)}$ $(q \ge 2),$
- (iv) $p(S^{n+1} \times D^{n-1}) \natural (q-2) \overline{B}_{(0,1,0)} \natural 2\overline{B}_{(0,1,1)}$ $(q \ge 3)$,
- (v) $\bar{A}_{(0,0,1)} \natural (p-1) (S^{n+1} \times D^{n-1}) \natural q \bar{B}_{(0,1,0)}$,

where p+q=k and the characteristic elements belong to $\pi_{8s+1}(SO_{8s})$ $\cong Z_2+Z_2+Z_2$.

Proof. Since $\partial_{8s+1}(1)=(1,0,0)$, $\ker \pi_{8s+1}$ is generated by $\{(1,0,0),(0,0,1)\}$, and $\pi_{8s+1}^{-1}(1)=\{(\gamma,1,\delta); \gamma, \delta=0, \text{ or } 1\}$, the proof is quite similar to that of Theorem 5.4 of [4].

Since $\pi_{4t+2} = 0$ $(t \ge 1)$ we also have

Theorem 5.6. If n=4t+2 $(t \ge 1)$, there are no handlebodies of type (O+I) of $\mathcal{H}(2n, k, n+1)$.

6. Classification of Handlebodies of Type II

In this section, we classify the handlebodies of type II of $\mathcal{H}(2n, k, n+1)$ $(n \ge 6)$ up to diffeomorphism, that is, the $(H; \lambda, \alpha)$ -systems of type II with rank H = k up to isomorphism. If $(H; \lambda, \alpha)$ is a system of type II with rank H = k, then k = 2r and H has a basis symplectic with respect to λ .

Theorem 6.1. If n=4t-1 $(t \ge 2)$, the handlebody W of type II of $\mathcal{H}(2n, k, n+1)$ is represented uniquely up to diffeomorphism as

$$W = W \begin{pmatrix} d \\ 0 \end{pmatrix} \sharp (r-1) W \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \qquad d \ge 0,$$

where k=2r and $d \in Z \cong \pi_{4t-1}(SO_{4t-2})$, especially $d \in 2Z$ if t=2.

Proof. Since $\partial_{4t-1}=0$ $(t\geq 1)$, $\alpha: H\to \pi_{4t-1}(SO_{4t-2})\cong Z(t\geq 2)$ is a homomorphism, and since $s\pi\alpha(e_i)=s\pi\alpha(f_i)=0$ and $\text{Ker }\pi_7=2Z$, we have the theorem by Lemma 6.1 of [4].

Theorem 6.2. If n=8s+4 ($s \ge 1$), the handlebody W of type II of $\mathcal{H}(2n, k, n+1)$ is unique up to diffeomorphism and is represented as $W=rW\begin{pmatrix}0\\0\end{pmatrix}$, k=2r.

Proof. Since π_{8s+4} : $\pi_{8s+4}(SO_{8s+3}) = Z_2 \rightarrow \pi_{8s+4}(S^{8s+2}) = Z_2$, $s \ge 1$, is an isomorphism by Lemma 2.2, $\alpha(e_i) = \alpha(f_j) = 0$ for all $i, j = 1, 2, \dots, r$. So that we have the theorem.

Theorem 6.3. If n=8s ($s \ge 1$), the handlebody W of type II of $\mathcal{H}(2n, k, n+1)$ is represented uniquely up to diffeomorphism as

$$W = W\begin{pmatrix} 0 & d \\ 0 & 0 \end{pmatrix} \natural (r-1) W\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix},$$

where k=2r and $(0, d) \in Z_2 + Z_2 \cong \pi_{8s}(SO_{8s-1})$.

Proof. Since $\partial_{4t}=0$ $(t\geq 1)$, α is a homomorphism. The image of α is in $\operatorname{Ker} \pi_{8s}=o+Z_2\subset Z_2+Z_2=\pi_{8s}(SO_{8s-1})$. So that we have the theorem by Lemma 6.1 of [4].

