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On a Fourier Expansion in Continuous
Crossed Products

By

Hiroshi TAKAT*

Abstract

Let (M,R,a) be a separable continuous W*-dynamical system such
that M is R-finite.

Then any element in the crossed product RR.,M of M by a can be
expressed as a vector valued tempered distribution D7, which is a weak*
limit of T,£€K(R; B) in the dual space Sy(R; n)* of a generalized Schwartz
space Sy(R;n), where K(R; B) is the Tomita algebra corresponding to R®Q .M.

§1. Introduction

The study of von Neumann algebra of type III has been greatly
developed since M. Tomita [10] obtained the so-called commutation
theorem based on his deep ideas. A. Connes [1] classified factors of
type III into three parts —that is, of type HI;, of type III, (0<i<]1)
and of type III, —, and he proved that a factor of type IlI, or III,
(0<i<1) is the crossed product of a von Neumann algebra of type II,
by a single automorphism. Independently, M. Takesaki [14] and H.
Araki [13] found that certain class of type III factors are the crossed
products of von Neumann algebras of type II; by a single automor-
phisms. M. Takesaki [9], using a duality for crossed products, estab-
lished a structure theorem that any factor of type 1II with separable
predual can be written as the crossed product of a von Neumann algebra
of type II,, by a continuous action of the real numbers. A. Connes [2]
verified that there exist factors of type III which are isomorphic to no
discrete crossed product of a semifinite von Neumann algebra by an
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abelian group.

These facts tell us that discrete crossed products can hardly cover
all the structures of factors of type III. Therefore, it is quite significant
to study continuous crossed products systematically.

However, there appear a lot of complications in the continuous case
as compared with the discrete case. For instance, it is unclear whether
the primitive ideal space of crossed products equals to the induced primi-
tive ideal space in separable continuous C*-dynamical systems. (cf: [8])

The main reason for the difference seems to come from a lack of a
suitable way to express any element in continuous crossed products as
an operator valued function with certain rules.

From this point of view, it is desirable to find a proper Fourier
expansion in continuous crossed products as in the discrete case.

In this paper, we shall try to offer one version for Fourier expan-
sions as stated above. More precisely, any element in the crossed prod-
uct R®,M of a R-finite von Neumann algebra M with the separable
predual M, by a continuous action « of the real numbers R, can be
expressed as a vector valued tempered distribution D47, which is a weak*
limit of T, (e K(R;B) in the dual space Sy(R;p)* of a generalized
Schwartz space Sy(R;y), where K(R;B) is the Tomita algebra cor-
responding to R®, M.

Finally, the author would like to express his hearty thanks to Pro-
fessor O. Takenouchi for his constant encouragement and warm hospitality
while this manuscript is being prepared.

He also is greatly indebted to Professor A. Connes for his careful
reading of this paper and many valuable suggestions, and to Professor
H. Araki for his kind advice.

§2. Continuous W*-Crossed Products and Preliminary Lemmas

In this section, we shall define the crossed product associated with
a separable continuous W#*-dynamical system and prepare a couple of
lemmas which will be used later. Let M be a von Neumann algebra
and G be a locally compact group. Consider a mapping « of G into
the group Aut(M) of all automorphisms of M. The triple (M, G, «)
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is said to be a continuous W*-dynamical system if « is a homomor-
phism such that the function gw>¢on,(x) is continuous on G for every
xeM and ¢peM,, where M, is the predual of M. It is also called
separable if M, and G are separable. Let us suppose from now on that
a triple (M, G, «) is a separable continuous W*-dynamical system and G
is unimodular. Comparing with the discrete case, one more assumption
would be added as follows: There exists a G-invariant faithful normal
state ¢ on M. Namely, suppose that M is G-finite. Associated with ¢,
let Ay B, 4,J be the full left Hilbert algebra with the identity &,
the maximal Tomita algebra in 2, the modular operator of Wy, the
unitary involution of 2, respectively. Since ¢ is G-invariant, there exists
a strongly continuous unitary representation U of G on a Hilbert space
y such that Ugpmy(x)=n400,(x) for all xeM, where 5, is the canonical
imbedding of M into 1. Since A4 commutes with U, B is invariant
under U,. According to M. Takesaki [9], a locally convex topology on
B is defined by the following system (Pg)g of seminorms:

2.1 P (&) =sup,ex{ [ 1(4*E)|| + 1T (4*E)I|}

where K is compact in the complex numbers C, and IT, (resp. II,) is
the left (resp. right) representation of B. Now consider the set K(G;
B) of all continuous functions of G into (B, Px) with compact support.
Then, it is a Tomita algebra with the algebraic operations defined by

2.2) En @)= S[U w-1&(gh™H)]n(h)dh
EHP=U,-&(g7") EM9)=U,-&(g71)
(42 (9)=4%¢g), (JO(@)=JU,-&g™")

for &, neK(G; B),geG and zeC. In addition, the left von Neumann
algebra #2,(K(G; B)) associated with K(G; B) is nothing but the crossed
product G®,M associated with a triple (M, G, ). Remember that this
von Neumann algebra is generated by two kinds of operators II,(x), A(g)
(xe M, geG) as follows:

(23) (IT(x)¢) (h) = o-1(x)E(h)
(U@ (H)=&(g="h)
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for £eL?(G; y), where L2(G; vy) is a Hilbert space of all y-valued square
integrable functions on G.

In order to discuss the predual of G®,M in the next section, we
need two preliminary lemmas due to J. Phillips [6].

In the present case, the left Hilbert algebra %, is obtained from a
state, which simplifies the situation. Let 2’ be the right Hilbert algebra
associated with 2,. Denote by B> the closure of the set {nnb:ne A’}
Let L'(2,) be the completion of the linear space V(Pb) generated by
PP with respect to the norm || ; defined by

(2.4) Inlly=sup{|<&ln>|: e, [T =1}

for ne V(BY).
Then one has the following:

Lemma 2.1. (1) L'(U,)=2(N,). as a Banach space
(i) LY(",)={n-C":n, {en}
where 1= - ||, —limn,(} for n=limn,, {=lim{,(n,, {,eW). (cf: [6])

Let us now take T a non-degenerate ¥-representation of a left Hil-
bert algebra 2 on a Hilbert space 9. This representation T is called
square integrable if there exists a cyclic vector o€ R for T such that
the linear functional & <T(E)nylne> is continuous on U with respect
to Hilbert space norm. Then one gets a criterion for square integrability

as follows:

Lemma 2.2. Let T be a square integrable representation of a left
Hilbert algebra U on a Hilbert space R. Then there exists a vector
neW? such that T is unitarily equivalent to a subrepresentation IIp
of the left representation II; of A, where P is the projection on the
closure of II(W)y. (cf: [6])

Throughout the paper, we shall adopt the same notations denoted

in this section without referring.

