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On Invariants G(¢) and /'(¢) for an Automorphism
Group of a von Neumann Algebra

By

Akio IKUNISHI* and Yoshiomi NAKAGAMI**

Abstract

An invariant I for an automorphism group of a factor given by Connes is general-
ized to a general von Neumann algebra and the relation between I" and a characteriza-
tion of an inner automorphism group of a von Neumann algebra due to Borchers are
discussed.

§ 1. Introduction

Let G be a locally compact abelian group, d¢ a Haar measure on
G, G the dual of G and <¢, 7> the value of 7€G at t€G. For g L'(G)
and TE@

3= j 0(8) <t Todt

and I'(9)={r=G:9(y) =0}.

Let M be a von Neumann algebra, M, the predual of M and Aut M
the group of automorphisms of M. A homomorphism ¢ of G into
Aut M satisfying that the functions t&Gw ¢(0,(x)) are continuous for
all x&€M and ¢=M, is called a representation of G on AL Let
Rep (G, M) denote the set of all representations of G on M. For a
finite measure # on G (resp. g€ L'(G)), 0ERep(G, M) and x& M let

¢ (1) x= Lot (@) 1 (d2) <resp. ¢ () 2= Lg(t)(f, (2)dt).

Let sp o denote the intersection of I'(¢) with 6(g) =0 and sp,(x) the
intersection of I"(g) with ¢(¢)x=0. For a closed subset E of G, M*(E)
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denotes the set of all x& M with sp,(x) CE. Let M'=M"({0}), Z(M)
=MNM and Z(M’)=M’ (M’)’. For projections e and fin M, &
denotes the carrier in Z(M) of e and ¢’ the restriction defined by

‘0 (x)=0,(x), z€eMf,

in particular, 0°="°0° or 0° is the restriction of 0 to M, Furthermore,
sp°0’ denotes the intersection of I"(g) with °0”(g) =0, where °0’(g) is

defined similarly as above.

Definition 1.1. G(0) (resp. K(0)) denotes the set of all G such
that 0, is implemented by a unitary in M’ (resp. M).

Then G(0) and K(0) are subgroups of G and G(0) CK(6). The

following definition is essentially due to Connes, [6].

Definition 1.2. I',(0) (resp.I;(0)) denotes the intersection of all
sp 0¢, e M’ with e=~0 (resp.z=1).

Then I'y(0) is a closed subgroup of G and I'y(0)cI',(6). There
is no difference between I',(0) and I';(0) if M is a factor.

The main purpose of this paper is to show the relations among the
following four conditions for a closed subgroup & of G:

(A) for any non zero projection fin Z(M’) and for any neighbour-
hood V of 0 there exists a non zero projection ¢ in Z(M’) such that
e<f and ECspo’CE+V;

(B) G(0°) =E* for all non zero e in Z(M°);

(B’) G(¢°) =E* and ECspo® for all non zero e in Z(M’);

(C) I'y(o)=TI(0)=4A.

Using these conditions, we can state our main theorem.

Theorem 1.1. (i) The condition (A) implies the condition (B’),
and the condition (B’) implies the condition (C).

Gi) If @/E’ is compact, then conditions (A), (B’) and (C) are
equivalent.

(iii) If G satisfies the second axiom of countability, == {0} and



AUTOMORPHISM GROUP OF A VON NEUMANN ALGEBRA 3

M, is separable, then conditions (A) and (B) are equivalent. In this
case, 0 is inner.

The implications (A)=(B) and (B’)=(C) are proved in Section 2
by similar techniques as Borchers, [4]. The implication (C)=>(A) for
a discrete E* is proved in Section 3 by similar ideas as Connes, [6]. The

statement (iii) implies the following corollary.

Corollary 1.1. If G satisfies the second axiom of countability,
G(0) =G and M, is separable, then 0 is inner.

The ergodicity of ¢ implies the equivalence of conditions (A), (B) and
(C), whenever G/E is compact (Remark 3.2).

Let W(M) be the set of semi-finite, faithful and normal weights on
M.. For ¢€W(M), 4, and ¢* denote the modular operator and modular

automorphism of ¢, respectively.

Definition 1.3. S(M) denotes the intersection of all spectrum of 4,
pesW(M).

Theorem 1.2. If I'y(¢*) =I'1(06%)=~{0}, then log(S(M)\{0})
=I"(6*) for any non zero e in Z(M).

