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On the Diameter of Certain
Riemannian Manifolds
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§1. Introduction

The purpose of this paper is to estimate the lower bound for the
diameters of certain Riemannian manifolds.

Let M be a compact connected C® Riemannian manifold and K
its sectional curvature. Let p be a point of M and G, the group of
all isometries of M which fix the point p. We denote by d(M) the
diameter of M.

We shall prove:

Theorem A. Assume K= and there exists a point p in M such
that dimG,=1. Then d(M)zn/2. If the equality d(M)=n/2 holds,
then K=1. Therefore, in case of even dimension, the equality holds
if and only if M is isometric to the real projective space of constant
curvature 1.

From this theorem we obtain an alternative proof of the following

Corollary (cf. [2]). Assume K<0. Then dimG,=0 for any point
p of M.

We shall also prove:

Theorem B. Assume 0<K=1 and M is of even dimension, then
d(M)=n/2. The equality d(M)=m/2 holds if and only if M is isometric
to the real projective space of constant curvature 1.
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Remark 1.1. The assumption K=1 is not essential. Since M is
compact, in order to fulfill the assumption, we have only to change the
metric by a constant factor.

Remark 1.2. In Theorem B, the assumption that M is of even
dimension cannot be eliminated. In fact, even if M is of constant
curvature 1, d(M) can be less than /2 (cf. [8]).

Next we shall study the relation between the cut locus and the
conjugate locus. And we shall prove:

Theorem A’. Assume K=1 and there exists a point p in M such
that dimG,=1. Further assume that M is simply connected and that
dimM is 3 or 4. Then d(M)=m.

Corresponding to Theorem B, the following theorem is known.

Theorem B'. Assume O0<K<=1 and M is simply connected and of
even dimension. Then d(M)=r.

Remark 1.3. If M is of dimension 2, we need less assumption.
In fact, we have: If M is of dimension 2 and simply connected and
if K<1, then d(M)==n (cf. Theorem 6.1).

Note: In this paper, we assume that the manifold M is always
compact and dim M =2.

§2. Examples

The complex n-space €" (n=2) is considered to be the Euclidean
2n-space by the usual hermitian inner product. Let S2*~! be the unit
sphere in €". Then S2"~! is of constant curvature 1, concerning to
the induced metric by the inclusion S?"~!c{". And the unitary trans-
formations U(n) act on S?"~1 as isometries.

(1) Lens spaces. Let m be an integer greater than 1 and let ry,...,
r, be primitive m-th roots of 1 (not necessarily distinct). We define a
unitary matrix U by
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Let I be the subgroup of U(n) generated by U. Then I' is a finite
group which acts freely on S2"-1. Hence M=S2?""1/[" is a manifold
which inherits the Riemannian structure of constant curvature 1. M
is called a lens space. Let G be the subgroup of U(n) consisting of

L)

such that AeC and |A|=1 and let p be a point of M which is repre-
sented by the vector (1,0,...,0)eC". Since G is contained in the
normalizer of I', each element of G is considered to be an isometry of
M and fixes the point p. Therefore we obtain dimG,=2dimG=1. As
for the lens spaces, d(M)=m/2 (cf. [8]).

matrices

Remark 2.1. If M is of constant curvature 1 with d(M)=mn/2 and
if dimM is 3 or 5, then the fundamental group is cyclic (cf. [8]). Hence
M is a lens space.

(2) Let I be a subgroup of U(4) generated by the following matri-

ces
62/3i O
e—2/3i 1
A=
e2/31i
0 e-2/3 1
and
0 -1 0 0)
1 0 0 0
B=
0 0 0 -1

0 0 1 OJ

Then I' is a non-commutative finite group which acts freely on S7.
Hence M=S7|I' is also a Riemannian manifold of constant curvature 1.
we put
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1 0
G= : . ;AeC and || =1
I

[w)
1N

Then each element of G acts on M as an isometry and fixes the point
p which is represented by the vector (1,0,0,0)eC% Hence dimG,
>dimG=1. In this case, we also have d(M)=n/2 (cf. [8]). However
M is not a lens space since I' is not cyclic.

