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Analytic Wave Front Sets of the Riemann
Functions of Hyperbolic Mixed

Problems in a Quarter-Space

By

Seiichiro WAKABAYASHI*

1. Introduction

Duff [3] studied the location and structures of singularities of
reflected Riemann functions for hyperbolic mixed problems with constant

coefficients in a quarter-space making use of the stationary phase method.

However, it seems that it is difficult to apply the method to the study

of Riemann functions of more general hyperbolic mixed problems.

Matsumura [6] gave an inner estimate of the location of singularities

of reflected Riemann functions which correspond to reflected waves,

making use of the localization method developed by Atiyah, Bott and

Garding [2] and Hormander [4]. In [9] the author proved a localiza-

tion theorem describing the location of singularities of reflected Riemann

functions which correspond to reflected waves, lateral waves and bound-

ary waves. Tsuji [8] also studied the same problem in the cases where

operators are homogeneous and obtained similar results. On the other

hand outer estimates of singular supports of fundamental solutions for

the Cauchy problems were also given in [2]. In this paper we shall

be concerned with outer estimates of singular supports of reflected

Riemann functions for hyperbolic mixed problems.

Now let us state our problems and assumptions. Let Rn denote

the n-dimensional Euclidean space and En its real dual space and write

x' = (xl9..., x,,-!), x" = 0c2,..., *») for the coordinate x = (xl5...9 xn) in R*

and £' = (£i,-..,£M-i), t" = (£2,'.',&, ! = (& f»+i) for the dual coordinate
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* Department of Mathematics, Tokyo University of Education, Tokyo, Japan.
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f = (f !,..., Q. We shall also denote by R£ the half-space {x = (x', *„)
eRM;^n>0}D For differentiation we will use the symbol D = i"1(3/
dxl9..,9d/dx^). Let P = P(£) be a hyperbolic polynomial of order m

of n variables £ with respect to 9 = (1, 0,..., 0) in 3n in the sense of

Carding, i.e. P°(S)^0 and P(<!; + s3)^0 when £ is real and Ims<-y0 9

where P° denotes the principal part of P. Moreover we assume that
P°(05 1)^00 We consider the mixed initial-boundary value problem
for the hyperbolic operator P(D) in a quarter-space

(1.1)

(1.2)

(1.3)

Here the B/D) are boundary operators with constant coefficients and
the number I of boundary conditions is equal to that of the roots with
positive imaginary part of the equation P(<f — iy&'9 /l) = 0 with respect

to A, where y>y0*
Let us denote by F = F(P9 $) (cEn) the component of the set

{$eS";P°(0^0} which contains 3 and put r0 = K'eS"-1; (f, 0)er}.
When (J'eS"-1-!^'-^, we can denote the roots of P(<f9 A)==0

with respect to A by At(£%--» A/(f')> ^T(^')v-> ^-/(f')> which are enumer-
ated so that

(1.4)

Put

(1.5) P+«'5 A) = nj=i(A-AJ«')), ^eS-'^-iyoS'-iTo.

We now define the Lopatinski determinant for the system {P, Bj} by

(1.6) R(?) = det

We state the assumptions that we impose on {P, Bj}:
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(A.I) n0 = Pi«)Vl'"P,«)v'.

where the pj(g) are distinct strictly hyperbolic polynomials with respect

to 9.

(A.2) The system {P, Bj} is cf-well posed, i.e.

(1.7) R(? + s9')^0 for ?e3n-1 and Ims<-yl9

where jR0(<f) denotes the principal part of R(£') defined by (2.2) (see

Sakamoto [7]).