Finally, in Section 5 we shall give a characterization of an unbounded

derivation which corresponds to a representation of R on M.

§ 2. Proof of (i) in Theorem 1.1

The condition (A) implies the existence of a projection e, in M’
(or Z(M’)) such that ECsp 6°CE+V and &,=1. For this, let & be
the family of sets of non zero projections ¢ in M’ (or Z(M?)) such that
ECsp 0°CE+V and their central carriers in M are mutually orthogonal.
Then & is a non empty ordered set by set inclusion. Here we apply
Zorn’s lemma to & and obtain a maximal set {e,} €%F. We complete
the proof by defining ¢, by > e,. Therefore the condition (A) implies
that ECly(0) 1 (0) c N{E+V: as above} =5, which implies the con-
dition (C).
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It is known that K(0°) =K (0%) for e M°, [4, Lemma 5.7; 6, Lemma
1.5.2].

Lemma 2.1. G(0°) =G(0%) for ec M.

Proof. Since G(0%) CG(0°), it suffices to show the converse inclu-
sion for a non zero e in M°. Suppose that £&G(6°). Then we have a
unitary v on ed{ such that ve M,’ and ¢,°(x) =vxv* for x& M,. Define
an operator % on g% by wuyé=0c°(y)vé for yeM; and §ced. Since

(uyéluzy) = (0,°(*y) vé|vn) = (y€l 27)
whenever & 7€edl, u is a unitary in M; such that #,=v and 0,°(y)
=uyu* for yEM, Since vEM° (M, we have esf(u) =0°(x)e and
(0&(n))e=w for all s&€G. For s&G, ye M, and §<ed, we have
yoé=y0°(u)§=0"(0%,(Mu)é
=05 (u0% s (v)) § =0 (u) 0%, (v) § =05 (w) u*yvé .

Therefore 0,°(x) =u for all s€G and hence & M’ M;. Consequently
we have G(0°) CG(0%). Q.E.D.

This lemma implies the equivalence between the conditions (B) and

(B,) G(¢)=5E* for all non zero f in Z(M) N Z(M").

Let ¢ be a representation of Z defined by t©,=0, for some fixed
t=Gin this section. <%, sp,(x)) denotes the set of all <z 7> with y&
sps(z). In the following lemmas we shall identify the dual of Z with

the unit circle T.

Lemma 2.2. ¢, sp,(x)> =sp.(x) for all zx€ M.

Proof. Suppose that 1 Esp,(x). Let g&l'(Z) with t(g)x=0. By
setting =3 nez §(7)0n, we have 0(@)x=t(g)x=0 and hence

gt ) =4(y) =0.

Therefore we have {¢, 7> Esp,(x).
Choose any g&I'(Z) so that § vanishes on a neighbourhood V of

{t,sp;(x)>". Setting u=2,g(#)0., we have
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a4(r) =9 1)) =0

on the neighbourhood {7E§:<t, >V} of sps(x), and so t(g)x=0(u) x

=0. Consequently, we have

sp. (x) C<¢, sp, () >~ . Q.E.D.

We shall also identify the dual of Z with (—m,7] and denote
[—0,0] by I,. For a projection e€Z(M") and a closed subset E of

(—m 7], let ¢(E, e) denote the projection onto the closed subspace span-
ned by M (E)e4. Since Lemma 2.2 implies

M ({reG: {t,7>€E}) =M (E),

we have ¢(E,e) € Z(M’) for e Z(M").
The following Lemmas 2.3 and 2.4 have been obtained by Borchers,
[4], while we shall give their proofs for completeness.

Assume that {¢,spoy C (—2r/3,27/3) in Lemmas 2.3, 2.4 and 2.5.

Lemma 2.3. There exists a family {p(0): 0 (0,2n/3)} of pro-
jections in Z(M°) such that p(0) is increasing in 0, sp®®Cl, and
(0 =1

Proof. We shall define p, by induction. Put 0,=27""*7/3 and p,
=1. Then spt™C (—27/3,27/3) by assumption. Assume that p,&Z
(M?), pj1=p;, sptC1l, and p;=1 for j=2,3,---,n. Put

0=2"Yinf{e>0: sp *C I} (<n/3),
p=p.8([0,20+¢], ) EZ(M"),
tra=p+,(1—p) EZ(M")

for some e< (0, 271—60). Then 0<0p.1, Pn:1<<Pn and p,.;=1. Since p,
A—=2)¢([0, 20 +¢], p,) =0, we have

sp?* PP (0, 20 +¢) =0 .
Since sp t?Csp?t?* and spt?= —sp t? for g=p,(1—5),
sp PP Csp P\ {(—20—¢, —0) U (0,20 +e)} C L.

