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On the Diameter of Certain
Riemannlan Manifolds
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Kunio SUGAHARA

§ 1. Introduction

The purpose of this paper is to estimate the lower bound for the

diameters of certain Riemannian manifolds.

Let M be a compact connected C°° Riemannian manifold and K

its sectional curvature. Let p be a point of M and Gp the group of

all isometrics of M which fix the point p. We denote by d(M) the

diameter of M.

We shall prove:

Theorem A, Assume Krgl and there exists a point p in M such

that dimGp^l. Then d(M)^n/2. If the equality d(M) = n/2 holds,

then K=i. Therefore, in case of even dimension, the equality holds

if and only if M is isometric to the real projective space of constant

curvature 1.

From this theorem we obtain an alternative proof of the following

Corollary (cf. [2]). Assume K^Q. Then dimGp = 0 for any point

p of M.

We shall also prove:

Theorems. Assume 0<JK^1 and M is of even dimension, then

d(M)^.n/2. The equality d(M) = n/2 holds if and only if M is isometric

to the real projective space of constant curvature 1.
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Remark 1.1. The assumption K^i is not essential. Since M is

compact, in order to fulfill the assumption, we have only to change the
metric by a constant factor.

Remark 1.2. In Theorem B, the assumption that M is of even

dimension cannot be eliminated. In fact, even if M is of constant

curvature 1, d(M) can be less than n/2 (cf. [8]).

Next we shall study the relation between the cut locus and the

conjugate locus. And we shall prove:

Theorem A7. Assume K^i and there exists a point p in M such

that dimGp^l. Further assume that M is simply connected and that

dimM is 3 or 4. Then

Corresponding to Theorem B, the following theorem is known.

Theorem B7. Assume 0<K^l and M is simply connected and of

even dimension. Then

Remark 1.3. If M is of dimension 2, we need less assumption.

In fact, we have: // M is of dimension 2 and simply connected and

if K^l, then d(M)^n (cf. Theorem 6.1).

Note: In this paper, we assume that the manifold M is always

compact and dimM ^2.

§ 20 Examples

The complex n-space C" (w^2) is considered to be the Euclidean

2n-space by the usual hermitian inner product. Let S2""1 be the unit

sphere in C". Then S2n~l is of constant curvature 1, concerning to

the induced metric by the inclusion S2n~1c:Cn. And the unitary trans-

formations U(n) act on S2""1 as isometries.

(1) Lens spaces. Let m be an integer greater than 1 and let rlv..,

rn be primitive m-th roots of 1 (not necessarily distinct). We define a

unitary matrix 17 by
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Let F be the subgroup of U(n) generated by U. Then F is a finite

group which acts freely on S2n~l. Hence M = S2n~1/r is a manifold
which inherits the Riemannian structure of constant curvature 1. M

is called a lens space. Let G be the subgroup of U(n) consisting of
matrices

1 0
A

0 °A

such that AeC and |A| = 1 and let p be a point of M which is repre-

sented by the vector (1, 0,..., 0)eC". Since G is contained in the
normalizer of F, each element of G is considered to be an isometry of
M and fixes the point p. Therefore we obtain dimGp^dimG=l. As
for the lens spaces, d(M) = n/2 (cf. [8]).

Remark 2.1. If M is of constant curvature 1 with d(M) = n/2 and
if dimM is 3 or 5, then the fundamental group is cyclic (cf. [8]). Hence
M is a lens space.

(2) Let F be a subgroup of U(4) generated by the following matri-
ces

/ * 2 / 3 i 0

e-2/3i

A =

(0

and

0 0 \

Tf
1 0 0 0

0 0 0 - 1

^ 0 0 1 0

Then F is a non-commutative finite group which acts freely on S7.

Hence M = S7/F is also a Riemannian manifold of constant curvature 1.
we put
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and

0

Then each element of G acts on M as an isometry and fixes the point

p which is represented by the vector (1, 0,0,0)e€4
8 Hence dimGp

^dimG=l. In this case, we also have d(M) = n/2 (cf. [8]). However

M is not a lens space since F is not cyclic.

