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An Aspect of Quasi-Invariant Measures on R°°

By

Hiroaki SHIMOMURA*

Introduction

The study of translationally quasi-invariant measures \JL on an infinite-

dimensional vector space is essentially different from the same study on

a finite-dimensional vector space. In the finite-dimensional case, we

can characterize \JL as the Lebesgue measure modulo equivalence of abso-

lute continuity. However, in the infinite-dimensional case the situation

is more complicated and difficult, owing to the fact that there exist

many extremal measures. For example, in a rigged Hilbert space EaH

c:E*9 we can construct various kinds of ergodic quasi-invariant measures

which are singular with respect to each other. See [6]. So we want

to study an aspect of quasi-invariant measures. As a special but essential

case we shall here discuss the translationally quasi-invariant measures on

R°° which are of the type of countably infinite products of one-dimen-

sional probability measures. The main result is a characterization of

J2-quasi-invariant measures in terms of its second moment. The author

thanks Prof. H. Yoshizawa for the many valuable comments and thanks

Prof. Y. Yamasaki for his useful suggestions.

§1. Preliminary Discussions

Throughout this paper, we shall only consider probability measures

which are defined on the usual Borel cr-field 23(R°°) on R°°. First we

shall prepare some basic concepts and theorems for our later discussions.

Let n be a measure on 33(R°°) and t = (tl9 f 2 , . . - 9 ^.-O^R0 0 . We define
a transformed measure pt such that,
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H(A) = fj,(A - f), for all

Definition 1.1. A measure \i is called t-quasi-invariant, if and only

if fit = Li holds,

Here the symbol ^ means the equivalence relation of the absolute

continuity. We put TM={f eR00!/^/*}.

Definition 1.2. Let $ be a subset of R°°. A measure \L is called

^-quasi-invariant (strictly-^-quasi-invariant), if and only if ^c=TM

(<fr = Ty) holds, respectively,

From now on, the measure \JL is always assumed to be the product-

measure of one-dimensional probability measures. More exactly,

dfi(x)=®%lfj(xj)dxp x = (xl9 X2v)eR°°» where /,(M) > 0, for Lebesgue-
r<x>

a.e. u and\ fj(u)du = l ....... (II).

Clearly, T^Rff holds, wliere Rg> = {jc = (x1, x2,...)eR°°|;cn = 0 except

finite numbers of n.}. TM forms an additive group, but does not necessarily

form a vector space. We shall give a counter example for it in the last

part of thissection.

Now let fn(u) be as in (U). Then ^/T^eLjUR1), which is the

class of all square summable functions with respect to the one-dimen-

sional Lebesgue measure du. Let !F be the Fourier transformation on

UXR1), ^(/)(i7) = Jexp(27ciwi)/(ii)dii, and we put &(JJ3 = gH9 for all

n. First we shall state a simple criterion for equivalence of measures.

Theorem 1.1. Let \JL be a measure as in (II), and J/i1(x)= ®JLif^(Xj)dXj

be an another measure also as in (U). Then in order that

Hi=}t holds, it is necessary and sufficient that,

Especially, if ft 1= fa for some t = (tl9 t2,...)El^ao
9 the above inequality becomes

(") V//w - 0) du } < °°' or equivalently 9= i

Proof. The assertion of the theorem is the special case in the
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general equivalence criterion in [10]. It is a typical application of the

martingale convergence theorem. We omit it.

If /( is a measure as in (J7) and for all nyfn is identical with the
same function /, we say that /* is a stationary measure with /. Then,

Proposition 1.1. Let JLL be a stationary measure with f. Then we

conclude that Tl2.

Proof. Let t = (tl9 *2,...)e T^ and we put &(JJ) = g. Then by the
above theorem, we have

First we shall show that tj- »0, as j->oo. For it, we put

H(s)=((l-Qxp(2nisv))\g(v)\2dv, for seR 1 .

Then f/(0) = 0, lim H(s)=l due to the Riemann-Lebesgue theorem, and

<l, for 0<v|s|<oo. It follows that, for an arbitrary e>0,

inf H(s)>0. Suppose {£/} does not converge to 0. Then there exist
|a|^e

some £0>0 and subsequence {tjn} such that, \tjn\>c09 for all n. Con-
sequently,

= Z?=i inf f f ( s )=oo.
|S|^£0

We reach to a contradiction.