Theorem 6.4. If n=8s+5 ($s \ge 1$), the handlebody W of type II of $\mathcal{H}(2n, k, n+1)$ is uniquely represented up to diffeomorphism as

$$W = W \begin{pmatrix} d & 0 \\ d & 0 \end{pmatrix} \natural (r-1) W \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix},$$

where k=2r and $(d, 0) \in \mathbb{Z}_2 + \mathbb{Z}_2 \cong \pi_{8s+5}(SO_{8s+4})$.

Proof. Since Ker $\pi_{8s+5} = Z_2 + 0 \subset Z_2 + Z_2 = \pi_{8s+5}(SO_{8s+4})$ and $\partial_{8s+5}(1) = (1, 0) \in \text{Ker } \pi_{8s+5}$ by Lemma 2.1 and Lemma 2.2, we know that $\alpha(H) \subset \text{Ker } \pi_{8s+5}$. So that α is regarded as a quadratic form over Z_2 , and is classified by the Arf invariant.²⁾

Theorem 6.5. If n=8s+1 ($s \ge 1$), the handlebodies of type II of $\mathcal{H}(2n, k, n+1)$ are uniquely represented up to diffeomorphism as follows:

- (ii) $W\begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & d \end{pmatrix} \sharp (r-1) W\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$,
- (iii) $W\begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & d \end{pmatrix}
 abla W\begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}
 abla (r-2) W\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$,

where k=2r, and (0, 0, 1), (1, 0, 0), (0, 0, d), and (d, 0, 0) belong to $Z_2+Z_2+Z_2\cong\pi_{8s+1}(SO_{8s})$.

Proof. Since $\operatorname{Ker} \pi_{8s+1} = Z_2 + o + Z_2 \subset Z_2 + Z_2 + Z_2 = \pi_{8s+1}(SO_{8s})$ and $\partial_{8s+1} = (1, 0, 0) \in \operatorname{Ker} \pi_{8s+1}$, we know that $\alpha(H) \subset \operatorname{Ker} \pi_{8s+1}$. So that, we have the theorem similarly to Theorem 6.5 of [4].

Theorem 6.6. If n=4t+2 $(t \ge 1)$, the handlebodies of type II of $\mathcal{H}(2n, k, n+1)$ are represented uniquely up to diffeomorphism as follows: If $t \ge 2$,

²⁾ See, for example, Browder [1] p. 55.

(i)
$$W\begin{pmatrix} d \\ d \end{pmatrix} \sharp (r-1)W\begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
, $d=0, 4$,

(ii)
$$W\begin{pmatrix} 2\\0 \end{pmatrix}
abla (r-1)W\begin{pmatrix} 0\\0 \end{pmatrix}$$
,

(iii)
$$W\begin{pmatrix} 1\\0 \end{pmatrix} \natural (r-1)W\begin{pmatrix} 0\\0 \end{pmatrix}$$
,

and if t=1, i.e. n=6,

(iv)
$$rW\begin{pmatrix} 0\\0 \end{pmatrix}$$
,

where k=2r and the characteristic elements 0, 1, 2, and 4 belong to $Z_8 \cong \pi_{4t+2}(SO_{4t+1})$.

Proof. Let $(H; \lambda, \alpha)$ be a system of type II with rank H = k = 2r, and let $\{e_1, f_1, ..., e_r, f_r\}$ be a symplectic base of H. If $\{\alpha(e_1), \alpha(f_1), ..., \alpha(e_r), \alpha(f_r)\} \subset \{0, 2, 4, 6\} \subset Z_8$, then $\alpha(H) \subset \{0, 2, 4, 6\} \cong Z_4$ since $\partial_{4t+2} = 4$ $(t \ge 2)$ by Lemma 2.1. So the situation is quite similar to that of Theorem 6.7 of [4], and we have the results (i), (ii).