§3- Preliminaries

We denote by < , > the Riemannian metric of M. We denote

by c(f) the velocity vector of a curve c: [a, 5]-»M at c(f) and by L(c)

the length of c. We denote by d(p, q) the distance between two points

p and q of M, We denote by TpM the tangent space to M at p and by

expp the exponential mapping of TPM to M. We put Bp(r) = {veTpMi

IMI<r} and SP(T) = {VE TpM; ||t?||=r}. Then5 by the theorem of Morse-

Schoenberg, we know that if K^l, then the map expp|Sjj(7c) is of maximal

rank at any point p of M. The following proposition is known (cf, [1]

p. 149, Theorem 2).

Proposition 38L Assume that the map expp|5p(f.} is of maximal rank.

Let y: [a, b}-»Bp(r) be a piecewise C°° curve such that y(a)=0. Then we

have L(expp°y)^||-y(fr)||. The equality L(exppoy)=||y(fe)|| holds if and only

if expp°y is a geodesic with an appropriate change of parametrization.

Making use of this proposition, we obtain

Lemma 3,2. Assume that the map expp|Bp(f.} is of maximal rank.

Let c: [a, fo]-»M be a piecewise C°° curve emanating from p. Assume

that the following (i) or (ii) holds.
(i) L(c)<r.

(ii) L(c)^r and c is not a geodesic with any reparametrizatlon.

Then there exists a unique piecewise C°° curve y: [a, b~]-*Bp(r) such that

y(d)=0 and
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y is called the lift of c to TpM.

Proof. Since the map expp|Sp(r) is of maximal rank, y is unique if

it exists. By our assumption, there is a number s(a<s^b) such that

there is the lift ys of c|[fljS] to TpM. Let s0 be the least upper bound

of such 5. We note that, for any s and s' (s<s'), ys = ys' on [a, s].

Therefore the curve y: [a, s0)->Bp(r) can be defined by y(i) = ys(f) f°r

a^t^s<s0. By Proposition 3.1 and our assumption, we easily see that

y(s) (s-»s0) converges to a point of Bp(r). Hence it follows that there

is the lift yso of c|[ajSo] to TpM. So, if s0<fo, the lift yso can be extended,

which is contradictory to the definition of s0. Therefore s0 = b and yso

is the lift of c to TpM. Q.E.D.

Lemma 3.3, Assume K^l. Let v and w be tangent vectors con-

tained in Bp(n) such that <v, w>=0. Let y: [a, b]-*Bp(ii) be a piece-

wise C°° curve connecting v and w. Then L(exppoy)^||y|| if ||y|| fgTi/2.

Proof. Let 5" (w = dimM) denote the n-sphere of constant curvature

1. Let p0 be a point of Sn and /: TpM-+TPoS
n a linear isometry.

Then, by Rauch's comparison theorem (cf. [1], p. 250, Theorem 14),

we have

(1)

Hence it follows that

(2) £(exppoy) ̂  L(expPoo/oy) .

On the other hand, it is clear that

(3) If ||/i;||g7c/2,

The lemma follows from (2) and (3). Q.E.D.

Remark 3.4. In the proof above, if we further assume that ||y||

= I(expp°y) = 7i/2, then it follows from (2) and (3) that

(4) £(exppoy) = L(expPoo Joy) = d(expPo°Iv, expp()o Jw) .
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(4) combined with (1) yields

(5)

Hence we see from (4) that QxpPo°I°y is a shortest geodesic with an ap-

propriate change of parametrization. And if exppoy is a geodesic with

the original parametrization, so is expPooIoy.

Lemma 3.5, Assume K^i. Let a:R-+Sq(n/2) be a curve such that

a = exp€oa is a geodesic with \\d(t)\\ = l (teR). We put Qxpqu(Q) = p.

Let VETPM be the initial tangent of the geodesic sxpq(l - i)u(Q) (Of^gl).

Then expp{/ld(0) + Aa;; A, jueJR, ||/ld(0)4-/^|| =n and /^O} is a single

point.