As l-cos(x)=O(^2) at ;x = 0, and

, forallX>0, so £y=1
— K J — K.

CK
If we take K so large that, \ v2\g(v)\2dv>09 it follows that ZjS=i^

<oo. Q.E.D.

Now we give an example for the fact that T/t is not necessarily a vector



752 HIROAKI SHIMOMURA

space.

Example 1.1. We put fc(u) = l/4Ac (l+cos27rw)2exp ( — 4n2cu2), for a

positive constant c, where Ac is a normalizing constant such that,

{3 + exp(-l/c)+4exp(-l/4c)}.

Some calculations show that,

(-t;2/2c)}, and that

exp(-cy2/4){cosj; + 2

+ exp ( - 1/c) + 4 exp ( - l/4c)eos (y/2)} .

Now we define a measure \JL such that,

dfJi(x)=®cj)
=lfCj(Xj)dxp where {c,-} is taken as ZjP=iC/<°°-

Then in order that t = (tl9 t29...)eTll9 it is necessary and sufficient that,

£JL j 1/BC . {3 + exp ( - 1/c,.) + 4 exp (- 1/4^) - exp ( - Tr2^^) (cos (2ntj) + 2 + exp

( - 1/cj) + 4 exp ( - l/4Cj) cos (ntj))} < oo, where we put Bc. = 1 6 ̂ fnc^ACj (hence

As SjLiCj<oo (hence Zj )=iexP(— l/4cj)<oo), so the above inequality

is equivalent that,

If we put tj = 1 for all j, then it yields

On the other hand if we put tj = l/2 for all j, then it yields

Therefore we assured that e = (l, 1,..., l,...)eTM, while 1/2 e ^ Tr

§2. General Aspect of Quasi-Invariant Measures

In this section, we shall mostly consider the Ip-quasi-invariance
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oo) of measures, where Ip = {x = (xl9 x2,...)ISj)=il^jlp<00}- Jt

will be turned out that /^-quasi-invariant measures actually exist, but
strictly- /^-quasi-invariant measure does not exist except for Q<p^2.

Further from another criterions (compactness, e.t.c.) we shall see that
the case p = 2 is a worth special interest.

Let ^ be a measure on S3(R°°) as in (17), and put

for each n. Then \\gn(v)\2dv=l, due to the PlanehereFs theorem, and

we can construct a probability measure v on ^(R00) such that,

dv(x) =®°P=I \gj(xj)\ 2dxj.

The measure v is called an adjoint measure of ju. Formally \JL and v

is related as follows. We use the duality bracket <x, y> = ^cjL1xjyj9

for x = (x1? x2,...)ERco and for y = (yl9 y2,">)£^o> and -—^-(x) means

the Radon-Nikodym derivative.

JR°°

Now let a = (al9 a2,...)eRGO, and we set Ha =

Unless otherwise stated, we fix these symbols. The quasi-invariance of

the measure n concerns with the smoothness of each function /„, while
the support of the measure v concerns with the decreasing order at

infinity of each function \gn\
2. As Fourier transformation reflects these

two properties, we can settle this point in a following lemma.

Lemma 2.1. (Found amen tal) Let t = (tl9 r2,...)eR°°. Then in order

that cteT^ holds for all ceR1 , It is necessary and sufficient that

Proof. First we shall assume that cJel^, for all ceR1. Then we

can define a one-parameter unitary group {l/c}ceKi on L^R00) such

that,

Uc : f(x) e L2 (R

(2nictjXj)dv(x)
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holds by the martingale convergence theorem and it is the continuous

function of c by the well known theorem for a one-parameter group.

As the each term of the above infinite product is positive for any c,

so SjLi-ll — \.exp(2nictjXj)dv(x)> is again a continuous function of c.

We integrate it with the normalized Lebesgue measure on [09 1], then

we get

It follows that

holds for v-a.e.x = (xl9 x2,.--)- It shows that v(Ht) = l. From the above

argument, we remark that SjP=i*/x./ converges in law for v, and that
the independence of each Xj derives that it converges almost surely for

v. Conversely, suppose that v(Ht) = !9 then

and therefore,

Let n be the one-dimensional Gaussian probability measure with mean

0 and variance 1. Then the above inequality yields,

It follows that,

^f=A{l-~Qxp(itjUv)}\gj(v)\2dv<co9 for ?i-a.e. u,

We set
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Then n(A) = l, and clearly A forms an additive group. Suppose

then there exists some s such that (s + A)nA = 0, and therefore

n(A U (s + A)) = 2. It contradicts the total mass of n, so A=Rl. It follows

that ct E i; holds for all c. Q. E. D.