Now we can construct the Riemann function G(x, 3;) for {P, Bj}

which describes the propagation of waves produced by unit impulse given

at position y = (Q9 j^,---, yn)
 in R+ (see [7], [8]). Write

(1.8) G(x9y) = E(x-y)-F(x9y)9

where E(x) is the fundamental solution represented by

(1.9)

Then the reflected Riemann function F(x, y) is written in the form

(1.10)

where

(1.11) JZJlt«') = (*,y)-cofactor of (JL\2ra

F(x, y) has to be interpreted in the sense of distribution with respect

to (x, y) in R£ x R£. We put

(1.12) TV^^/^O.y,,)
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and regard F(x', yn, xn) as a distribution on X = Rn~i xRjxR}:.
In [2] Atiyah, Bott and Carding proved the following

Proposition 1.1. // P(£) is a hyperbolic polynomial with respect

to 9, then

(1.13) W^.u

holds and, moreover,

(1.14)

holds. Here

(1.15)

(1.16)

/ze localization P^o of P fl£ £0 fs defined by

(1.17) vwP(v-1^0 + ?/) = v^P|o(f/) + 0(v^+1) as

Our aim is to obtain results corresponding to Proposition 1.1

for F(x', yn, xn) under the conditions (A.I) and (A.2).

The remainder of this paper is organized as follows. In §2 we

shall state results obtained in [9] and give some remarks. We shall

investigate some properties of the Lopatinski determinant R(£') in §3.

An outer estimate of WFA(F) will be given in § 4. In § 5 we shall give

some remarks and examples.

The author would like to express his sincere gratitude to Professor

M. Matsumura for many valuable suggestions.

2. Localization Theorem

Put

(2.1) r = «'6S--1;«',Wer for some {„ eS} .

F coincides with one defined in [7], [9].
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Lemma 2.1 ([7]). R(?) is holomorphic in S"-1-^'-^-"

Lemma 2.2 ([7]). Let K be a compact set in En~l — if, then there

exists TK>0 such that

(2.2) ^(^) = tfto{JR0(^') + r
1I1(^) + r2I2(^)+...}?

whose convergence is uniform in Kx{t>TK}, where

(i) {£/£')} are holomorphic in f=VzeC\{0]z(8»-1 -if),

(ii) £/«') = f*"-'*/^) for ?ef, *eC\{0},
(iii) R0(£')=£Q and h0 is an integer.

Let us denote by ^(czS""1) the component of the set {^'e/1;

which contains $'.

Lemma 2.3. I" is an open convex cone and

(2.3) R(?)¥>0 for ^'eS11-1-/^'-^.

Remark, Z coincides with one defined in [7], [9].

Proof. We first prove that I is star-shaped with respect to

Put

Then f(t,rjf) is holomorphic for Im£<0 and continuous for I

if et. Since Z1 is connected, there exists a continuous function 77 '(^)>

0^0^ 1, such that *i'(0)eZ9 ^(0) = ̂  and iy'(l) = 3'. From Lemma 2.1
in [7] it follows that

(2.4) /(M'(0))^0 when Imf = 0 and 0^

Since the set {/7'(^)j 0^0^!} is compact in I, we see that

(2.5) f ( t , nf(9))^Q when \t\^T, Imt^Q and 0^0^15

where T=max0g^1{2/dis(-iV(0), {f /eS»-1-i/f;U0(C /) = 0}Z7-i5/f)}. This
follows from

) - r
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Let us assume that there exists a complex number t0 such that

and f(tQ,rif) = Q. Then (2.4) and (2.5) imply that Imr0<0 and 0<|r0|
<T. Moreover from (2.4) and (2.5) there exists a continuous function

t(B) such that f(t(0), *]'(6)) = Q, Imt(6)<0, \t(9)\<T and t(0) = t0. This

is contrary to /(£, &')^Q for Imt^Q. Therefore we have

(2.6) f ( t , i f ) = R0(tri'-i$')^Q for

It easily follows from (2.6) that I is star-shaped with respect to $'

and that Z coincides with one defined in [7]. Thus (2.3) follows from

Lemma 2.2 in [7]. Putting f(t, if) = R0(tri'~iri0'), where rj\rioreZ and

InH^O, and applying the same argument to f ( t , rf) we can prove the

convexity of L Q. E. D.