Proof. First we note that <a(0)5i;>=0. Let (sl5 e2) be the con-

nected component of {re I?; a(0^ — a(0)} which contains 0. We define

a family of curves ct: [0, 1]-»M (e1<t<s2) by

f exp_2si; (Ogs^l/2)
QW =

I expg(2s-l)a(0 (l/2^s^l).

Then, by Lemma 3.2, there are lifts yt of cf to TpM. Let S" (n = dimM)

be the w-sphere of constant curvature 1. Let j?0 be a point of S" and

I: TpM-+TPoS
n a linear isometry. We define bt: [1/2, 1]->SB by bt

= expPoo/oyf|[1/2jl]. Then by the definition of ct and bt, it is clear that

(6)

On the other hand, we have

Hence it is easily seen from Remark 3.4 that:

(7) bt is the shortest geodesic connecting expPo°Ii; and expp()o

(8) \\bt(s)\\=n (s,<t<82 and

(9) The angle between two initial vectors ^(i/2) and 60(i/2) is equal

to ||*d(0)||= |*|.
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By the definition of ^ and 82 and by (8), we have

(10) lim i,(l/2)=-fc0(l/2)= Urn ^(

It follows from (6), (9) and (10) that — s1=s2 = n. We fix a vector

£i = Ad(0) + iJLv(jjL^Q and | |^A |=TC) and first study the case that A>0. We

obtain from (7) that the half line R+I^ (R+ = {reR; r^O}) and 1°

7fl[i /2, i] haye a single intersection which we denote by I°yt(st) where
srgl. Then it is clear from (9) and (10) that

lim st=l and lim ||/o7t(s^)|| =n.

Hence we have

A, expp7id(0)) = lim
— 0

^ lim L(exp °y,| [stfl])= lim (l-sf)7i = 0.
r->7r-0 r-»7c-0

In case that A<0, by the similar argument we see that

By the continuity of the map expp5 we obtain

lim exp £A = exp £0= lim
A->-0 A-> + 0

proving the lemma. Q.E. D.

We define the cut locus C(p) of p in TpM by

f d(p,expptv)=\\tv\\
C(p)= i;

and the set QxppC(p) is also called the cut locus of p and denoted by

C(p).
The following theorems are known.

Theorem 3.6 (cf. [7]). Assume K^l and there is a point p in M

such that C(p) = Sp(n/2). Then M is isometric to the real projective

space of constant curvature 1.
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Theorem 3,7 (cf. [6]). Assume K^l and there is a point p in M

such that C(p) = Sp(ri) and QxppC(p) is a single point. Then M is iso-

metric to the sphere of constant curvature 1.

in this paper, we use a weaker version of Theorem 3.7:

Theorem 3JL Assume K^i and there is a point p in M such that

QxppSp(n) is a single point. Then K = l.

This theorem can be proved by the similar argument to that of

section 2 in [6].

§49 Fixed Points of Isometrles

In this section, p denotes an arbitrary, but fixed point of M and we

assume that dimGp^l and K^l. Gp is sometimes considered to be a

subgroup of the linear orthogonal transformations 0(TpM) by the linear

isotropy representation. Let G denote the identity component of Gp

and let F be the set of points of M which are fixed by G.

We note that F is a finite union of totally geodesic closed sub-

manifolds of M.

Lemma 4.1. Let x and y be two points of F and c: [0, l]-»Af

a geodesic connecting x and y such that L(c)<n. Then c is contained

in F.

Proof. Since expxc(0) = y E F, exp^O) = G(expxc(0)) = QxpxGc(0). Hence

it follows from the theorem of Morse-Schoenberg with \\c(0)\\=L(c)<n

that c(0) is fixed by G, which implies that c(0) is tangent to F. Since F

is totally geodesic, c is contained in F. Q8E. D.

Proposition 4JL Let q be a point of F and v a tangent vector to

M at q such that \\v\\ £n/2 and <v,TqF>=0. Then d(F, Qxpqv)= \\v\\.

