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On a Fourier Expansion In Continuous
Crossed Products

By

Hiroshi TAKAI*

Abstract

Let (M, R, a) be a separable continuous PF*-dynamical system such
that M is R-finite.

Then any element in the crossed product R(gaM of M by a can be
expressed as a vector valued tempered distribution D^T^ which. is a weak*
limit of Tt£<=K(R; S3) in the dual space 5^(R; t))* of a generalized Schwartz
space Sr7(R; tj), where A"(R; 93) is the Tomita algebra corresponding to R(x)«M.

§ 1. Introduction

The study of von Neumann algebra of type III has been greatly

developed since M. Tomita [10] obtained the so-called commutation

theorem based on his deep ideas. A. Connes [1] classified factors of

type III into three parts — that is, of type III0, of type IIIA(0<A<1)

and of type IIIj —, and he proved that a factor of type III0 or IIIA

(0<A<1) is the crossed product of a von Neumann algebra of type II^

by a single automorphism. Independently, M. Takesaki [14] and H.

Araki [13] found that certain class of type III factors are the crossed

products of von Neumann algebras of type II l by a single automor-

phisms. M. Takesaki [9], using a duality for crossed products, estab-

lished a structure theorem that any factor of type III with separable

predual can be written as the crossed product of a von Neumann algebra

of type IIa, by a continuous action of the real numbers. A. Connes [2]

verified that there exist factors of type III which are isomorphic to no

discrete crossed product of a semifinite von Neumann algebra by an
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abelian group.

These facts tell us that discrete crossed products can hardly cover

all the structures of factors of type III. Therefore, it is quite significant

to study continuous crossed products systematically.

However, there appear a lot of complications in the continuous case

as compared with the discrete case. For instance., it is unclear whether

the primitive ideal space of crossed products equals to the induced primi-

tive ideal space in separable continuous C*-dynamical systems, (cf: [8])

The main reason for the difference seems to come from a lack of a

suitable way to express any element in continuous crossed products as

an operator valued function with certain rules.

From this point of view, it is desirable to find a proper Fourier

expansion in continuous crossed products as in the discrete case.

In this paper, we shall try to offer one version for Fourier expan-

sions as stated above. More precisely, any element in the crossed prod-

uct R®aM of a R-finite von Neumann algebra M with the separable

predual M* by a continuous action a of the real numbers M, can be

expressed as a vector valued tempered distribution DqTn which is a weak*

limit of Tc, CeK(R;93) in the dual space ^(R; n)* of a generalized

Schwartz space SV(R; n), where K(R; 2J) is the Tomita algebra cor-

responding to R®aMo

Finally, the author would like to express his hearty thanks to Pro-

fessor O. Takenouchi for his constant encouragement and warm hospitality

while this manuscript is being prepared.

He also is greatly indebted to Professor A. Connes for his careful

reading of this paper and many valuable suggestions, and to Professor

H. Araki for his kind advice.

§20 Continuous !F*-Cros§ed Products and Preliminary Lemmas

In this section, we shall define the crossed product associated with

a separable continuous W*-dynamical system and prepare a couple of

lemmas which will be used later. Let M be a von Neumann algebra

and G be a locally compact group. Consider a mapping a of G into

the group Aut(M) of all automorphisms of M. The triple (M, G3 a)
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is said lo be a continuous W*-dynamical system if a is a homomor-

phism such that the function gfi->^°^(x) is continuous on G for every

x E M and <p e M*, where M* is the predual of M. It is also called

separable if M* and G are separable. Let us suppose from now on that

a triple (M, G, a) is a separable continuous W* -dynamical system and G

is unimodular. Comparing with the discrete case, one more assumption

would be added as follows: There exists a G-invariant faithful normal

state 0 on M. Namely, suppose that M is G-finite. Associated with <£,

let 210, 93, A, J be the full left Hilbert algebra with the identity £0,

the maximal Tomita algebra in 210, the modular operator of 21 ,̂ the

unitary involution of 210 respectively. Since 0 is G-invariant, there exists

a strongly continuous unitary representation U of G on a Hilbert space

i) such that Ugr](f)(x) = r}(f)oag(x) for all xeM, where i\^ is the canonical

imbedding of M into i). Since A commutes with Ug, 23 is invariant

under Ug. According to M. Takesaki [9], a locally convex topology on

23 is defined by the following system (PK)K of seminorms:

(2.1) FK(^) = supzeK{||771(J^)|| + ||/7/^)l|}

where K is compact in the complex numbers C, and Hl (resp. nr) is

the left (resp. right) representation of 23. Now consider the set K(G;

23) of all continuous functions of G into (23, PK) with compact support.

Then, it is a Tomita algebra with the algebraic operations defined by

(2.2)

for C, rj£K(G; 23), 0eG and zeC. In addition, the left von Neumann

algebra {%t(K(G', 23)) associated with J£(G; 23) is nothing but the crossed

product G®aM associated with a triple (M, G, a). Remember that this

von Neumann algebra is generated by two kinds of operators IIJ(x),

(x e M, g E G) as follows :

(2.3)



852 HIROSHI TAKAI

for £eL2(G; i)), where L2(G; i)) is a Hilbert space of all revalued square

integrable functions on G.

In order to discuss the predual of G®aM in the next section, we

need two preliminary lemmas due to J. Phillips [6].

In the present case, the left Hilbert algebra 21̂ , is obtained from a

state, which simplifies the situation. Let 2T be the right Hilbert algebra

associated with W^. Denote by ^b the closure of the set {rmb: TJG 21'}.

