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Analytic Wave Front Sets of the Riemann
Functions of Hyperbolic Mixed
Problems in a Quarter-Space
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Seiichiro WAKABAYASHI*

1. Introduction

Duff [3] studied the location and structures of singularities of
reflected Riemann functions for hyperbolic mixed problems with constant
coefficients in a quarter-space making use of the stationary phase method.
However, it seems that it is difficult to apply the method to the study
of Riemann functions of more general hyperbolic mixed problems.
Matsumura [6] gave an inner estimate of the location of singularities
of reflected Riemann functions which correspond to reflected waves,
making use of the localization method developed by Atiyah, Bott and
Garding [2] and Hormander [4]. In [9] the author proved a localiza-
tion theorem describing the location of singularities of reflected Riemann
functions which correspond to reflected waves, lateral waves and bound-
ary waves. Tsuji [8] also studied the same problem in the cases where
operators are homogeneous and obtained similar results. On the other
hand outer estimates of singular supports of fundamental solutions for
the Cauchy problems were also given in [2]. In this paper we shall
be concerned with outer estimates of singular supports of reflected
Riemann functions for hyperbolic mixed problems.

Now let us state our problems and assumptions. Let R” denote
the n-dimensional Euclidean space and Z" its real dual space and write
X'=(X1yeer Xy—1)> X" =(X3,..., X,) for the coordinate x=(x,,...,x, in R?»
and & =(¢q,..., E,my), E=(ss..., &), E=(E, &,+1) for the dual coordinate
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E=(&4,..., &). We shall also denote by R% the half-space {x=(x, x,)
eR"; x,>0}. For differentiation we will use the symbol D=i"1(d/
0x4,..., 0/0x,). Let P=P(£) be a hyperbolic polynomial of order m
of n variables ¢ with respect to 3=(1,0,...,0) in =" in the sense of
Gérding, ie. P(3)s#0 and P(é+s3)#0 when & is real and Ims< —y,,
where P° denotes the principal part of P. Moreover we assume that
P%0, 1)#0. We consider the mixed initial-boundary value problem
for the hyperbolic operator P(D) in a quarter-space

1.1 P(D)u(x)=f(x), xeRy, x>0,
(1.2) (D%u) (0, x")=0, 0<k<m—1, x,>0,
(13) B(Du()l,—0=0,  1<j<l, x>0.

Here the Bj(D) are boundary operators with constant coefficients and
the number ! of boundary conditions is equal to that of the roots with
positive imaginary part of the equation P(&'—iy¥’, A))=0 with respect
to 4, where y>7v,.

Let us denote by I'=I'(P, 9 (=E") the component of the set
{EeE"; PO(E)#0} which contains § and put I'y={&'eZ"1; (&, 0)el}.
When € eZr!—iy,9—il,, we can denote the roots of P(&, 1)=0
with respect to 4 by A¥(&),..., 2f(&), 17(&),..., 2;- (&), which are enumer-
ated so that

(1.4) Im 2§(€)>0, 1=k,
Im () <0, 1sksm-—1.
Put
(1.5) Py, D=ITiA=25E), & eE =iy —il,.

We now define the Lopatinski determinant for the system {P, B;} by

n_ 1 { B;(&, HA1
(1.6) R(&)=det (E{%Wdl>j,k=l ..... 1

é, EE"—I —ivogl —iF0.

We state the assumptions that we impose on {P, B;}:
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(A.T) P(E)=p1(O)"1+-py()*,

where the p;(¢) are distinct strictly hyperbolic polynomials with respect
to 9.
(A.2) The system {P, B;} is &-well posed, i.c.

a.7n R(E" +53)#0 for &eZ»! and Ims<-—vy,,
Ro(9)#0,

where R,(¢') denotes the principal part of R(¢’) defined by (2.2) (see
Sakamoto [7]).

Now we can construct the Riemann function G(x, y) for {P, B;}
which describes the propagation of waves produced by unit impulse given
at position y=(0, y,,..., y,) in R% (see [7], [8]). Write

(1.8) G(x, y)=E(x—y)—F(x,y), xeR}, x;>0,
y=(0’ y29-'-9yn)ER£ll-1

where E(x) is the fundamental solution represented by

(1.9  E(x)= (2n)-"g _, expLix EIPET AL, nepod+T.

Then the reflected Riemann function F(x, y) is written in the form

(110 P p)=@ny o] w e expli{(x=y)¢
_ e R (&) By (HE1 3
ynén""xngtﬁl}']R(&/)k})_!.(é:’kén_‘_l)})l(i) dia

ney3+T, n'ey 9"+, H,e1=0,

where

Ne k-1
(1.11)  R,(¢')=(k, j)—cofactor of (%%%d&)j .