Using the above fundamental lemma, we can actually construct

/^-quasi-invariant measures as follows. First we put for w>0,

COD

K0(u) = \ exp (— u cosh i)dt,
Jo

which is the modified Bessel function. And for each l^p^oo, we

take and fix a sequence P={pj}elp.> whose all components are positive

numbers. Further let q be a conjugate exponent of p, i/p + l/q = l.

Now we define a measure nq such that,

j\Xj\)dxj9 for each (p, q)

and p e IP .

Noting that

) = (v2-}-a2)~l/2 , for an arbitrary real constant a, we

get for the adjoint measure vq of ^,

Proposition 2.1. If a = (ai9 a2,-.-)elq, then vq(Ha) = l.

Proof. vq(Ha) = l is equivalent that,

(1) Sy

In order to assure (1), we put for seR1,

and estimate the order of w(s) at s = 0. Then after some calculations,

we can derive that w(s)=O(\s\) at s = 0, so the convergence of (1) is

equivalent to Zj?=i|o/l/?/<oo. Clearly this inequality is satisfied by the

assumptions for a and for p. Q. E.D.
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Combining Proposition 2.1 together with Lemma 2.1, jj,q is actually

the /^-quasi-in variant measure for each q^i. Later we shall give exam-

ples of strictly- /^-quasi-invariant measures for

The following definition and lemma are essentially due to L. Shwarz,

[7]. We list them here in a partially different but special form of the

original one.

Definition 2.1. Let m be a measure on 9J(R°°) such that, m=®f=lmp

where m7- is the probability measure on SCR1) for each j, and $ be a

subspace of R°°.

(a) If for an arbitrary element t = (t1, f 2 , . - - ) e ^> Sj^i^j converges

for m-a.e. x = (xl9 x2 , . --)j then we say that m is a type <P.
(b) Conversely, if a following assertion holds, we say that m is a

co type 0.

Let t = (tl9 £2,...)eR°°D U ZjP=if/*/ converges for m-a.e. x, then

it follows that tE$.

(c) // (a) and (b) are both satisfied, we say that m is a special type cP0

After these definitions, we can state the following corollary of Lemma

2.1.

Corollary, Let n be a measure as in (II), and v be the adjoint

measure of u. Then,

(a) T^lp is equivalent that v is a type lp,

(b) if T^lP, then v is a special type lp.

(c) if v is a special type 1P
5 and T^ forms a vector space, then T^

= lp.

Proof is derived from the consideration and the remark of Lemma

2.1.

Now if m is a type lp (p>0), we can define a following operator T

from IP to Mes(R°°, m, R1) such that,

T: t = (tl9 t2,...)elp - > E^i^-eMesCR00, m^1),

where the last symbol means the class of all real-valued m-measurable

functions defined on R°°.
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Lemma 2.2* Let m be a measure on 23(R°°) as in Definition 2.1.

For

(a) // m is a type lp, then the above mapping T is the continuous

operator from lp to Mes(R°°5 m, R1) equipped with the topology of

convergence in probability.

(b) if m is a special type 1P
9 and is the symmetric measure, then

the map T is the homeomorphic operator from lp to Mes(R°°5 m, R1)

equipped with the same one.

Proof is stated in [7], [8]. So we omit it. But it is an application

of Baire's theorem and closed graph theorem.

Here we shall discuss strictly- /^-quasi-invariant measures (0<p^oo)

on 33(R°°).

Proposition 2,2. There does not exist any strictly-l^-quasi-invariant

measure as in (17) on 23(R°°).

Proof. Suppose the contrary case, namely let p, be a measure as

in (U), and be the strictly- /°°-quasi-in variant measure. Then the adjoint

measure v of fi is the special type /°° in virtue of the corollary of Lemma

2.1. Applying Theorem 1.1 for an element (s, s,..., s,...)e /°° (seR1),

we get

£ JL ! jl - ( exp (2nisXj)dv(x)\ < oo .

Therefore,

lim \ exp (2nisXj)dv(x) = 1 .