Let L1(2l<p) be the completion of the linear space V(^b) generated by

^3& with respect to the norm || • ||x defined by

(2.4)

for // e

Then one has the following:

Lemma 2.1. (i) LH^^^C^)* as a Banach space

(ii) LH^) = {rC 6 : i? 5Ce 9}

where r ^= \\ - 1| t - lim iynCJ for n = lim i/B, C = lim £„(>/„, C» e «')• (cf: [6])

Let us now take T a non-degenerate # -representation of a left Hil-

bert algebra 31 on a Hilbert space JR. This representation T is called

square integrable if there exists a cyclic vector ??0 e 91 for T such that

the linear functional £«-><T(<!;)/70|/70> is continuous on 21 with respect

to Hilbert space norm. Then one gets a criterion for square integrability

as follows:

Lemma 2.2, Let T be a square integrable representation of a left

Hilbert algebra 21 on a Hilbert space SR. Then there exists a vector

i^e^P5 such that T is unitarily equivalent to a subrepresentation JJP

of the left representation Ul of 21, where P is the projection on the

closure of UZ(W)^. (cf : [6])

Throughout the paper, we shall adopt the same notations denoted

in this section without referring.

§3o The Prediial of Continuous Crossed Products

In this section, we shall realize the predual (G^^M)^ of the con-
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tinuous crossed product G®aM constructed from a separable continuous

W* -dynamical system (M, G, a) as a certain Banach space consisting of

functions of G into M#. Using this realization, we shall show an ex-

tended form of two well-known theorems in harmonic analysis, one of

which is a theorem of Gelfand-Raikov, the other is a theorem of Gode-

ment.

Given two elements 77, £ in the Tomita algebra K(G; 23) and geG,

let us define an element ?/(6(#) in M* by

(3.1)

for all xeM. Then one computes tyC6(0) [#/(£)] as follows:

(3.2)

Applying (2.3) to (3.2), it follows that

(3-3) n

for all c;e23. Since 77a is ultraweakly continuous on M, it implies by
(3.3) that

(3.4) ^)[x]=<Ua(x)A(^|C>

for every x e M, # e G. By definition, it is easily seen that the function
^^
??C6 is in the space K(G; M#) of all norm continuous functions of G

into M* with compact support. Define a norm \\-\\n on X(G; M^)by

(3.5) ll*IL = sup{| |<P( f lf) | | : f lfeG}

for every <f>eJ£(G; M,). Then the completion C0(G; MJ of K(G; M*)

with respect to || • |[ ̂ -norm is nothing but the set of all norm continuous
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M.j.-valued functions on G vanishing at infinity. Since
'~**s

for v\, £eK(G; S), ||^C6lloo exists and is estimated as follows:

(3-6) IM*IL^ItoC*lli

for all r\, £eJ£(G;93). In fact, since G®aM is generated by the set

{JIa(X)5 %): xeM, #eG}, it follows from (3.4) that

(3.7) l

for all xeM and geG, where ||o>,7jC|| is the uniform norm of the vector

state o>,/9£ on G®aM. On the other hand, one has by the definition of

that

(3.8) ltoC%

; SB),

Combining (3.7) and (3.8) together9 the inequality (3.6) follows. As a

generalization of the scalar case, one can define another norm ||-||#
*~»+s

on the linear space F0(G; M*) generated by Y\Y\b, ^eJC(G; S) as follows:

for every @eF0(G; M*). Let Fa(G; M*) be the completion of F0(G; M*)

with respect to || • ||#-norm. It is called the Fourier space associated

with a triple (M, G, a). In what follows, we shall examine some proper-

ties of Fa(G; M#) exclusively. First of all, since one knows by (3.1) that

(3.10) 4^Cb = Zfe=ol'fc[(^ + z'fcO(^ + lfcQ5]~

for every /?,CeK(G;S), it implies that r£beFQ(G; M*) for q, £eX(G;

93). Then, one has that
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(3.11) IkC" II, = \Wh

for every »/, £eK(G; 23). In fact, applying (3.3) to (3.9),

||^IU=suP{|( <n.°nliullt(sy]XjgW>dg\:teK(G; 33), lining 1}
JG

On the other hand, it follows from (3.8) that

Using Fubini's theorem and (2.3),

(3.12) <fr|f>

-B,

which implies that the equation (3.11) holds. Therefore, it is deduced
from (3.6), (3.10) that the Fourier space Fa(G; M#) is a subspace of
C0(G; M*). Now given two elements rj, £ in L2(G; i)), there exist
sequences (?;„)„, (CJ« of X(G; 93) which converge to ?7, C in L2(G; t})
respectively. Hence the sequence {/?„££}„ converges to rj-^b EL1(K(G:> S))
with respect to || • || 1-norm. Since the tilde mapping ~ is linear, it

follows from (3.11) that the sequence {nn^}n has a limit point in FK(G;

M*) which is denoted by rj-£b. Then one easily gets that

(3.13) ^b(g) M = <nj&%g) M>

for all xeM,geG. Now remembering Lemma 2.1. (i), the predual
(G®aM)* of the crossed product G®aM associated with a triple (M, G,
a) is identified with the Banach space Ll(K(G', 93)) of K(G\ S). More-

over, since Ll(K(G; »)) = {//• C&: //, £e£2(G; i))} by Lemma 2.1. (ii),
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it is isometrically isomorphic to the Fourier space Fa(G; M#) under the

tilde ~. Summing up the argument discussed above, we have the fol-

lowing proposition which plays a key role in this paper:

Proposition 30L Let (M, G, a) be a separable continuous W*-

dynamical system. Suppose M is G-finite. Then the predual (G®aM)*

of the crossed product G®aM associated with the triple (M, G, a) is

isomorphic to the Fourier space Fa(G; M*) as a Banach space, which

is a subspace of C0(G; M*). Therefore, G®aM is identified with the

dual space Fa(G; M*)* of Fa(G; M*).