§3. The Predual of Continuous Crossed Products

In this section, we shall realize the predual (G®,M), of the con-
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tinuous crossed product G®,M constructed from a separable continuous
W*-dynamical system (M, G, «) as a certain Banach space consisting of
functions of G into M,. Using this realization, we shall show an ex-
tended form of two well-known theorems in harmonic analysis, one of
which is a theorem of Gelfand-Raikov, the other is a theorem of Gode-
ment.

Given two elements 7, { in the Tomita algebra K(G; B) and geG,
let us define an element ?C”(g) in M, by

3.1 nCo(g) [x]1= <nCb(g=Y)|x*Ey>

for all xe M. Then one computes ;7@’(9) [I1(&)] as follows:

(3.2) <nf(gHIE > = <UIntg™ HECPIIE > dh
- g <Un(g™ ML,LU(1E" > dh
={_<m@Ua mIU,Eh>dh

= <@ L1(OInte™ I > dh.
Applying (2.3) to (3.2), it follows that

(3.3) nC(g) LT (&)] = < ILIT(E1AgmIL >

for all ¢e®. Since II, is ultraweakly continuous on M, it implies by
(3.3) that

(3.4) 10%(g) [x1= < I (x)Ag)nl¢ >

for every xe M, geG. By definition, it is easily seen that the function
1’12"’ is in the space K(G; M,) of all norm continuous functions of G
into M, with compact support. Define a norm ||, on K(G; M,)by

(3.5 121l =sup {|2(9)]: g € G}

for every @€ K(G; M,). Then the completion Cy(G; M,) of K(G; M,)
with respect to | ‘| .-norm is nothing but the set of all norm continuous
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M-valued functions on G vanishing at infinity. Since ’11\1;"" e K(G; M)
for 5, { e K(G; B), ||r}27’||w exists and is estimated as follows:

(3.6) 17281 < InC21l

for all 5, {eK(G;B). In fact, since G®,M is generated by the set
{I1(x), A(g): xe M, g € G}, it follows from (3.4) that

3.7 nE4(g) [x]1 =| <IL()A(g)nIC >
= |0, [IT()Ag)]I
é Ilwu,;” “x”

for all xeM and geG, where ||,,|| is the uniform norm of the vector
state w,; on G®,M. On the other hand, one has by the definition of
[+ l;-norm that

(3.8) [¢P1ly =sup {| <¢ln{®>|: {e K(G; B), [T =1}
=sup {| <II(E){[n>]: £ K(G; B), [T =1}
=[]l

Combining (3.7) and (3.8) together, the inequality (3.6) follows. As a
generalization of the scalar case, one can define another norm ||,
on the linear space Fy(G; M,) generated by ;177”, ne K(G; B) as follows:

(39 [[®Plx=sup {ISG¢(g)°H iLU,£(9)1dgl: £e K(G; B), [T =1}

for every @€ Fo(G; M,). Let F(G; M,) be the completion of Fy(G; M)
with respect to | -[snorm. It is called the Fourier space associated
with a triple (M, G, «). In what follows, we shall examine some proper-
ties of F(G; M,) exclusively. First of all, since one knows by (3.1) that

(3.10) L Al =330l [+ ) (n+ FOPT

for every n, {e K(G; B), it implies that n’\f" eFy(G; M,) for 7, {eK(G;
B). Then, one has that
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G.11) nZe ] = lIngel,

for cvery 1, {e K(G; B). In fact, applying (3.3) to (3.9),

78]l =sup {ISG<Ha°Uz[Ug3§(g)]i(g)I7lC> dgl:£e K(G; ®B), (D] =1}
On the other hand, it follows from (3.8) that

¢l =sup{|<&nl{>]: £ K(G; B), [T =1}.

Using Fubini’s theorem and (2.3),

G <anle>={] <U-deh mbie) > dndg
(1. . <Ui-eombigh)>dgdn
[, <ar.omrem (ie)0 ty>dhdg
={_<meme@mieye>dg

- SG <IIILLU&(9)] Xg) nl>dg,

which implies that the equation (3.11) holds. Therefore, it is deduced
from (3.6), (3.10) that the Fourier space F/(G; M,) is a subspace of
Co(G; M,). Now given two elements #,{ in L2(G;y), there exist
sequences (1,)n ((), of K(G; B) which converge to n,{ in L2(G;v)
respectively. Hence the sequence {1,(%}, converges to 7-{®e L'(K(G; B))
with respect to |-|;-norm. Since the tilde mapping ~ is linear, it
follows from (3.11) that the sequence {71:/5},, has a limit point in FG;

N
M.,) which is denoted by #-({b. Then one easily gets that

(3.13) 0 (9 [x] = < I()Ag)nlL >

for all xeM,geG. Now remembering Lemma 2.1. (i), the predual
(G®,M), of the crossed product G®,M associated with a triple (M, G,
o) is identified with the Banach space L(K(G; B)) of K(G; B). More-
over, since LY(K(G;B)={n-(*:n, (ecL*G;y)} by Lemma 2.1. (i),
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it is isometrically isomorphic to the Fourier space F,(G; M,) under the
tilde ~. Summing up the argument discussed above, we have the fol-
lowing proposition which plays a key role in this paper:

Proposition 3.1. Let (M, G,a) be a separable continuous W*-
dynamical system. Suppose M is G-finite. Then the predual (G®,M);
of the crossed product G®,M associated with the triple (M, G, «) is
isomorphic to the Fourier space F(G; M,) as a Banach space, which
is a subspace of Co(G; My). Therefore, GR,M is identified with the
dual space F(G; My)* of F(G; M,).

N
Let us now consider such elements in F(G; M,) as n-y®, neL*G;
N
y). Then it can be verified that n-#? has an extended positive definite-
ness as follows: For an M,-valued function @ on G, it is said to be

a-positive definite if
(3.14) 2 j=1%,2P(g7'g) [xFx120

for any finite set (x;)j=; in M and (g)%, in G, where ayoy(x)=1on;(x)
for yeM,, xeM and geG. (cf: [12]) In fact, using (3.13),

N
20 j=10g,0(n 1) (9519 IxFxd= 24, ; <Hoog H(x¥x)Mg7 gmln >
= || X I (x)Mgn[*=0.