§3. Preliminaries

We denote by < , > the Riemannian metric of M. We denote
by ¢(t) the velocity vector of a curve c:[a, b]>M at c(t) and by L(c)
the length of ¢. We denote by d(p, q) the distance between two points
p and g of M. We denote by T,M the tangent space to M at p and by
exp, the exponential mapping of T,M to M. We put B, (r)={ve T,M;
lvll<r} and S, (r)={veT,M; |v]=r}. Then, by the theorem of Morse-
Schoenberg, we know that if K<1, then the map exp,|p,(, is of maximal
rank at any point p of M. The following proposition is known (cf. [1]
p- 149, Theorem 2).

Propesition 3.1. Assume that the map €xp,lp,¢) is of maximal rank.
Let y:[a, b]->B,(r) be a piecewise C* curve such that y(a)=0. Then we
have L(exp,ey)=|y(b)ll. The equality L(exp,oy)=|y(b)| holds if and only
if exp,oy is a geodesic with an appropriate change of parametrization.

Making use of this proposition, we obtain

Lemma 3.2. Assume that the map exp,lp, is of maximal rank.
Let c:[a, b]>M be a piecewise C* curve emanating from p. Assume
that the following (i) or (ii) holds.

() L(o<r.

(i) L(c)<r and c is not a geodesic with any reparametrization.
Then there exists a unique piecewise C® curve y: [a, b]—B,(r) such that
7(a)=0 and exp,ey=c.
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y is called the lift of ¢ to T,M.

Proof. Since the map exp,lp,, is of maximal rank, y is unique if
it exists. By our assumption, there is a number s(a<s=b) such that
there is the lift y; of c|,q to T,M. Let s, be the least upper bound
of such s. We note that, for any s and s’ (s<s), =7+ on [a, s].
Therefore the curve y:[a, so)—B,(r) can be defined by y(t)=y(f) for
aZt<s<s, By Proposition 3.1 and our assumption, we easily see that
P(s) (s—so) converges to a point of B,(r). Hence it follows that there
is the lift y,, of |4 to T,M. So, if so<b, the lift y,, can be extended,
which is contradictory to the definition of s,. Therefore s,=b and vy,
is the lift of ¢ to T,M. Q.E.D.

Lemma 3.3. Assume K=1. Let v and w be tangent vectors con-
tained in By(m) such that <v, w>=0. Let y:[a, b]>B,(n) be a piece-

wise C® curve connecting v and w. Then L(exp,>p)Z vl if ol Sm/2.

Proof. Let S" (n=dim M) denote the n-sphere of constant curvature
1. Let p, be a point of S* and I:T,M-T,S" a linear isometry.
Then, by Rauch’s comparison theorem (cf. [1], p. 250, Theorem 14),
we have
) I(exp,en) (DI 2 (€Xppelop) () (a=t=D).
Hence it follows that
#)) L(exp,oy) 2 L(expp,eloy) -

On the other hand, it is clear that
(3) If ||| =m/2,

d(expp,elv, exppeIw) = d(expp,olv, po)=|lIv].

The lemma follows from (2) and (3). Q.E.D.

Remark 3.4. In the proof above, if we further assume that [v]
=L(exp,ey)=mn/2, then it follows from (2) and (3) that

©)] L(exp,°y) = L(expp,oloy) = d(expp,olv, expp oIw).
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(4) combined with (1) yields

— —
®) [expey) D = [I(exppel) Il (a=t=b).

Hence we see from (4) that exp,,loy is a shortest geodesic with an ap-
propriate change of parametrization. And if exp,y is a geodesic with
the original parametrization, so is exppgeloy.

Lemma 3.5. Assume K<1. Let a: R—S/(n/2) be a curve such that
a=exppea is a geodesic with [d(t)|=1(teR). We put expx(0)=p.
Let ve T,M be the initial tangent of the geodesic exp,(1—1)a(0) (0=t<1).
Then exp,{Ad(0)+puv; 4, pueR, |2d(0)+puv|=n and pz0} is a single

point.

Proof. First we note that <d(0), v>=0. Let (¢, &,) be the con-
nected component of {teR; a(f)# —a(0)} which contains 0. We define
a family of curves ¢,: [0, 1]->M (s, <t<g,) by

exp,2sv (0=5172)
c(s)=
expy(2s — 1a(t) (1/2=s=10).