Let us now consider such elements in Fa(G; M*) as rj-r}b, /?eL2(G;

i)). Then it can be verified that ^-rjb has an extended positive definite-

ness as follows: For an M#-valued function # on G, it is said to be

a-positive definite if

(3.14) Z7,7=i««

for any finite set (x^)"=1 in M and (gt)"=i in G, where <xg°\l/(

for \l/EM#,xeM and geG, (cf: [12]) In fact, using (3.13),

Thus, any element in Fa(G; M#) is a linear combination of a-positive

definite functions. By the similar way as in the scalar case, if 0 is

a-positive definite, then one has that

(3.15) II*IL= 11*0011, ^

where e is the unit of G, and \l/*(x) = \l/(x*) for ij/GM^xeM. Note

that in the scalar case, Fa(G; C) is nothing but the Fourier algebra

A(G) of G due to P. Eymard. (cf: [3])

We also define an important class of normal representations on von

Neumann algebras as follows: Let (M, G, a) be a continuous W*-

dynamical system. Let p be a normal representation of M on a Hilbert

space 91. It is called covariant with respect to a if there exists a

strongly continuous unitary representation V of G on 91 such that
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(3.16) V(gWx)V(g)* = poag(x)

for xEM.geG. Then, we specify the relation (3.16) as (p, F)eCovrep

(M, G). Using two notions cited above, we shall show the following

proposition which can be considered as a generalization of Gelfand-

Raikov's theorem.

Proposition 3.2. Let (M, G, oc) be a separable continuous FF*-

dynamical system. Suppose M is G-finite. Then for any oc-positive

definite function <P with norm continuity, there exists a (p, F)eCovrep

(M, G) on a Hilbert space 91 such that

(3.17) <%) [x]= <p(*)7(0)i70|»70>0

for every xeM and # e G, where /?0e9l is a cyclic vector for (p, V).

The converse is also true.

Proof. Denote by Gd the group G with the discrete topology. Let

K(Gd
f, 33) be the set of all 23-valued functions on G whose support is

a finite set. Define a # -algebra structure on K(Gd\ 33) by

(3.18)

Since (P is a-positive definite, one associates a pseudo inner product

< • ! • > « , on K(Gd; S) by the following relation:

(3-19) <</!£>*= S

Actually, applying (3.18) to (3.19),

(3.20) <»/IC>*=Z.

Let JV = {»/6X(G(,;»): ||i/L = 0} where ||»;L=<»;|i/>i/2, and 9?0 the
quotient space of K(Gd; 93) by Af. Moreover, let 9? be the completion of

9?0 with respect to || • U^-norm. Then there exists a strongly continuous
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unitary representation V of G on 91 such that

(3.21) V(g)ft=Ugrig for rj e 9?0

where 77 is the equivalence class of rj, and (Ugrig)(h)=Ugri(g~'lh), In

fact, one computes by (3.20) that

for ?/ e SR0. One also estimates that

(3.22) < K(0M>=LA.*a*°*(fc
for ??, £e9!0. Since # is norm continuous and 0i->aff is ultrastrong*-

continuous, it follows from (3.22) that g*-*V(g) is strongly continuous.

The rest is easily done by direct computation. Furthermore, there exists

a normal representation p of M on 91 such that

(3.23)

for £e» and ^e910 where (nl(^r])(g) = nl(Qri(g). In fact, using (3.20),

where iA,l(x)=Zg,/I^°^(^~1^)m(^(^))*^(^))] for xeM. Since *
is a-positive definite, i^,7 is a positive element in M*. Thus, one gets

that

(3.24) llp[ffi(OKII^I|ffi(OII2IWIIi

for all CeS and ?7e^o- Given an ^eM, there exists a sequence (£„)„

of » with | |UZ(CW)II^II^II such that Uz(Cn) converges to x*-strongly. By

(3.24), there exists a bounded operator p(x) on 9! with ||P(X)||^||A;||

such that p[Uj(O] converges to p(x)*-strongly. Then, it is clear that

p is a ^representation of M on 91. Define s0eK(Gd;93) and

by
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. 0

Then it is verified that

(3.25) #(0)[tfj(0] =

for all C e 93 and geG. In fact,

Therefore, since p[n,(£,,)] converges to p(x)*-strongly, it follows from

(3.25) that (3.17) holds. Thus, it implies the normality of p. In order

to prove that (p, V) is covariant, it suffices to show that for every £

6 93 and g e G,

(3.26)

Computing F(^)p[77i(0] and p°«g[/7i(0]F(0) side by side,

= «„[# ,(03 IV?. =

for all fjeyiQ. This proves (3.26). Finally, it is easily seen that r\Q

is cyclic for (p, V) since p[#j(0]F(g)>7o = ̂ ®( wnere ^^ is tne

function at g. Q.E.D.

Given a norm continuous a-positive definite function $, we now

look for a certain condition under which $ belongs to Fa(G; M*). De-

fine (*o/T,)(flf) = *to)onI for ^eG where (^nI)(» = ̂ [n^] (^eM»,
^e93). Assume from now on that

(3.27) <PoU / 6L2(G;n).

in the sense that <$(g)°nl is continuous on SJ with respect to Hilbert

space norm for almost every g e G and hence can be viewed as an ele-
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ment of rj and the function g^^ofl^g) is square integrable. There

are in fact sufficiently many functions # satisfying (327). Put $*(g)

= @(g~lT for geG. Then, <P*ol7/EL2(G; ij) if and only if *fW^eL2(G;

i)) since (^*onl)(g)=Ug-i(^nl)(g). Applying Proposition 3.2, one has

that for CeK(G; S),

(3.28)

= ( <poHl
JG

= (
J

where (p, F) e Cov rep (M, G) on a Hilbert space 9! associated with

Define a # -representation T of K(G; S) on 91 by

(3.29) r(0=(
J

for Ce^(G; »). In fact, for ??, Cei^(G; »),

= H
JJGx

= \ \
JJ

Similarly, for r\eK(G; S),
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By (3.28), this ^-representation T of K(G; 23) on 91 satisfies the following
relation :