Since sp’t*®? Csp’t*—E for e, f&€ Z(M*) in general,
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sp ?cC sp P»TMDL 20+€7 pp) n sp ¢<E6,28+€]-pn>fpn

C (Ls—[0,20+e]) N (L +[0,20+e]) C L.
Consequently, we have
sp ™t =sp ?Jsp **PcLC],,,.

Putting p(0)=pn+; for 0 [0,.1,0,), 2E N, we have a family {p(0):
0= (0,27/3)} with the desired property. Q.E.D.

Lemma 2.4. For any projection e in Z(M’), put
S(e)= {sp’c?®: 6>0}.

Then for any e,e, e, e, f in Z(M°) and any closed subset E of
(—m, ], it holds that

(a) S(e)cS(e) if e<e,;

(b) S@©®) s

() S(¢(E,e))cS(e) +E;

(@) S(e) =0 if and only if e=0;

(e) (US(er)) =S(supen);

) spcfcS(e) —S(f); and

(@) eM(E)fc M ({S(e) —=S(N}NE).

Proof. (a) and (b) are obvious.
(¢) We have

S(¢(E, e))=sp*®*®c N (sp*?® + E).
>0 >0
Since E is compact, it follows that

N(sp®?+E)=Nsp“?®+E=S(e) + E.
>0 >0

(d) e=0 clearly implies S(e) =0. By compactness, S(e) =0 im-
plies spc®® =0 for some 0>0. Therefore eMp(0) ={0}. Since p(0)
=1, e=0.

(¢) For any 0>>0 and e< (0, §), since sp *P I, p(0) (L, p(e))
is the carrier in Z(M,s) of p(&) and hence p(0) <¢ (I, #(¢)). There-

fore

(21) sp ez_p(ﬁ) - m sp er¢(Ia.p(e)) CS(e) + Io .
>0
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Therefore
S(supe)= N (Usp®®)"C N (U (S(ea) +5))"
>0 a >0 a

C 0 (USE) +1)7= 0 {(U S+ 5 =(U S(e))"

The converse inclusion is clear from (a).
(f) and (9) From (2-1) it follows that eMp(0) C M (S(e) + L)
and p(O) Mfc M (—S(f)+1L). Therefore

eMp(0) Mfc M= (S(e) + L) M*(—S(f) + 1)
C M (S(e) =S(f) + Ly).
Since p(0) =1, Mp(0) M is weakly total in M. Therefore
eMfC M (S(e) —S(f) + Ls),
and hence
spt'CS(e) —S(f) + L.
By the arbitrariness of >0, we have (f) and
eM(E)fc M (S(e) —S(f)) N M (E)
=M ({8(e) =S(N}NE),
which is (g). Q.E.D.

Lemma 2.5. Let
e()=supf{ec Z(M*): S(e) C (—m, A]}.

Then {e(R): A€ (—mn, ]} is a spectral resolution of the identity which

satisfies

(h)  S(e(Z, 4] <[4, 4.

Proof. It is clear that e(1) is increasing in A. Since S(e(d))
c (—m,2] by (e), we have

S( %n e()) Cﬂg S(e(w) ,,Q; (=7 u]=(—m1],

and hence lim,,e(y)<<e(1). Therefore e(A) is right continuous in A
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Since {¢,sp0yC (—m,7) by assumption, it follows from (d) that
lime()) =0 and lime(l)=1.
PIRY 4 itz
(h) If a=(—m, A), there is a (>0 with a+IL,=(—m, 1), and
hence S(¢(a+1L;,p(0)))C (—m,A) by (c). It follows that e((Z, #])¢

(a+1;,£(0)) =0 and hence ar&sp**“c?®,  Therefore acee S(e(X, u]).
Q.E.D.

Proof of (A)=(B). Suppose that t5*. The condition (A) as-
sures the existence of a projection g& Z(M’) with g=1 and {z,sp 0%>~
c (—2r/3,27/3). For the proof of &+ CG(0) we may assume by Lemma
2.1 that {¢,spoy - C (—2n/3,2xn/3).