It follows that for v, {Xj} converges in law to the Dirac measure, equiva-

lently it converges to 0 in probability. Let T be the same meaning as

in Lemma 2.2, in which we shall put v for m. Then an element ej

= (0, 0,...,0, 1, 0,...) corresponds to Xj by the map T, and it is a homeo-

morphic operator in virtue of Lemma 2.2. Therefore by the above

argument, e^ must tend to 0 = (0, 0,...), which is a contradiction. Q.E. D.

Lemma 2.3, Let % be a probability measure on ©(R1) and put
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d>(s)=(°° (i-exp(-s2u2))da(u), for seR1 .
J — ao

/or aH |A|gL

Proof, It is derived from the following elementary inequality.

l-exp(-cu)^c(l-exp(-i;)), for 0^vcgl and for ¥t;^0.

Q.E.D.

Proposition 23. For 2<p<oo, £/zere does not exist any strictly-

lp -quasi-invariant measure as in (II) on 23(M°°).

Proof. Suppose the contrary case, namely let \i be a measure as

in (17) and be the strictly- lp -quasi-invariant measure. Then from Lemma

2.1, Z7=i((l-exp(-fcJ
2xJ

2))dvW<oo holds if and only if {fy}e/*. If

necessary3 we divide each bj by a suitable normalizing constant9 and

apply Lemma 2.3. Then it follows thats

(3) Z5)=i^J(l-exp(»x2.)Xv(x)<oo3 for all [bj}el*.

Suppose inf \ (1— exp( — xj))dv(x) = Q. Then a suitable subsequence {jn}

exists such that,

.
So putting e = (Q, 0?...s 0, 1, 0,..., 0, 1, 0,...)5 the above inequality shows

that \JL is e-quasi-invariant. But e does not belong to any lp(oo>p>Q).

So it contradicts the assumption of quasi-in variance. Consequently

inf((l-exp(-x|))dv(x)>0, and from (3) we get Ef=ibj<oo for all

e lp. Again we reach to a contradiction. Q. E. D.

On the other hand, in the case of Q<p^2y strictly- l^-quasi-in variant

measures actually exist as follows. Let r be a real number such that 2r>l

and we put fr(u) = - r2^r/2} \7lu\r~i K^(2n\u\) , where K^^ is again
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the modified Bessel function and yr is the normalizing constant.

We define a measure ur on 23(R°°) such that,

namely ur is a stationary measure with /r. By the well known formula

for the Fourier transformation, we obtain for the adjoint measure vr

Therefore from Theorem 1.1, t = (tL, t 2 9 . . . ) E T f l holds, if and only if

(4) vf

Using the result of the stationary case (Proposition 1.1), it is necessary

that lim^ = 0 for (4). So putting

and estimating the order of it at s = Q, we get

(a) W(s)=0(\s\2r-i), [f 2r~l<2

(b) H/(5)=0(|s|2log|5|), if 2r-l=2

(c) W(s)=0(s2), if 2r-l>2.

Finally we have the following result

(A) T^l2'-*, if 2r-l<2

(B) i;r=/2-, if 2r-l=2, where/2- = {xeR0 0 |Ej )=i^j<oo and

(C) TMr=I2, if 2r-l>2.

Lemma 2A For l^p^oo, let ^ be a measure as in (II) and be

the lP-quasi-invariant measure. Then for a = (a^ a2,...)elp
9

is a continuous function of a with respect to the natural topology of
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lp. Especially, for j = l, 2,..., (| ̂ fj(u — s) — ̂ /fj(u)\\L2 is an equicontinuous

function of seR1 .

Proof. Let v be the adjoint measure of u. (dv(x)=0f=i\gj(Xj)\2dXj).

Then v is the type lp and a function

is the continuous function of a e lp, in virtue of Lemma 2.2, As v(a)

is always positive, and the infinite product converges uniformly in a

neighbourhood of each point,

is also continuous. The assertion of the last part is an easy consequence

of the above argument. Q. E. D.

Now we shall discuss the compactness of the set {^/fj(u)} in LJ^R1).

The following proposition is found in [9]. But we list it for reference.

Proposition 2A Let d£, be the Lebesgue measure on RN
3 and

Lp
d$(RN) (l^p<oo) be the Banach space of (classes of) functions f

such that |/|* is Lebesgue integral Then a subset A of L^(R^) is

totally bounded if and only if it has the following three properties.