(3.30) <t\$*onl> = <T(fri<>\ri0>*

for every CeK(G;95). As <r(Qf/0 | /y><p = 0 for all £eIC(G;®) implies
77 = 0, it follows from (3.30) and the assumption (3.27) that T is square

integrable. Hence, one deduces by Lemma 2.2 that T is equivalent to a

subrepresentation flp of II t. Since P is a cyclic projection, then one can
choose a cyclic vector £0eL2(G; i)) for P such that

(331) <T(Of/otoo>*=<n/(CXolCo>

for all CeX(G;95). Combining (3.30) and (3.31), it follows from (3.12)
that

(3.32) \ $*(g)lIIMg)y]dg = \ < n^n, \JJgn(gW(g) Co I Co >dg
JG JG

for all rjeK(G;<B). For any geG, take feK(G) with /(^)^0. Con-

sider a sequence (/„)„ of X(G) such that /„ converges to dg vaguely.

Let rin(h)=fn(h)f(h)£eK(G',<B) for any £e23. Substituting r\n in (3.32),
for 77 = 1, 2,...,

Since $*(K)inffi1f(V and </7.°/7,[[/ftaA(/iXolCo>/CA) are in X(G),
one concludes that

which implies that ^*(g) = af l-i°Co'Co(0)- Therefore, one has by (3.15)

that <P(0) = Kg(0-TKKS)*(0). So, 0=£ra Summing up the



862 HIROSHI TAKAI

argument discussed above, we have the following proposition which would
be a generalization of Godement's theorem:

Proposition 3.3. Let (M, G, a) be a separable continuous FF*-
dynamical system so that M is G-finite. Let $ be a norm continuous
a-positive definite function. If ^ollzeL2(G; i)), then there exists an

element C0eL2(G; rj) such that $ = t^*tb
0. In this case, ^eFa(G; M*).

Remark. In Proposition 3.2 and 3.3, norm continuity of <P may be
replaced by weak continuity.

§4e Generalized Schwartz Spaces and Fourier Spaces

In this section, we shall especially study a continuous action of the
real numbers M, and try to construct a Frechet space of vector-valued
test functions which generalizes the Schwartz space in the scalar case.
Moreover, we shall compare Frechet seminorms of this space with the
norms of the Fourier space introduced in the previous section.

Let (M, R, a) be a separable continuous FF*-dynamical system such
that M is R-finite. So the results obtained in the previous section are
guaranteed. Now define a Frechet space S(M; rj) by the set of all
infinite differentiate n- valued functions v\ on M such that for every

(P, q)*0,

(4.1) ltollM = sup^(l + |f|*) ||D«f?(OII < + <*>

where (p, q)^0 means a pair of non-negative integers p and q, D* is
the differential operator of order q. As in the scalar case, S(R; n)
is a dense subspace of L2(R; n).

Let (hn)n^0 be the sequence of Hermite functions. Namely,

(4.2) hn(t) = (2nn!^nrl/2Hn(t)e-*2J2 for n = 0, 1, 2,...

where Hn(t)=(-iyiet2-j^re~t2, Let (^n)M^0 be a complete orthonormal

system for t). Then the system (hn®^m\n,m^o i§ complete orthonormal
for L2(R; i)). Given an f|eS(R;n), then there exists a square summable

sequence (CMjm)(Mjm)^0 of complex numbers such that
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(4-3) ^ = Z(^oQA®U in L2(R;n).

Using the same ideas as in the scalar case, it can be verified that

(4.4) Npl(Cn^
2 = E(n,m)^\Cn,m\2(n + lY< + oo

for 11 = 0,1,2,.... (cf: [7], [5]) Conversely if (Cn>m\n)tn^0 satisfies (4.4),

then the vector rj defined as in (4.3) belongs to S(R; i)). In addition,

such correspondence determines an isomorphism between S(R; i)) with

norms || • ||p>€ and the set of all double sequences (CK)W)(/Ijm)^0 satisfying

(4.4) with norms Np(-). Let <P be a linear combination of norm con-

tinuous a-positive definite functions d^ such that ^°17£eS(R; i)). Since

S(R; rj) is contained in L2(R; i)), it follows from Proposition 3.3 that

<£eFa(R; M*). Therefore, |]#|U and ||£»°/I^ exist for such <P as

above. In order to compare them, we need the following lemma:

Lemma 4.1. Let (hn)n^0 be the sequence of Hermite functions.

Then there exists a positive constant C such that

(4.5) ||/iJUgC(n + l) for n = 0, 1, 2,...,

where \\hn\\# is the norm of hn in the Fourier algebra A(R) of R.

Proof. Since one knows that

eitshn(s)ds for n = 0, I,...,
i

it implies by definition that ||hJ* = (V2S)"1l|hJli (w = 0, 1,...). Put g(t)
= 1 + it. Then one estimates that

r 1
dt

I
\2

Since ||/JM||2 = l and =V7r ' one 8ets tnat

9 2

||hn||̂  V^(l + l l^«ll2) for n = Q, 1,2,...

As one also knows that
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_i( / ) for n='.

it follows that \\thn\\2 = « * ( n = l,2,...). Therefore, one obtains that

f o r n = l,2,....

Since ||A0II* = 1> there exists a positive constant C such that

for n=0, 1,2,.... Q.E.D.