Using a spectral resolution {e(d): e (—m, 7]} obtained in Lemma
2.5, we define a unitary u€ Z(M°) and a representation ¢ of Z by

u= [ exp(=ine@n), o.=(Aduy.

We shall show that M*(E)C M°(E) for any closed E. Then, by [2],
we have p=t, and so, t=G(0).

Assume that sp.(z) CE and g&!'(Z) such that § vanishes on a
neighbourhood of E. It follows from (¢g) in Lemma 2.4 and (h) in
Lemma 2.5 that

0@ 2= T g(uzut
=200 [ [exptiu-nnre@nze@n

- Hau—me<duxe<dﬂ)=o.

Therefore sp,(x) C E.
Since §CI,(0) by the condition (A), the converse inclusion is clear
from the following lemma, which is a partial generalization of [6, Theo-

rem 2.3.1] for a factor.

According to [6, Lemma 2.3.8] we know that the spectrum Sp(d,)
of 0, on M as a Banach space is the closure {¢,sp 0)~ of {{¢,7>:7Esp 0}.
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Lemma 2.6. G(o)cI,(0)*.

Proof. Suppose that 0,(x) =wuxu* for all xeM with ue M.
Choose any &€>0. Let & be the family of sets of (e, 4.) of spectral
projections e, of # and complex numbers 4, of modulus 1 such that

(@)  Jue.—2sea]<le; and

(b) &,s are mutually orthogonal.

Since & is ordered by set inclusion, we have a maximal set FEY by
Zorn’s lemma, say F={(e,, A.):(a), (b)}. By maximality, > e,=1. Let
e=>'e, and v=) 1, 'ué,. Then e=M?’ v is a unitary in M’ and

0, (x) =uxu* =vxv*
for x& M. Since |ve—e||<e and
Sp(0.) C{du™: 4, nESp(ve)},

Sp(0,%) is included in {z=C: |2| =1, |z—1]<2e}. If y&spd’, then I<¢,
1>—1|<2e by [6, Lemma 2.3.8]. Therefore |{z, 7>—1|<2¢ for y&I,(0).
Since ¢ is arbitrary, t=71,(0)". Q.E.D.

Remark 2.1. If c€Aut M satisfies [0—1|<3" and if G is an
abelian subgroup of Aut M containing 0, then there exists a unitary u& M
such that 6=Adz and o(%) =« for all p=G.

Remark 2.2. Let 0=Rep(G, M). Under the condition (A), if G
satisfies the first axiom of countability, we can define S(e), e Z(M")
as a subset of /G\/G(J)l and then e(7) € Z(M"), 7"66/@(0‘)l as a spectral

measure

2= jzrﬁe @7, o=Adu,

for all s€G(0).

Remark 2.3. Let 0=Rep(G,M). If G is discrete, then G(0)
=I(0)"*.

Proof of the implication (B’)=(C). From the condition (B) and
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Lemma 2.6, we have I';(6) C5. From the remaining condition of (B’),
we have ECI,(0). Therefore I'y(0)=I"(0) =E. Q.E.D.

§ 3. Proofs of (ii) and (iii) in Theorem 1.1

In the following we denote the carrier projection of x by s(x) and
the carrier of § for g L'(G) by car §.

Lemma 3.1. For any compact neighbourhood U of 0 in G and
Sor any projections e, and e, in M’ (resp. Z(M")) with &,=e,=1 there
exist projections fi and f, in M° (resp. Z(M°)) such that f,=f,=1,
file, fie, spdtcU+spd”’ and sp 7*C U+sp o7

Proof. Since &,=e,=1, there exists a non zero x,&M such that
Zy=ex,e,. There exists a g, L'(G) with car §,— car §,C U and ¢(g,) x,
#0. Puty,=0(g,)x,. Then eye,=1v, and sp,(v,) —sp,(v,) CU. Let f;°
=sup{s(0,(»*)):t€G} and f,’=sup{s(0,(y,)): £&G}. Then we have
projections f;° in M’ such that 0<[f;°<le; for j=1, 2.