Then, by Lemma 3.2, there are lifts y, of ¢, to T,M. Let S" (n=dim M)
be the n-sphere of constant curvature 1. Let p, be a point of S" and
I: T,M—-T,S" a linear isometry. We define b,:[1/2,1]-5" by b,
=expp,oloYlri,2,13- Then by the definition of ¢, and b,, it is clear that

©) b(1/2)# —bo(1/2) (e, <t<egy).
On the other hand, we have
L(exp,yelis 2,10 = 1741/2)I =7/2.
Hence it is easily seen from Remark 3.4 that:
@) b, is the shortest geodesic connecting exppelv and exp, oI(td(0));
®) lb(s)| =7 (e, <t<e, and 1/2Zs<1);

(9) The angle between two initial vectors b,(1/2) and bo(1/2) is equal
to [ta(0)l| =]t
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By the definition of ¢; and &, and by (8), we have

(10) lim b(12)==bo(1/2)=_lim b(1/2).

t—g1+0

It follows from (6), (9) and (10) that —e, =e¢,=n. We fix a vector
E,=2d0)+puv (u=0 and ||§,||=n) and first study the case that 1>0. We
obtain from (7) that the half line R,I¢; (R, ={reR; r=0}) and Io
Ydlr1/2,17 have a single intersection which we denote by Ioy(s) where
1/2<s,=1. Then it is clear from (9) and (10) that

lim s,=1 and lim |[oy(s)|=m.

t—=>n—0 t->n—0

Hence we have
d(exppéb exppmi(O)) = 1_131?_10 d(exppoyt(st)o expptd(o))
s lim Lexpyoyy,, )= lim (1-s)m=0.

In case that 1<0, by the similar argument we see that

exp,é1=exp,(—nd(0)).

By the continuity of the map exp,, we obtain

lim exp,&;=exp, o= lim exp,¢;,
A>=0 A=+0

proving the lemma. Q.E.D.

We define the cut locus C(p) of p in T,M by

Clp)= { veT M

p

d(p, exp,tv)=||tv]| 0=t=1) }
" d(p, expiv)<|w] (1<)

and the set exp,((p) is also called the cut locus of p and denoted by

C(p).
The following theorems are known.

Theorem 3.6 (cf. [7]). Assume K=Z1 and there is a point p in M
such that C(p)=S,(n/2). Then M is isometric to the real projective
space of constant curvature 1.
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Theorem 3.7 (cf. [6]). Assume K=1 and there is a point p in M
such that C(p)=S,(n) and exp,C(p) is a single point. Then M is iso-
metric to the sphere of constant curvature 1.

In this paper, we use a weaker version of Theorem 3.7:

Theorem 3.8. Assume K=1 and there is a point p in M such that
exp,S,(n) is a single point. Then K=1.

This theorem can be proved by the similar argument to that of
section 2 in [6].

§4. Fixed Points of Isometries

In this section, p denotes an arbitrary, but fixed point of M and we
assume that dimG,=1 and K<1. G, is sometimes considered to be a
subgroup of the linear orthogonal transformations O(T,M) by the linear
isotropy representation. Let G denote the identity component of G,
and let F be the set of points of M which are fixed by G.

We note that F is a finite union of totally geodesic closed sub-
manifolds of M.

Lemma 4.1. Let x and y be two points of F and c:[0,1]-M
a geodesic connecting x and y such that L(c)<n. Then c is contained
in F.

Proof. Since exp,é(0)=y € F, exp,¢(0) = G(exp,¢(0)) =exp,Gé(0). Hence
it follows from the theorem of Morse-Schoenberg with [¢(0)|=L(c)<n
that ¢(0) is fixed by G, which implies that ¢(0) is tangent to F. Since F
is totally geodesic, ¢ is contained in F. Q.E.D.

Proposition 4.2. Let g be a point of F and v a tangent vector to
M at q such that |v[|£7n/2 and <v, T,F>=0. Then d(F, expp)=|v].
Therefore the inequality |w||=n/2 holds for any we C(q) n(T,F)*.