Using this lemma, we have the following estimation which is a generali-
zation in the scalar case:

Proposition 4.2. Let (M, R, a) be a separable continuous W*-

dynamical system such that M is R-finite. Let <P be a linear combina-

tion of norm continuous ^.-positive definite functions 3>t such that <Pf°

JT;eS(R;n). Then there exist a positive constant C and a finite set

{(Pi> 4i)}"=i which are independent of # such that

(4.6)

Proof. Since $°n, e L2(R ; i)), it follows from (4.3) that

^H^In^QA®^ in

Then one estimates that for any £e.K(R; 93) with

(4.7)

> dt

where /|(0=<t/^(OIZB,Cn>m^>eK(R). Since

(4.8) [^(/^^(ZJQJ2)1/2 for n=0,l,2,...
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where Ji(f*)=( fl(f)X(f)dt and (A(i)f) (s) =/(s - f) for /eL2(R). Actually,
JR

for any geK(R) and

= fl(s)g(t-s)ds

Thus, it follows from ||77,(£)||£1 that

which implies (4.8). Using (4.7) and (4.8), one has that

(4.9) ||*|U = sup tynjtU&tWt : SeK(R; 58),

sup

where Cn = [2m&olCn,m|2]1/2. On the other hand, it follows from Lemma

4.1 that there exists a positive constant C such a that ||ft,,IU^C'(n

for n=0, 1, 2,.... Hence, one obtains by (4.4) and (4.9) that

n4-|i/2| y» * |1/2
Ay J I Z^n=0 („ , j\;
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= C"JV4[(Cn,J]

[ 1 ""H/2

Z?=i-V • Since #°tfjeS(R;r)), the observation stated

before gives us that there exist a positive constant C and finite family

{(Pi, «i)}?=i such that

which implies the desired inequality. Q.E. B.

Now define \\$\\ptq by ||cPojjJp^Q In what follows, we shall construct
a test space of M^-valued functions on R with norms || • ||ptg which is
exactly the Schwartz space in the scalar case.

Let us denote by 93^ the set of all elements £e9S such that £v(t)
= Ut£, is an infinite differentiate (23, FK)»valued function on R. Then,
93 ̂  is sufficiently large in 93 since for any

(410) £n = n?n~? e-^Uttdteton for » = 1, 2,...
JR

can be chosen as close to £ as possible with respect to Hilbert space
norm. Moreover., it is a J and ^-invariant subalgebra of 93. In fact,
concerning the /-operation, one sees that for any

where -K={-z:zeK}. Thus, D»(Jt)v(t) = J[p»£v(tyi for n = 0, 1,
2V... Concerning the Jz-operation, one knows that for any

where K+z={(o + z: coeK}. Thus, D"(^2Oc;(0=/lz[I>"^(0] for n=0,
1,2, ____ Finally concerning multiplication, one sees without difficulty
that for any £, r\ e 93^,
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From this continuity of product, one obtains recursively the following

equation :

where nCk = nl/kl (n — k)l. Notice that 23 ̂  is l/t-invariant. Now let

Q?(R; 23J be the set of all infinite differentiable (93^, Px)-valued func-

tions on R with compact support. In order to construct an appropriate

algebra sitting in CJ(R; 93 „) which is invariant under J and ^-opera-

tions, we shall introduce an operation L on Q?(R; 33^) by the following

equation :

(4.11) (Lrf)(s) = Dn(s)M

for all fjeCS>(R;33J and seR. Since Ut[D}1(s)u(Q)~]=Dii(s)u(t) for all

t6R,D[D^(s)u(0)]l,(0) = D2i|(s)l,(0). Thus, (L2/?)(s) = D2f/(s)t7(0) formally.

By repetition, (Lkr\) (s) = Dkri(s)v(Q) for fc = 0, 1, 2,..., where L?YI = YI. In

general, it does not seem to hold that for every /7eCj?(R; 33^), Lfc??

eQP(R; 23^) (/c = 0, 1, 2,...). However, there exist sufficiently many ele-

ments ?7eC^(R; S^) such that

(4.12) (i)

and

(ii)

for every (fc, /)^0. In fact, let rj=f®£ for /6C?(R) and ^eS^ where
C^(R) is the set of all infinite differentiable complex valued functions on

R with compact support. Then, one easily checks that LkDlrj = Dlf

01)̂ (0), which is in C^(R; 23 J and LkDlr\ = DlLkr\. Let us denote by

Cg>(R; »„) the set of all elements in C^(R; 23^) satisfying the condition

(4.12). We shall show that Cg(R; 33 „) is a J and Jz-invariant algebra

which is dense in L2(R; i)). First of all, concerning to J-operation,

one computes by repetition that

(4.13) ^^ = (-l)"/EZ2=o BCk/>*L»-*]i/

for every i/6C^(R; 93J and w = 0, 1, 2,.... Thus, J^eC?(R; 93J for

all ?/eCg)(R; S^). Since J commutes with l/r, one deduces that LkJrj
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= JLkq for all ijeQ?(R; 93^) and fc = 0, 1, 2,.... Given an fjeCg(R;

23 J, then, one can check by (4.12) that D'l/tyeQKR; 93 J for any (fc,

0 = 0- Therefore, it implies by (4.13) that

(4=14) LmDnJfi = (-l)"J[Zk=onCkD
kLm+n-k']ri

for all (n, m)^0. Therefore, LmDwJ^eC?(R; 95 J for (n, m)^0. More-

over, since LmJrj = JLmrj and Lm??eQ?(R; 93^), it follows from (4.13),

(4.14) that

for all (n, m)^0, which means that J^eQy(R; 23^). Next, concerning

to zfz-operation, one computes that

(4.15) DnAzri = AzD"rj

for every i /eCgCRjSJ and n = 0, 1, 2,... . Thus, J2^eC?(R;»J for

all ^eC^R;®^). Since Az commutes with Ut9 one has without diffi-

culty that LkAzri = AzLkrj for all jjeQ?(R; SJ and fe = 0, 1, 2,....

Given an 17 eQ?(R ;»«,), then DBiy6Cg(R; 93 „) for n = 0, 1,2,....

