Publ. RIMS, Kyoto Univ. 11 (1976), 835–847

On the Diameter of Certain Riemannian Manifolds

By

Kunio Sugahara

§1. Introduction

The purpose of this paper is to estimate the lower bound for the diameters of certain Riemannian manifolds.

Let M be a compact connected C^{∞} Riemannian manifold and K its sectional curvature. Let p be a point of M and G_p the group of all isometries of M which fix the point p. We denote by d(M) the diameter of M.

We shall prove:

Theorem A. Assume $K \le 1$ and there exists a point p in M such that dim $G_p \ge 1$. Then $d(M) \ge \pi/2$. If the equality $d(M) = \pi/2$ holds, then $K \equiv 1$. Therefore, in case of even dimension, the equality holds if and only if M is isometric to the real projective space of constant curvature 1.

From this theorem we obtain an alternative proof of the following

Corollary (cf. [2]). Assume $K \leq 0$. Then dim $G_p = 0$ for any point p of M.

We shall also prove:

Theorem B. Assume $0 < K \le 1$ and M is of even dimension, then $d(M) \ge \pi/2$. The equality $d(M) = \pi/2$ holds if and only if M is isometric to the real projective space of constant curvature 1.

Received September 6, 1975.

Remark 1.1. The assumption $K \leq 1$ is not essential. Since M is compact, in order to fulfill the assumption, we have only to change the metric by a constant factor.

Remark 1.2. In Theorem B, the assumption that M is of even dimension cannot be eliminated. In fact, even if M is of constant curvature 1, d(M) can be less than $\pi/2$ (cf. [8]).

Next we shall study the relation between the cut locus and the conjugate locus. And we shall prove:

Theorem A'. Assume $K \leq 1$ and there exists a point p in M such that dim $G_p \geq 1$. Further assume that M is simply connected and that dim M is 3 or 4. Then $d(M) \geq \pi$.

Corresponding to Theorem B, the following theorem is known.

Theorem B'. Assume $0 < K \le 1$ and M is simply connected and of even dimension. Then $d(M) \ge \pi$.

Remark 1.3. If M is of dimension 2, we need less assumption. In fact, we have: If M is of dimension 2 and simply connected and if $K \leq 1$, then $d(M) \geq \pi$ (cf. Theorem 6.1).

Note: In this paper, we assume that the manifold M is always compact and dim $M \ge 2$.

§2. Examples

The complex *n*-space \mathbb{C}^n $(n \ge 2)$ is considered to be the Euclidean 2*n*-space by the usual hermitian inner product. Let S^{2n-1} be the unit sphere in \mathbb{C}^n . Then S^{2n-1} is of constant curvature 1, concerning to the induced metric by the inclusion $S^{2n-1} \subset \mathbb{C}^n$. And the unitary transformations U(n) act on S^{2n-1} as isometries.

(1) Lens spaces. Let m be an integer greater than 1 and let $r_1, ..., r_n$ be primitive m-th roots of 1 (not necessarily distinct). We define a unitary matrix U by

$$\begin{pmatrix} r_1 & 0 \\ \ddots & \\ 0 & r_n \end{pmatrix},$$

836

Let Γ be the subgroup of U(n) generated by U. Then Γ is a finite group which acts freely on S^{2n-1} . Hence $M = S^{2n-1}/\Gamma$ is a manifold which inherits the Riemannian structure of constant curvature 1. M is called a lens space. Let G be the subgroup of U(n) consisting of matrices

$$\left(\begin{array}{cc}1&0\\\lambda\\\cdot\\0&\cdot\\0&\lambda\end{array}\right)$$

such that $\lambda \in \mathbb{C}$ and $|\lambda| = 1$ and let p be a point of M which is represented by the vector $(1, 0, ..., 0) \in \mathbb{C}^n$. Since G is contained in the normalizer of Γ , each element of G is considered to be an isometry of M and fixes the point p. Therefore we obtain dim $G_p \ge \dim G = 1$. As for the lens spaces, $d(M) = \pi/2$ (cf. [8]).

Remark 2.1. If M is of constant curvature 1 with $d(M) = \pi/2$ and if dim M is 3 or 5, then the fundamental group is cyclic (cf. [8]). Hence M is a lens space.