Let £0/ be arbitrarily fixed in £"-^{0} and let {jk}i^k^n be the

set of suffixes so that p°k(£°\ /.i) = 0 has a real multiple root /xfc. We

define F^ by

(2=7) i> x E= r\i

Lemma 2A (Lemma 2.6 in [9]). For any compact set K in En~l

— iy0B' — ir and any non-negative integer N there exists s>0 such that

if if eK and 0<v<£ 9

(2.8) v*^(v-1S0' + i7 /)=Zy==0eX'/')v7/L + 0(v^+1^L),

where QoW)^®, L is a positive integer and h1 is a rational number,

Moreover the Qj(r\') are holomorphic in S11'1 — iy0B
f — ir^.

Let Q8(ij') be the principal part of QM) (see [9]). We denote by

tp, the component of the set {rjf eF^; Q^(—irj')^Q} which contains

$'. Zp, coincides with one defined in [9]. Then by the same argument

as in Lemma 2.3 we have the following

Lemma 23* Z^> is an open convex cone and

(2.9) 2oO/VO for ij'eS"-i-iy19'-ii;f»9

If rL=0, then we put r\»' = 3n-1.
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(2.10) G80/VO for i/'eS"-1-/^.

Let £°+ieS and let {sj^^,^ be the set of suffixes so that ps°k(£°',

«+1) = 0 and (^ '^o+ i ) . . ( ( ,o^ / 0 | ^^+ i > 0 s This implies lhat

£°+1 is a real simple root of Psk(£°'9 /-0 = 0 which corresponds to a root

with positive imaginary part of Psk(£°' — iy&', A0 = 0, y>0. Define

(2.11) f(^o + l)=np=1{|eS»+i; «', £B

Let |° be arbitrarily fixed in £"+1\{0} and put

(2.12) />=(/XP<O,, 9) x s) n JV,^ 1} n (V x s2) .

Here we put, if £°'=0,

(2.13) %=i(/^=r),

«+i if + ^ o ,
(2.14)

{| e 5"+ x; (£', C,l + i) e T(P, 5)} otherwise.

In [9] the author proved the following

Theorem 2.6. Assume that the conditions (AA) and (A.2) are

satisfied and that %0e3'l+L.

Then we have

(2.15) P* exp [- it(x' -'£?'- ynt% + xn£°+

w/iere p0 is a rational number and L is a positive integer. Here

(2.15) implies that

(2.16)

-S^o^io.A', J,,, A-Jr^/i-} - ^^(x', j;,,, *„),

as t-*ao, in

Moreover we have
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(2.17) WJL0 supp Fjo,/*', ytt, *„) x {(£»',

', >„,*.)) /<»•

(2.18)

(2.19) K|0 = {(*'3 .y,, xJeZ; x'-q'-y^ + xji^^Q for all

and the closure in (2.18) is taken in X,

Remark. The inclusion of (2.18) can be replaced by the equality

except in certain exceptional cases (see Example 5.1).

3o Lopatinski Determinant

The following lemma can be proved in the same way as in Theorem

3.T of Andersson [1] or in Lemma 5.1 of [2],

Lemma 3X Let £°E3n and let M be a compact set in F(Pp9 9).

Then there exist a conic neighborhood A{ (cS") of £° and positive num-

bers C, t0 such that

(3.1) P(t-it\t\ri-iy03)*Q if ge Jlf |f|^C, ijeJ(J and

This lemma can be also proved in the same way as in Lemma 3.7.

Lemma 3JI Let ^°'6SII"1\{0} and let M be a compact set in

Fp*. Then there exist a conic neighborhood A1 (aSn~l) of ^0/ and

positive numbers C, tQ such that P+(C', A) is holomorphic in (C', A)

, where

(3.2) ^ = {C/ = f /-ft|fV-i70S /6S«-1-iS»-1;5 /eJ1,

I^'I^C, i/ 'eAf andQ<t<it0}.