Hence, it follows from (4.15) that

(4. 1 6) LWD" J z?; = J 2LmDnrj

for all (n, m)^0. Since L^'D^eC^R; SJ, it implies by (4.16) that

LmD"Jz^eC?(R; 93 J and LmDnAzr\ = DnLmAzri for all (n, m)^0, which

means that Jz^eCg(R; S^). Finally, concerning to multiplication, one

knows by definition that

(4.17)

for every ly, CeC^(R; 93^) and ^eR, where JC = suppC. Let £(f, s)

). Then, one obtains by repetition that

(4.18) D?£a*)i/W=LZ=o»Ckl/-^^^



ON A FOURIER EXPNASION IN CONTINUOUS CROSSED PRODUCTS 869

for r, s, £eR and n = 0, 1, 2,... where the suffix r of Dr indicates the

variable of differentiation. Since Dyrj(s)v(r)=Ur(L
nri)(s) for

23 J, it follows from (4.18) that

(4. 1 9) D*£(t9 s)a(r) = ZiU ,A t/,[[/_s(L^) (r - 5) (L»-*Q (

Since ly, CeCg>(R; 93 J, one concludes by (4.17), (4.19) that

for n = 0, 1, 2,..., which implies that (^(QeS^ for every teR and

(4.20) L»0/0 = Z^o WQ(L^) (L»-*Q

for every ?/, feC^(R; S^). It is deduced by definition that for any

i/, CeCft(R ;»«,),

(4.21) JD»(iyO = (/)»ij)C for n = 0 5 l , 2 5 . . . 9

which tells us that */feCj?(R; »«,). It also follows from (4.20) and

(4.21) that

(4.22) L»

which implies that LnDm(i/OeCj?(R; »«,) since LfeDm/7 and LB"fcC are in

Cg>(R; 93 J for all (fe, m, n)^0. Moreover, it follows from (4.20), (4.21),

and (4.22) that

/>»L»(f/0= ZZ=o »CkD»[(L*ij)(L»-*0]

which means that ^eC^R;®^) for every i/, f eCj?(R; S^). Summing
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up the above discussion, we have the following:

Proposition 4.3. Let (M, R, oc) be a separable continuous FF*-

dynamical system such that M is ^-finite. Then, there exists a dense

J- and Az-invariant subalgebra Q?(R; 23^) of the Tomita algebra K(R;

23), which is contained in Q?(R; S^), the set of all infinite differenti-

able (?& a, PK)-valued functions on R with compact support,

Remark. If a is the trivial action, it is clear that Q?(R; 23^)

= C?(R;8J.
By Proposition 4.3, Cg)(R; 23 „) is # and fc-invariant. Let us define

Da(R; M*) the linear space generated by r\r\b, ^eCgtR; 93^). Then,

this space has the following properties:

Proposition 4,4. Let (M9 R, a) be as in Proposition 4.3. Then one

has that

(4.23) (i) <f>oUzeS(R;rj)

(ii) D » ( ) = ( - l ) ' ' ( D 6

(D«<£)on, = D"(<2>°/Ii) (n = 0, 1, 2,...)

/or a// 4>eDa(R; M*) anrf if, CeC??(R; 8J.

. (i): Using, (3.1), and (2.2) in that order,

for all i / .CeQCRjSJ, {6», and f e R . Hence,
for all f eR. Since Cf/^eC^R; S^) for f;, ^eC^(R; 23 J, one gets by
repetition that

(4.24) D»(^
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for all teR and n = 0, 1, 2,..., which implies that ^oUzeC?(R; »«,).

Therefore, Jj£M7,eS(R; i)) for every 17, £eCg>(R; S^), which yields the

statement (i).

(ii): Given 17, £eQp(R; 93J. Since ||̂ || ^ ||^oiy for such il/zM*

as if/oIIiEi) exists, it follows by (i) that D"(^C&) exists for w = 0, 1, 2,....

Moreover, one estimates by (3.3) that

(4.25) tfO^XO^O^lm^
r-»0 I f )

r-*0

for all £e9S and reR. Since qeQKR; 93 J, XtyeCgflR; 93 J and

(4.26)

for seR. Applying (4.26) to (4.25), one has that

which implies by (3.3) that D(^Cb) = (— l)(D^Xft. By repetition, one gets

that D"07C&) = (-l)"(D"?7)Cb for n = 0,1,2,.... Similarly, using the fact
D"#eDa(R; M#) for every # e Da(R ; M*) and n = 0, 1, 2,..., it follows

by (i) that (D"$)°I7; exists and (DB4>)oJ7/ = DII(^onj) for every $eDa

(R; M*) and n = 0, 1, 2,.... Q.E.D.

Remark. As we saw in (i) of the above proposition, if fyeQ?(R;

»oo)5 (t/iy) (0 = I/MO e Q(R ; JBJ and Ll/iy = l/Liy, Dl/iy = UDn + l/L/y. By
Proposition 4.4 (i), norms || • \\ptq is well-defined on Da(R; M^.). Let

Sa(R; M*) be the completion of Da(R; M*) with respect to || • ||pj€-norms.

Since C§p(R; »„) is dense in L2(R; i)), and {^J/&: 17 e HC(R; 93)} is total

in Fa(R; M*), it is verified by Proposition 4.2 that 5a(R; M*) is a

|| • || ̂ -dense Frechet space in the Fourier space Fa(R; M*). We call it
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a generalized Schwartz space associated with a triple (M, R, a). By

Proposition 4.4 (ii), the nth differential operator Dn on Da(R; M#) is

continuous with respect to || • ||p>g-norms. Therefore, the same holds on

Sa(R; M*). Consequently, combining Propositions 4.2-4 A, we obtain the

following result which is a generalization in the scalar case:

Proposition 4.5, Let (M, R, a) be a separable continuous W*-

dynamical system such that M is On-finite. Then, the crossed product

R®aM is a subspace of the dual space Sa(R; M*)* of a generalized

Schwartz space Sa(R; M*) corresponding to (M, R, a).