If $\alpha(H) \neq \{0, 2, 4, 6\}$, we may assume that $\{\alpha(e_i), \alpha(f_i)\} \neq \{0, 2, 4, 6\}$, $i=1, 2, \dots, s, s \geq 1$, and $\{\alpha(e_j), \alpha(f_j)\} \subset \{0, 2, 4, 6\}$, $j=s+1, s+2, \dots, r$. Performing some elementary transformations to $\{e_i, f_i\}$, we may assume that $(\alpha(e_i), \alpha(f_i)) = (1, 0), i=1, 2, \dots, s$, and $(\alpha(e_j), \alpha(f_j)) = (0, 0)$, or (2, 0), or $(4, 4), j=s+1, s+2, \dots, r$. But, each pair $(\alpha(e_i), \alpha(f_j)) = (2, 0)$ or (4, 4) can be killed using a certain pair $(\alpha(e_i), \alpha(f_i)) = (1, 0)$ by adopting the new basis elements $e'_j = e_j - 2e_i, f'_j = f_j$, or $e'_j = e_j - 4e_i, f'_j = f_j - 4f_i$. So that, there exists a symplectic base $\{e_1, f_1, \dots, e_r, f_r\}$ of H such that each pair $(\alpha(e_i), \alpha(f_i)) = (0, 0)$, or $(1, 0), i=1, 2, \dots, r$. If $(\alpha(e_i), \alpha(f_i)) = (\alpha(e_j), \alpha(f_j)) = (1, 0), i \neq j$, let $e'_i = e_j + 2(f_i - f_j), f'_i = f_i - f_j, e'_j = e_i - e_j + 2(f_i - f_j)$, and $f'_j = f_i$. Then, we have $(\alpha(e_i), \alpha(f_i)) = (1, 0), (\alpha(e_j), \alpha(f_j)) = (0, 0)$.

Thus, if $\alpha(H) \neq \{0, 2, 4, 6\}$, there exists a symplectic base $\{e'_1, f'_1, \dots, e'_r, f'_r\}$ of H such that $(\alpha(e'_1), \alpha(f'_1)) = (1, 0)$, and $(\alpha(e'_2), \alpha(f'_2)) = \dots = (\alpha(e'_r), \alpha(f'_r)) = (0, 0)$. This implies that the corresponding handlebody is diffeomorphic to (iii).

If t=2, we have (iv) since $\pi_6(SO_5) \cong 0$. This completes the proof.

7. Classification of Handlebodies of Type (O+II)

In this section, we classify the handlebodies of type (O+II) of

 $\mathscr{H}(2n, k, n+1)$ $(n \ge 6)$ up to diffeomorphism, that is, the $(H; \lambda, \alpha)$ -systems of type (O+II) with rank H=k up to isomorphism. For a handlebody W of type (O+II) of $\mathscr{H}(2n, k, n+1)$ $(n \ge 6)$ and the corresponding system $(H; \lambda, \alpha)$, $2r = \operatorname{rank} \lambda$ and p = k - 2r are the diffeomorphism invariants of W, more precisely, the homotopy invariants of ∂W . We call $\operatorname{rank} \lambda$ briefly the rank of W.

Theorem 7.1. If n=4t-1 ($t \ge 2$), the handlebodies of type (O+II) of $\mathcal{H}(2n, k, n+1)$ with rank 2r are uniquely represented up to diffeomorphism as follows:

(i)
$$\overline{A}_a \natural (p-1)(S^{n+1} \times D^{n-1}) \natural r W \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \quad a \ge 0, \quad p+2r=k,$$

where $a \in Z \cong \pi_{4t-1}(SO_{4t-2})$.

