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Vanishing of Cohomology Groups on
Completely ^-Convex

By

Takahiro KAWAI*

The purpose of this paper is to prove, for a completely k-convex

open (compact, respectively) set, the vanishing of cohomology groups

having as their coefficients the hyperfunction (real analytic, respectively)

solution sheaf of linear differential equations with constant coefficients

(Theorem 1 and Theorem 2, respectively). We also discuss the vanishing

theorem for relative cohomology groups (Theorem 3) and the vanishing

theorem for completely 7c»concave open sets (Definition 3 and Theorem 4).

A theorem on the extendability of the solutions is naturally obtained in

the course of the proof (Theorem 5). This is a natural generalization

of the celebrated theorem of Ehrenpreis [2] on removable singularity of

solutions of a system of linear differential equations with constant coef-

ficients. The main result of this paper, i.e. Theorem 1, has been an-

nounced in Kawai [5]. The notion of completely ^-convex open set

was first introduced by Palamodov [9] under the influence of Andreottl-

Grauert [1].

In this paper we denote by A the ring C[£l3..., C,,] of polynomials

in n indeterminates £l9...,l;n with coefficients in C.

Let us first recall the definition of completely /c-convex open set
QcR".

Definition 1. (Palamodov [9] Chapter VII §11) An open set Q

c=R» is said to be completely /c-convex if and only if there exists a

C2-function h(x) defined on Q which satisfies the following two con-

ditions :
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(1) Hess h(x) = { -5 — = — ) lias at least k positive eigenvalues.
\ OXiOXj /l£ij£n

(2) The set Kc = {xeQ:> h(x)^c} is compact for any real number c.

Remark. We call h(x) a norm function associated with Q.

Theorem 1. Let an open set Oc=R" be completely (n — k)-convex.

Then, for any system M of linear differential equations with constant

coefficients defined on R'1, we have

(3) Extf(M,

for i>k. Here &(Q) denotes the space of hyper functions defined on Q.

Proof. Let I, I+ and I~ be open intervals in R given by ( — 1,1),

(0,1) and (—1,0), respectively. It is clear that Qxlx~-xl and Q

x I x • • « x I x I* are completely (n — k + j)-convex. In the sequel we

denote Q x I x - - • x I and QxIx-'XlxI* by Qj and Qj, respectively.

^^ ^^ j iIn fact, if we define hj(x, ti9...y tj) by h(x)+ £ • 2 , its Hessian matrix
*=1 ~ii

has at least (n — k+j) positive eigenvalues on Qj. Further, the set

Kc = {(x, t) e QJ ; hj(x,, t) ̂  c} is compact for any c e M, since Kc = {x

EQ; h(x)^c} is compact. Thus Qj turns out to be completely (n — k+j)-

convex with norm function hj(x9 t). It is clear that the same is ture

for fi±.

Now we define system Mn of linear differential equations defined

on R2w by making the tensor product of M and the Cauchy-Riemann

equation L: (-JJ— + J^ -j^\(x, 0 = 0 (j = 1,..., n) onR2 n^Cn . Define

MJ by the tangential system of linear differential equations of Mn induced

onto Rn x R^ x {0} x • • • x {0} c R2". See Sato-Kawai-Kashiwara [1 1] Chapter
n-j

II Definition 3.5.4 for the definition of tangential systems. Note that

Rw x R-J" x {0} x ••• x {0} is non-characteristic with respect to Mn. Clearly

MO=M.
Since sheaf & of hyperfunctions is flabby (Sato [10]), we have

the following long exact sequences of relative cohomology groups:
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(4) ---- > Ext'(My + 1, #5jXlo>(fi;+i)) - »Ext'(M;+1,

- > Ext'(MJ+ 15 ̂ (Q;+ ! - fi, x {0}))

Here ^ x(o}(^j + i) denotes the space of hyperf unctions defined on

3j+l and supported by QjX{Q}. Note that Qj + l-QjX {0} = Sj U Oy

and that fit n ̂ J = 0. Therefore Ext'C/Qy + 1? 0(3,-+ 1 - Qj x {0})) s

Since Mn is elliptic, Theorem 1 in Chapter VII §11 of Palamodov

[9] claims

(5)

for i>2n — (n + k + n) = k. In fact, Ext^M^ ^(Ai)) i§ isomorphic to

Hf(On, ^), where ^ denotes the hyperfunction solution sheaf of Mn.