Thus, any element in F(G; M,) is a linear combination of a-positive
definite functions. By the similar way as in the scalar case, if @ is

a-positive definite, then one has that
(3.15) [2lo=1Pll, opeP(g™"!)=D(g)*

where e is the unit of G, and Y*(x)=y(x*) for YyeM,, xe M. Note
that in the scalar case, F,(G;C) is nothing but the Fourier algebra
A(G) of G due to P. Eymard. (cf: [3])

We also define an important class of normal representations on von
Neumann algebras as follows: Let (M, G,a) be a continuous W#*-
dynamical system. Let p be a normal representation of M on a Hilbert
space R. It is called covariant with respect to a if there exists a
strongly continuous unitary representation ¥ of G on R such that
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(3.16) V(@)p(x)V(g)* = poa,(x)

for xeM, geG. Then, we specify the relation (3.16) as (p, V)e Covrep
(M, G). Using two notions cited above, we shall show the following
proposition which can be considered as a generalization of Gelfand-
Raikov’s theorem.

Proposition 3.2. Let (M, G,a) be a separable continuous W*-
dynamical system. Suppose M is G-finite. Then for any a-positive
definite function ® with norm continuity, there exists a (p, V)e Covrep
(M, G) on a Hilbert space R such that

(3.17) ?(g) [x1= <p(X)V(g) nolno> o

for cevery xeM and geG, where noeMN is a cyclic vector for (p, V).

The converse is also true.

Proof. Denote by G, the group G with the discrete topology. Let
K(G;; B) be the set of all B-valued functions on G whose support is
a finite set. Define a #-algebra structure on K(G,; B) by

(3.18) ) (@)=ZmUL(h~1g)
n*(g)=Ugn(g=1)*.

Since @ is a-positive definite, one associates a pseudo inner product
<:|+>4 on K(Gy; B) by the following relation:

(3.19) <E> =3 ,P(9) T [ ) (9)] -
Actually, applying (3.18) to (3.19),
(3.20) <> o=24,1P(@)ILU(L(h™ ) n(h™'g))]
=2 g, -10@(g) LI (L(h™ 1)) T (n(h™'g))]
=2 4,00 @(h™1g) LI (E(h))* I (n(g))] -

Let N={neK(G;; B): Inlle=0} where |nllo=<nyln>4'2, and R, the
quotient space of K(G,;; B) by N. Moreover, let R be the completion of
R, with respect to | -|g-norm. Then there exists a strongly continuous
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unitary representation V of G on R such that
(3.21) V(g)i=Uyp, for 7eR,

where 77 is the equivalence class of x, and (Uy,)(h)=Umn(g~'h). In
fact, one computes by (3.20) that

IV(9)illd= 2 n, k0o P(k™ 1 h) LIT(U g, (K))* I (U gn,(h))]
=m0~ 1Pk h) LI (n(g = K))* [T (n(g~ " h))]
=73
for e R,. One also estimates that
(3.22) <V(@Il> =2 xoue@(k™ g ) LIT(E(R)*IT (U gn(h))]

for 7, {e®R,. Since @ is norm continuous and g, is ultrastrong*-
continuous, it follows from (3.22) that g—V(g) is strongly continuous.
The rest is easily done by direct computation. Furthermore, there exists
a normal representation p of M on R such that

(3.23) pLITO) )i =1II(O)n

for {e®B and #7eR, where (II(On)(g)=I(Dn(g). In fact, using (3.20),
eI (D113 =X 4, a0 @(h™ " g) LTI On(M)* I (IT(O)n(9))]
= lpu[Hl(C)*Hl(C)]

where ¥, (x)=3, 40 @(h™g) LI, (n(h))*xII(n(h))] for xeM. Since &
is a-positive definite, ¥, is a positive element in M,. Thus, one gets
that

(.29 I LIOII3 = LN 17113,

for all {eB and f7eR,. Given an xe M, there exists a sequence ({,),
of B with |I()I=Z|x| such that II({,) converges to x*-strongly. By
(3.24), there exists a bounded operator p(x) on R with [p(x)|=|x|
such that p[II({,)] converges to p(x)*-strongly. Then, it is clear that
p is a *-representation of M on R. Define g e K(G;; B) and nyeR,
by
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¢ (g=o), 1o =%&.

go(9)=
0 (g+#e).
Then it is verified that
(3.25) P(g) LIT(O]= <pUITOIV(gN0ln0> &

for all {e®B and geG. In fact,
<V(@nolpLIT (L) Ino> o =21 1o P(k™ ' h) LIT({Feo(k))*IT (U i&o(g~ " )]
=2 ®(h) LI (DI (U geo(g™ ' h))]
=®(g) [IT(D)].

Therefore, since p[IT((,)] converges to p(x)*-strongly, it follows from
(3.25) that (3.17) holds. Thus, it implies the normality of p. In order
to prove that (p, V) is covariant, it suffices to show that for every (
e®B and geaq,

(3.26) V(@)pLIT(O1V(g)* = peo,LIT(D)] .

Computing V(g)plIT(0)] and peo,[IT({)1V(g) side by side,

V(g)pLIT (D) = U (1 Qn)y= U1 (On,

poog[IT(O)IV (9 =0, [ 1T (O)JU gny= U ,IT(O)n,
for all 7eR,. This proves (3.26). Finally, it is easily seen that g,

is cyclic for (p, V) since p[II()]V(g)no=0,®( where J, is the Dirac
function at g. Q.E.D.

Given a norm continuous o-positive definite function @, we now
look for a certain condition under which @ belongs to F/(G; M,). De-

fine (PoI1))(9)=P(g9)-I, for geG where (YoIl)()=y[II(E)] (Y € M,,
£eB). Assume from now on that

3.27) ®oIl,e L*(G; v).

in the sense that &(g)oIl, is continuous on B with respect to Hilbert
space norm for almost every ge G and hence can be viewed as an ele-
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ment of y and the function gr(PoIl))(g) is square integrable. There
are in fact sufficiently many functions & satisfying (3.27). Put &*(g)
=d(g~1)* for ge G. Then, @*Il,e L*(G; y) if and only if @-Il,e L%(G;
y) since (P*oII})(g)=U,-(P-II})(g). Applying Proposition 3.2, one has
that for { e K(G; B),

(3.28) <{|@*Il;> =\ <{(@IUF(PII)(9)>dg

G

S
[ 2@ (U tendg

G
=g6< poIL[U,L(g)IV(g)nolo> odg
- SG <V(@p-ILL(@) olo> odg

where (p, V)eCovrep(M, G) on a Hilbert space R associated with @,
Define a #-representation T of K(G; B) on R by

(3.29) = V@ t@)dg
for (e K(G; B). In fact, for n, { e K(G; B),
160 = VG)eILIU,- (o) 1dhdg
={._Vahyvmypert @01V (h)peI1, L)1 dRdg

= S S .oV @peITI(g)1V(h)pTTL(k)1dhdg

=TmTQ).