(2) Let Γ be a subgroup of U(4) generated by the following matrices

$$A = \begin{pmatrix} e^{2/3 i} & 0 \\ e^{-2/3 i} \\ e^{2/3 i} \\ 0 & e^{-2/3 i} \end{pmatrix}$$

and

$$B = \begin{pmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \end{pmatrix}.$$

Then Γ is a non-commutative finite group which acts freely on S^7 . Hence $M = S^7 / \Gamma$ is also a Riemannian manifold of constant curvature 1. we put KUNIO SUGAHARA

$$G = \left\{ \begin{pmatrix} 1 & 0 \\ 1 & \\ & \lambda \\ & & \lambda \\ 0 & & \lambda \end{pmatrix} ; \lambda \in \mathcal{C} \text{ and } |\lambda| = 1 \right\}.$$

Then each element of G acts on M as an isometry and fixes the point p which is represented by the vector $(1, 0, 0, 0) \in \mathbb{C}^4$. Hence dim $G_p \ge \dim G = 1$. In this case, we also have $d(M) = \pi/2$ (cf. [8]). However M is not a lens space since Γ is not cyclic.

§3. Preliminaries

We denote by \langle , \rangle the Riemannian metric of M. We denote by $\dot{c}(t)$ the velocity vector of a curve $c: [a, b] \rightarrow M$ at c(t) and by L(c)the length of c. We denote by d(p, q) the distance between two points p and q of M. We denote by T_pM the tangent space to M at p and by \exp_p the exponential mapping of T_pM to M. We put $B_p(r) = \{v \in T_pM;$ $||v|| < r\}$ and $S_p(r) = \{v \in T_pM; ||v|| = r\}$. Then, by the theorem of Morse-Schoenberg, we know that if $K \le 1$, then the map $\exp_p|_{B_p(\pi)}$ is of maximal rank at any point p of M. The following proposition is known (cf. [1] p. 149, Theorem 2).

Proposition 3.1. Assume that the map $\exp_p|_{B_p(r)}$ is of maximal rank. Let $\gamma: [a, b] \rightarrow B_p(r)$ be a piecewise C^{∞} curve such that $\gamma(a)=0$. Then we have $L(\exp_p \circ \gamma) \ge \|\gamma(b)\|$. The equality $L(\exp_p \circ \gamma) = \|\gamma(b)\|$ holds if and only if $\exp_p \circ \gamma$ is a geodesic with an appropriate change of parametrization.

Making use of this proposition, we obtain

Lemma 3.2. Assume that the map $\exp_p|_{B_p(r)}$ is of maximal rank. Let $c: [a, b] \rightarrow M$ be a piecewise C^{∞} curve emanating from p. Assume that the following (i) or (ii) holds.

(i) L(c) < r.

(ii) $L(c) \leq r$ and c is not a geodesic with any reparametrization. Then there exists a unique piecewise C^{∞} curve $\gamma: [a, b] \rightarrow B_p(r)$ such that $\gamma(a)=0$ and $\exp_p \circ \gamma = c$.

838

 γ is called the lift of c to $T_p M$.

Proof. Since the map $\exp_p|_{B_p(r)}$ is of maximal rank, γ is unique if it exists. By our assumption, there is a number $s \ (a < s \le b)$ such that there is the lift γ_s of $c|_{[a,s]}$ to T_pM . Let s_0 be the least upper bound of such s. We note that, for any s and s' (s < s'), $\gamma_s = \gamma_{s'}$ on [a, s]. Therefore the curve $\gamma: [a, s_0) \rightarrow B_p(r)$ can be defined by $\gamma(t) = \gamma_s(t)$ for $a \le t \le s < s_0$. By Proposition 3.1 and our assumption, we easily see that $\gamma(s) \ (s \rightarrow s_0)$ converges to a point of $B_p(r)$. Hence it follows that there is the lift γ_{s_0} of $c|_{[a,s_0]}$ to T_pM . So, if $s_0 < b$, the lift γ_{s_0} can be extended, which is contradictory to the definition of s_0 . Therefore $s_0 = b$ and γ_{s_0} is the lift of c to T_pM .

Lemma 3.3. Assume $K \leq 1$. Let v and w be tangent vectors contained in $B_p(\pi)$ such that $\langle v, w \rangle = 0$. Let $\gamma: [a, b] \rightarrow B_p(\pi)$ be a piecewise C^{∞} curve connecting v and w. Then $L(\exp_p \circ \gamma) \geq ||v||$ if $||v|| \leq \pi/2$.