(a) A is bounded in L^(RN) (in the sense of the Lp norm).

(b) A is equismall at infinity, i.e., to every s>0, there is p>0, such

that, for all feA

J\\*\\>P

(c) To every e>0, there is <5>0 such that, for all aeR* such that

\\a\\ <d and for all feA,

Applying it to the present case, from Lemma 2.4?

Proposition 2e§e For l^p^oo, let \JL be a measure as in (U),
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and be the lp~quasi-invariant measure. If (>///(w)} is equismall at

infinity, then it is the totally bounded set in L2
du.

Remarka The equismall property of {v//(w)} *s the same as the
uniform tightness of the set of the measures {fj(u)du}. It depends on

the continuity of a. For example, if \JL can be regarded as a continuous

cylindrical measure on lp (i^j^oo), then the uniform tightness condition

is satisfied.

Conversely,

Proposition 2.6. Let u be a measure as in (U), and TM be a vector

space. Suppose that {^/fj(u)} is a totally bounded set in L^M(R1),

then we conclude that T^cl2.

Proof. Let dv(x)=®f=L\gj(Xj)\2dXj be the adjoint measure of \JL.

Suppose that 0 = (al5 02v)e^r Then in virtue of Lemma 2.1,

(5) Ej>=i^-^P(-s2a]v2J)\gj(v)\2dv<oo, for all seR 1 .

First we shall assume that sup (a,-! = 00. Then, as 1— exp( — u2) is a

monotone increasing function, there exist subsequence {jj such that,

hence

(6) Ii

By the assumption, {QJ(V)} is the totally bounded set, and therefore if

necessary taking a subsequence of {jj, we can suppose that gjn(v)

converges to some g0(u) in L^R1)- Then from (6), we get

and we reach to a contradiction. So sup|a;|<oo. Using Lemma 2.3,

from (5) it follows that
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Again the compactness of {0j(v)} implies

inf f(l-exp(-t>2))|0/iO|2di>>0, so Z?=i0*<oo. Q.E.D.

Even if a measure ju is strictly- 12 -quasi-invariant, {>///M)} is not neces-

sarily a totally bounded set.

Example 2.L We set \L such that,

( — (Xj — rj)2/2)dxp where the positive sequence
{r,-} is taken such that limr j-=oo.

Then !TM=/2 holds but the set (exp(-(w-ry)2/4)} is not totally bounded.

Example 2.2.

dfj(x) = ® jfL 1 1/ ̂ /2n exp ( - (xj + rj)/2) cosh (rjXj)dxj9 where {r,-} is a

positive sequence such that X 7= i exP ( — r j /2 + r,-) < oo .
ju has the same properties as in above, but we remark that it is a sym-

metric measure.

Roughly speaking, the compact case is possible to arise only in that

of Tltc:l2. On the other hand,

Proposition 2»7» For p>2, let ft be a measure as in (/I), and be

the lp '-quasi-invariant measure. Then {^JJj(uj} is a discrete set in

Proof. Suppose the contrary case, namely we shall assume that a

suitable subsequence { \/ '//„(")} converges to some
If necessary, again we take a subsequence of { jj such that,

Then by the assumption, also for {jj,

^=i\{^-^fjn(u-an)^/7^}du<coy for all a = (ai9 a2,...)

As
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^^

we have

for a1

Even if ^/f0(u) vanishes on a set with positive Lebesgue measure, the

proof of Proposition 1.1 is still valid for the present case. Therefore

we conclude that a el2. But it contradicts the fact, I2^lp. Q.E. D.

§3, Characterization of I2-Quasi-Invariant Measures

In the former sections, we have discussed the aspect of (mainly,

/p-)quasi-invariant measures, and showed that the case p>2 and p^2

present the different situations. So we wish to consider the case of T^

ii/2 (especially T^=l2) and to characterize it in terms of (>///(w)}.
First we shall consider a stationary measure.

Theorem 3.1. Let /i be a measure as in (17), and be the stationary

measure with f. We put ^(^Jf) = g. Then In order that T^l2 holds

(automatically, TJ, = /2 holds due to Proposition 1.1), it is necessary and

sufficient that

(7) \v2\g(v)\2dv<ao .