Similarly, for 5 e K(G; B),

T0r7) = V@pmLUsne)ldg

- SGp°H (g~ H1*V(9)dg
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= eI [@)1*V(0)*dg
=T(p)*.

By (3.28), this #-representation T of K(G; B) on R satisfies the following
relation:

(3.30) <{@*Il;> = <T(Dnolno>o

for every (e K(G;B). As <T(noln>o=0 for all {eK(G; B) implies
n=0, it follows from (3.30) and the assumption (3.27) that T is square
integrable. Hence, one deduces by Lemma 2.2 that T is equivalent to a
subrepresentation II, of II,, Since P is a cyclic projection, then one can
choose a cyclic vector {,eL?(G; y) for P such that

(3.31) <T(Onolno> o= <I(0) {ollo>

for all {eK(G; B). Combining (3.30) and (3.31), it follows from (3.12)
that

(3.32) SG @*(g) [IT(n(g))1dg = g <I1,oI1,LU 1(9)14(9) ColCo> dg

for all neK(G; B). For any geG, take fe K(G) with f(g)#0. Con-
sider a sequence (f,), of K(G) such that f, converges to &, vaguely.
Let n,(h)=f,(Wf(N¢eK(G; B) for any &eB. Substituting #, in (3.32),
for n=1, 2,...,

qu)*(h) LIS, (h)dh = SG <ILo LU 1AM o[Co > f(Mfi()dh.

Since @*(h) [II(&)1f(h) and <IIoI[U,EJA(M)ollo>f(h) are in K(G),
one concludes that

&*(g) L] = <M I[UE14(g) 010 >
~—~
={o" (8@ LU,

~—
which implies that ®*(g)=a,-1o{y"(5(g). Therefore, one has by (3.15)
~ ~/

~
that @*(g)=C{o (89~ D*=(Co " (B)*(9). So, &={(y-(4. Summing up the
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argument discussed above, we have the following proposition which would
be a generalization of Godement’s theorem:

Propesition 3.3. Let (M, G,a) be a separable continuous W*-
dynamical system so that M is G-finite. Let & be a norm continuous
a-positive definite function. If @I, e L2(G;vy), then there exists an
element {,e L*(G; vy) such that Q:E(?C/g. In this case, ® € F(G; M¥*).

Remark. In Proposition 3.2 and 3.3, norm continuity of ¢ may be
replaced by weak continuity.

§4. Generalized Schwartz Spaces and Fourier Spaces

In this section, we shall especially study a continuous action of the
real numbers R, and try to construct a Fréchet space of vector-valued
test functions which generalizes the Schwartz space in the scalar case.
Moreover, we shall compare Fréchet seminorms of this space with the
norms of the Fourier space introduced in the previous section.

Let (M, R, «) be a separable continuous W#*-dynamical system such
that M is R-finite. So the results obtained in the previous section are
guaranteed. Now define a Fréchet space S(R;py) by the set of all
infinite differentiable y-valued functions # on R such that for every

(r, 920,
“.1) (71l p,a=SUPrer(1+[2[?) [ Day(B)]| < + 00

where (p, ¢)=0 means a pair of non-negative integers p and g, D1 is
the differential operator of order g. As in the scalar case, S(R;v)
is a dense subspace of L%(R; p).

Let (h,),z0 be the sequence of Hermite functions. Namely,

42) h(t)=@m! JT) V2H (e 2 for n=0,1,2,...
where H,(f) =(—1)"e** Z: e™**. Let (&),20 be a complete orthonormal

system for p. Then the system (h,®&,)mm=0 is complete orthonormal
for L2(R; y). Given an ne S(R; ), then there exists a square summable
sequence (C, n)umzo0 Of complex numbers such that
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(43) n= Z(n,m)gocn,m(hn(gém) in LZ(R’ 1)) .

Using the same ideas as in the scalar case, it can be verified that

(44) p[(cn m)]z Z(n m)>0|cn mlz(n + l)p <+

for p=0,1,2,.... (cf: [7], [S]) Conversely if (C,,)mmzo satisfies (4.4),
then the vector n defined as in (4.3) belongs to S(R;y). In addition,
such correspondence determines an isomorphism between S(R; ) with
norms || -|,, and the set of all double sequences (C,,)ummzo satisfying
(4.4) with norms N,(-). Let ® be a linear combination of norm con-
tinuous a-positive definite functions @; such that @;0I1,e S(R; y). Since
S(R; y) is contained in L2(R;yp), it follows from Proposition 3.3 that
PeF,(R; My). Therefore, ||®|, and |®oII}|,, exist for such & as
above. In order to compare them, we need the following lemma:

Lemma 4.1. Let (h,),>o be the sequence of Hermite functions.
Then there exists a positive constant C such that

4.5 Ihl«=Cn+1) for n=0,1,2,...,
where ||h,|4 is the norm of h, in the Fourier algebra AR) of R.
Proof. Since one knows that

h,,(t)=(\/ﬁi")‘1g eitsh(s)ds  for n=0, 1,...,
R

it implies by definition that |h,|.=(/2r)""|h,l; (n=0,1,...). Put g(f)
=1+4it. Then one estimates that

lah = [l | e+ [mao- L ar

g(t) g()

<l |4

1
g iz’

Since ||h,|l,=1 and ”—i}—“ =.,/m, one gets that
2

Il S Va(t+lithy)l,)  for n=0,1,2,...

As one also knows that
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th,,(t)=\/”"2'1 By () +4/ " hyes@  for n=1,2,..,

n

it follows that |lth,,|12=«/ 2 2"'1 (n=1, 2,...). Therefore, one obtains that

Il =(/2m)~ 1y 4

g(\/i)-l(u \/z’gﬁ) for n=1,2,....

Since |hgllx =1, there exists a positive constant C such that
Ihl=Cm+1) for n=0,1,2,.... Q.E.D.