F(x, y) has to be interpreted in the sense of distribution with respect
to (x, y) in R? xR%. We put

(I ° 12) F('x” yll’ xll) =F("\:’ 0’ y")
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and regard F(x', y,, x,) asa distribution on X=R" ! xR xRL.
In [2] Atiyah, Bott and Gérding proved the following

Proposition 1.1. If P(¢) is a hyperbolic polynomial with respect
to 9, then

(1.13) Ugezmio) SUpP Eg X {&} = WF(E)c WF (E)< U gezmioKe X {¢}
holds and, moreover,
(1.14) ch[supp Ex] =Ko

holds. Here

(1.15) Ego(x)=(2n)'"g . expLix EIP(@ e, e oI+,

(1.16) Kyo={xeR"; x-n=0 for all e I'(Py, 9)},
where the localization Py of P at &° is defined by
(1.17) vMP(v1E0 4 ) =vP Puo(n) + O(vP*Y)  as v—0.

Our aim is to obtain results corresponding to Proposition 1.1
for F(x', y,, x,) under the conditions (A.1) and (A.2).

The remainder of this paper is organized as follows. In §2 we
shall state results obtained in [9] and give some remarks. We shall
investigate some properties of the Lopatinski determinant R(£) in §3.
An outer estimate of WF,(F) will be given in §4. In §5 we shall give
some remarks and examples.

The author would like to express his sincere gratitude to Professor
M. Matsumura for many valuable suggestions.

2. Localization Theorem
Put

@.D I={¢e5"1;(,¢&)el for some &,e5}.

I' coincides with one defined in [7], [9].
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Lemma 2.1 ([7]). R(&') is holomorphic in E"‘l—iyOS’—iF.'

Lemma 2.2 ([7]). Let K be a compact set in En=1—iI', then there
exists Tx>0 such that

22 R(18)=tho{Ro(&)+ 171 Ry(§) +172R,(E) + ),

whose convergence is uniform in Kx {t> Ty}, where

(i) {R&)} are holomorphic in I'=\U, c\(0)2(E" 1 —il’),
(i) Rj@e)=th~iRy&) for &'el', teC\{0},

(iii) Ro(E")#0 and hy is an integer.

Let us denote by i(cE"‘i) the component of the set {é’ef;
Ro(—i¢")#0} which contains &'.

Lemma 23. X is an open convex cone and
(2.3) R(EN#0  for &eZrl—iy§—is.
Remark. X coincides with one defined in [71, [9].

Proof. We first prove that X is star-shaped with respect to .
Put

f(t, n)=Ro(ty' —i¥), Imt<0, n'eX.

Then f(t,n") is holomorphic for Im¢t<0 and continuous for Im¢=<0,
n'eX. Since X is connected, there exists a continuous function n'(6),
0=<60=1, such that 11’(6)62:', 7'(0)=7n" and py'(1)=9. From Lemma 2.1
in [7] it follows that

2.4) f(t, 7'(0)#0 when Im¢=0 and 0=<0Z1.
Since the set {#'(0); 0<6=1} is compact in %, we see that
(2.5) f@, n'(6)#0 when |{{=T, Imt<0 and 0Z0Zl1,

where T=max<q<{2/dis(—in'(0), {{'e=Z""1 - il'; Ro()=0}U—idl)}. This
follows from

Ro(tn/ ()= i9)=(it)'oRo(~ in' @)= -19).
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Let us assume that there exists a complex number ¢, such that Imi¢,<0
and f(t, #)=0. Then (2.4) and (2.5) imply that Imt,<0 and 0<|t,]
<T. Moreover from (2.4) and (2.5) there exists a continuous function
#(0) such that f(#(6), n'(6))=0, Im#(0)<O0, |¢(@)|<T and #0)=t,. This
is contrary to f(¢, §)#0 for Imt<0. Therefore we have

(2.6) f(t, 1)=Ro(tn' —i9)#0  for Imt¢=0.

It easily follows from (2.6) that X is star-shaped with respect to &
and that Y coincides with one defined in [7]. Thus (2.3) follows from
Lemma 2.2 in [7]. Putting f(t, n)=Ro(tn’'—in®), where #’, no’eE. and
Imt<0, and applying the same argument to f(¢,4) we can prove the
convexity of 2. Q.E.D.

Let ¢% be arbitrarily fixed in E"1\{0} and let {j;} <<, be the
set of suffixes so that p%(¢%, ©)=0 has a real multiple root . We
define I’ « by

(2.7) I;§OI X E= m;;l: lr(pjh(gm’uk), lg) .T

Lemma 2.4 (Lemma 2.6 in [9]). For any compact set K in Er!
—iyo¥ —il" and any non-negative integer N there exists §>0 such that
if eK and 0<v<s,

2.8) VHR(TIEY 1) = B oo Q (W4 Oy DIL),

where Qo(n')#0, L is a positive integer and h, is a rational number.
Moreover the Q') are holomorphic in E"“‘—i))OS’—iI‘“go,.