Proof. Suppose that d(F, expw)<|lv|. Then there is a point g'eF
such that d(q’, expv)=d(F, expp). Let a:[0,1]-M be a shortest
geodesic from exp,v to g’. We define a curve c: [0, 1]-M by
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exp,2tv 0=t=1/2)
()=

at—1)  (1225t=1).
Then we obtain L(c)<n. Hence by Lemma 3.2, there is the lift y of ¢
to T,M. Since [y(1)[|<n and exp,y(1)eF, it follows from Lemma 4.1
that the geodesic exp,sy(l) (0<s<1) is contained in F, ie., y(1)eT,F.
Applying Lemma 3.3, we see L(a)=L(exp,yl;;,2,19)=Ilv]l, which contradicts
our hypothesis. Q.E.D.

Corollary 4.3. Let q be a point of F. If dM)=m/2, then C(q)
N(T,F)t =S (n/2) n (T,F)*.

We put ST=S,(n/2) n(T,F)*.

Lemma 4.4. If d(M)=n/2, then exp,(S))=exp,(S) for any point
q of F.

Proof. Let x be a point of exp,S¥. Then, by our assumption d(M)
=n/2 and by Proposition 4.2, we get d(F, x)=d(p, x)==n/2. Hence the
shortest geodesic from x to p is normal to F at p and its length is
n/2. It means that x is contained in exp,S;. So we have exp,ST
cexp,SE. In the same way, we get exp,Sf>exp,SE. Q.E.D.

Lemma 4.5. Assume d(M)=mn/2. Let a:R—F be a geodesic such
that a(0)=p. Let v be a vector in Sf and put q=exp,p. Then there
is a curve a: R—S,(n/2) such that exppa=a.

Proof. We define a sphere bundle SF over F by SFf=\USE, with
the projection n induced by the projection of the tangent ﬁfnd]e ™
of M. We define a map ¢:SF—->M by ¢|sF=exp,|sF. Since the map
¢lsf is of maximal rank, Lemma 4.4 implies that the subset ¢~!(q)
={weS¥F; p(w)=q} of SF is a submanifold and =: ¢~*(q)—F is a cover-
ing. Hence there is a curve o;: R—@~1(q) such that 7ox;=a. Tt is
clear that the curve a: R—S,(n/2) defined by the equation

€XP,(S) =EXPy)(1 — Dat1(5) 0=t=1 and seR)

has the required property. Q.E.D.
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Proof of Theorem A. The inequality d(M)=mn/2 follows from Pro-
position 4.2. Hence we assume d(M)=m/2 and derive K=1.

Case 1. The case where dimF=0. By Corollary 4.3, we have C(p)
=8,(n/2). So the assertion follows from Theorem 3.6.

Case 2. The case where dimF>=1. Let v be a tangent vector to
M at p with <v, T,F>=0 and [v|=n. Let w be a tangent vector to
F at p with |w||l=n. And let a: R—F be a geodesic to which w is
tangent at a(0)=p. Then Lemma 3.5, combined with Lemma 4.5, implies
that

{exp,v} ={exp,(cos Ow+sin Ov); 0O <7} ={exp,w}.

Since any tangent vector u to M at p with |ul|=7 can be written in
the form cosfOw+sinfv (0<0=m), we obtain that exp,S,(m) is a single
point. Hence the assertion follows from Theorem 3.8. Q.E.D.

Proof of Corollary to Theorem A. Suppose that both K=<0 and
dimG,=1 are satisfied. We consider the metric r< , > (r>0) and
denote by d.M) the diameter of M concerning to the metric. Then,
by Theorem A, we have d(M)=n/2. On the other hand, it is clear that
I% d,(M)=0, which is a contradiction. Q.E.D.

§5. Riemannian Manifolds of Even-Dimension and Positive Curvature

In this section, M denotes a Riemannian manifold of even dimension
with 0<K<1.
The following theorems are known.

Theorem 5.1 (cf. [3]). If M is simply connected, then d(p, C(p))=~n
for any point p of M.

Theorem 5.2 (cf. [10]). If M is orientable, then it is simply con-
nected.

By virtue of the theorems above, we obtain

Theorem 5.3. d(p, C(p))==n/2 for any point p of M.
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Proof. According to Theorem 5.1, we may assume that M is not
simply connected. Then Theorem 5.2 implies that the fundamental group
of M is Z,. Suppose that there is a vector ve C(p) (=T,M) such that
vl <m/2. Then there is a vector w(w#wv) in C(p) such that exp,w=
exp,v. Let m: M—M be the Riemannian universal covering and put
Y (p)={p:, p»}. We define a curve c:[0, 1]»>M emanating from p,
by

exp,2tv 0=t=1)2)
moc(t) =
exp,(2—-20w  (1)25t=1).