Let & be the family of sets of (., ¢.) EMXL'(G) such that

(a) z.=ex.e.70;

(b) car§,—carg,C U; and

(c) projections f;* are mutually orthogonal, where fi*=sup {s(0,
5.*)): tEG} and y,=0(g.) Zo

Since & is ordered by set inclusion, we have a maximal set FEJ
by Zorn’s lemma, say F={(x,, ¢, EMXL'(G): (a), (b), (¢)}. By
maximality, > /1*=1. Let f,;*=sup{s(0,(v,)): tEG} and f;=f;* for
7=1,2. Since s(0,(y,*)) ~s(0,(y,)) in M for each tEG, we have fi*
=£% and fi=f=1

Suppose that y&sp ¢™. For any compact neighbourhood V of 7
there exists a non zero x in M°(V) with x=fi"zfi* for some a.
Since x=f"zf,%, it follows that 0, (y.*)x0., (¥.) 70 for some ¢, and 2,
in G. Put y=0,,(¥.*)x0,,(y.). Since sp,(y) CV—U and y=ffe, we
have M°(V—U) N M;#{0}. Since V(N (U+spd)=£0 and U+sp o
is closed, y&€U+sp 0.

The remaining inclusion is proved similarly as above. Q.E.D.
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Lemma 3.2. [,(0°)=I".(¢%) for ecM".

Lemma 3.3. Let S (0) be the set of all spo*+V for e in M°
(or Z(M°)) with =1 and compact neighbourhoods V of 0 in G.
Then ¥ (0) is a filter base and I'/(0) =N{F: F€% (0)}.

These two lemmas are proved by combining Lemma 3.1 and similar
arguments as the proofs of [6, Lemmas 2.3.3 and 2.3.4].
We are now ready to give a sufficient condition for a problem of

Borchers which is proposed in the final remark in [4].

Proof of the implication (C)=(A) in (ii). Since I,(0) =5, it
follows that 5Csp¢® for all non zero e in M’ (or Z(M")).

Suppose that f is a non zero projection in M’ (or Z(M’)). For
any ¢ in (0,1) and 5+ for j=1,2, :--,n, V denotes the set of 'rE/G\
such that 1 —e<Re{z;, 7> for all j=1,2, ---,n. Let ¢ be the quotient map-
ping of G onto C\/E

Since I'y(0)C I'y(6)) T (6 =T (6" T, (0), we have I'y(¢")=T",(¢7)
=2Z. By restricting our argument to M, we may assume that f=1 for the
moment. Since ¥ (¢) in Lemma 3.3 is a filter base and G/Z is compact,
{p(F): FES (0)} is also a filter base of compact sets. Since #; &5+ for
j=1,2,---,n, we have V+E=V and hence ¢ '(¢(V))=V. Since sp0@
+TI,(0) =sp 0, we have ¢ (¢(F)) =F for all FE¥(0). Hence Lemma
3.3 implies that the intersection of all ¢(F), FEF (0) is zero. Since
G/E is compact, ¢ (F) converges to 0 and hence there exists an F &% (0)
such that ¢(F)C¢(V) or FCV.

Consequently, sp 0°C V for some non zero e¢ in M’ (or Z(M’)) with
e=f. Q.E.D.

The case &= {0} is a special case where 5% is not discrete.
Making a slight modification of [13, Theorem 5.2], we have the fol-

lowing lemma.

Lemma 3.4. If G satisfies the second axiom of countability, a
Borel multiplier o= Z*(G, T) with a(s,t) =a(t,s) for s,t&G is triv-
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ial, namely, ac B*(G, T).

Proof. Let G*=GXT be the extension of G by «, that is, the
product is defined by

(3-1) (81, 20) (Lo A) = (81 + 1o, (24, £2) Mihs)

for (2, 4;) €G* G*is given the product Borel structure of GXT. Since
G satisfies the second axiom of countability and (s, z) =a(Z,s) for s,
teG, G® is a locally compact abelian group with respect to the Weil
topology. Let j be an injection of T to G* such that j(1) =(0,1) for
AeT. Since j(T) is a topological subgroup of G* which is standard and
J is a Borel measure isomorphism, j is a homeomorphism by a Mackey's
theorem [13, Theorem 2.2]. Let G* and j/(\T) denote the duals of G*
and j(T), respectively. Let [ be a mapping of j(T) to T such that
I: (0,2) €j(T)>icT. Then I€}(T). Since G%/j(T)* is isomorphic to
j/(\T), we have the corresponding ;("‘E/G\“/J'(T)l to lEj/(\T). If yey*,
then y&G* and =1 on j(T). Put B(£)=%((¢,1)). From (3-1) we
have B(#,)B(%) =R (t+ ) a(ly, ts). Q.E.D.