Using this lemma, we have the following estimation which is a generali-
zation in the scalar case:

Proposition 4.2. Let (M,R,o) be a separable continuous W*-
dynamical system such that M is R-finite. Let ® be a linear combina-
tion of norm continuous o-positive definite functions ®; such that Pp
II,e S(R; y). Then there exist a positive constant C and a finite set
{(pi, g;)}?=1 which are independent of ® such that

(4.6) @]l = Cmax, <;<, | PoIT |, 4. -
Proof. Since ®oIl, € L2(R; y), it follows from (4.3) that
DIl =3, Comhn®@En  in L*R; ).
Then one estimates that for any &e K(R; B) with |[II(&)| =1,

@0 |f e@emiug@ldr] =|{ <ULOIS0nCrnha®n>dt]

=3,

[ 1 <ULOI ZCrntn>d|

=2

[ morsoal ,

where fi(1)=<UZOIZnCrmén> € KR). Since |91,

(4.8) 1A S(ZnlCm D2 for n=0,1,2,...
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where A(ff,):g LiOMDdt and (A(Df)(s)=f(s—1) for feL?(R). Actually,
for any ge K(R) and teR,

O ®={ ria—ds
=, <V = Conln>a(5)ds

—< SR U,— &t — )g()ds| E pComn™>

=< [nl(é) (g ®€0)] (t)] U;F(Z mcn,mém) >

Thus, it follows from |IT(&)<1 that

1A/ DglI3 = ITLE) (9@ )2 I ZnConmbmll?
S(ZnlConl® llgl3,

which implies (4.8). Using (4.7) and (4.8), one has that

@9 1el=sup{|{ s@emULON|: e KR; B), 1M1}

=< sup {ano

[ @i : ce k®; ®), 1m@)=<1}
= Tazosup {|{_m@Fi0Od|: ceK®R; B), IM©121)

= SuzaCosup {| (eh0far|: fe K@), 1201 1}
= anocn”hn“*

where C,=[X,50lC, 211’2, On the other hand, it follows from Lemma
4.1 that there exists a positive constant C’' such a that |h,[.<C'(n+1)
for n=0, 1, 2,.... Hence, one obtains by (4.4) and (4.9) that

[Pl = C 20l Ca(n+1)

1 1/2
<’ © 2 4711/2 © -
S CLEEoCHn+ 117 i s |
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= C”[Z;ﬁm=0 l Cn,m | 2(n+ 1)4] 1/2
=C"N,[(C,m)]

1/2 .
where C”=C’|: ;’,":1712—] . Since @oIT,€ S(R; 1), the observation stated

before gives us that there exist a positive constant C and finite family
{(Pi» 4)}?=1 such that

C”N4[(Cn,m)] é C max, <iZn ” ¢°Hl”p,-,q,- ]

which implies the desired inequality. Q.E.D.

Now define ||®||,, by [[®oI||,,. In what follows, we shall construct
a test space of M,-valued functions on R with norms |-|,, which is
exactly the Schwartz space in the scalar case.

Let us denote by B, the set of all elements £eB such that £y(f)
=U, is an infinite differentiable (B, Pg)-valued function on R. Then,

B, is sufficiently large in B since for any £ e B,

1 1

(4.10) é,,=n7n:—7gne—m2U,§dteQSm for n=1,2,...

can be chosen as close to & as possible with respect to Hilbert space
norm. Moreover, it is a J and AZ%-invariant subalgebra of B. In fact,
concerning the J-operation, one sees that for any e B,

Pr[(JOu(D)]=P([JEy()]=P_g[£u()]

where —K={—Z:zeK}. Thus, D (JEy(t)=J[D"¢y(®)] for n=0,1,
2,.... Concerning the A4%-operation, one knows that for any ¢e®B,,

P[(420)y()] = P[4*¢u(] = Pk +.[Eu(D)]

where K+z={w+z: weK}. Thus, D"(47&)y(t)=4?[D"¢y(t)] for n=0,
1,2,.... Finally concerning multiplication, one sees without difficulty

that for any & neB,,
Pxl(Emu(D]=PxlEu(Dnu(t)]

S Py[Eu(®)1Pk[nu(D]-
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From this continuity of product, one obtains recursively the following
equation:

D"(En)y(t) = 2 k=0 nCi D*Ey (D)D" *ny(2)

where ,C,=n!/k! (n—k)!. Notice that B, is U-invariant. Now let
C*(R; B,) be the set of all infinite differentiable (B, Pg)-valued func-
tions on R with compact support. In order to construct an appropriate
algebra sitting in C*(R; B,) which is invariant under J and AZ-opera-
tions, we shall introduce an operation L on C®(R; B,) by the following
equation:

(4.11) (Ln) (s)=Dn(s)u(0)

for all neC2R; B,) and seR. Since U,[Dn(s)y(0)]=Dn(s)y(t) for all
teR, D[Dx(s)y(0)]y(0)=D?n(s)y(0). Thus, (L%n)(s)=D?n(s)y(0) formally.
By repetition, (L*1)(s)=D*n(s)y(0) for k=0, 1, 2,..., where Lo%p=n. In
general, it does not seem to hold that for every neC®®R; B,), L
eC*R; B,) (k=0, 1, 2,...). However, there exist sufficiently many ele-
ments ne C?(R; B,) such that

(4.12) (i) L*¥D'neC®(R;B,)
and
(ii)) D!L*n=LkD%

for every (k, [)=0. In fact, let n=f®¢ for fe C*(R) and £eB, where
C®(R) is the set of all infinite differentiable complex valued functions on
R with compact support. Then, one easily checks that L*Dy=D'f
®DFKE(0), which is in CP(R; B,) and LkD'y=D'Lky. Let us denote by
Cy(R; B,) the set of all elements in CP(R; B,) satisfying the condition
(4.12). We shall show that Cg(R; B,) is a J and AZ-invariant algebra
which is dense in L2(R;y). First of all, concerning to J-operation,
one computes by repetition that

(4.13) D= (—1)"J[ -y ,CD* L ]y

for every neCgR; B,) and n=0,1,2,... Thus, JpeC>*R; B,) for
all neCy(R; B,). Since J commutes with U, one deduces that LkJy
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=JLkp for all neCgR; B,) and k=0,1,2,.... Given an neCyR;
B,), then, one can check by (4.12) that D'L*ne Cy(R; B,) for any (k,
I)=0. Therefore, it implies by (4.13) that

(4_14) LmDan=(_ 1);1‘][22:0 "CkaLm+n—k]r’

for all (n, m)=0. Therefore, L"D*Jne C*(R; B,) for (n, m)=0. More-
over, since L™Jy=JL"y and L™neCgR; B,), it follows from (4.13),
(4.14) that

DanJr’ =DnJLm’1
=(= D" ZE=04CDL" ¥ (L")
=LmD"Jn

for all (n, m)=0, which means that Jpe Cy(R; B,). Next, concerning
to AZ-operation, one computes that

(4.15) D"A*y=47D"n

for every neCgR; B,) and n=0,1,2,.... Thus, 4°5e C*R; B,) for
all neCg(R; B,,). Since 47 commutes with U, one has without diffi-
culty that L¥42y=47L*y for all neCypR; B,) and k=01, 2,....
Given an neCp®R;B,), then DmeCpR;B,) for n=0,1,2,...
Hence, it follows from (4.15) that