Proof. Let S^n $(n = \dim M)$ denote the *n*-sphere of constant curvature 1. Let p_0 be a point of S^n and $I: T_p M \rightarrow T_{p_0} S^n$ a linear isometry. Then, by Rauch's comparison theorem (cf. [1], p. 250, Theorem 14), we have

(1)
$$\|\widehat{(\exp_{p}\circ\gamma)}(t)\| \ge \|\widehat{(\exp_{p}\circ I\circ\gamma)}(t)\| \qquad (a \le t \le b).$$

Hence it follows that

(2)
$$L(\exp_{p_0}\circ\gamma) \ge L(\exp_{p_0}\circ I\circ\gamma).$$

On the other hand, it is clear that

(3) If $||Iv|| \leq \pi/2$,

$$d(\exp_{p_0} Iv, \exp_{p_0} Iw) \ge d(\exp_{p_0} Iv, p_0) = ||Iv||.$$

The lemma follows from (2) and (3).

Q. E. D.

Remark 3.4. In the proof above, if we further assume that $||v|| = L(\exp_p \circ \gamma) = \pi/2$, then it follows from (2) and (3) that

(4)
$$L(\exp_{p_0}\circ\gamma) = L(\exp_{p_0}\circ I\circ\gamma) = d(\exp_{p_0}\circ Iv, \exp_{p_0}\circ Iw).$$

(4) combined with (1) yields

(5)
$$\|(\widehat{\exp_{p}\circ\gamma})(t)\| = \|(\widehat{\exp_{p_{0}}\circ I\circ\gamma})(t)\| \qquad (a \leq t \leq b).$$

Hence we see from (4) that $\exp_{p_0} \cdot I \circ \gamma$ is a shortest geodesic with an appropriate change of parametrization. And if $\exp_p \circ \gamma$ is a geodesic with the original parametrization, so is $\exp_{p_0} \cdot I \circ \gamma$.

Lemma 3.5. Assume $K \leq 1$. Let $\alpha: \mathbb{R} \to S_q(\pi/2)$ be a curve such that $a = \exp_q \circ \alpha$ is a geodesic with $\|\dot{a}(t)\| = 1$ ($t \in \mathbb{R}$). We put $\exp_q \alpha(0) = p$. Let $v \in T_p M$ be the initial tangent of the geodesic $\exp_q(1-t)\alpha(0)$ ($0 \leq t \leq 1$). Then $\exp_p\{\lambda \dot{a}(0) + \mu v; \lambda, \mu \in \mathbb{R}, \|\lambda \dot{a}(0) + \mu v\| = \pi$ and $\mu \geq 0\}$ is a single point.

Proof. First we note that $\langle \dot{a}(0), v \rangle = 0$. Let $(\varepsilon_1, \varepsilon_2)$ be the connected component of $\{t \in \mathbb{R}; \alpha(t) \neq -\alpha(0)\}$ which contains 0. We define a family of curves $c_t: [0, 1] \rightarrow M$ $(\varepsilon_1 < t < \varepsilon_2)$ by

$$c_t(s) = \begin{cases} \exp_p 2sv & (0 \le s \le 1/2) \\ \exp_q (2s-1)\alpha(t) & (1/2 \le s \le 1). \end{cases}$$

Then, by Lemma 3.2, there are lifts γ_t of c_t to T_pM . Let S^n $(n = \dim M)$ be the *n*-sphere of constant curvature 1. Let p_0 be a point of S^n and $I: T_pM \to T_{p_0}S^n$ a linear isometry. We define $b_t: [1/2, 1] \to S^n$ by $b_t = \exp_{p_0} \circ I \circ \gamma_t |_{[1/2, 1]}$. Then by the definition of c_t and b_t , it is clear that

(6)
$$\dot{b}_t(1/2) \neq -\dot{b}_0(1/2)$$
 $(\varepsilon_1 < t < \varepsilon_2).$

On the other hand, we have

$$L(\exp_{p}\circ\gamma_{t}|_{[1/2,1]}) = \|\gamma_{t}(1/2)\| = \pi/2.$$

Hence it is easily seen from Remark 3.4 that:

(7) b_t is the shortest geodesic connecting $\exp_{p_0} Iv$ and $\exp_{p_0} I(t\dot{a}(0))$;

(8)
$$\|\dot{b}_t(s)\| = \pi (\varepsilon_1 < t < \varepsilon_2 \text{ and } 1/2 \le s \le 1);$$

(9) The angle between two initial vectors $\dot{b}_t(1/2)$ and $\dot{b}_0(1/2)$ is equal to $||t\dot{a}(0)|| = |t|$.