Since MB is elliptic, &> is identified with the C°°-solution sheaf of Mn.

Then it is again isomorphic to Ext'(Mn, ^(^5,,)), where «f(OJ denotes

the sheaf of C^-functions defined on Qn. On the other hand, the theo-

rem of Palamodov [9] claims that Ext£(J\JB, <?(QnJ) = Q for i>2n-(n

— k + n). Note that Qn is an open set in R2" and that it is completely

(n — /c + w)-convex. The same argument applies also to Ext'(Mn, ^(OJ))

and Ext'"(M,I5 &(Q~)). Thus (5) is proved. Therefore long exact sequence

(4) implies that

(6) Ext<(MK, ^n_lX(o}(A,)) = 0

holds for i>k+l.

On the other hand Corollary 3.5.8 in Chapter II of Sato-Kawai-

Kashiwara [11] shows that

(7) Ext'CM,, ^.^^(fi^sExt'-1^-!, ^(fij-i))

holds for any j^l and any i, since Mj_l is a tangential system of

MJ induced onto fij-i. Here the symbol & in the left hand side of (7)

denotes the sheaf of hyperfunctions in (n + j)-variables and the symbol

88 in the right hand side of (7) denotes the sheaf of hyperfunctions
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in (n-\-j — i)-variables. This remark should apply to all the formulas

below. Note that (7) holds without the assumption of ellipticity of

MJ. See Kashiwara-Kawai [4] Theorem 1.1 for the detailed proof of (7).

Combining (6) and (7), we immediately conclude that

(8) Ext'(MK_l5 ^
F(O,t_1)) = 0

holds for i>k.

It is clear that the same argument applied to O x / x - - " X / x / ± x J
n-2

instead of Qn proves that

holds for i>k.

Therefore long exact sequence (4) proves that

(Q\ Fxl^M <3?~ (O Y&-—0\yj JCAl ^iW; |_ I, «^fo, l-2x{0}V&^n-I// — u

holds for i>k+l. Then (7) implies that

(10)

holds for i>k.

Repeating these arguments successively, we finally arrive at the

conclusion that

(11) Ext'(M0, &(BQ)) = Q

for i>k. Since M0 = M and since Q0 = Q by the definition, we have

proved the required vanishing theorem on completely (n — fc)-convex set.

Remark. The result corresponding to Theorem 1 in the space of

distributions is not known without the assumption of hypoellipticity of

M. See Palamodov [9] Chapter VII §11.

Remark. Theorem 1 is a natural generalization of a theorem of

Komatsu [7] on the existence of hyperfunction solutions of linear dif-

ferential equations with constant coefficients on a convex open set.

(See Theorem 3 of Komatsu [7].)

Now we introduce the notion of complete /c-eonvexity for compact
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sets in R" in order to discuss real analytic solutions of M.

Definition 2. A compact set KcR" is said to be completely

^-convex if and only if K has a fundamental system of neighborhoods

consisting of completely /c-convex open sets.

Remark. Assume that there exists a C2-function /?(x) defined in

a neighborhood U of K which satisfies

(12) K = {xe U; /?(x)^0} is compact

and

(13) Hessft(x) has at least k positive eigenvalues in 17.