Therefore R(£') and RJk(C) are also holomorphic in A,

f ch [M] denotes the closed convex hull of M in X,
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Proof. Write

where Im A%((') ̂  0 for C'eS"-1-zy0S'-*T0. It suffices to show that

(3.3) {AJk(C')}fc=i ..... i;n{Ajk(n}fc=i,...i;=0 /" C'e/L

Put

If juj/, is a real simple root or a non-real root of p^(^°f, A0 = 0, it is

obvious that

when C is large enough and t0 is small enough. Thus we consider

the case where fi^h is a real multiple root of py(£0/
3 #) = 0. Since r^0'

x3c:r(pj(p,tllQh), ff)9 to any compact set M in f^xS there exist a

conic neighborhood ^ of (<^°', ^h) and positive numbers C, 10 such

that

(3.4)

if (£', A)eJ , |<n^C, f / e J f r and

In fact, since c|^'|^|<^| for £eAiy (3.4) is an immediate consequence

of Lemma 3.1. Especially we put M = Mx{0}. Then

(3.5) ptf'

if (^', A)6ll9 H^C,i7 'eM and

We may write

On the other hand we have

(3.6) ll^l-UJ^'-
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when lia-^'-l^r'C0'!^!, |£'|£C, i j 'eM and 0£t£tQ9 if necessary,
modifying el5 C and t0. If Imtfh(?-it\?\ri'-iy09') = Q for £'-f£|£'|>?'
-iy0S'e/i5 then it follows from (3.6) that (?, tfk(?-it\£'\ri'-iyQ9'))

e^. This contradicts (3.5). Thus we have ImA^O^O for £'eA.

We can assume without loss of generality that M is star-shaped with

respect to $'. Thus

ImAth(O>0 when £' in A.

If Hm^00^~1/ly/I,(^
0/) = jU^, by the same argument it is shown that

ImAj^(C')<0 when £' in A.

Therefore we obtain (3.3). Q.E.D.

Let p(g) be a strictly hyperbolic polynomial with respect to 3 and

assume that p°(0? 1)^0 and XO^O for f eSB-iy0S-iT. Let ^0/

be arbitrarily fixed in £"-^{0} so that p°(£°f, ^) = 0 has real multiple

roots. Write

(3.7) pK ' ,A;v) = v» /Xv-1^v-U)

where degp = m'. We can assume without loss of generality that // = 0

is an /-pie root of jp°(^0/
5 ju) = 0, where i>L Thus Weierstrass' prepara-

tion theorem implies that

(3.8) X£', ̂ ; v) = (A' + a1K /; v)A'-1 + ».+a/({'; v))g(£', A; v)

for |^-^o'|<8

where the a/^'; v) and q(£', A; v) are holomorphic for |^' — ̂ °'|<8 and

|v|<e and fl/{°'; 0) = 0 and ^9 A; v)^0 for |{'-S0/|<8, |v|<e and

|A|<e. Then

(3.9) a/c'; v)=

and ? therefore,

(3.10)
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where

(3.11) aJk(>f)=Zi+M=kaJi«ri'«.

It is easy to see that

(3.12) an (r\') = const. p(p>,0)(rj).

Let C(<T;v) be a root of p(<f, A; v) = 0 such that C(£°';0) = 0. We

modify Lemma 2.5 in [9] and obtain the following

Lemma 3.3. For any compact set K in En~l — irly where F1xE

= /XP(£°',o)5 $), any positive integer N1 and any non-negative integer

N2 there exist positive numbers v0, r0 and C such that

(3.13) C«

|d/j;'; v)|<C, OgjgN2 , i/ j'oij'eS""1 -iy09'-'T1; ooj'eK /or some

aeC (|a| = l), O ^ V ^ V Q

Proof.^ Write

(see Lemma 2.5 in [9]). Then we have

and, inductively, determine the Cj(rrj') by the equations

In fact, we have only to note that Ic^r^l^Cr1^ if a^'eK for some

a 6 C(|a| = 1) and r ̂  r0, where r0 is large enough. £Nl + 1(rff / ; vr~ 1)

satisfies the equation

f The same argument as in the footnote of Lemma 2.5 in [9] gives a simpler proof
of this lemma. Then Lemma 3.5 will become obvious.
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(314) ZUriWn/VCvr-^' + Zi^t ..... J**^\K / ji+-+jk^k+i