Let Q3(y") be the principal part of Qu(n") (see [9]). We denote by
iéo, the component of the set {n’ef w3 Q3(—in)#0} which contains
9. )fgo, coincides with one defined in [9]. Then by the same argument
as in Lemma 2.3 we have the following

Lemma 2.5. X is an open convex cone and

(2.9) Qo(1)#0  for neEv =iy, ¥ —iZyw,

t If r,=0, then we pul [",y =571,
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(2.10) Q3)#0  for neEr!—iXy.
Let é,,ﬂe: and let {s;}; <<, be the set of suffixes so that pQ (L%,

£9.)=0 and ?"(é"’ 9. ) Bpsk k(&Y p)|4=go, ,>0. This implies that

£9,, is a real simple root of psk(éo’, 1)=0 which corresponds to a root
with positive imaginary part of p2 (&% —iy9’, =0, y>0. Define

Q1) Fogg, p=Nizi{EeE™ 15 (&, &u ) € TPy en, 1 D) -
Let &° be arbitrarily fixed in Z7*1\{0} and put
(2.12) Fao=(I'(Pgor % E) N Figors, ;) N Eao x E2).
Here we put, if £9'=0,
(2.13) S0 =3 w=I),
Zr+d if &Ryy#0,
(2.14) F(§0 ,€"+ 1) .
{EeEntl; (&, ¢, el (P, )} otherwise.

In [9] the author proved the following

Theorem 2.6. Assume that the conditions (A.1) and (A.2) are
satisfied and that £0eEn+!,

Then we have
(2‘15) gpo €Xp [_ it(xl ' 50’_ YuSn +xn§n+1 ]F(xl, Yo xn)
~ Z;O=OFE°,J'(-X’= Vs xn)t_j/La

where po, is a rational number and L 1is a positive integer. Here
(2.15) implies that

(216) tN/L{tpo €Xp [_ it(x' : 50’ _ynér? +x,,§,?+ I)JF(xla Yno xn)
Z OF£§° (x Y n)t ',/L}——_)Féo N(x Y u)
as t—oo, in 2'(X), N=0,1,2,...

Moreover we have
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217 U0 SUPP Fo (X', Yy X)X (€%, — &9, €841}
cWF(F(X', yu %))  for E°#0,
and
(2.18) cht[\U %o supp Fao (%', Y X)1< Ko,
where
(2.19) K§o= {(x'y Yo X)) € X5 X 0 =Yy My FXM,+1 20 for all fjelw}
and the closure in (2.18) is taken in X.

Remark. The inclusion of (2.18) can be replaced by the equality
except in certain exceptional cases (see Example 5.1).

3. Lopatinski Determinant

The following lemma can be proved in the same way as in Theorem
3.1" of Andersson [1] or in Lemma 5.1 of [2].

Lemma 3.1. Let {°¢Z" and let M be a compact set in I'(Pgw, 9).
Then there exist a conic neighborhood A, (cZ") of £° and positive num-
bers C, t, such that

(B.1) PE—itlln—ipe®)#0  if Eedy, [l=C,neM and 0<t=t,.
This lemma can be also proved in the same way as in Lemma 3.7.

Lemma 3.2. Let (%eZ"1\{0} and let M be a compact set in
I.’go,. Then there exist a conic neighborhood A, (cZ" ') of &% and
positive numbers C,t, such that P,.({’,A) is holomorphic in (', )
e AxC, where

(32) A={C’=§'_itlé'!7]’—i709' eFn—1 __iEn—l; 6, EAI,
|E12C, ' e M and 0<t=<t}.

Therefore R({") and R;((’) are also holomorphic in A.

+ ch [M] denotes the closed convex hull of M in X.
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Proof. Write
Pl H=TIE Q= 2H T, (A= 257L),
where ImA5,({")20 for {'eZn!—iyo¥'—il,. It suffices to show that
(3.3) Ui k= 1ty 0 G 1z =0 for (e
Put
pO=1im, 1A%, (1E").

If u% is a real simple root or a non-real root of p9(¢%, u)=0, it is
obvious that

AN #i((), 1sks=l;, for ['ed

when C is large enough and ¢, is small enough. Thus we consider
the case where u?, is a real multiple root of p%(¢%, u)=0. Since f&"'
X EcT(pjeo 9, 9)» to any compact set M in I'wxZ there exist a
conic neighborhood A4; of (£%, u9,) and positive numbers C, 1, such
that

(3.4) pA& =ity — iy, A—it|¢'|n,) #0
if (&, )ed,|¢|=C,neM and 0<t=<t,.