By the definition of ε_1 and ε_2 and by (8), we have

(10)
$$\lim_{t \to \varepsilon_1 + 0} \dot{b}_t(1/2) = -\dot{b}_0(1/2) = \lim_{t \to \varepsilon_2 - 0} \dot{b}_t(1/2).$$

It follows from (6), (9) and (10) that $-\varepsilon_1 = \varepsilon_2 = \pi$. We fix a vector $\xi_{\lambda} = \lambda \dot{a}(0) + \mu v \ (\mu \ge 0 \text{ and } \|\xi_{\lambda}\| = \pi)$ and first study the case that $\lambda > 0$. We obtain from (7) that the half line $\mathbf{R}_+ I \xi_{\lambda} \ (\mathbf{R}_+ = \{r \in \mathbf{R}; r \ge 0\})$ and $I \circ \gamma_t|_{[1/2,1]}$ have a single intersection which we denote by $I \circ \gamma_t(s_t)$ where $1/2 < s_t \le 1$. Then it is clear from (9) and (10) that

$$\lim_{t\to\pi-0}s_t=1 \quad \text{and} \lim_{t\to\pi-0} \|I\circ\gamma_t(s_t)\|=\pi.$$

Hence we have

$$d(\exp_p \xi_{\lambda}, \exp_p \pi \dot{a}(0)) = \lim_{t \to \pi = 0} d(\exp_p \circ \gamma_t(s_t), \exp_p t \dot{a}(0))$$
$$\leq \lim_{t \to \pi = 0} L(\exp_p \circ \gamma_t|_{[s_t, 1]}) = \lim_{t \to \pi = 0} (1 - s_t)\pi = 0.$$

In case that $\lambda < 0$, by the similar argument we see that

$$\exp_p \xi_{\lambda} = \exp_p (-\pi \dot{a}(0)) \, .$$

By the continuity of the map exp_p , we obtain

$$\lim_{\lambda \to -0} \exp_p \xi_{\lambda} = \exp_p \xi_0 = \lim_{\lambda \to +0} \exp_p \xi_{\lambda},$$

proving the lemma.

We define the cut locus C(p) of p in T_pM by

$$C(p) = \left\{ v \in T_p M; \begin{array}{ll} d(p, \exp_p tv) = \|tv\| & (0 \le t \le 1) \\ d(p, \exp_p tv) < \|tv\| & (1 < t) \end{array} \right\}$$

and the set $\exp_p C(p)$ is also called the cut locus of p and denoted by C(p).

The following theorems are known.

Theorem 3.6 (cf. [7]). Assume $K \leq 1$ and there is a point p in M such that $C(p) = S_p(\pi/2)$. Then M is isometric to the real projective space of constant curvature 1.

Q. E. D.

Theorem 3.7 (cf. [6]). Assume $K \leq 1$ and there is a point p in M such that $C(p) = S_p(\pi)$ and $\exp_p C(p)$ is a single point. Then M is isometric to the sphere of constant curvature 1.

In this paper, we use a weaker version of Theorem 3.7:

Theorem 3.8. Assume $K \leq 1$ and there is a point p in M such that $\exp_p S_p(\pi)$ is a single point. Then $K \equiv 1$.

This theorem can be proved by the similar argument to that of section 2 in [6].

§4. Fixed Points of Isometries

In this section, p denotes an arbitrary, but fixed point of M and we assume that dim $G_p \ge 1$ and $K \le 1$. G_p is sometimes considered to be a subgroup of the linear orthogonal transformations $O(T_pM)$ by the linear isotropy representation. Let G denote the identity component of G_p and let F be the set of points of M which are fixed by G.

We note that F is a finite union of totally geodesic closed submanifolds of M.

Lemma 4.1. Let x and y be two points of F and $c: [0, 1] \rightarrow M$ a geodesic connecting x and y such that $L(c) < \pi$. Then c is contained in F.

Proof. Since $\exp_x \dot{c}(0) = y \in F$, $\exp_x \dot{c}(0) = G(\exp_x \dot{c}(0)) = \exp_x G\dot{c}(0)$. Hence it follows from the theorem of Morse-Schoenberg with $\|\dot{c}(0)\| = L(c) < \pi$ that $\dot{c}(0)$ is fixed by G, which implies that $\dot{c}(0)$ is tangent to F. Since F is totally geodesic, c is contained in F. Q.E.D.