Therefore the inequality ||w||^7c/2 holds for any w e C(g) n

Proof. Suppose that d(F9 sxpqv)<\\v\\. Then there is a point g'eF

such that d(qr, expqv) = d(F, expflt?). Let a: [0, 1]-»M be a shortest

geodesic from exp^y to q'. We define a curve c: [0, 1]-»M by
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Then we obtain L(c)<n. Hence by Lemma 3.2, there is the lift 7 of c

to TqM. Since ||y(l)||<7i and exp^(l)eF, it follows from Lemma 4.1

that the geodesic expqsy(l) (O^gs^l) is contained in F, i.e., y(l)eTqF.

Applying Lemma 3.3, we see L(a) = L(Qxpqy\ll/2}i-^^\\v\\9 which contradicts

our hypothesis. Q.E.D.

Corollary 4.3. Let q be a point of F. If d(M) = n/2, then C(q)

We put SF = Sq(nl2)n(TqF)\

Lemma

q o f F .

q q

4 A. If d(M) = n/2, then expp(SJ) = exp^(S F) for any point

Proof. Let x be a point of QxpqS
F. Then, by our assumption d(M)

= n/2 and by Proposition 4.2, we get d(F, x) = d(p, x) = n/2. Hence the

shortest geodesic from x to p is normal to F at p and its length is

Ti/2. It means that x is contained in exppS£. So we have exp^SJ

In the same way, we get exp^S^exp^Sj. Q.E.D.

Lemma 4.5. Assume d(M) = 7i/2. Let a:R-»F be a geodesic such

that fl(0) = p. Let v be a vector in SJ and put q = exppv. Then there

is a curve a:R-+Sq(n/2) such that exp5°a = a.

Proof. We define a sphere bundle SF over F by SF=\jS%, with
jceF

the projection n induced by the projection of the tangent bundle TM

of M. We define a map cp:SF-*M by (p\s* = QXPx\Sx' Since the map
(pis* is of maximal rank, Lemma 4.4 implies that the subset (p~1(q)

= {weSF; cp(w) = q} of SF is a submanifold and n: (p~1(q)-^F is a cover-

ing. Hence there is a curve o^: R-^(p~1(q) such that no^1 = a. It is

clear that the curve a: R-»Sq(n/2) defined by the equation

r^l and

has the required property. Q.E.D.
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Proof of Theorem A. The inequality J(M)^7i/2 follows from Pro-

position 4.2. Hence we assume d(M) = n/2 and derive K=l.

Case 1. The case where dimF = 0. By Corollary 4.3, we have C(p)

= Sp(7i/2). So the assertion follows from Theorem 3.6.

Case 2, The case where dimF^l. Let v be a tangent vector to

M at p with <v, TpF>=0 and ||u||=7r. Let w be a tangent vector to

F at p with ||w||=7r. And let a:U-»F be a geodesic to which w is

tangent at a(Q) = p. Then Lemma 3.53 combined with Lemma 4.5, implies

that

{exppt;} = {expp(cos Ow + sin Ov) ; 0 ̂  9 ̂  n} = {exppw} .

Since any tangent vector u to M at p with | |M| |=TC can be written in

the form cos6w + sm9v (0^0^ TT), we obtain that exppSp(7i) is a single

point. Hence the assertion follows from Theorem 3.8. Q.E. D.

Proof of Corollary to Theorem A, Suppose that both ^^0 and

^l are satisfied. We consider the metric r< , > (r>0) and

denote by dr(M) the diameter of M concerning to the metric. Then,

by Theorem A, we have rf/M)g:7r/2. On the other hand, it is clear that

Mm Jr(M) = 0, which is a contradiction. Q. E. D.

§5* Rlemannian Manifolds of Even-Dimension and Positive Curvature

In this section, M denotes a Riemannian manifold of even dimension

with

The following theorems are known.

Theorem 5.1 (cf. [3]). If M is simply connected, then d(p9

for any point p of M.

Theorem 5*2 (cf. [10]). // M is orientable, then U is simply con-

nected.