In fact, since c|¢'|=|é| for éed,, (3.4) is an immediate consequence
of Lemma 3.1. Especially we put M =M x {0}. Then

(3.5) pi(&' —itl'ln" —iyod', H)#0
if (&, 0)ed,|¢|=C,neM and 0<t<t,.
We may write
A ={(&, N eE\{0}; ||&]71E — |7 1EY| ey,
71 A= 1E " udul Sz} -
On the other hand we have

(3.6) €17 A3 — it In" — ipo ) — 1% il ez
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when ||&'|71E —|EY|7LEY | <¢gq, [E'|2C, n'eM and 0=t=t,, if necessary,
modifying &;, C and to. If ImAf,(&'—it|l'|n’—ipe3)=0 for &'—it|¢'|y’
—iyed €4, then it follows from (3.6) that (&, A5,(& —itlE'|n"—iyo9))
e€A,. This contradicts (3.5). Thus we have ImA4,({)#0 for ('eA.
We can assume without loss of generality that M is star-shaped with
respect to §’. Thus

Im 2%,({)>0 when (' in A.
If lim,, 7125, (¢£%)=p9,, by the same argument it is shown that
Im 47,({)<0 when (' in A.

Therefore we obtain (3.3). Q.E.D.

Let p(£) be a strictly hyperbolic polynomial with respect to 3 and
assume that p°0, 1)#0 and p(¢)#0 for EeZ—iy,3—il. Let &Y
be arbitrarily fixed in Z#~1\{0} so that p°(£°’, u)=0 has real multiple
roots. Write

(3-7) p(é', /1; v)=v"l’p(v—1’g", v—l/{)
=pO&, ) +vpl(€ D)+ .-+ v pm,

where degp=m'. We can assume without loss of generality that u=0
is an Il-ple root of p°(¢&%’, u)=0, where [>1. Thus Weierstrass’ prepara-
tion theorem implies that

(3.8) P&, A )= +a (& AT+ ta(E v)aEs A5 v)
for |[£'—=¢%|<e and |v[<e,

where the a;(¢’;v) and ¢(¢', A;v) are holomorphic for |{'—¢%|<e and
vl<e and ay&%;0)=0 and q(&, 2;v)#0 for [{'—¢%|<e, |v|<e and
|[Al<e. Then

(3.9) ai(¢’; V)= Tkt wz1d* (€ — &%), v<e, [&'—E%| <e,
and, thercfore,

(3.10) a,(§" v’ v)= 2 ap(n W,
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where

(3.11) au(n)= i+ |a|=kajia77’a'
It is easy to see that

(3.12) ap(n")=const. por o)1)

Let ((&';v) be a root of p(&, A;v)=0 such that ((&°;0)=0. We
modify Lemma 2.5 in [9] and obtain the following

Lemma 3.3. For any compact set K in E"'—il'|, where I'{xE
=I'(pior oy 3), an ositive integer N; and any non-negative integer
P,0) yp g 1
N, there exist positive numbers vy, ro and C such that

(3.13) L& +wn's v~ )y=T N1 e (rm") (r= 1)1
+V(N1*1)/’(21}’é0dj(;7’; V)i~ +0(r~N2"1))

and |d;n"; VI<C,0=jEN,, if ron' e EZr 1 =iy —il'y, an’e K for some

0eC (la|=1),0=5v=vy and r=r,.

Proof.t Write

L&+ s v =21 e(rn ) (vr= )+ Ly (s v )

(see Lemma 2.5 in [9]). Then we have

e(rn)={—an(ry)}!"!

and, inductively, determine the c;(ry’) by the equations

Icl(rﬂl)l_lcj("’l')‘}‘ 21 Sitpend1Si-1 cjl(m')"-cj,(m’)
j

it == 1+

+ 2 1< ndiesi-t €5, () (1) ay (") =0.
Ut j it je=l—-1+]
In fact, we have only to note that |c,(ry)|=Cr'/' if an’e K for some
2eC(la|=1) and r=r,, where r, is large enough. {y,,.(rq’;vr~1)
satisfies the equation

1 The same argument as in the footnote of Lemma 2.5 in [9] gives a simpler proof
of this lemma. Then Lemma 3.5 will become obvious.
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G14) (g e Or 4 T assy sy,
Jitetj :
¢, (rn")--c (rn) (= D)t i Ly (' v )R
+ T isii e disn, ) ey () orm )t on

JitetjiZ Ny

+ I I i SN 1 <Z>le(”’l')"'cjk(m')

X @y (rn") (yr= 1)Ut tiilragy (' vrm )Rk
+ 2 b X 15is,insn, i (rM).ccs (r)ag (1)
JrE XAz 4N
X (yr= 1)U+ in)la =,
Since

(3.15) e(rn)=rilE e ocun ™, cio(n)#0

when rgn' e Z"1—iy,9' —il’,, an’e K for some aeC (Ju|=1) and r>r,,
whose convergence is uniform, (3.14) can be written in the form

SELEM by (s VI O MT YWy (e’ v )
AWV N o (' )94 O(r~N2=1)} =0,

where M is a non-negative integer and
bro(n'; V)=< Ilc ) cio(m )k +0(/h).