Proposition 4.2. Let q be a point of F and v a tangent vector to M at q such that $||v|| \leq \pi/2$ and $\langle v, T_qF \rangle = 0$. Then $d(F, \exp_q v) = ||v||$. Therefore the inequality $||w|| \geq \pi/2$ holds for any $w \in C(q) \cap (T_qF)^{\perp}$.

Proof. Suppose that $d(F, \exp_q v) < ||v||$. Then there is a point $q' \in F$ such that $d(q', \exp_q v) = d(F, \exp_q v)$. Let $a: [0, 1] \to M$ be a shortest geodesic from $\exp_q v$ to q'. We define a curve $c: [0, 1] \to M$ by

$$c(t) = \begin{cases} \exp_q 2tv & (0 \le t \le 1/2) \\ a(2t-1) & (1/2 \le t \le 1). \end{cases}$$

Then we obtain $L(c) < \pi$. Hence by Lemma 3.2, there is the lift γ of c to $T_q M$. Since $\|\gamma(1)\| < \pi$ and $\exp_q \gamma(1) \in F$, it follows from Lemma 4.1 that the geodesic $\exp_q s\gamma(1)$ ($0 \le s \le 1$) is contained in F, i.e., $\gamma(1) \in T_q F$. Applying Lemma 3.3, we see $L(a) = L(\exp_q \gamma|_{[1/2,1]}) \ge \|v\|$, which contradicts our hypothesis. Q. E. D.

Corollary 4.3. Let q be a point of F. If $d(M) = \pi/2$, then $C(q) \cap (T_qF)^{\perp} = S_q(\pi/2) \cap (T_qF)^{\perp}$.

We put $S_q^F = S_q(\pi/2) \cap (T_q F)^{\perp}$.

Lemma 4.4. If $d(M) = \pi/2$, then $\exp_p(S_p^F) = \exp_q(S_q^F)$ for any point q of F.

Proof. Let x be a point of $\exp_q S_q^F$. Then, by our assumption $d(M) = \pi/2$ and by Proposition 4.2, we get $d(F, x) = d(p, x) = \pi/2$. Hence the shortest geodesic from x to p is normal to F at p and its length is $\pi/2$. It means that x is contained in $\exp_p S_p^F$. So we have $\exp_q S_q^F = \exp_p S_p^F$. In the same way, we get $\exp_q S_q^F \supseteq \exp_p S_p^F$. Q.E.D.

Lemma 4.5. Assume $d(M) = \pi/2$. Let $a: \mathbb{R} \to F$ be a geodesic such that a(0) = p. Let v be a vector in S_p^F and put $q = \exp_p v$. Then there is a curve $\alpha: \mathbb{R} \to S_q(\pi/2)$ such that $\exp_q \circ \alpha = a$.

Proof. We define a sphere bundle S^F over F by $S^F = \bigcup_{x \in F} S^F_x$, with the projection π induced by the projection of the tangent bundle TMof M. We define a map $\varphi: S^F \to M$ by $\varphi|_{S^F_x} = \exp_x|_{S^F_x}$. Since the map $\varphi|_{S^F_x}$ is of maximal rank, Lemma 4.4 implies that the subset $\varphi^{-1}(q)$ $= \{w \in S^F; \varphi(w) = q\}$ of S^F is a submanifold and $\pi: \varphi^{-1}(q) \to F$ is a covering. Hence there is a curve $\alpha_1: \mathbb{R} \to \varphi^{-1}(q)$ such that $\pi \circ \alpha_1 = a$. It is clear that the curve $\alpha: \mathbb{R} \to S_q(\pi/2)$ defined by the equation

$$\exp_q t\alpha(s) = \exp_{a(s)}(1-t)\alpha_1(s) \qquad (0 \le t \le 1 \quad \text{and} \quad s \in \mathbb{R})$$

has the required property.

Q. E. D.

Proof of Theorem A. The inequality $d(M) \ge \pi/2$ follows from Proposition 4.2. Hence we assume $d(M) = \pi/2$ and derive $K \equiv 1$.

Case 1. The case where dim F=0. By Corollary 4.3, we have $C(p) = S_p(\pi/2)$. So the assertion follows from Theorem 3.6.