+ tCriy' ; VI-1)'-*

Since

(3.15) c/riy') = ̂ /^?=0^')r^9 Cl 0(iy') * 0

when r0rif eSn~1 — ly0B
r — irl, o^ri' eK for some aeC(|a| = l) and r>r0?

whose convergence is uniform9 (3.14) can be written in the form

where M is a non-negative integer and

By the same argument as in Lemma 2.5 of [9] it can be easily proved
that

Thus if v0 is small enough, the dfj\'\ v) are determined by the equations

(3.16) LUv^'"''^-^'; v>W; v)" + e0(r,'; v)=0,

'*'/^-^'; v)d0(fj'; v^-^/fj'; v)



ANALYTIC WAVE FRONT SETS 797

EOSJ, ..... jfc<jv<*-'>»'/V*>': v)

In fact, we have only to note that (3.16) has a unique solution J00?'; v)

such that d00?'; v) = 0(l) as v->0, and that

Put

Then £#, ,#-,(??'; r, v) satisfies the equation

Since lN^N2(ii'l r, v) = 0(1) as v-*0, we have

when ro^'eS""1 — ry0$' — /T l9 a^'eK for some «eC( | a | = l), Ogv^v 0

and r^r0. Q.E.D.

Since A = v-1rC(^°' + v^ /; vr'1) is a root of Xv^' + n/', A) = 0,

from Lemma 3.3 the following lemma can be easily proved.

Lemma 3.4. Let K be a compact set in E"~l — iF^. For any

non-negative integer N there exist positive numbers v0 and r0 such

that

(3.17) v^R(v-lr

if r0f]'GEn-1-iy0B
f-if^ OLYJ'EK for some aeC( | a | = l), 0<v^v0

and r^r0, -where h0 and hl were defined by (2.2) and (2.8), respectively,

and L is a positive integer.

Define the principal parts 2° °f Qj and rational numbers qj by
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(3.18)

Here it follows from Lemma 3.3 and (3.15) that the developments
are meaningful when r0rjf EEn~1 — iy0B' — ir^, ocrj'eK for some aeC

(|a| = l) and r^r0, where K is a compact set in Sn~l — ir^f and r0

is large enough. Moreover it is easy to see that p j ^ J ^ + q j — j / L is an

integer and that Pj^h0. Put

(3.19)

Lemma 3*5* p = h0.

Proof. It is obvious that p^h0. Let us assume p^h0. From

Lemma 3.4 we have

(3.20) limv_>0v-N£0(v- 1 %°' - ^')

= ]imv_>0limr_^~-Nr-h°R(v- lr^r- i>S') = 0

for any integer N.

Put

where r0>y1. By Seidenberg's lemma we see that

0mln(v)sinfr^0(r,v) = C^(l + o(l)) as v->0.

Since r-h°R(v-lr£0'-irS')*Q and r-^^v-'r^'-frSO'^12*
^09 we obtain C^0(>0). Thus

as v->0.

This is a contradiction to (3.20). Q.E.D.

Lemma 3.6. There exists the localization £0£°'0?') °/ ^o(S') ^^
{0/ and

(3.21) iV'0?') = Q«°0?%
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(3.22) R0(v"1§°' + »/') = v-*1+8/L(^o«o'('7') + o(l)) os v-»0,

for each if e 3n~ l — iF.

Remark. RQ%o>(rj') is holomorphic in Sn~l — iT^.

Proof.

lim supr_>Jr-*°K(v- * r£

^ C, ,v<a+ * )/L~;I ' , rj'eE"-1- i?,.

Thus

lim^o lim sup^v* ' -«/Lr-*°/?(v- ! r^0/ + riy') = Q2(iy')» »/' e SB" l - iT^.