By the same argument as in Lemma 2.5 of [9] it can be easily proved
that

[Cny 41’ v )| SCYN 1+ DI,
Thus if vy is small enough, the di(n’; v) are determined by the equations
(3.16) k= ET DN, o' V)do(n's v)E+eo(n’; v)=0,

Dh=1kv DN, o' Vo' v)F (' v)
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k—=1)N;/1 ’.
+ X1 Xogisn i< VE DN (5 V)
aFj P i

xd; ' v)--d;(n'; v)+e;n'; v)=0.

In fact, we have only to note that (3.16) has a unique solution dy(’; v)
such that dy(n’'; v)=0(1) as v—0, and that

| ke 1y EmDND, L o(n's v)do(n'; V)22 C.
Put
CN1+1(r’1,; vr—1)=V(N1+1)/l{z]}’é0dj(nl; v)r_j+ZN1,Nz(’1,; r, V)} .

Then {y, n,(n'; 7, v) satisfies the equation
Sher{ Shon () v B 1 o015 Vol 1

+0(r“))} Tnona('s 7 W+ 0(N2"1)=0.
Since Ly, n,(1'; 7, v)=0(1) as v—0, we have
IZNl,Ng(n,; r, V| S CrN271

when ron’eZ" ' —iyp, ¥ —il’y, an’e K for some aeC (Ja|=1), 0Zv=y,
and rz=r,. Q.E.D.

Since A=v1r{(E% +vwy'; vr~1) is a root of p(v 1rE%+ry’, A)=0,
from Lemma 3.3 the following lemma can be easily proved.

Lemma 3.4. Let K be a compact set in E"_l'—iféo:. For any
non-negative integer N there exist positive numbers v, and r, such
that

(3.17) VRRO™REY )=k o 0,) (I
+ O(Fhov(N'i- 1)/L)

if ron’eE"‘l—iyOS’—ifgo,, on’e K  for some aeC (Ja|=1), 0<v=v,
and r=ry, where hy and h, were defined by (2.2) and (2.8), respectively,
and L is a positive integer.

Define the principal parts Q9 of Q; and rational numbers g; by
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(3.18) Qi(r)=ru{Qyn)+r '@} + -}, QIm)#O.

Here it follows from Lemma 3.3 and (3.15) that the developments
are meaningful when rop €571 —ipd —il e« an'€ K for some «eC
(jaj=1) and r=r,, where K is a compact set in E"_l—l‘f'ém and ry
is large enough. Moreover it is easy to see that p;=h;+q;—j/L is an
integer and that p;<h,. Put

(3.19) p=maxpj, o=milpp,j.
Lemma 3.5. p=h,.

Proof. It is obvious that p=<h,. Let us assume pZh, From
Lemma 3.4 we have

(3.20) lim, oV VRo(v=1£0"—i9")
=lim,_olim, v Nr #oR(v=1r£0" —ir§")=0
for any integer N.
Put
o(r, v)=|r"hoR(v1rE% —ird")), r=re, 0<v=vg,
where r,>7p,. By Seidenberg’s lemma we see that
Pmin(M) =inf,5, d(r, v)=CyvE(1 +0(1)) as v—0.

Since r~hoR(V-1r¢% —ir®)#0 and r~hoR(v1rE0 —ird)r=e, Ro(v-1£0'—i9")
#0, we obtain C;#0 (>0). Thus

IR(r=1E% —i9)| 2 CpP(1+0(1))  as v—0.

This is a contradiction to (3.20). Q.E.D.

Lemma 3.6. There exists the localization Roéoz(fl’) of Ry(&) at
E9% and

(3.21) Ro:ﬂ'(’?')=Q2(’1')»

i.e.
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(3.22) r!o(v"ﬁ"’+r]’)=v"“*"‘/L(Eogo,(n’)+0(])) as v—0,
for each u eZ+1—il.
Remark. Rgeo(n') is holomorphic in 5"~ ! — il
Proof.
lim sup, o [r " R(v"1rE0" + rp’)— v 1+ LQO(y")|
SC VDL e En1 [,

Thus

lim, o limsup,_ v#~#/Lr=boR(v=1rE% +1p") = Q%(n"), n'egZr1— l.fgo'.
On the other hand

limsup,_, o F O R(v1rEY + 1) = Ro(v- 1% +71'), n e 51—l

This proves the lemma. Q.E.D.