Case 2. The case where dim $F \ge 1$. Let v be a tangent vector to M at p with $\langle v, T_p F \rangle = 0$ and $||v|| = \pi$. Let w be a tangent vector to F at p with $||w|| = \pi$. And let $a: \mathbb{R} \to F$ be a geodesic to which w is tangent at a(0) = p. Then Lemma 3.5, combined with Lemma 4.5, implies that

$$\{\exp_p v\} = \{\exp_p(\cos\theta w + \sin\theta v); 0 \le \theta \le \pi\} = \{\exp_p w\}.$$

Since any tangent vector u to M at p with $||u|| = \pi$ can be written in the form $\cos \theta w + \sin \theta v$ ($0 \le \theta \le \pi$), we obtain that $\exp_p S_p(\pi)$ is a single point. Hence the assertion follows from Theorem 3.8. Q. E. D.

Proof of Corollary to Theorem A. Suppose that both $K \leq 0$ and dim $G_p \geq 1$ are satisfied. We consider the metric r < , > (r>0) and denote by $d_r(M)$ the diameter of M concerning to the metric. Then, by Theorem A, we have $d_r(M) \geq \pi/2$. On the other hand, it is clear that $\lim_{r \to 0} d_r(M) = 0$, which is a contradiction. Q.E.D.

§5. Riemannian Manifolds of Even-Dimension and Positive Curvature

In this section, M denotes a Riemannian manifold of even dimension with $0 < K \leq 1$.

The following theorems are known.

Theorem 5.1 (cf. [3]). If M is simply connected, then $d(p, C(p)) \ge \pi$ for any point p of M.

Theorem 5.2 (cf. [10]). If M is orientable, then it is simply connected.

By virtue of the theorems above, we obtain

Theorem 5.3. $d(p, C(p)) \ge \pi/2$ for any point p of M.

Proof. According to Theorem 5.1, we may assume that M is not simply connected. Then Theorem 5.2 implies that the fundamental group of M is \mathbb{Z}_2 . Suppose that there is a vector $v \in C(p)$ ($\subset T_pM$) such that $||v|| < \pi/2$. Then there is a vector $w (w \neq v)$ in C(p) such that $\exp_p w = \exp_1 v$. Let $\pi: \tilde{M} \to M$ be the Riemannian universal covering and put $\pi^{-1}(p) = \{p_1, p_2\}$. We define a curve $c: [0, 1] \to \tilde{M}$ emanating from p_1 by

$$\pi \circ c(t) = \begin{cases} \exp_p 2tv & (0 \le t \le 1/2) \\ \exp_p (2 - 2t)w & (1/2 \le t \le 1). \end{cases}$$

Then it is clear by Theorem 5.1 that $c(1) = p_2$, which gives $d(p_1, p_2) \le ||v|| + ||w|| < \pi$. Let $c_1: [0, 1] \to \widetilde{M}$ be a shortest geodesic from p_1 to p_2 . We define another geodesic c_2 emanating from p_1 by

$$\pi \circ c_2(t) = \pi \circ c_1(1-t) \quad (0 \le t \le 1).$$

Then clearly c_1 and c_2 are distinct geodesics from p_1 to p_2 with $L(c_1) = L(c_2) = d(p_1, p_2)$. Hence it follows that $d(p_1, C(p_1)) \le d(p_1, p_2) < \pi$, which is contradictory to Theorem 5.1. Q.E.D.

Proof of Theorem B. By Theorem 5.3, we get the inequalities $d(M) \ge d(p, C(p)) \ge \pi/2$ for any point p of M. Hence the theorem follows from Theorem 3.6. Q. E. D.

§6. The Relations between the Cut Locus and the Conjugate Locus

Let p be a point of M. The conjugate locus Q(p) of p in T_pM is defined to be the set of tangent vectors where the exponential mapping $\exp_p: T_pM \rightarrow M$ is not of maximal rank.

In case of dimension 2, the following theorem is known.

Theorem 6.1 (cf. [5], [9]). Let M be a simply connected 2-dimensional Riemannian manifold. Then C(p) and Q(p) have an intersection for any point p of M.

However, in case of dim $M \ge 3$, the assertion in this theorem is false

(cf. [11]). Hence we need some further hypothesis.

Theorem 6.2 (cf. [9]). Let M be a simply connected 3-dimensional Riemannian manifold. Assume that there is a point p in M such that dim $G_p \ge 1$. Then C(p) and Q(p) have an intersection.