Then K is seen to be completely /oconvex, since [ / f =<xe L7; h(x)

(/»!) is a completely /t-convex set with norm function -

Tn fact, choosing coordinate system (x', x") in Rfe x R"~fc so that

is positive definite in an open set co <=[/,,

is positive definite in co, since it is equal to

HessJCJ7(x) = ( -x — A — ) is positive definite in an open set co <
\

J
Note that

^O holds for any real vector (£ l9...,

Theorem 2. Lef a compact set KcRn be completely (n — k)-

convex. Then, for any system M of linear differential equations with

constant coefficients defined on R", we have

(14) Extf(M,

/or i>/c. Here ^(K) denotes the space of real analytic functions de-

fined on K9 i.e. jtf(K) = \jn±@(V^ where Vl runs through a fundamental
i

system of Stein neighborhoods of K in Cn and 0(V^ denotes the

space of holomorphic functions defined on Vt.

Proof. First define the system Mn on R2n as in the proof of
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Theorem 1. It is evident that

(15) Ext'(M3 dTO = Ext'(MM,

holds for every i, because each of the both hand sides is isomorphic to

H*(Vi9 ^), where Sf is the hyperfunction solution sheaf of Mn. Note
that £f is nothing but the holomorphic function solution sheaf of M

by the definition of Mn. Here we have used the fact that every linear

differential equation with constant coefficients is solvable on an open

convex set in the space of hyperfunctions and in the space of holomor-

phic functions. (See Komatsu [7].) In fact, in view of these solvability

theorems combined with the vanishing of H\Vl9 &) (z^l) and Hl(Vl9 &)

(z'^1), we can immediately apply the theory of spectral sequence to our

case by making use of a locally finite covering °U of Vl consisting of

open convex sets.

Since Ext*(M, j/(K)) = lug Ext'(M, 0(7Z)) holds, it sufficies to prove

that Km Ext'(Mw, ^(Fj)) = 0 holds for i>k. For this purpose, it suffices

to show that Hni Ext'(MM9 ^(o>z)) = 0 holds for i>k for a fundamental

system {coj of open neighborhoods of K in R2w . By the assumption
( «

of complete (n — k)-convexity of K, we can take C / j X < j ; e R w ; ^ l^-l
( j=i

< ~ > c = R n x R K as o)j, where Ul is a completely (n — /c)-convex open

set in R". Then a>l is completely (2n — /c)-convex open set in R2M
3

as is shown in the course of the proof of Theorem 1. Therefore Theo-

rem 1 implies that Ext*(Mn, ^(0)^ = 0 for i>k. This immediately

implies that lug Ext '(M,,, ^(coj) = 0 for i>k. This completes the
i

proof of the theorem.

Remark. It is known (Kashiwara-Kawai [3]) that Ext'(M,

= 0 holds for i>k+i if (3cR" is a completely (n — /c)-convex open

set Here jtf(Q) denotes the space of real analytic functions defined

on Q. This result was first proved by making use of the theory of

boundary value problems for elliptic system of linear differential equa-

tions developed by Kashiwara-Kawai [4]. However, it is obvious that

one can prove this result by making use of Theorem 2. Note that this

result combined with Theorem 1 immediately proves that Ext^M,

= 0 for i>k. Here &/j& denotes the quotient sheaf of 3% by
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sheaf $0 of real analytic functions. In contrast with the way of this

argument, Kashiwara-Kawai [3] first establishes Ext'(M9 (^/j/) (O)) = 0
for i>k to prove that Extf(M, jtf(Q)) = Q for / > f e + l .

By considering the adjoint system of M, Theorem 2 proves the

vanishing theorem for relative cohomology groups as follows.

Theorem 3. Let a compact set KcRn be completely (n — k)-

convex. Assume that a system M of linear differential equations with

constant coefficients defined on R" satisfies following condition (16):

(16) Ext'"(M, A) = Q for 1<d.

Then we have

(17) Ext'(M, ^(R«)) = 0

fori<d — k. Here ^x(Rn) denotes the space of hyperfunctions defined

on R" and supported by K.

Proof. First fix a free resolution of M as follows:

(18) ••• > At2^-* A*> -^ Ato » M > 0 .