On the other hand

lim supr^r-710]^- J r£° ' + r^y') = .R0(v- l £°' 4- ?7;)5 *?' e En~ x - if.

This proves the lemma. Q.E. D.

Let Z%a> be the component of the set {yef^; RO%O'(— /^')
which contains 9'. Here we define Z%0,=S if ^°' = 0. In fact, by the

same argument as in Lemma 3.1 of [9] it follows that

(3.23) R0p,(ri')^Q for

Especially we obtain R0^0'(— i&')^0. We can also prove that Z%o, is

an open convex cone and that R0p,(i]')^Q for rj'eE"'1 — il^o,.

In the proof of Theorem 4.2 the following lemma plays a key role.

Lemma 3.7. For any compact set M in Z|o> there exist a conic

neighborhood A± (cS""1) of {0/ and positive numbers C, tQ such that

(3.24) J^'-ttlW-'yiWO if ij'eM^'e^, |f|^C and

Proof. Put

/(v, r,
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where 0<vgv0 5 r^r0, £ e3n~\ \£'\£e, Res^O, Re/^0, Re(s + f)>0,

|5|^s0? \t\^t0
 and n'sM. Here positive numbers v0? r0, s, s0 and t0

are chosen so that Lemma 3.2 is applicable and /(v, r, £', s, f, 17') is

well-defined, continuous in all variables and holomorphic in r, Re£>0.

(1.7) implies that

(3.25) /(v, r, £', s, f, i/ 'J^O when Res>0 and Ref = 0.

Moreover we have

(3.26) /(v, r, C;, s, t, 17') ̂ 0 for v = v0, Res^O, Re^>0 and U| = t0,

if necessary, modifying v0, £ and s0. In fact, there exists a compact

set K in S"-1-!^, such that t\t\~l(£ -itri' -ir-^s + y^eK when

^^^03 IC1^e9 ISI^50 ? \t\ = t0 and TJ'EM. Thus it follows from Lemma
3.4 that

(3.27) /(v0, r, C, s9 ^5 ij/) = v5*

x

From homogeneity of 62(^/0 there exists 5>0 such that

(3.28)

if r^r0, ICI^f i j |s|^s05 \t\ = t0 and q'eM. Since pa=hQ and Pj<h0

for O^j^a-1, (3.27) and (3.28) imply (3.26). Now we assume that

there exist r^ (^r0), f^eS""1, sl5 ^ eC and i /^eM such that |C17|^s?

Res^O, |5l|^50, Rer^O and 1^1 ^r0 and /(v0, rl5 C1', sl9 tl9 iy l f ) = 0.
Then we can assume that Res^O. There exists a continuous function

f(0) defined on [0, 00), 0<00^15 such that

/(v0, rls C1', si, t(B\ (1-%1' + ̂ ') = 0, r(0) = tlt

Since (3.25) and (3.26) imply that |f(0)|^f0
 and Re^)^0, it follows

that |f(0)|<f0
 and Rer(0)>0. Thus /(0) can be defined on [0,1]. This

is a contradiction to /(v0, rl5 C1 '? 5l5 t, &')^Q for Rer^O. Therefore

when r^r0, |f'|^e, Res^O, |s|^s0, Rer>0, \t\£t0 and i/'eM. This
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proves the lemma. Q.E. D.

Lemma 3.8, Z^o-^I^.

Remark. In §5 we shall give an example such that t^o^Z^.

Proof. By the same argument as in the proof of Lemma 3.7 we

have

(3.29) R(v-irt;*f + {f-ir!
f-iy1$')=f(v, r, r~T, 0, r~\ rj')^0

when *7'eMcf°o>, |£'|<;er, 0<v^v0 , r^r0 and r>v~N, where N is

large enough. Now assume that there exists rf e2?£0' such that

= 0. Then there exist £0/ and (5>0 such that -itf

and (>8(-?y4X0')^0 for \fj,\ = S. On the other hand

1=5 and

where T is large enough. Thus Rouche's theorem implies that for

fixed t(>T) there exists ju 0eC such that \n0\<d and Q0(— it(rjr +

jti0C
0/)) = 0. Therefore there exists ^' ESn~1-iylB

f -iZ^ such that

Q0(C') = 0. From Q0(f)^0 it follows that there exist r\Qr and (5>0

such that f' + ̂ 'eS11"1-!?!^-^ and QoCC' + Atf/0')^ for |^|=5.
On the other hand Lemma 2.4 implies that