By virtue of the theorems above, we obtain

Theorem 53. d(p, C(p))^n/2 for any point p of M.
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Proof. According to Theorem 5.1, we may assume that M is not

simply connected. Then Theorem 5.2 implies that the fundamental group

of M is Z2. Suppose that there is a vector ve C(p) (c=TpM) such that

||i;|| <7r/2. Then there is a vector w (w^v) in C(p) such that exppw =

expji?. Let TT : M-»M be the Riemannian universal covering and put

n~~1(p) = {pi, p2}- We define a curve c: [0, 1]-»M emanating from pl

by

[ expp2to
7loC(0 =

( exp/2-20w

Then it is clear by Theorem 5.1 that c(l) = p2, which gives d(pl9 p2)

^\\v\\ +\\w\\ <n. Let c±\ [0, 1]-»M be a shortest geodesic from p1 to p2.

We define another geodesic c2 emanating from p1 by

710^(0 = 710^(1-0 (O^f^l) .

Then clearly cl and c2 are distinct geodesies from pl to p2 with L(C!)

= L(c2) = d(p1, p2). Hence it follows that d(p^ C(pJ)^d(pl9 p2)<n,

which is contradictory to Theorem 5.1. Q.E.D.

Proof of Theorem B. By Theorem 5.3, we get the inequalities d(M)

*zd(p, C(p))^.n/2 for any point p of M. Hence the theorem follows

from Theorem 3.6. Q.E.D.

§6. The Relations between the Cut Locus and the Conjugate Locus

Let p be a point of M. The conjugate locus Q(p) of p in TpM

is defined to be the set of tangent vectors where the exponential mapping

expp: TpM-»M is not of maximal rank.

In case of dimension 2, the following theorem is known.

Theorem 6.1 (cf. [5], [9]). Let M be a simply connected 2-dimen-

sional Riemannian manifold. Then C(p) and Q(p) have an intersection

for any point p of M.

However, in case of dimMg;3, the assertion in this theorem is false
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(cf. [ll])o Hence we need some further hypothesis.

Theorem 6*2 (cf. [9]), Let M be a simply connected 3-dimensional

Riemannian manifold. Assume that there is a point p in M such that

dimGp^l. Then C(p) and Q(p) have an intersection.

Theorem 6.30 Let M be a ^-dimensional Riemannian manifold.

Assume that there is a point p in M such that dimGp^l and C(p)

r\Q(p) = 0. Then the Euler-Poincare characteristic /(M) of M is less

than 2.

Proof. Let G be a one-parameter subgroup of Gp. Let F be the
set of points of M which are fixed by G. Then F is a finite union of

totally geodesic closed submanifolds of M with even codimensions and
%(F) = x(M) (cf. [4]). Let x be a point of F. Let c: [0, 1]-»M be the

shortest geodesic from p to x. Since C(p)(]Q(p) = 0 and x = G°exppc(0)
= exppoGoc(0), c is contained in F. Hence F is connected.

Case I. The case where dimF = 0. In this case3 we have F={jp}0

Hence it follows that %(M) = x(F) = l.

Case 2. The case where dimF = 2. We consider F a Riemannian

manifold with the metric induced by the inclusion FciM. And we

define the cut locus and the conjugate locus of p in TpF which we

denote by CF(p) and QF(p) respectively. As in the beginning of this
proof, every shortest geodesic from p to a point F is contained in F.

Hence it follows that CF(p) = C(p) n TpF. Since Q(p)=>QF(p), we get

CF(P) n Qp(p) = 0- So we can apply Theorem 6.1 and obtain that F is
not simply connected. Then it is clear that #(M) = #(F):gL Q. E. D.

Corollary 6A Let M be a simply connected 4-dimensional Rieman-

nian manifold. Assume that there is a point p in M such that dimGp

^L Then

Proof. We put b^dimH^M; M). Since M is connected and simply

connected, &0 = b4 = l and fo1=0. By the Poincare duality, we see b3 = b1.

After all we have
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Hence the assertion is clear. Q.E.D.

As to the manifolds of positive curvature and even dimension, we

know

Theorem 6.5 (cf. [3]). Let M be a simply connected even dimen-

sional Riemannian manifold with strictly positive curvature. Then there

is a point p in M such that C(p) fl Q(p)¥:0-

Proof of Theorem A' and Theorem B'. By the theorem of Morse-

Schoenberg, Q(p) f lBp(n) = 0 if K^l. Hence our assertion d(M)^n

follows from Corollary 6.4 and Theorem 6.5. Q.E.D.
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