(416) LmDrA zrl — AszDn”

for all (n, m)=0. Since L™"D"neCgR; B,), it implies by (4.16) that
L"D*"Ane C*(R; B,) and LmD"An=D"L"A?n for all (n, m)=0, which
means that 4?neCy(R; B,). Finally, concerning to multiplication, one
knows by definition that

@.17) D) ={ U-n=9ids

for every #,({eCpR; B,) and teR, where K=supp{. Let &, 5s)
=U_gn(t—s){(s). Then, one obtains by repetition that

(4.18) Dré(t, 5)y(r)= Zi=o #CiU - Din(t —5)u(r)Dy~*{(s)y(r)
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for r,s,teR and n=0, 1, 2,... where the suffix r of D, indicates the
variable of differentiation. Since Dy(s)y(r)=U/(L)(s) for neCpR;
B,), it follows from (4.18) that

(4.19) DyE(t, 8)y(r)= 2= wCi U, LU _ (L*n) (t —5) (L"*) ()] -

Since 75, (e Cy(R; B,,), one concludes by (4.17), (4.19) that

DD Do) = Drect, 9ulr)ds

~ Tte0,G U | U_(Lim) @=L (s |

=2 h=0xC UL(L*n) (L"*0) (9]
for n=0, 1, 2,..., which implies that (#{)(t) e B, for every teR and
(4.20) L(n0) =240 «CulL*n) (L"7¥0)

for every 7, {eCypR; B,). It is deduced by definition that for any
1, e CFR; By),

4.21) D'n)=(D™)  for n=0,1,2,..,

which tells us that #{eC®[R; B,). It also follows from (4.20) and
(4.21) that

(4.22) LrD"(n) = L'[(D"n)(]
= S0 C{LAD") (L"),

which implies that L"D"(n{)e C*(R; B,) since L*D™p and L**{ are in
CpR; B,,) for all (k, m, n)=0. Moreover, it follows from (4.20), (4.21),
and (4.22) that

D"Lr(nl) = X k=0 wCi D"[(L¥*n) (L"*0)]
= X 7-02Ci(D™L¥*n) (L"*{)
=L"D"(n{),

which means that nleCg(R; B,) for every 7, (e Cy(R; B,). Summing
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up the above discussion, we have the following:

Proposition 4.3. Let (M,R,«) be a separable continuous W*-
dynamical system such that M is R-finite. Then, there exists a dense
J- and A*invariant subalgebra CH(R; B,) of the Tomita algebra K(R;
B), which is contained in C*R; B,), the set of all infinite differenti-
able (B, Py)-valued functions on R with compact support.

Remark. If o is the trivial action, it is clear that Cg(R; B,)
=C2(R; B,).

By Proposition 4.3, Cy(R; B,) is # and b-invariant. Let us define
D (R; M,) the linear space generated by ’n\ﬁ”, neCy(R; B,). Then,
this space has the following properties:

Proposition 4.4. Let (M, R, «) be as in Proposition 4.3. Then one
has that

(4.23) (i) @oII,eS(R; )
and
(i) D"(nZ%)=(— Ly (Dn)c
(Dr@)oIl,=D"(®oII)  (n=0, 1, 2,...)
for all e D (R; M,) and n, {e CE(R; B,).

Proof. (i): Using, (3.1), and (2.2) in that order,

(nEe=IT) (1) (&) = <nCP(—1)|E* >
= <¢n{o(— 1>
= <&ULn(t)>

for all 7, {eCHR; B,), £€B, and teR. Hence, (yltoII)(t)=Ulnt(t)
for all teR. Since {n*eCy[R; B,) for 7, (e Cy[R; B,), one gets by
repetition that

(4.24) D"(nTooIT) ()= =0 4Ci, U(DFL+{n?) (1)
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for all teR and n=0, 1, 2,..., which implies that );Z”oH,eC?(R; B.)-
Therefore, %bOH,ES(R; y) for every 5, {eCe(R; B,), which yields the
statement (i).

(ii): Given 1, (e CE(R; B,). Since |y |y, for such YeM,
as Yoll,ey exists, it follows by (i) that D"(h\f”) exists for n=0, 1, 2,....
Moreover, one estimates by (3.3) that

(425)  D@E)OLIE)] = lim <M @{AED=2 Oy >

—lim < {i(’z—"}q | A= O)IT,oTT(E%)E >

r—0

for all £€B and teR. Since neCy(R; B,), Dne Cy(R; B,,) and
(4.26) —(Dy)(s)= pK_limﬂs:J’%—_’?(ﬂ
r—0

= Pelim A=)

r

for seR. Applying (4.26) to (4.25), one has that

D(1E?) (6) LIT(&)] = < — (DA~ OIToIT (£ >

= <UL I (A1) (= D(D)I{>

which implies by (3.3) that D(h\fb)=(—1)(mb. By repetition, one gets
that D"(?If”)=(—1)"(5?1)§” for n=0,1,2,.... Similarly, using the fact
D*®eD, (R; M,) for every ®eD(R; M,) and n=0, 1, 2,..., it follows
by (i) that (D"®)ell, exists and (D"®)oll,=D"(P-II;) for every PeD,
®R; M,) and n=0, 1, 2,.... Q.E.D.

Remark. As we saw in (i) of the above proposition, if neCHR;
B, (Un)=Unt)eCeR; B,) and LUy=ULy, DUy=UDy+ULy. By
Proposition 4.4 (i), norms |-|,, is well-defined on D,(R; M,). Let
S,R; M) be the completion of D,(R; M,) with respect to ||, ,norms.
Since Cp(R; B,) is dense in L2(R; ), and {%”: ne K®R; B)} is total
in F,R; M,), it is verified by Proposition 4.2 that S (R; M,) is a
| - | «<~dense Fréchet space in the Fourier space F,(R; M,). We call it
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a generalized Schwartz space associated with a triple (M, R, ). By
Proposition 4.4 (ii), the n'* differential operator D" on D, (R; M) is
continuous with respect to | -|,,norms. Therefore, the same holds on
S,(R; M,). Consequently, combining Propositions 4.2-4.4, we obtain the
following result which is a generalization in the scalar case:

Proposition 4.5. Let (M, R,a) be a separable continuous W*-
dynamical system such that M is R-finite. Then, the crossed product
R®,M is a subspace of the dual space S,(R; M,)* of a generalized
Schwartz space S (R; M,) corresponding to (M, R, a).

Proof. Since R®,M is the dual Banach space of the Fourier space
F,(R; M,), it implies by Proposition 4.2 that the restriction T+~
Tls (r;M»y 18 @ linear isomorphism of R®, M into S,(R; M,)*.