for | A « I = 5 and v~*

where T is large enough. Thus Rouche's theorem leads us to a con-

tradiction to (3.29). This proves the lemma. Q.E. D.

4. Wave Front Set

First one observes that there exist bounded sequences {^N} in C*g(X)

such that 0jv=l on a fixed neighborhood of (;t0/
? y%, x%) in X, independ-

ent of N, and
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(4.1) |D«(^|gC(CAO|a| for |

where B = i-*(dldxl9..., d/dxn_ly d/dyn, d/dxn) (see [5]).

Definition 4.1. Let u(xf, yw xn)e@r(X). Then the analytic wave

front set WFA(u) of u is defined as the complement, in Xx(Sn+l\{Q}\

of the points ((;x°'9 y°9 x°)9 |°) such that for some sequence {(j)N} of

the above type there exists a conic neighborhood A of |° in Sn+l\{Q}

with

(4.2) l^(^i^[0^](?)I^C(CAON(l + |?irw when

Define

(4.3) r0=(F(^o, S)x2) n f (^o+ i )n(i?o,xE2)9

(4.4) £$0 = {(*', ̂ , xn)eZ; x'-iy'-^iy. + x^+^O for all 4
where |°eSM+1\{0} and K%0 = 0 for <^0 / = 0. Then our main theorem

is stated as follows.

Theorem 4.2. Under the conditions (A A) and 04.2)

(4.5) (W(F)c)^^(F(x'9 ^9 xj)c: U|e5,+ iUO}£? x {«', -«., «.+i)} -

Remark.

(4.6) W|6Sn+iUO}W7=0suppF|9j.(x'9 yM9 xjcsingsupp^x', yw xn)

c= anal sing suppF(x'9 yn, xn)c:U|e2

Proof, Let us assume that (x°'9 j£5 xj,

x{(^', -^M9{n+1)}. Then we have the following

Lemma 4.3. There exist an open conic neighborhood A± (aSn+1\

{0}) of (£<", -«, «+1), Jjerfo, a neighborhood U of (x°r, y°, XH°),

(iwe numbers 6, C, t0 and a rational number a such that

(4.7) x'-ri'-ynrin + xnrin+l<Q when (x', yn, xn~) 6 U,

(4.8)
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when

w/zere 72 =

Let J be a conic neighborhood of (£0/, — £°, £i?+i) sucn tnat ^\
{OJcJi. Let {</>jv(X5 J^ *n)} be a bounded sequence in Cg^lT) which

satisfies (4.1). Let Vt9Q£t£t0, be the chain ? = (€'-i(^(?)|?|i7' + 72S'X

£, + iW?)|f|i^^ where iW&6C<«>(S"+i\{0}) is
positively homogeneous of degree zero and i/'(|)== 1 on -d, suppi/'cz/jj,

= i- Since supple U, by (4.7) we obtain

(4.9) 1^(0- Di ̂  c(CAow(i + ic - d\rN

for CeK, , O g t g t o and

From Stokes1 formula it follows that

(4.10)

X

where y is a compact chain and 5 = ($,0). In fact, Lemmas 3.2 and

4.3 imply that the integrand is holomorphic in W0^f0K- Then (4.10)
is obtained by (4.8), (4.9) and Stokes' formula. It is obvious that

(4.11) l/il^C(CJV)N(l + |0|)-* when IE A.

Since \l-8\^d(\l\ + \9\) for 8eA and £e7,0, we have

(4.12) \I2\^C(CN)N(l + \8\)'N+b for

where b is a constant>n + l and N^b. (4.11) and (4.12) prove that
17 xJ nPFFy4(F) = 0. Q.E.D.