(It is equivalent to d
Jf(u) <oo.)

du

Proof. Let v be the adjoint measure of

First we shall prove sufficiency. Assume that (7) is satisfied. Then for

an arbitrary element a=(al, a2,...)e/2, we have

1 aj x2dv(x),
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and it follows that v(Ha) = l. Consequently, from Lemma 2.1, we con-

clude that T^l2.

Conversely, suppose to be T^l2. Then from Lemma 2.4, for an

arbitrary s0>0, there exists <50>0 such that,

for all

In this inequality, we shall put cij = d0/^n for l^j^n and <z/ = 0 for

j^n + 1. Then for any n,

n j(l - cos (d0vl y/nj) \g(v)\ 2dv<sQ.

So, letting n tend to infinity and applying Lebesgue-Fatou's lemma, it

follows that,

6$/2\v2 \g(v)\2dv^£0, which shows the necessity. Q. E. D.

Let /.* be a measure as in (17). i.e.,

dn(x)=®?=ifj(Xj)dXj, and

Assume that // is the I2-quasi-invariant measure. Then from the result

of the above stationary case, it seems that,

But it is false for the general \i. Even in the case of Ttl=l2, we have

a following example.

Example 3.1, Let K0(u) be the modified Bessel function, and 7

be a constant such that 0<y<l. We put

/y(if) = l/n(y) {(l-y)2/^ K0(2n\u\) + y/J-2 exp(-|x]/2)}2 ,

where n(y) is the normalizing constant. And we define a measure

H on S(R°°) such that, dfi(x)=®f=if7j(xj)dxj9 where {yy} is taken

such that S?3=i(l~7j)2<00- Then some calculation shows that
= ®y=il/2exp(-|x /|)dx /, and the later measure is strictly-12-quasi-
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invariant. Therefore the same holds for \JL. On the other hand, as

^)=^(V/7)W=v^
and

so

\v2\gy(v)\2dv=ao, for any y>0 .

However the above conjecture is modified as a following theorem.

Theorem 3.2. Let ^ be a measure as in (II). Then in order that

IJL is an I2-quasi-invariant measure, it is necessary and sufficient that

there exists some measure M on 93(R°°), which has following three

properties.

(a) dM(x)=®f==lFj(xj)dxp Fj(u)>$ for Lebesgue-a.e. u

(b) M~[i (in the sense of Definition 1.1)

(c) sup \ v21GJ(V)\ 2du<oo, where Gj = Jr( ^jFj).

Proof. First we shall prove sufficiency. Clearly the equivalence of

measures does not change the set 7^, namely if u^M holds, then T^

= TM. So we have only to check that M itself is the I2-quasi-invariant

measure. Now using (c) in place of (7) in Theorem 3.1, we reach to

the desired conclusion in a similar way with it. The necessity of the

proof is derived from the following two lemmas. From now on we

shall use a symbol * for convolution operation. Let ^ be a measure as

in (77), and a = (a^ 02,...)eR°°. We put

if 0; = 0,

where n(a^) is the normalizing constant such that
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Using the above {^/t/)}3 we define a measure such that,

dna(x)=®JLlhficj)dxj.

Then,

Lemma 3.1. // /,i is l2-quasi-invariant and a = (al5 a2,...)e J2, then

H^H*.

Proof. First we shall put wj(ii) = n(aj)^jhj(u). Then,

^l^

- exp (2niajs»y) |0;(V)1 2 exp ( - s2/2)dvds

So Z?=iilwj- — v77llL2<0°5 in virtue of Lemma 2.1. Especially

Therefore,

^

It follows that /( and /«fl are equivalent with each other. Q.E. DB

We note that

Lemma 3,2. Let m be a measure on 23(R°°) such that m=®f=lmj9

where each mj is the probability measure on ^(R1). Suppose that

m(Ha) = i for all a el2. Then there exists some <5 = {<5j}el2 such that

Proof. As Xj )=i\(l-exp(-a?w2))rfmJ.(w)<oo9 so we can put
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il for all a = (al9 «2,...) e /2 .

First, we shall claim that W is continuous and is bounded on the unit

sphere of I2. For, let n^ be the canonical Gaussian measure on

. Namely, rfnao(x)=®f==1l/>/27r exp (-xj/2)dxj9 and we put

(u) = l/y/2n exp( — u2/2)du as for the measure on ^(R1). Then,

Now, from m7- and n, we define a new probability measure A7- on

such that,

A/J4) = n®mi/{(s, w)eR2 | sw e,4}, for all Ae^B(Rl).