(ii)
$$p(S^{n+1}\times D^{n-1}) \natural W\begin{pmatrix} d\\0 \end{pmatrix} \natural (r-1)W\begin{pmatrix} 0\\0 \end{pmatrix}, \quad d>0, \quad p+2r=k,$$
 where $d\in Z\cong \pi_{4t-1}(SO_{4t-2}).$

In (i) and (ii), if t=2 then a and d are even.

Proof. Since $\partial_{4t-1} = 0$, $\pi_{4t-1} = 0$ ($t \ge 3$), and $\pi_7(1) = 1$, the proof is quite similar to that of Theorem 7.2 of [4].

Theorem 7.2. If n=8s+4 ($s \ge 1$), the handlebody W of type (O+II) of $\mathcal{H}(2n, k, n+1)$ with rank 2r is unique up to diffeomorphism and is represented as

$$W = p(S^{n+1} \times D^{n-1}) \natural r W \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \qquad p + 2r = k.$$

Proof. If n=8s+4 ($s\ge 1$), the handlebodies of type O and type II are respectively unique up to diffeomorphism by Theorem 3.1 and Theorem 6.2. So that, we have the result.

Theorem 7.3. If n=8s ($s \ge 1$), the handlebodies of type (O+II) of $\mathcal{H}(2n, k, n+1)$ with rank 2r are uniquely represented up to diffeomorphism as follows:

(i)
$$\overline{A}_{(0,b)} \sharp (p-1) (S^{n+1} \times D^{n-1}) \sharp r W \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$
,

(ii)
$$p(S^{n+1} \times D^{n-1})
\exists W \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}
\exists (r-1) W \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix},$$

where p+2r=k and (0, b), $(0, 1) \in \mathbb{Z}_2 + \mathbb{Z}_2 \cong \pi_{8s}(SO_{8s-1})$.

Proof. By Theorem 3.1 and Theorem 6.3, the handlebody of type (O+II) with rank 2r has a representation such as

$$\overline{A}_{(0,b)} \natural (p-1) (S^{n+1} \times D^{n-1}) \natural W \begin{pmatrix} 0 & d \\ 0 & 0 \end{pmatrix} \natural (r-1) W \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix},$$

where (0, b), $(0, d) \in Z_2 + Z_2 \cong \pi_{8s}(SO_{8s-1})$ and p+2r=k. Since $\partial_{8s}=0$, α is a homomorphism, and $\alpha(H) \subset \operatorname{Ker} \pi_{8s} = \{(0, 0), (0, 1)\} \cong Z_2$ for any $(H; \lambda, \alpha)$ -system of type (O+II). Let $(H; \lambda, \alpha)$ be a system of type (O+II) with $\operatorname{rank} 2r$ and let $\{u_1, \cdots, u_p; e_1, f_1, \cdots, e_r, f_r\}$ be an admissible base of H(p+2r=k). If $\alpha(u_1) = \alpha(e_1) = (0, 1)$, let $e_1' = e_1 + u_1$. Then $\alpha(e_1') = (0, 0)$. So that, any case can be reduced to one of the following three:

- (1) α is the zero homomorphism.
- (2) $\alpha(u_1) = (0, 1)$ and α takes (0, 0) for any other basis elements.
- (3) $\alpha(e_1) = (0, 1)$ and α takes (0, 0) for any other basis elements.

These three are independent. Because, if the case (2) is equivalent to (3), that is, if there are the two admissible bases $\{u_1, \dots, u_p; e_1, f_1, \dots, e_r, f_r\}$, $\{u'_1, \dots, u'_p; e'_1, f'_1, \dots, e'_r, f'_r\}$ of H satisfying (2), (3) respectively, then, by Lemma 7.1 of [4], there exists an unimodular matrix T such that $(u'_1, \dots, u'_p; e'_1, f'_1, \dots, e'_r, f'_r)^t = T(u_1, \dots, u_p; e_1, f_1, \dots, e_r, f_r)^t$,

$$T = \begin{pmatrix} p & 2r \\ \widehat{M} & \widehat{O} \\ * & L \end{pmatrix} P \pmod{2},$$

and L is mod 2 symplectic. But, since $\alpha^{(2)}(u_i') = t_{i1} = 0 \pmod{2}$, $|M| = 0 \pmod{2}$. This contradicts to |T| = 1. So that, the $(H; \lambda, \alpha)$ -systems corresponding to the above cases are independent up to isomorphism. This completes the proof.