Here Pj is a transposed matrix of PJ9 a matrix of polynomials of size

t j X t j + 1 . Condition (16) implies that the following dual sequence of

(18) is exact.

(19) Atd <fd"1 AtA~l <Pd"2 Atd~2 < ••• < A*2 < Pl Atl < p° A*° < 0.

If we define ^-module M' by Atd/Pd_1A
td~1, then (19) gives rise to a

free resolution of M'. Therefore Theorem 2 implies that

(20) Extj(Af,

holds for i>/c. This is equivalent to saying that

(21)

holds for j<d—k. Here Pj(Dx)
r is a matrix of linear differential oper-

ator obtained by substituting a differential operator -= — to <^.
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Since j/(K) is naturally endowed with the topology of a dual

Frechet-Schwartz space and since its strong dual space is ^X(R"), we

conclude by the closed range theorem that Pj(Dx)((^K(Rw)y->") is a

closed subspace of («^K(M"))rJ + 1 for j<d — k. (See Komatsu [6] and [8],

for example.) Therefore (21) combined with the duality theorem of

Serre (Komatsu [6]) asserts that

(22)

holds for j<d — k. This is equivalent to saying that

(23) Ext'(M, ^X(R")) = 0

holds for i<d—k. This completes the proof of the theorem.

Having in mind the long exact sequence of relative cohomology

groups, we now introduce the notion of complete /c-concavity of an

open subset Q of R*.

Definition 3B An open set OcR" is said to be completely k-

concave if and only if there exist a convex open set 17 cR" and a

completely /c-convex compact set Kc:U such that Q=U — K.

Remark. Assume that there exists a C2-function h(x) defined on

a convex open set 17 cR" which satisfies conditions (12) and (13).

Then Q={xe U; h(x)>0} is completely /c-concave. (See the remark

after Definition 2.)

Theorem 4, Let U be a convex open set in RB and Q=U — K

be completely (n — k)-concave, i.e. K be completely (n — k)-convex and

compact in U. Let M be a system of linear differential equations

with constant coefficients defined on R" which satisfies condition (16).

Then we have

(24) Ext*(M,

for Q<i<d-k-L

Proof. Since sheaf 38 of hyperfunctions is flabby (Sato [10]), we
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have the following long exact sequence:

(25) ---- > Ext* (M, &K(U)) - > Ext1' (M, #(t/)) - > Ext* (M,

- > Ext'"+1 (M, &K(U)) - > Ext'+1 (M,

Since U is convex, Extf(M, ^(17)) = 0 for / ^ l . (Komatsu [7] Theorem

3.) Therefore we have

(26) Extj(M,

for i^l. On the other hand, Theorem 3 implies under the assumptions

of the theorem that

(27) Ext*'(M,

holds for i<d — k. Combining (26) and (27) we immediately see that

(28) Extl'(M, #(Q)) = 0

holds for i<d — k—\. This ends the proof of the theorem.

The exact sequence combined with Theorem 3 also proves the ex-

tendability of solutions of M defined on U — K even when 17 is not

necessarily convex, that is, we have the following theorem.

Theorem 5. Let a compact set JCcM" be completely (n — k)-convex.

Let U be an open neighborhood of K. Let M be a system of linear

differential equations with constant coefficients defined on Rw which

satisfies condition (16) with d>k+\. Then for any hyperfunction

solution u(x) of M defined on U — K we can find a unique hyperfunction

solution u(x) of M defined on U so that it coincides with u(x) on U — K.

Proof. Under the assumptions of the theorem, Theorem 3 implies

that

(29) Ext°(M,

Therefore long exact sequence (25) implies that

(30) Ext°(M,
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This is equivalent to saying that any hyperfunction solution u(x) of M

defined on 17 — K admits a unique extension u(x) so that it is a hyper-
function solution of M defined on U. This ends the proof of tiie

theorem.
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