And we define a measure A on 23(R°°) such that, A=®°P=1Aj. Then A

is the symmetric measure and the above equality can be written as

\ - Q x p ( ^ / 2 i a j X j

From this it follows that A is the type /2, and therefore W(d) is the

continuous function by Lemma 2.4. Consequently, for any given s>0,

there exists 0<(5<1 such that, W(d)<&, for all ||a||:g5. So W(5a)<s

for all || a ||^1. Applying Lemma 2.3 for W9 we conclude that, W(d)

^e/<52, for all | |fl | |rgl. From now on we put R = s/62. Let K>2 and

we put for each j

( f )f: = inf u>0|\ u2dm:(u)>KR> and s — llt.-.
( )(-t,t) J

If the above set is empty, we put f /=oo and Sj = 0. Then if Sy^O, we

have

(8) \ w2Jm-(w)^KR and

Secondly, we shall claim that ZjP=i ^^1- For, suppose the contrary
case, namely there exists some n such that ^"=isj>l. Without loss

of generality, we can assume that Sj^O for l^j^n. In the definition

of W, we put a—s/sH'-H-s,?)'1'2 for l^j^n and a^O f o r j
Then it yields
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Using Lemma 2.3, it follows that

Therefore,

From (8), it follows that 1/2 KR<^R, which contradicts the choice of K.

As {s;} el2, so we get

and therefore

Lastly, we put for each j 8j=\\ dmj(u)\ . Then {5/}e/2 and,
U|ll|^O J

exp (-

Q.E.D.

Proof of the necessity of Theorem 3.2. Let // be an l2-quasi-

invariant measure and v be the adjoint measure of it. Then in virtue

of Lemma 2.1, v(Ha) = l holds for all a El2. So we can take a sequence

8 = {Sj} such that,

sup \i;2exp( — 6jv2)\gj(v)\2dv<co .

In the notation of Lemma 3.1, putting aj — bj\^2ii and constructing a
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measure d^d
l(x)=®J)

=lhj(Xj)dxp then n*=u holds and

sup w2\&r(^/hj)(v)\2dv = mplln(aj)
2\v2exp(--d2

jv
2)\gj(v)\2dv<co,

as

lim n(aj)2 =lim n(8j/ >/ 2 n)2 = 1.

Therefore ^ is the desired one M. Q.E.D.

The case T^=/2 is settled in the following theorem.

Theorem 3.3. Let \L be a measure as in (17), and we put

= gjf Then in order that \JL is the strictly-l2-quasi-invariant measure,

it is necessary and sufficient that

(a) 7], is a vector space

(b) there exists some measure M on $B(R°°) which has the three proper-

ties in Theorem 3.2.

(c) i

Proof. First, we shall consider the necessity. Then (a) is trivial,

and (b) is the consequence of Theorem 3.2. While (c) is shown in a

quite similar way with Proposition 2.3. Conversely, suppose that the

three conditions are satisfied. Then T^l2 holds by Theorem 3.2. Now

if there exists a = (al9 a2,...)£TfJl\l
2, then from (a),

It follows that,

and therefore ]CjLi#2<oo. But it contradicts the choice of a. Q.E.D.

Remark. Even if (a) and (b) are satisfied for /^, the condition

inf \v2\gj(v)\2dv>Q is necessary but not sufficient for T=/ 2 . We have
j J

a counter example for it.
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Lastly, we shall discuss the relation of the support to the quasi-in-

variance.

Lemma 3.3. For l:gjp<oo, let JA be a measure as in (II) 9 and be

the lp -quasi-invariant measure. If fi(Ha) = l for some a = (al9 a2,...)
eR°°9 then we conclude that aeK (q is the conjugate exponent of p),

Proof. Let /Z be a measure on SCR00) such that,

ji(A) =u(-A) for all A e ̂ M00) .