Remark 3.1. This lemma is partly generalized as the following.
Every symmetric (i.e., @ (s, £) =a(¢, s)) multiplier is trivial for an abelian
discrete group. For this we have only to assume the product topology on

G*=GXT in the above proof.

Proof of (iii) in Theorem 1.1. We have only to prove that the
condition (B) implies the condition (A). Since 0&sp,.(l,) for any non
zero ¢ in M’ (or Z(M’)), we have E={0} Cspo°.

Suppose that V is a neighbourhood of &. Since 0=, we may
choose an open neighbourhood U of 0 with (U—U) CV. Since G(0)
=G and M, is separable, it follows from Lemma 3.4 and [8, 11, 12] that
there exists a strongly continuous unitary representation # of G in M’
such that 0,(x) =w,zu,* for &M and ¢t&G. By virtue of Stone’s the-

orem, we have a spectral resolution

u= [ & e,
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where e(dy) is a spectral projection measure on G. Utilizing a 7’06@
with e(U+71,) /0, we define a projection ¢ by e(U+7,)f. Then e M’
(or Z(M?)) and 0<e<f. For all g€L'(G) with car §CG\(U—-U)

we have
e(@(@x)e= Lg (&) ew,xu*edt

- L La r—7"eldy)ze(dr’) =0

for all xeM. Therefore spo‘c(U—-U) CV. Q.E.D.
Proof of Corcllary 1.1. 1t is immediate from (iii) of Theorem 1.1.
The following proposition generalizes [6, Theorem 2.4.1].

Proposition 3.1. () If Z(M°)CZ(M), then spa=1.(0). In
particular, if M’ is a factor, I'y(0) =1",(0).

Gi) If I'y(0) =I'1(0) =5 and 5 is discrete, then sp =5 is necessa-
ry and sufficient for Z(M°) C Z(M).

Proof. (i) Let e= M’ and f the carrier in Z(M°). If yEsp ¢, there
exists an x&€ M such that sp,(x) N (V+71)=£0 for any neighbourhood
V of 0. Since f is the carrier in Z(M’) of e, there exist y and 2z in M*
with ezxyes0. Since sp,(ezxye) =sp,(x), 7Espd° and hence sp o’
Csp 0%, which implies sp6®=spo”. Consequently, I';(6) =) {spc:
fEZ(M®) and f=1}. Since Z(M*)CZ(M), we have spo=11(0).

(i) By (i) we have only to show the sufficiency. First we shall
show that if e, and e, in M’ have mutually orthogonal central carriers,
then e,6,=0. Suppose that e &M’ e, M’ and e,6,5~0. Then there
exists a non zero x& M such that e;xe,=x and sp,(x) ={y} for some
yeXH. Put e=s(x). Since I';(0%*) =5 by Lemma 3.2 and since I';(0%)
=sp 0 from the assumption that = =sp 0, it follows that there exists a
non zero y& M,, with sp,(y) ={—7}. Then exye,=xy+0 and xyc M".
Thus the product of central carriers of e, and e, is non zero.

Now, suppose ec= Z(M?). Since e¢(1—e) =0, we have z(1—e) =0
from the above. Since 1=e+ (1—e)<<z+ (1 —e)<<1, we have e=e¢,
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namely, e Z(M). Q.E.D.

Remark 3.2. Assume that G\/E is compact. If M’ is a factor, then
the conditions (A), (B) and (C) are equivalent. For this we have only
to show that (B) implies (C). Since G(0) is discrete by assumption,
there exists by Lemma 4.4 a ¢’=Rep(G, M) such that ¢'~0c, Z(M"™)
=Z(M") and G(6) =(sp0’)*. If M’is a factor, then M is a factor and
hence I'y(0”) =I";(0") =sp ¢’ by Proposition 3.1. Therefore sp¢’ is a
group and hence =G (0)*=sp ¢’ =1,(0") by (B). Since I'y(0) =I",(0)
by Proposition 3.1 and I';(0) =I;(¢’) by Lemma4.3, we have I,(0)
=TI",(0) =5, which is (C).