Proof. Since R®aM is the dual Banach space of the Fourier space

Fa(R; M*), it implies by Proposition 4.2 that the restriction TW

T\SX(R;M*) is a linear isomorphism of R®aM into Sa(R; M*)*.
Q.E.D.

Remark. Let $eSa(R; M*). Then, #o77, exists and is in S(R;

i)). In fact, taking a sequence ($„)„ of Da(R; M#) whose limit point is

<P with respect to || • ||pjg-norms, we see that there exists an 7feS(R;

rj) which is a limit point of ^n°U? in S(R; n). Therefore, <£\q(f)>

I)(0>=Iim*B(0[nJ(0] = ̂ 0[^0] for all ^e® and

Thus, 4>(0°nz exists and equals to ff(f), which means that (Po

§5o Fourier Expansions in Crossed Products

In this section, we shall present certain correspondence of a vector

valued function to every element in the space -Sa(R; M*)* of generalized

tempered distributions constructed by a triple (M, R, a). In particular,

a Fourier expansion in crossed products can be obtained in the case of

R-finite PF*-dynamical systems.

Let notation (Da(R; M*), Sa(R; M*), \\-\\piq, etc.) be as in the previ-

ous section. Given an /eX(R) U K(Rd), then there exists a T/g)1eSa(R;

M*)* such that

(5.1) W
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for every $eSa(R;M*), where Rd is the real numbers with discrete

topology. Actually, |T/(g)1($)||| ̂  \\f\\± H^IU- As in the scalar case, to

each 4>eDa(R; M*), there corresponds a generalized convolution T/(g)1#$

eDa(R; MJ of T/(g)1 and <f> as follows:

(5.2)

for all teR. Indeed, suppose ^ = rirjb for /yeQ^R; 23^). Then, one

has that

(5.3)

= (
JR

for every xeM and ^eR, where ^ = A(/)^. Since //eC^R; S^),

£eCg>(R; 93J. In fact, LnDm^ = X(f)LnDmr\ for all (n, m)^0. Thus

it follows by (5.3) that T/(g)1*^eDa(R; M*). Moreover, since one knows

that

*oJff|) for « = 0, 1, 2,...,

then one estimates that for any (p, g)^0,

(5.4) \\Tf^**\\M^\\f\\J\
•/ J

for all (Pe^CRjMJ, where K = supp/, and C^Z^H/IU (l + \s\P)ds.
JK

Therefore, it follows that for any ^65a(R;M^), there exists an element

7/g,! *# in Sa(R; M^) satisfying (5.2) and (5.4), which enable us to de-

fine a convolution product r*r/(g)1 of T and T/(g)1 for TeSa(R; M*)*.
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Namely, given a TG Sa(R; M*)* and /e K(R) U ̂ (Rd), there exists an

element r*T/(g)1 eSa(R; M*)* such that (T*Tf®i)($)=T[Tf®l*$] for every

$GSa(R; M#). By the similar way as in the scalar case,, it implies by

(5.4) that there exist a positive constant C and a (p, g) = 0 such that

(5.5)

for all <PeSa(R; M*). (cf: [11]) The (jp, #)^0 depends only on T.

Now let us assume that /eCj?(R). Then, one easily computes that

for any TeSa(R; M*)* and <PeSa(R; M*)

(5.6)

where (A(-s)*)(0 = 4<t + S), Ws)/) (0 =/(s - 0 and
Since /eC^(R), it follows that

(5.7) (i) [(l(s)/)® <f>(s)]°U* e S(R; ij)

and

(ii)

for all (p?g)^0 and seR, where ||/||ps, = supf6R(l + |̂ )|̂ /(0|. How-
ever, it would be doubtful in general that (/l(s)/)®$(s)eSa(R; M*)

for d>e5a(R;M^). Thus, in order to analyze (5.6), let us introduce

a new space 5ni(R; M#), the set of all infinite differentiate M# -valued

functions ^ of R such that $oJ726S(R; i)) with || • ||p^-norms. It is a

Frechet space containing 5a(R; M#) as a closed subspace. By the Hahn-

Banach extension theorem, there exists an element T' e S/^R ; M+) for

every TGSa(R; M^)* such that

(5.8) T\( (A(5)/)®^(s)dS] = ( T'
LJR J JR

for every ^PeS^R; M*). Consider now a bounded conjugate linear

functional us on i) for seR as follows:
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(5.9) Ws(0=

for every £ei), where i/^eM* is as <(|£>=i^W(C)] for £e33. In

fact, using the same way as to get (5.7), one gets by (5.9) that there

exist a C'>0 such that

which guarantees that there exists a unique element qf(s) ei) such that

(5.10) (i) ||i7Xs)||^C'(l+N')||/||M

and

(ii) us(^=<rif(sM> for all £ei).

Since fe C^?(R), the function s*-+rjf(s) is weakly infinite differentiable

i)-valued function on R. Thus, it is strongly infinite differentiable.

(cf: [4]) Combining (5.6)-(5.10) altogether, one concludes that there

exist a (p, <?)^0, a C>0, and a j^eC^R; rj) such that

(5.11) (i)

and

(ii)

for every $eSa(R; M#) and f eR.

Note that the above pair (p, g)^0 is independent of the choice

of /, and the constant C is dependent upon supp/. Let us now take W

a bounded open set in R containing zero OeR. By the parametrix

formula in the scalar case, to the above q, there correspond a positive

integer r, an element gECco(W)9 and an element heCq(W) such that

(5.12) m = ( h(t)D'f(t)dt+( g(t)f(t)dt
JR JR

for every /eS(R), where C°°(FF) [resp. C«(PF)] is the set of all infinite

[resp. g-times] differentiable complex valued functions whose support

is contained in W9 and S(R) is the Schwartz space of R. (cf: [11])

Thus it follows from (5.2) and (5.12) that
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(5.13) Tdo®l*$ = Th®l*D>'$+Tg®l*<l>

for every ^eSa(R; M*). Since T*T5o(g)1 = T, one has by (5.13) that

where (DrT)($)=T(Dr$) for ^eSa(R; M*). Now choose a sequence

(fcjw of C°°(FF) such that ||feI|-h||.J->0 as n^oo for i = 0,...9 p,j = 09...,q.