Let n=4t+1 $(t \ge 2)$. If t=2s+1 $(s \ge 1)$, then $\partial_{8s+5}(1)=(1, 0) \in Z_2+Z_2 \cong \pi_{8s+5}(SO_{8s+4})$, Ker $\pi_{8s+5} \cong Z_2+0$, and so $\alpha(H) \subset \operatorname{Ker} \pi_{8s+5}$ for any $(H; \lambda, \alpha)$ -system of type (O+II). So that, the situation is quite similar to that of Theorem 7.3 of [4]. If t=2s $(s \ge 1)$, then $\partial_{8s+1}(1)=(1, 0, 0) \in Z_2+Z_2+Z_2 \cong \pi_{8s+1}(SO_{8s})$, Ker $\pi_{8s+1}=Z_2+o+Z_2$, and so $\alpha(H) \subset \operatorname{Ker} \pi_{8s+1}$

for any $(H; \lambda, \alpha)$ -system of type (O+II). So that, the situation is quite similar to that of Theorem 7.5 of [4]. Thus, we have the following theorems.

Theorem 7.4. If n=8s+5 ($s\geq 1$), the handlebodies of type (O+II) of $\mathcal{H}(2n, k, n+1)$ with rank 2r are uniquely represented up to diffeomorphism as follows:

(i)
$$\bar{A}_{(a,0)} \natural (p-1) (S^{n+1} \times D^{n-1}) \natural r W \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$
,

(ii)
$$p(S^{n+1} \times D^{n-1})
\exists W \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}
\exists (r-1)W \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix},$$

where p+2r=k and (a, 0), (1, 0) belong to $Z_2+Z_2 \cong \pi_{8s+5}(SO_{8s+4})$.

Theorem 7.5. If n=8s+1 ($s \ge 1$), the handlebodies of type (O+II) of $\mathcal{H}(2n, k, n+1)$ with rank 2r are uniquely represented up to diffeomorphism as follows:

- (i) $p(S^{n+1} \times D^{n-1}) \bowtie W_1$, where W_1 is a handlebody of type II of $\mathcal{H}(2n, 2r, n+1)$,
- (ii) $\bar{A}_{(1,0,0)} \natural (p-1) (S^{n+1} \times D^{n-1}) \natural W \begin{pmatrix} 0 & 0 & d \\ 0 & 0 & 0 \end{pmatrix} \natural (r-1) W \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$,
- (iii) $\bar{A}_{(0,0,1)} \natural (p-1) (S^{n+1} \times D^{n-1}) \natural W \begin{pmatrix} d & 0 & 0 \\ d & 0 & 0 \end{pmatrix} \natural (r-1) W \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$,
- $\text{(iv)} \quad \bar{A}_{(1,0,1)} \natural (p-1) (S^{n+1} \times D^{n-1}) \natural W \left(\begin{array}{c} d \ 0 \ 0 \\ d \ 0 \ 0 \\ \end{array} \right) \natural (r-1) W \left(\begin{array}{c} 0 \ 0 \ 0 \\ 0 \ 0 \ 0 \\ \end{array} \right),$
- (v) $\overline{A}_{(1,0,0)} \natural \overline{A}_{(0,0,1)} \natural (p-2) (S^{n+1} \times D^{n-1}) \natural r W \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$,

where p+2r=k and the characteristic elements belong to $Z_2+Z_2+Z_2 \cong \pi_{8s+1}(SO_{8s})$.