Then it is clear by Theorem 5.1 that c¢(1)=p,, which gives d(p;, p,)
<|vl+|wl<n. Let ¢,: [0, 1]->M be a shortest geodesic from p, to p,.
We define another geodesic ¢, emanating from p, by

moc,(f)=moc, (1 —1) 011).

Then clearly ¢, and ¢, are distinct geodesics [rom p, to p, with L(c,)
=L(c;)=d(p;, p;)- Hence it follows that d(p;, C(p,))=d(p:, p;)<m,
which is contradictory to Theorem 5.1. Q.E.D.

Proof of Theorem B. By Theorem 5.3, we get the inequalities d(M)
2d(p, C(p))=n/2 for any point p of M. Hence the theorem follows
from Theorem 3.6. Q.E.D.

§6. The Relations between the Cut Locus and the Conjugate Locus

Let p be a point of M. The conjugate locus Q(p) of p in T,M
is defined to be the set of tangent vectors where the exponential mapping
exp,: T,M—M is not of maximal rank.

In case of dimension 2, the following theorem is known.

Theorem 6.1 (cf. [5], [9]). Let M be a simply connected 2-dimen-
sional Riemannian manifold. Then C(p) and Q(p) have an intersection
for any point p of M.

However, in case of dim M =3, the assertion in this theorem is false
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(cf. [11]). Hence we need some further hypothesis.

Theorem 6.2 (cf. [9]). Let M be a simply connected 3-dimensional
Riemannian manifold. Assume that there is a point p in M such that
dimG,=1. Then C(p) and Q(p) have an intersection.

Theorem 6.3. Let M be a 4-dimensional Riemannian manifold.
Assume that there is a point p in M such that dimG,=1 and C(p)
NQ(p)=@. Then the Euler-Poincaré characteristic y(M) of M is less
than 2.

Proof. let G be a one-parameter subgroup of G, Let F be the
set of points of M which are fixed by G. Then F is a finite union of
totally geodesic closed submanifolds of M with even codimensions and
K¥(F)=y(M) (cf. [4]). Let x be a point of F. Let c¢:[0,1]-M be the
shortest geodesic from p to x. Since C(p)nQ(p)=¢ and x=Goexp,:(0)
=exp,oGo¢(0), ¢ is contained in F. Hence F is connected.

Case 1. The case where dimF=0. In this case, we have F={p}.
Hence it follows that y(M)=y(F)=1.

Case 2. The case where dimF=2. We consider F a Riemannian
manifold with the metric induced by the inclusion FcM. And we
define the cut locus and the conjugate locus of p in T,F which we
denote by Cr(p) and Qg(p) respectively. As in the beginning of this
proof, every shortest geodesic from p to a point F is contained in F.
Hence it follows that Cp(p)=C(p)nT,F. Since Q(p)>Qr(p), we get
Ce(p) N Qr(p)=@. So we can apply Theorem 6.1 and obtain that F is
not simply connected. Then it is clear that y(M)=x(F)=1. Q.E.D.

Corollary 6.4. Let M be a simply connected 4-dimensional Rieman-
nian manifold. Assume that there is a point p in M such that dimG,
>1. Then C(p)n Q(p)#9.

Proof. We put b;=dimH(M; R). Since M is connected and simply
connected, bo=b,=1 and b,=0. By the Poincaré duality, we see b;=b,.
After all we have

X(M)=b0—b1+bz—b3+b4=2+b222.
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Hence the assertion is clear. Q.E.D.

As to the manifolds of positive curvature and even dimension, we
know

Theorem 6.5 (cf. [3]). Let M be a simply connected even dimen-
sional Riemannian manifold with strictly positive curvature. Then there
is a point p in M such that C(p) n Q(p)#g.

Proof of Theorem A’ and Theorem B’. By the theorem of Morse-
Schoenberg, O(p)nB,(n)=8 if K<1. Hence our assertion d(M)==n
follows from Corollary 6.4 and Theorem 6.5. Q.E.D.
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