Q.E.D.

Remark. Let ®eS,(R; M,). Then, ®oII, exists and is in S(R;
y). In fact, taking a sequence (®,), of D,(R; M,) whose limit point is
® with respect to | -|,,norms, we see that there exists an neS(R;
y) which is a limit point of @,.oIT, in S(R;y). Therefore, <En(t)>
=lim <&(@,°1) () > =lim &, () 1] =) [IT(O)] for all ¢eB and
teR. Thus, &(t)olI, exists and equals to #(¢f), which means that ®-
I e S(R; v).

§5. Fourier Expansions in Crossed Products

In this section, we shall present certain correspondence of a vector
valued function to every element in the space S (R; M,)* of generalized
tempered distributions constructed by a triple (M, R, «). In particular,
a Fourier expansion in crossed products can be obtained in the case of
R-finite W*-dynamical systems.

Let notation (D,(R; M), S,(R; M), || ll,4 etc.) be as in the previ-
ous section. Given an fe K(R)U K(R,), then there exists a Tyg; €S, (R;
M,)* such that

(5.1) Tron(@)={_J00) [11dt
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for every ®eS,(R; M,), where R, is the real numbers with discrete
topology. Actually, [T;e(PII=Ifll:[®Pll,. As in the scalar case, to
each ®#eD,(R; M,), there corresponds a generalized convolution T;g*®
eD,(R; M,) of T;g, and @ as follows:

(5.2) (Tygu+®) (1) = SR f(5)B(s+1)ds

for all teR. Indeed, suppose {D=%” for neCypR; B,). Then, one
has that

(5.3) (Tye:*®) (D [x]= SRJ’(S)‘P(H 1) [x]ds

- gn S(8) < ()A(s+ Dnln > ds
= <IL,(X)AA(f)nln>

= &nv(t) [x]

for every xeM and teR, where £=A(f)y. Since neCgR; B,),
teCp(R; B,). In fact, L*Dmé=A(f)L"D™p for all (n, m)=0. Thus
it follows by (5.3) that T,;g,*®€D,(R; M,). Moreover, since one knows
that

DA[(T;g,*®)eM]=A(f)DU(PoII)  for q=0,1,2,..,

then one estimates that for any (p, q)=0,

(549 1 Tro1* @l = llflIwSK sup, (L+[t—s|P) | D1doI1, (1) ds

<2If11L{ (141517 191,,,ds
=Cf“¢”p,q

for all ®eD,R; M,), where K=suppf, and C,=2¢| f[leK(1+ls|P)ds.
Therefore, it follows that for any ®e S, (R; M,), there exists an element
Tio1#® in S,(R; M,) satisfying (5.2) and (5.4), which enable us to de-
fine a convolution product T*T;g, of T and Tyg; for TeS,(R; My)*.
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Namely, given a TeS,(R; M,)*¥ and fe K(R)U K(R,), there exists an
element T+T g, € S,(R; M,)* such that (T+T;g,)(P)=T[T,g,*®] for every
®eS,(R; M,). By the similar way as in the scalar case, it implies by
(5.4) that there exist a positive constant C and a (p, g)=0 such that

(5.5) [(T+Tye) (PN = Cl 2|5,

for all ®eS,R; M,). (cf: [11]) The (p, q)=0 depends only on T
Now let us assume that fe C®(R). Then, one easily computes that
for any TeS,(R; M,)* and ®eS,(R; M,)

(5.6) (T+T;g,) (D)=T[T;g,*P]

- TBR H5) (O~ s)d))ds}

-7/ {_cwpHeees),

where  (A(—9)®) ()=B(t+5), A)f)(D=fs—1) and [(As)H®P()](1)=
(AMs)f) (1)(s). Since fe C2(R), it follows that

5.7 () [AEHHRD(s)]-I, e S(R; v)
and
(i) I[AE D), < 22(L+|512) | D)oL ||

for all (p, q)=0 and seR, where | f],,=sup.r(l+I[t?)ID2f(t)]. How-
ever, it would be doubtful in general that (/l(s)f JRP(s)e S(R; M)
for ®eS(R; M,). Thus, in order to analyze (5.6), let us introduce
a new space S;(R; M,), the set of all infinite differentiable M ,-valued
functions @ of R such that ®oII;e S(R;ypy) with |-|,,norms. It is a
Fréchet space containing S, (R; M,) as a closed subspace. By the Hahn-
Banach extension theorem, there exists an element T'eSp(R; M) for
every TeS,(R; M,)* such that

(5.8) 1 { (0pH@e6s|=| TGS

for every ®eS,(R; M,). Consider now a bounded conjugate linear
functional u, on 1 for seR as follows:
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(5.9) u(&)=T'I(AS))®V:]

for every fevy, where Y,eM, is as <{|&>=y ()] for {€B. In
fact, using the same way as to get (5.7), one gets by (5.9) that there
exist a C’>0 such that

lu OIS CA+IsP) [ fllpqllEl

which guarantees that there exists a unique element 5(s) ey such that

G.10) @ | OI=CA+IsP) [1f 15

and

(i) u&)=<ns)lé>  for all Een.

Since feC®(R), the function swn.(s) is weakly infinite differentiable
p-valued function on R. Thus, it is strongly infinite differentiable.
(cf: [4]) Combining (5.6)-(5.10) altogether, one concludes that there
exist a (p, )20, a C>0, and a n,e C*(R; 1) such that

.1 @l OE=CA+1P) [l

and
(i) (T=T;g)(P)= SB <n /()| D(s)eII,>ds

for every e S (R; M,) and teR.

Note that the above pair (p, g)=0 is independent of the choice
of f, and the constant C is dependent upon suppf. Let us now take W
a bounded open set in R containing zero OeR. By the parametrix
formula in the scalar case, to the above ¢, there correspond a positive
integer r, an element g € C*(W), and an element h e C4W) such that

(5.12) 1(0) =SR h(i)D" f(r)dt+SRg(t) F(nydt

for every feS(R), where C®(W) [resp. C(W)] is the set of all infinite
[resp. g-times] differentiable complex valued functions whose support
is contained in W, and S(R) is the Schwartz space of R. (cf: [11])
Thus it follows from (5.2) and (5.12) that
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(5.13) T5,01*P =Ty *D" P+ T g +P

for every ®eS,(R; M,). Since T*T;g,; =T, one has by (5.13) that
(5.14) T=D'T+T,g,+ T+T,g,;

where (D'T)(®)=T(D'®) for ®eS,(R; M,). Now choose a sequence
(ky), of C*(W) such that |k,—h[;;—»0 as n—oo for i=0,..., p, j=0,..., q.
By (5.4),