Proof of Lemma 4.3. (4.7) follows from the definition of JK^o.

( i ) If £°' = 0, then 1^=1. Thus we have
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K(f'-/(f|||^ + y2S'))^0 for all

(ii) When f°VO, it follows from Lemma 3.7 that

£(<r-;(t|||y + y23'))^0 for JeJ j , |||^C and Q£t£t0.

(in) If £° = 0, then F(P^5 9) = r. Thus we have

P(C'-i(W + 72n -^-fclflf/^O for all

(iv) When £°^0, it follows from Lemma 3.1 that

for fe^, |||^C and

(v) If £«" = 0 and {»+1=0, then f(4o.,4. + l) = {C6S-+»; (C', C.+ 1)er(P, 9)}.
Thus we have

for all ^0.

(vi) If pJ+«°', «+i)^0, we have

for |eJ1?|||^C and Og^t0

(vii) If ^°VO and pJ+(£°', ££+i) = 0, then it follows from Lemma 3.1
and I>xS2 nf (^o+i)C{CeS»+1; (C', CK+i)er(^(^o + i)9 9)} that

for le^!, |2|^C and 0^^f0-

(i)-(vii) and Seidenberg's lemma imply (4.8). Q.E.D.

5. Some Remarks and Examples

In Theorem 2.6 the inclusion of (2.18) can not be always replaced
by the equality. For the following special example we see that

(5.1) chl\J<?+0suppFtOJ(x
f
9yn,xn)-]^Kp for some |°e5«+1\{0}.
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Example 5.1f (see Example 5.1 in [9]). Put

(5.2) P(0=«?-£2-£i)«?-£i/4-£i/4),

(5.3) Bi(Q = l, B2(® = tl

For g°=(l, 1, V3~, -VI) we obtain

(5.4) \JJ

(5.5)

In this example the lateral waves do not appear.

Fig. 3.

Fig. 1 illustrates the intersection of \J%eE4\{Q}\Jf=o$uppF*}j(x
l, y3, x3) with

the plane x1 = c, where y3 = l and 2<c^4^ /3 /3 . This also illustrates

that of W|6iS4UO}K| with the plane x1 = c, where J3 = l and 2<cg

4^/373. Fig. 2 illustrates that of U|es4\{0}WJLosuPP^5j(
;x:'5 Ja* ̂ 3) witn

the plane x1 = c, where J3 = l and c>4A/3~/3. Fig. 3 illustrates that

of W|6S4\(0}K| with the plane xx = c, where y3 = i and c>4^/3/3.

| This example was given by T. Shirota,
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In Theorem 4.1 of [9] it was proved that Z%o>=Zp> if the following

conditions are satisfied: (i) Each p°(£°', //) = 0 has no real multiple roots,

(ii) {P( — D)? Bj( — D)} satisfies the Lopatinski condition. However, for

the following example we observe that Z^o^I^ and K^0gK|0 for some

Example 5.2. Put

f S »7\ Q ( y\ 1 E(38 / j &!((;)= L, L

Then

(5.8) R(£') = i<

where >/^f — 51 + ^^2 + ^ denotes the branch of ^/ with positive
imaginary part when — Im^ is large enough and £2 is real. It is

easy to see that {P( — D), B/-D)} does not satisfy the Lopatinski con-

dition. For £°' = (05 -1) we have

(5.9)

Thus

(5.10)

For |° = (0, -1, 1, -1) we have also

(5.11) Kfo
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/|\X2

Fig. 4. Fig. 5.

Fig. 4 illustrates the intersection of W4:6WUO}K| with the plane XL = const.

>03 where y$ = L Fig. 5 illustrates that of W|eS4\,0}K§ with the plane

XL = const. >0, where y3 = l.

The above example shows that the localization of the principal

part of the Lopatinski determinant does not always coincide with the

principal part of the localization of the Lopatinski determinant.
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