Let Z:go- be the component of the set {I’]’Ef:o:; ﬁoéol(—ir]’);éO}
which contains 9. Here we define Z'go,= > il £0'=0. 1In fact, by the
same argument as in Lemma 3.1 of [9] it follows that

(3.23) Row(n)#0  for n'eZn=1—iZ.

Especially we obtain ﬁoéol(—-iS’);éO. We can also prove that Ego» is
an open convex cone and that Rogo,(n’)9é0 for # €& 1—iZ%..
In the proof of Theorem 4.2 the following lemma plays a key role.

Lemma 3.7. For any compact set M in F:gm there exist a conic
neighborhood 4, (cE"1) of £° and positive numbers C,t, such that

(3.24) R —itld'ln"— iy 3)#0 if n'eM,{ed,, |&|2C and
0<t=t,
Proof. Put

f, s, t, n)=RO e +rl' —itrn' —isy —iy,¥),
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where 0<v=vy,, r=ry, ('eZ" !, |{'|<e, Res=0, Ret=0, Re(s+1)>0,
Is|<sg, |t|St, and n'e M. Here positive numbers vy, 7y, & So and t,
are chosen so that Lemma 3.2 is applicable and f(v,r, (', s, t,7%") is
well-defined, continuous in all variables and holomorphic in t, Ret>0.
(1.7) implies that

(3.25) f, r, s, t,n)#0 when Res>0 and Ret=0.
Moreover we have
(3.26) f(v,r, t,s,t,n)#0 for v=v,y, Res=0, Ret>0 and [t|=t,,

if necessary, modifying v,, ¢ and s,. In fact, there exists a compact
set K in E""l—ifgo, such that 7jt|~ (¢’ —ity’' —ir-'(s+7,)9)eK when
r=ro, |U')Ze, |S|<s, [t|]=1t, and x'e M. Thus it follows from Lemma
3.4 that

(3:27) JOo, 1, Uy 5, 1, ) =vg" {2500 =ity —ir~ (s +7,))
X VH/Erei+ 3% O(vi/Lrpim 1) + O (vt /Lrho)}

From homogeneity of Q9(n’) there exists §>0 such that

(3.28) Q0 —itn’ —ir~1(s+7)9)|>0

if rzre, [U'[Se, [s|Sso, [tI=t, and n'eM. Since p,=h, and p;<h,
for 0<j<a—1, (3.27) and (3.28) imply (3.26). Now we assume that
there exist ry (2ry), {1'eZ" 1,5, t,eC and n!'eM such that [(V]|=Zg,
Res; =0, |s;|<so, Ret; >0 and [t;|<t, and f(vy, ry, (Y, 59, ty, n1)=0.
Then we can assume that Res;>0. There exists a continuous function
t(0) defined on [0, 8,), 0<8,=1, such that

J(vos 71, £V, 54, 1(0), (1—0)n ' +69)=0,  «0)=t,.

Since (3.25) and (3.26) imply that [#(6)|#t, and Re#6)#0, it follows
that |#(0)|<t, and Re#(#)>0. Thus #(f) can be defined on [0, 1]. This
is a contradiction to f(vq, r{, (Y, 54,8 3)#0 for Ret=0. Therefore

R(wgré% +rl’ —itry’ —isY — iy, 3)#0

when r=ry, |{'|<e Res=0, |s|<s,, Ret>0, |t|<t, and #5'eM. This
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proves the lemma. Q.E.D.
Lemma 3.8. z'go,cz'éo,.
Remark. In §5 we shall give an example such that fgo,gf}io,.

Proof. By the same argument as in the proof of Lemma 3.7 we
have

(3.29) RO+ —in' =iy 3)=f(, r, 171, 0, 171, ') #0

when n’eMcfgo,, [l'|Zer, 0<vZvy, r=r, and r>v'N, where N is
large enough. Now assume that there exists n’eZ'go, such that Q8(—in’)
=0. Then there exist (% and 6>0 such that —in’+uC°’eE"“‘—i2'go,
and QY(—in'+ul%)+0 for |u|=6. On the other hand
[Qo(—it(n’ +n% ) — Q3(—it(n’ + pL))I

< L108(—itly +u2®)|  for |ul=5 and 1>T,

where T is large enough. Thus Rouché’s theorem implies that for
fixed t(>T) there exists puoeC such that |ugl<d and Q@ (—it(n'+
1ol®))=0. Therefore there exists (' e€Z""'—iy,9—iZ%. such that
Q0(€)=0. From Qy(¢)#0 it follows that there exist #° and >0
such that C'+un°’eE"”1—iy19’-—i2§gm and Qo({'+un°)#0 for |u|=0d.
On the other hand Lemma 2.4 implies that

(O™ PRI REY L 4 ") = OlC + )
<L +unol  for |ul=5 and vir>T,

where T is large enough. Thus Rouché’s theorem leads us to a con-
tradiction to (3.29). This proves the lemma. Q.E.D.