§4. Proof of (B)=(C) and S-Set

In the following I. (1) denotes the e-neighbourhood of A€ R, namely,
the open interval (1—e,A+¢).

Proposition 4.1. For a 0&Rep(R, M) there exist projections qs,
Qw in Z(M°) N Z(M) and an increasing left continuous spectral resolu-
tion {pQ)eZ(M)YNZ(M):2>0} of q.—q, such that

D  Ih(o™) =I'1(0%) ={0};

() (07 *=)=I:(0"")=R;

(iii) for any non zero A=Sp h (h=[Ap(dl)), eg= (0, X)) and e< (0,
&) there exists a non zero projection e Z(M’) majorized by p(A+¢g,)
—p(A—e)) satisfying that spd CI.(A)ZUI.(0) and sp @ Nnl. (1) =0
for all neN and feZ(M°) with 0<f<e;

(iv) if 2€Sp h and 2>0, then 2ZC1',(0); and

(v) if A€Sp h is isolated and q;=p(A+0)—p(R), then [,(0%)
=TI,(0%) =1Z.

Proof. (i) Let &, be the set of all projections p&Z(M’) NZ(M)
such that for any e€ Z(M’) N Z(M) with 0<e<p and for any A>>0 and
0 (0,1/2) there exists a projection f& Z(M’) with 0<f<le and sp ¢/
(6,A—0)=0. Put gy=sup{p:p=F,}. Using Zorn’s lemma, we have
a projection e, & Z(M?) such that &,=g, and sp 0 (0, 1—0) =4.
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Therefore

riecn N R\{(—1+0, =) U@, 2—0)} =10},

130, 0<0<A/2
and hence I'y(0%) =I",(0%) ={0}.
(i) Let &, be the set of all projections e Z(M’) such that sp ¢°
#R. Put g,=supl{e:es¥,}. Then ¢<q. and [,(0'7%)=I"(c""%)
=R. Moreover, q.€Z(M°)NZ(M).

For the proof of the remaining part we must prepare the following
two lemmas. Before going into the proof we recall that if sp 0 (6, 1—0)
0 with 0<C20<{4 then for any &>0 there exist a 4, & (0,A—0) and a

non zero x& M such that

sps () C L (&) N (0, 4—0).

Lemma 4.1. Assume that q,=1—q.,=0. For any 2>0 and 0§
(0, 2/2) let ¥, be the set of all projections e in Z(M") N Z(M) such
that if f is a projection in Z(M°) with 0<f<e then sp 0" (5, A—0)
#+0. If

p(A)= sup sup{e: e F;},
0<20<A

then {p(2):1>0} is an increasing and left continuous spectral resolu-

tion of the identity.

Proof. In the following we denote sup{e:e=%,,} by »(40).
Since p(2,0) <p(u, ) for 0<<A<y, it follows that p(1) <p(x) for
0<A<<pu. Therefore p(L) is increasing in A>>0.

Since FjesC F g0 it follows that

lim p(1—e¢) = sup p(A—e) = sup sup p(d—¢, 0)

el0 e>0 e>0 >0
> supsupp(4, e+0) =p(4),
>0 6>0

and hence that p(1) is left continuous.
Putting p.=1-—1lim,.p(1), we have p.=Z(M°) N Z(M) and

Po=1infinf 1—p(4,0)).
>0 8>0
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Suppose that p,5~0. If e is a projection in Z(M”") N Z(M) with 0<le<p.,
then for any 2>>0 and d< (0,4/2) there exists a projection fe& Z(M)
with 0<f<{e and sp @) (0,A—0)=0. Thus p,.<q,.. Since ¢g,=0 by
assumption, it follows that lim,.. p(1) =1.

Putting py=lim,., (1), we have pyp€ Z(M*) N Z(M) and

b= inf sup {p(4, 0): 0<C20<1}.
>0

Suppose that p,5=0. If e is a projection in Z(M°) with 0<e<{p,, then
for any 21>>0 there exist a 0< (0, 1/2) and a projection e, Z(M"), 0<e,
<<ep(4,0) such that sp o’ (J, A—0)=~¢ whenever fEZ(M°) and 0<f
<e,.