If n=4t+2 $(t \ge 1)$, the situation is slightly different form that of [4] since $\pi_{4t+2}(SO_{4t+1}) \cong Z_8$.

Theorem 7.6. If n=4t+2 $(t \ge 1)$, the handlebodies of type (O+II) of $\mathcal{H}(2n, k, n+1)$ with rank 2r are uniquely represented up to diffeomorphism as follows:

(i)
$$p(S^{n+1} \times D^{n-1}) \, \exists \, W \begin{pmatrix} d \\ d \end{pmatrix} \, \exists (r-1) \, W \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \qquad d=0, 4,$$

(ii)
$$\overline{A}_4 \natural (p-1) (S^{n+1} \times D^{n-1}) \natural r W \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
,

(iii)
$$p(S^{n+1} \times D^{n-1}) \, \exists \, W \begin{pmatrix} 2 \\ 0 \end{pmatrix} \, \exists (r-1) W \begin{pmatrix} 0 \\ 0 \end{pmatrix},$$

(iv)
$$\overline{A}_2 \natural (p-1) (S^{n+1} \times D^{n-1}) \natural r W \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
,

$$(\mathbf{v}) \quad p(S^{n+1} \times D^{n-1}) \, \natural \, W \! \left(\begin{array}{c} 1 \\ 0 \end{array} \right) \, \natural (r-1) W \! \left(\begin{array}{c} 0 \\ 0 \end{array} \right),$$

(vi)
$$\overline{A}_1 \natural (p-1) (S^{n+1} \times D^{n-1}) \natural r W \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
,

where during (i)-(vi), $t \ge 2$, p+2r=k, and the characteristic elements belong to $Z_8 \cong \pi_{4t+2}(SO_{4t+1})$, and

(vii)
$$p(S^7 \times D^5) \exists r W \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
, $p+2r=k$, if $t=1$ i.e. $n=6$.

Proof. Let $t \ge 2$. Then $\partial_{4t+2}(1) = 4 \in Z_8 \cong \pi_{4t+2}(SO_{4t+1})$. Let $(H; \lambda, \alpha)$ be a system of type (O+II) with rank 2r. If $\alpha(H) \subset \{0, 2, 4, 6\}$ $(\cong Z_4) \subset Z_8$, then the situation is quite similar to that of Theorem 7.7 of [4]. So that, we have the results (i)-(iv). Let $\alpha(H) \subset \{0, 2, 4, 6\}$ and let $\{u_1, \dots, u_p; e_1, f_1, \dots, e_r, f_r\}$ be an admissible base of H. Then,

- (a) $\alpha(\{u_1,\dots,u_n\}) \neq \{0, 2, 4, 6\},$
- or (b) $\alpha(\{e_1, f_1, \dots, e_r, f_r\}) \neq \{0, 2, 4, 6\}$.

If (a), we may assume that $\alpha(u_1)=1$, $\alpha(u_i)=0$ for $i \ge 2$. If (b), we may assume that $(\alpha(e_1), \alpha(f_1))=(1, 0)$ and $(\alpha(e_j), \alpha(f_j))=(0, 0)$ for all $j \ge 2$, as in the proof of Theorem 6.6.