4. Wave Front Set

First one observes that there exist bounded sequences {¢y} in CF(X)
such that ¢y=1 on a fixed neighborhood of (x%, y9, x9) in X, independ-
ent of N, and
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(4.1) [D*¢n| SC(CN)'*! for |«|<N,
where 5=i'1(6/6x1,..., 0/0x,_4, 0|0y,, 0/0x,) (see [S]).

Definition 4.1. Let u(x', y,, x,)€ 2'(X). Then the analytic wave
front set WF ,(u) of u is defined as the complement, in X x(Z"+1\{0}),
of the points ((x°', y°, x0), %) such that for some sequence {¢py} of
the above type there exists a conic neighborhood A of &° in Zn+1\{0}
with

(4.2) |Z e[ WD SCCNP(A+IEYN  when Eed.
Define
4.3) T%=(T(Pw, 9% E) N Lo, )N (E% x E2),

(44)  Reo={(x', Y X €X; X' 0 = Yllg+X,ns120 for all fel'%},
where E°eZ"*1\{0} and K%=g¢ for ¢°=0. Then our main theorem

is stated as follows.
Theorem 4.2. Under the conditions (A.1) and (A.2)

(4.5 (WFEEF)S)WF (F(X', yy X)) S Ugezns 101K X&', =& Ern)} -
Remark.

(4.6) Usezn+ 10y \J % oSUpPP Fs j(x', Yy X,) =singsupp F(x', y,, x,)

canalsingsupp F(x', y,, X,) S Uzezn+ 110K

Proof. Let us assume that (x°',»9, x2, £%, — &9, %, 1) ¢ Uszcznen (0K
x{(&, =&, &,+1)}- Then we have the following

Lemma 4.3. There exist an open conic neighborhood A, (<ZEn"t1\
{0}) of (&%, =&, &2.1), €T, a neighborhood U of (x%, yp, x?), posi-
tive numbers 6, C, t, and a rational number a such that

(4'7) x' 'n,*Ynnn+xn17n+1 <0 when (xla Yns xn)e U’

48) IR —i(tI&n +y29NP (& —i(tEIN +928), &uier—itlElMns1)
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x P(&' = i(t|Eln’ +v,9), —&,—itl€|n) 28|l
when Eed,, |E|2C, 0=t<t,,

where y,=7,+1.

Let 4 be a conic neighborhood of (&9, —¢&9,£9,,) such that A\
{0}=4,. Let {¢n(x', y» x,)} be a bounded sequence in CZU) which
satisfies (4.1). Let V,0=<t<t,, be the chain {=(&'—i(ty(&)|&n'+7,9),
Ext it (O v 1 —iW(E)IElus 1), 1E1ZC, where Y(&)e C=(E"*1\{0}) is

positively homogeneous of degree zero and ¥(&)=1 on 4, suppycd,,
0= y(&)=1. Since supppyc U, by (4.7) we obtain

4.9) [F pn(0—DI SCCNNUL+1T—0))Y
for CeV,0<t<t, and feZr+!,

From Stokes® formula it follows that

(4.10) f[¢NFJ(0”>=S Bu(0=0)

Ent 1_“,23

! R.I'k({’)Bk(C’a —Cn)c‘l’ll% 7
X = RV PLL, L) P, =) O

=S +S EII+12,
? Vio

where y is a compact chain and §=(9,0). In fact, Lemmas 3.2 and
4.3 imply that the integrand is holomorphic in \Ug<<,V;- Then (4.10)
is obtained by (4.8), (4.9) and Stokes’ formula. It is obvious that

4.11) II|SC(CN)M1+]0)"  when EeA.
Since |{—0]=5(1{|+10]) for e 4 and {eV,, we have
(4.12) |I,|SC(CN)N(L+|G)y¥+>  for fed,

where b is a constant>n+1 and N=b. (4.11) and (4.12) prove that
UxA4nWF(F)=g. Q.E.D.

Proof of Lemma 4.3. (4.7) follows from the definition of Kgo.