The convolution of IJL with /Z defines a new measure jMs, namely

lis(A)=(f4A-x)dp(x)9 for all ^e93(R°°)s

We can easily check that fis is also the product-measure and symmetric

one. Moreover, [is(Ha)=l and Tps^T^l* hold. For,

fis (Ha)=(
J

And if t=(tl,t29...)eTll and ^s(^) = 0 for some ^6S(R°°), then it fol-

lows that u(A — x) = Q (hence, n(A — x — t) = 0) holds for /Z-a.eajc0 There-

fore,

As the converse assertion holds in a similar way, we conclude that

Now3 its(Ha) = i is equivalent that ZjP=i<z/-*f <°° f°r ^s-a.e0^, which
yields that SjLifl/x,- converges for jus-a.e. x due to the Kolmogorov-

Khintchine's theorem and the symmetry of us
a Therefore if ^ is lp-

quasi-in variant, then we conclude that for all { h j } e l p
9 both S^i^j

and £jLifl/x/ + fe/) converges for jus-a.e. x. It follows that, for any

{hj} e lp, ^JLidjhj converges, which shows {cij} e lq, Q. E. D.

According to the above lemma, we are specially interested in a following

measure u.
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(*) fj, is as in (/I), and I2-quasi-invariant

(**) for any a = (al5 a2 3 . . .) e^2
5 X^O = 1-

For example, a measure which can be regarded as a continuous cylindri-

cal measure on I2 satisfies (**) due to Minlos.

Theorem 3A Let \JL be a measure as in (II). Then in order that

u has the properties (*) and (**), it is necessary and sufficient that

there exists a measure M on ^B(^^),dM(x)=®J=lFj(xJ)dxp^(^/YJ)

= Gj such that,

(a) M has the three properties in Theorem 3.2

(b) sup \u2Fj(u)du < oo.
j J

(We can characterize it in terms of the uniform boundness of
d r-r-i /

du
and \\ujFj(u)\\L2.)

Further, T^ = /2 holds under the condition (*) and (**).

Proof. First we shall prove that T^l2. The proof T^l2 is

derived as below from the consideration in Lemma 3.3. Using the same

notation in it, we can assure that for all a = (a1? a2,...)e^ Z^=iajxj
converges for /.is-a.e. x. Therefore if t = (ti9 t2,...)£TfJLJ then both Sy=ifljxj

and Zj^i^/^j + O) converges for jUs-a.e. x. Hence ZjP=iajO converges
for any ae / 2 , which shows that tel2. Combining it with the assumption

Tfl^l2, we conclude that T^=/2 . Secondly, we shall prove sufficiency of

the former part of this assertion. For (*), it is a consequence of Theo-

rem 3.2. Since M = /^, for (**) we have only to check that M(JH"fl) = l

for all a El2. Now

= Ey=ifl? (u2Fj(u) du^ sup(u2Fj(u) du Z?=i aj< oo .

It follows that ^iJL1ajxj<co for M-a.e. x, which shows M(Ha) = l0

Lastly, we shall prove the necessity. Using Lemma 3.2 for fi, it asserts

that there exists a sequence a={ffn}El2 such that,

(9) sup \u2Qxp(~aju2)fj(u)du<co .

Putting kj(u) = i/n((Tj) exp( — aju2)fj(u), where n(aj) is the normalizing

constant such that,
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\kj(u)du = l (and becomes limn(ffj)=l')9
•/ j

we define a new measure fi1 on 23(R°°) such that,

As ju(Jfff) = l derives that /Ji^ju, so fi1 is also /2-quasi-invariant. Using

Theorem 3.2 for /j1? it follows that there exists a sequence 5 = {5j}el2

such that,

sup (v2\Gj(v)\2dv<ao, where Gj =

exp ( -~u2/2dj)} , and

n(SJ) is the normalizing constant such that \Fj(u)du = i (and becomes

Now the measure dM(x)=®J=lFj(xJ)dxj is the desired one. Because we

have only to check that

(10) sup(u2Fj(u)du<ao.

Some calculations derive that

Combining it with (9), we can assure (10). Q.E.D.

As for the stationary case,

Theorem 3«,5. Let \i be a stationary measure with /, and we put

^(\Jf} = 9- Then p is I2 -quasi-invariant and ii(Ha) = l for all a el2,

if and only if

[u2f(u)du<ao and \v2\g(v)\2dv<co .

Proof, First we shall consider the necessity. The last inequality

has already proven, so we have only to check the first one. Applying

Lemma 3.2, there exist {dj} 6 I2 and a positive constant R such that,
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(u2exp(-5ju2)f(u)du£R, for all j.

Letting j tend to infinity and using Lebesgue-Fatou's lemma, we get

The proof of the sufficiency is carried out in a quite similar way with

it in Theorem 3.4. Q.E. D.
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