Theorem 6.3. Let M be a 4-dimensional Riemannian manifold. Assume that there is a point p in M such that $\dim G_p \ge 1$ and $C(p) \cap Q(p) = \emptyset$. Then the Euler-Poincaré characteristic $\chi(M)$ of M is less than 2.

Proof. Let G be a one-parameter subgroup of G_p . Let F be the set of points of M which are fixed by G. Then F is a finite union of totally geodesic closed submanifolds of M with even codimensions and $\chi(F) = \chi(M)$ (cf. [4]). Let x be a point of F. Let $c: [0, 1] \rightarrow M$ be the shortest geodesic from p to x. Since $C(p) \cap Q(p) = \emptyset$ and $x = G \circ \exp_p \dot{c}(0) = \exp_p \circ G \circ \dot{c}(0)$, c is contained in F. Hence F is connected.

Case 1. The case where dim F=0. In this case, we have $F=\{p\}$. Hence it follows that $\chi(M)=\chi(F)=1$.

Case 2. The case where dim F=2. We consider F a Riemannian manifold with the metric induced by the inclusion $F \subset M$. And we define the cut locus and the conjugate locus of p in T_pF which we denote by $C_F(p)$ and $Q_F(p)$ respectively. As in the beginning of this proof, every shortest geodesic from p to a point F is contained in F. Hence it follows that $C_F(p)=C(p)\cap T_pF$. Since $Q(p)\supset Q_F(p)$, we get $C_F(p)\cap Q_F(p)=\emptyset$. So we can apply Theorem 6.1 and obtain that F is not simply connected. Then it is clear that $\chi(M)=\chi(F)\leq 1$. Q.E.D.

Corollary 6.4. Let M be a simply connected 4-dimensional Riemannian manifold. Assume that there is a point p in M such that dim $G_p \ge 1$. Then $C(p) \cap Q(p) \ne \emptyset$.

Proof. We put $b_i = \dim H_i(M; \mathbb{R})$. Since M is connected and simply connected, $b_0 = b_4 = 1$ and $b_1 = 0$. By the Poincaré duality, we see $b_3 = b_1$. After all we have

$$\chi(M) = b_0 - b_1 + b_2 - b_3 + b_4 = 2 + b_2 \ge 2.$$

846

Hence the assertion is clear.

As to the manifolds of positive curvature and even dimension, we know

Theorem 6.5 (cf. [3]). Let M be a simply connected even dimensional Riemannian manifold with strictly positive curvature. Then there is a point p in M such that $C(p) \cap Q(p) \neq \emptyset$.

Proof of Theorem A' and Theorem B'. By the theorem of Morse-Schoenberg, $Q(p) \cap B_p(\pi) = \emptyset$ if $K \leq 1$. Hence our assertion $d(M) \geq \pi$ follows from Corollary 6.4 and Theorem 6.5. Q.E.D.

References

- [1] Bishop, R. L. and Crittenden, R. J., *Geometry of Manifolds*, Academic Press, New York, 1964.
- [2] Bochner, S., Vector fields and Ricci curvature, Bull. Amer. Math. Soc., 52 (1946), 776–797.
- [3] Klingenberg, W., Contributions to Riemannian geometry in the large, Ann. of Math., 69 (1959), 654–666.
- [4] Kobayashi, S., Fixed points of isometries, Nagoya Math. J., 13 (1958), 63-68.
- [5] Myers, S. B., Connection between differential geometry and topology, *Duke Math. J.*, 1 (1935), 376–391.
- [6] Nakagawa, H., Riemannian manifolds with many geodesic loops, J. Math. Soc. Japan, 20 (1968), 648–654.
- [7] Nakagawa, H. and Shiohama, K., On Riemannian manifolds with certain cut loci, *Tôhoku Math. J.*, 22 (1970), 14–23.
- [8] Sakai, T. and Shiohama, K., On the structure of positively curved manifolds with certain diameter, *Math. Z.*, **127** (1972), 75–82.
- [9] Sugahara, K., On the cut locus and the topology of Riemannian manifolds, J. Math. Kyoto Univ., 14 (1974), 391-411.
- [10] Synge, J. L., On the connectivity of spaces of positive curvature, Quart. J. Math. (Oxford Ser.), 7 (1936), 316–320.
- [11] Weinstein, A. D., The cut locus and conjugate locus of a Riemannian manifold, Ann. of Math., 87 (1968), 29–41.

847

Q. E. D.