By (5.4),

which implies that DT*!̂  converges to DrT*Th(gn in Sa(R; MJ*.

On the other hand, since /cn6C°°(FF) for ?? = 05 1, 2,..., there exist a C'>0

and a i/^eC^R; t)) such that

(5.15) (i)

and

(ii)

for every (PeSa(R; M#) and r eR 0 One knows by construction that

for every £eR, which tells us by (5.15) that there exists a rjheC(R;

t)) such that

(5.16) (i)

and

(ii)

for every ^e/Sa(R; M*). Combining (5.11) with / replacing g, (5,15)

and (5.16), one gets that

(5.17)
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for every <PeSa(R; M*). Let us define ^eC°°(R; n) by

o o

Since \\rjg(s)\\ ^C(l + |s|*) \\g\\ Ptq, it follows from (5.18) that there exists

a C">0 such that ||^(OII^C//(l + |^+r) for all *eR. Moreover, Dr^g

= (—Tfrjg. Thus, one concludes that

7/> ds =

which implies by (5.17) that

(5.19)

for every ^ e Sa(R ; M*). The condition that ||̂ (

and \\£g(t)\\^C"(l + \t\p+r) gives us that there exists a ^e5C(M;i)) such

that

(5.20)

for every $ E Sa(R ; M^), where BC(R; i)) is the set of all bounded

continuous t)-valued functions on R. Conversely, suppose that there

exist a (p, q)^Q and a £ e J5C(R ; i)) such that

IX*) =( (l + |s|")<{(s)P«*(s>nI>ds for
JR

Then, one estimates that

for some C>0 and r=l, 2,.... Since (l + lsfXl + lsl)-1^ is finitef (l + l
JR
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for a sufficiently large number r, we see that TeSa(R; M*)*, Summing

up the argument discussed above, we have the following theorem which

is a generalization of the Schwartz's theorem for tempered distributions.

(cf: [7], [11])

Theorem 5.1. Let (M, R, a) be a separable continuous W*-dynami-

cal system so that M is ~R-finite. Let Sa(R; M#)* be the dual space

of a generalized Schwartz space Sa(R; M*) with respect to (M, R, a).

Then, TeSa(R; M*)* if and only if there exist a (p, g)^0 and a £

eBC(R; 9) such that

(5.21)
JR

for every $eSa(R; M;!J).

As we have shown in Proposition 4.5, the crossed product

associated with (M, R, a) is contained in Sa(R; MJ*. Let TeSa(R;

M*)* as in (5.21). In what follows, we shall look for a certain condi-

tion of the triple (£, p, q) under which TeR®aM. Let us denote by

S£/(R; i)) the set of all elements $ojlzj $eSa(R; M^). By Proposition

4.4 (ii), S^R; 9) is a D-invariant closed subspace of S(R; 9). Let

?j be a t)-valued function on M. Then, it is called slowly increasing

if there exist a non-negative integer j? and a £ejBC(R; i)) such that

rj(i) = (i + \t\p)£(i). For such a function q, there exists a TtJ in the dual

space Sj/R; t))* of ^(R; 9) such that

i;(Q = ( < iy(s)|C(s) > rfs for all f e S^R ; 9) .
JR

Then, the equation (5.21) means that

(5.22)

for every «f>ESa(R; MJ, where (D«T,)(Q = T,(D«0 for C
Now assume that TeR®aM. Then, there exists a positive constant C

such that | T($)\ ^ C|| #|| * for every ^ e Sa(R ; M»). Remembering the

equation (3.9) together with Remark after Proposition 4.3, one obtains

that
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(5.23) ||^|U = sup{|r^ojl,)|: £eK(R; »), \\ntf)\\£l}.

Since \T($)\£C\\$\\*, it follows from (5.22) and (5.23) that

(5.24) |D^7(co)]^sup{|r^)|: CeK(R; 23), \\

for every o> e S^R ; i)). Since E = {T^: CeK(R; 23), ||UZ(Q|| ̂ C} is a

circled convex subset of S^R; i))*, one deduces by (5.24) that DqTn

is in the weak* closure F of E. Hence D*Tn is a limit point of T^,

II^/(QII = C' with respect to weak* topology. The converse is also valid.

Consequently, we have the following main theorem:

Theorem 5,2. Let (M, R, a) be as in Theorem 5.1, and Te5a(R;

M*)*. Then

(1) There exists f eS^R;!))* such that

for every (P e Sa(R ; M*),

(2) T = DpTn for some integer p and slowly increasing continuous t)-

valued function r\.

(3) TeR®aM if and only if there exists a net of £, e 1C(R ; 2J) such

that

? = limT^,

where sup ||UZ(Q|| < oo.

Remark. One may find a prototype of the above theorem in G.

Loupias and S. Miracle-Sole's paper [5], which tells us that any operator

of the Schrodinger representation can be considered as a tempered dis-

tribution on the phase space of a system with n degrees of freedom.

Remark. Let us remember the definition of na(x), A(f) (x E M, t E R)

which are generators of R®aM. Then, one easily computes that II ^

^^0(*o7Il) for every ^e» and <£>eSa(R;

Corollary 5.3. Let TeSa(R; M*)* be as in Theorem 5.2. Then, it

II ' ^-continuous if and only if there exists a unique element T0eR

aM such that
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for every
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