(i) If &9'=0, then Z'go,=2f. Thus we have
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R(& —i(tI€ln' +7,9)#0  for all £20.
(ii) When &£9#£0, it follows from Lemma 3.7 that
RE —i(t|E|'n +y,9))#0  for Eedy, |E|=C and 0ZtLt,.

(iii) If £°=0, then I'(Pw, $)=I. Thus we have

P —i(t1En' +7,8), —&—itllln)#0  for all 120.
(iv) When &£°930, it follows from Lemma 3.1 that

P —i(t1Eln’ +7,9), —&,—it|€ln,) #0

for &ed,,|§|=C and 0Zt<t,.

(v) If &'=0 and &%,=0, then Fo e, ={LeZ™; (), L) eI (P, 9}

Thus we have
P (& —itleIn' +729, Eur 1 —itlElns)#0  for all 120,
(vi) If p9%.(&Y, &2, ,)#0, we have
P+ (& —=i(t1EN +728), Eus 1 —itl€ln,y ) #0
for ed,,||=C and 0=Zt<t,

(vii) If &°#0 and p2.(&Y, &2, 1)=0, then it follows from Lemma 3.1
and r,:O' X 52 n f(é°'s§2+1)c {Z € E"+1; (C,, C"_‘. 1) € F(pj(§0',€9|+1)’ 19)} that

Pj+(¢’_i(tla’7,+72‘9’), f,.+1—itlflf7n+1)¢0
for ed,, |§|=C and 0=t<t,.

(i)-(vii) and Seidenberg’s lemma imply (4.8). Q.E.D.

5. Some Remarks and Examples

In Theorem 2.6 the inclusion of (2.18) can not be always replaced
by the equality. For the following special example we see that

(5.1) ch[\U%osupp Fo (%', v x)]1EKe  for some &°eZ1\{0}.
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Example 5.11 (see Example 5.1 in [9]). Put

(5.2) P(&)=(¢3—&3—E3)(ET—L3/4—E53/4),

(5.3) B()=1, B,(§)=¢3.

For £°=(1, 1, \/3, —/3) we obtain

(5.4) URosuppFso;={(x', y3, x3) eRZxRIXR}; x; =4(x3+y3)//3,
Xy=—(x3+y3)\/3}.

(5.5) Kp={(, y3, x3)eRZxRLxR}; x; =4(x3+y3)/\/3 +u,
Xp=—(x;+y3)\/3 —u, u=0}.

In this example the lateral waves do not appear.

N X2
)

N 3 \ 53 \\ 3
J

Fig. 1. Fig. 2. Fig. 3.

Fig. 1 illustrates the intersection of \Ugzcza0}\J %0 supp F 2 /(x', y3, x3) with
the plane x;=c, where y;=1 and 2<c=<4,/3/3. This also illustrates
that of \Useao,K; Wwith the plane x,=c¢, where y;=1 and 2<c<
4,/3/3. Fig. 2 illustrates that of \Ugzao;\J5%0SuppFs (X, y3, X3) with
the plane x,=c, where y;=1 and c>4\/ 3/3. Fig. 3 illustrates that
of UgaznKs with the plane x,=c, where y;=1 and ¢>4,/3/3.

t This example was given by T. Shirota.
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In Theorem 4.1 of [9] it was proved that Z'go,=)f§o. if the following
conditions are satisfied: (i) Each p%(£°’, u)=0 has no real multiple roots.
(i) {P(—D), B{—D)} satisfies the Lopatinski condition. However, for
the following example we observe that 2% S 2. and K%2K for some
g0 e Em1\{0}.

Example 5.2. Put

(5.6)  P()=(1—-&3—E3+al+b)((6:1—E2)%—¢3), a>0,beC,

(5.7 Bi(&)=1, By=(—¢+(1—-0)E)E3—¢3.
Then
(5.8) RN =ié,+3/EF =] +al, +b,

where {/E3—E&%+aé,+b denotes the branch of /7 with positive
imaginary part when —Imé¢, is large enough and &, is real. It is
easy to see that {P(—D), B(—D)} does not satisfy the Lopatinski con-
dition. For £9°=(0, —1) we have

(5.9) Q%(m)=iaf2, Ropln’)=—in3/2.
Thus
(5.10) 2% ={n'€E% 1, >0}, Zp=E2.

For =0, —1, 1, —1) we have also

(5.11) K% 2 K.
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Fig. 4. Tig. 5.

Fig. 4 illustrates the interscction of \,/;:654'\(0}12;:. with the planc x, =const.
>0, where y;=1. Fig.5 illustrates that of Ugsgd\{o}lzg with the plane
x;=const. >0, where y;=I1.

The above example shows that the Ilocalization of the principal
part of the Lopatinski determinant does not always coincide with the
principal part of the localization of the Lopatinski determinant.
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