[ T, 01*¥D"®P — Ty1#D™ P ||, , < Cp 4| D" P[4

=220 (§ 11sD2ds )1k, L,

which implies that D'T+T, g; converges to D'TxT,g; in S, (R; My)*.
On the other hand, since k,e C*(W) for n=0, 1, 2,..., there exist a C'>0
and a 7, € C*(R; p) such that

(515 @O I OI=CU+[1P) Kl 5,

and

(i) (DTsTip) (@)= < (D@1, >ds

for every ®eS,(R; M) and teR. One knows by construction that

Hrlkn(t) _nkm(t)” é C’(l + ltlp) ” kn - km”p,q

for every teR, which tells us by (5.15) that there exists a #,e C(R;
y) such that

(5.16) @ [m@I=C'A+[tP) R,

and

(i) (DOT+Tie) ()= SR <n($)| D" P(s)oI1,> ds

for every ®eS,(R; M,). Combining (5.11) with f replacing g, (5.15)
and (5.16), one gets that

5.17) ()= Sn { <) D D(s)oIT; > + <1 ()| D(s)oIT, > }ds



ON A FourierR ExPANSION IN CoNTINUOUS CROSSED PRODUCTS 877

for every ®eS,(R; M,). Let us define {,e C*(R; ) by

(5.18) L= S‘OS' S; (= 1yn,(s)dsdt;...dt,_,.

0
Since [In () =C(A+]sIP) ligll,,, it follows from (5.18) that there exists
a C">0 such that [[{()||=C"(1+][t|>*") for all teR. Moreover, D',
=(—1)n, Thus, one concludes that
S <Cg(s)|D’d$(s)oH,>ds=S <(= 1D, ()| @(s)eT,> ds
R R
=, <n1eE-m,>ds
R
which implies by (5.17) that
(5.19) T(6)= SR <i($)+ L, ()| D B(s)oIT, > ds
for every ®eS,R; M,). The condition that [#()|=C'|h|,(1+]tP)
and [[{,(D]| SC"(1+]tp*") gives us that there exists a e BC(R;p) such
that
(5.20) T((D)=S (1+|s|P™) < &(s)| D" P(s)oIT, > ds
R
for every ®eS,R; M,), where BC(R; 1) is the set of all bounded
continuous 1-valued functions on R. Conversely, suppose that there
exist a (p, )=0 and a £e BC(R; y) such that
T(q5)=g (L+[s|9) <ESD(s)eM,>ds  for PeS,R; My).
R

Then, one estimates that

IT@I<{_(1+151) 1€l 1Ds(s)M,ds
SCIOl,,| (A+Isl?) (1+1sT)ds

for some C>0 and r=1,2,.... Since g(1+ls|l’)(1+[sl)‘1ds is finite
R
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for a sufficiently large number r, we see that Te S, (R; M,)*. Summing
up the argument discussed above, we have the following theorem which
is a generalization of the Schwartz’s theorem for tempered distributions.

(cf: [7], [11D)

Theorem 5.1. Let (M, R, o) be a separable continuous W*-dynami-
cal system so that M is R-finite. Let Sy R; My)* be the dual space
of a generalized Schwartz space S, (R; M,) with respect to (M, R, ).
Then, TeS,(R; M,)* if and only if there exist a (p,q)=0 and a ¢&
€ BC(R; vy) such that

(5.21) T(¢)=SR(1 +|5]7) < E(s)| DID(s)oIT,> dis

for every ®eS,(R; M,,).

As we have shown in Proposition 4.5, the crossed product R®,M
associated with (M, R, ) is contained in SyR; M,)*. Let TeS,R;
M,)* as in (5.21). In what follows, we shall look for a certain condi-
tion of the triple (&, p, ) under which TeR®,M. Let us denote by
Sy(R; y) the set of all elements @I, PeS,(R; My). By Proposition
4.4 (i), Sy(R;y) is a D-invariant closed subspace of S(R;y). Let
n be a py-valued function on R. Then, it is called slowly increasing
if there exist a non-negative integer p and a £eBC(R; y) such that
n(®)=(1+[tP)é(1). For such a function #, there exists a T, in the dual
space Sy(R; n)* of Sy(R; py) such that

TO={ <no©>ds  for all [eSyR; ).

Then, the equation (5.21) means that

(5.22) T(®)=D1T,(®oIT)

for every ®eS,(R; M,), where (DiT)(()=T,(D%) for (eSyR; v).
Now assume that Te R®,M. Then, there exists a positive constant C
such that |T(®)|=C| |, for every ®eS,(R; M,). Remembering the
equation (3.9) together with Remark after Proposition 4.3, one obtains
that
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(5.23) @]l s=sup {| Ty, (P=I1))|: { € K(R; B), IO =1}.
Since |T(P)|ZC||D|y, it follows from (5.22) and (5.23) that
(5.24) ID4T,(w)] sup {| Ty w)|: { e K(R; B), [T =C}

for every weSy(R;vy). Since E={Ty: (eKR;B), [I(DI=C} is a
circled convex subset of Sy(R;y)*, one deduces by (5.24) that DT,
is in the weak* closure F of E. Hence D4T; is a limit point of Ty,
() £C with respect to weak* topology. The converse is also valid.
Consequently, we have the following main theorem:

Theorem 5.2. Let (M,R, ) be as in Theorem 5.1, and Te S, R;
M,)*. Then
(1) There exists T € Sy(R; v)* such that

T(®) = T(®-IT))
for every ®eS(R; M,),
) 7A"=DPT,, for some integer p and slowly increasing continuous v-
valued function n.
(3) TeR®,M if and only if there exists a net of (e K(R;B) such
that
T:limTU;,,

where sup ||[IT,({)] < co.

Remark. One may find a prototype of the above theorem in G.
Loupias and S. Miracle-Sole’s paper [5], which tells us that any operator
of the Schrddinger representation can be considered as a tempered dis-
tribution on the phase space of a system with n degrees of freedom.

Remark. Let us remember the definition of II(x), A(t) (xe M, teR)
which are generators of R®,M. Then, one easily computes that Il
() [®] = Ty,,(PII)), A1) [D]= Tj,z¢,(P-II,) for every neB and PeS,(R;
M*)-

Corollary 5.3. Let TeS, (R; My)* be as in Theorem 5.2. Then, it
is || ||4-continuous if and only if there exists a unique element T,eR
®.M such that
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[31]
[4]
[51]
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[11]
[12]
[13]
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e "\/b
<Tonylny>=DrT,(nn%11)=T(nn%)

every n;e Cg(R; B,), i=1, 2.
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