If (a) and (b), replacing e_1 by $e'_1 = e_1 - u_1$, there is an admissible base $\{u'_1, \cdots, u'_p; e'_1, f'_1, \cdots, e'_r, f'_r\}$ of H such that $\alpha(u'_1) = 1$, $\alpha(u'_i) = 0$ for $i \ge 2$, and $(\alpha(e'_j), \alpha(f'_j)) = (0, 0)$ for all j. If (a) and not (b) i.e. $\alpha(\{e_1, f_1, \cdots, e_r, f_r\}) \subset \{0, 2, 4, 6\}$, we may assume that $\alpha(u_1) = 1$, $\alpha(u_i) = 0$ for $i \ge 2$ and $(\alpha(e_j), \alpha(f_j)) = (0, 0)$, or (2, 0), or (4, 4) for all j by some elementary transformations of symplectic bases. Then, by replacing e_j or f_j by $e'_j = e_j + lu_1$ or $f'_j = f_j + mu_1$ (l, m: integers), there is also an admissible base $\{u'_1, \cdots, u'_p; e'_1, f'_1, \cdots, e'_r, f'_r\}$ of H such that $\alpha(u'_1) = 1$, $\alpha(u'_i) = 0$ for $i \ge 2$, and $\alpha(e'_j), \alpha(f'_j) = (0, 0)$ for all j. If not (a) but (b), we may assume that $\alpha(u_1) = 0$, or 2, or 4, $\alpha(u_i) = 0$ for $i \ge 2$, and $\alpha(e_1), \alpha(f_1) = (1, 0), (\alpha(e_j), \alpha(f_j)) = (0, 0)$ for $j \ge 2$. Then, by replacing u_1 by $u'_1 = u_1 + 2le_1$ (l: integer), there is an admissible base $\{u'_1, \cdots, u'_p; e'_1, f'_1, \cdots, e'_r, f'_r\}$ of H such that $\alpha(u'_i) = 0$ for all i and $\alpha(e_1), \alpha(f_1) = (1, 0), (\alpha(e_j), \alpha(f_j)) = (0, 0)$ for $j \ge 2$.

Thus, for any $(H; \lambda, \alpha)$ -system of type (O+II) with rank 2r, there is an admissible base $\{u_1, \dots, u_p; e_1, f_1, \dots, e_r, f_r\}$ of H such that

- (1) $\alpha(u_1)=1$, $\alpha(u_i)=0$ for $i \ge 2$, and $(\alpha(e_i), \alpha(f_i))=(0, 0)$ for all j,
- or (2) $\alpha(u_i) = 0$ for all i, and $(\alpha(e_1), \alpha(f_1)) = (1, 0), (\alpha(e_j), \alpha(f_j)) = (0, 0)$ for $j \ge 2$.

Now, we can show that the cases (1) and (2) are independent of each other, using Lemma 7.1 of [4] as in the proof of Theorem 7.3. So that, the two $(H; \lambda, \alpha)$ -systems corresponding respectively to the cases (1) and (2) are not isomorphic. Thus, we have the results (v), (vi).

If t=1, since $\pi_6(SO_5)=0$, we have the result (vii). This completes the proof.

References

- [1] Browder, W., Surgery on simply connected manifolds, Springer-Verlag, 1972.
- [2] Haefliger, A., Differentiable links, Topology 1 (1962), 241-244.
- [3] Ishimoto, H., Representing handlebodies by plumbing and surgery, *Publ. RIMS, Kyoto Univ.* 7 (1972), 483–510.
- [4] ——, On the classification of (n-2)-connected 2n-manifolds with torsion free homology groups, *ibid.* 9 (1973), 211–260.
- [5] Kervaire, M., Some non-stable homotopy groups of Lie groups, *Illinois J. Math.*, 4 (1960), 161–169.
- [6] ——— and Milnor, J., Groups of homotopy spheres, Ann. of Math. 77 (1963), 504-537.
- [7] Ôguchi, K., Seminar on Topology A-4, Tokyo, 1962, (in Japanese).
- [8] Paechter, G. F., The groups $\pi_r(V_{n,m})$, I, II, III, Quart. J. Math. Oxford Ser. (2), 7 (1956), 249–268, ibid. 9 (1958), 8–27, ibid. 10 (1959), 17–37.
- [9] Shiraiwa, K., A note on tangent bundles, Nagoya Math. J. 29 (1967), 259–267.
- [10] Tamura, I., On the classification of sufficiently connected manifolds, *J. Math. Soc. Japan* 20 (1968), 371–389.
- [11] Wall, C. T. C., Classification problems in differential topology I, Classification of handlebodies, *Topology* 2 (1963), 253–261.