For any #>0 and its eneighbourhood I.(#) CR, we shall show
I.(#) Nsp 0° is non empty. For a given ¢ we have a positive 1<lg, for
which we get a 0 and a projection e, as above. Choose an & NN so that
#<nd and put p=0/n. Since sp 6 () (0, A—0)=£0, we have a non zero
€M, and a 4 (0,A—0) satisfying

spe (x1) C L, (4) N (0, 2—0).
Let fi be the carrier in Z(M’) of
sup{0,(s(x1)): tE R},

where s(x;) denotes the carrier of x;. Since fi€Z(M’) and 0<f1<e,,
we have sp 0"*() (0,1—0) 0. Therefore we have a non zero x, €M,
and a Le< (0, A—0) satisfying sp,(x,) C I,(%:) N (8,1—0). Since x,€M,,
we have a v;,& M’ and a £, € R with

V2 =0y, (xl) 02,70 .
Let f, be the carrier in Z(M°®) of
sup{0,(s(y)): tE R}.

Since f,€Z(M°) and 0<f,<<e,, we have sp 0”:()(0,1—0)=%0. We re-
peat the similar argument as above and obtain sets {xi,-:-,x,} CM and

{2, -+, 2.} € (0, A—0) satisfying
spe (1) C L, (4) N (0, 4—0)

for j=1, ---, n. Since f; is the carrier in Z(M") of
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sup{0;(s(v))): t= R}

and x;4, €M, for j=2, .-, n, we have sets {v;, **-, U,-,} T M’ and {#, -,
t,-1} C R satisfying

V=0, , (e 0y, (th (xl) U1Ly) UpLy -) U125 70

for all £=2, ---, n. Since sp,(y) C{D 5.1 sps(x;)}~, we have
k k
sps (¥x) C ]Z=1 L) Im(jz_.: ).

Since u#<n0<2 -1 4; 0<<A4<A—0 and A<lg, there exists an m& N, m<n
with g—e<37., 4<<y. Since 0=n7, we have L (O 7' 4) C (1), and

hence

Yn1 EM,,C M, and  sp;(Ym+1) C L (1).

Since & can be arbitrarily small, it follows that g&spd®. Since x(>0)
is arbitrary, sp 0°=R. The arbitrariness of e Z(M’) with 0<e<{p, im-
plies that I'y(¢?) =R. Since g,=1 by assumption, we have a contradic-
tion. Thus p,=0, namely, lim;.,2 (1) =0. Q.E.D.

The idea of the following lemma is essentially due to Borchers, [4].

Lemma 4.2. For any e (0,1/2) let p be a non zero projection
in Z(M*) satisfying sp 'L () F£0 for all e Z(M’) with 0<e=<p.
For a non zero projection q in Z(M") if L(q) is defined by

sup{k(e): e Z(M"), 0<e=<q},

where k(e) denotes the supremum length of subintervales of (0, A+¢)
\sp 0°, then

@) spo*Nnle(M)£0 for all eeZ(M’) with 0<e<p and neZ,
and

(i) for any 0>0 there exists a projection e in Z(M’) such that
0<ex<p and spo°C L (I(p))ZU L(0).

Proof. (i) We shall use an induction argument. Suppose that sp ¢0°
Nnl () #0 for some n>>0. For a non zero x in M"(nl. (1)) let f
=sup{0;(s(x)):¢€G}. Then 0<f<<e<<p. Since sp 0" (1) =~0 by as-
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sumption, we have a non zero y in M° (I;(1)). Since 0<f<<e and
0. (x)y==0 for some t&G, we have sp ¢°MN (n+1) I, (1) 0.

(i) We have nothing to prove if 0>27'[(p). For any positive
0<<27'[(p) there exists a projection ec Z(M’) such that 0<e<p and
k(e)>1(p) —0. Put I=I1(p). We have then a subinterval (27'0,[—27"
-0) +4, of (0,14+¢)\spc® for some ,,&R. We shall show by induction
that (n—1)I+n0, n({—0)) Nspo*=0 for all n&N with »n<](20) 7L
For n=1 we assume the contrary. Let ¢(E,e) for e= M’ denote the
projection onto the subspace spanned by M’(E)ed. For any 1€ (0,
[—0) Nspd° we have

e'=ep([—0",0"]1+4 e
for 0’ (0, min{A—0,1—0—2}). Since AEsp 0%, we have ¢’==0 and sp ¢
Csp0®N(sp0®—1L, () 7), for sp’c®F®® Csp 0°— E with E=1,,(1)". There-

fore s> 0% is disjoint from
(2+270,+1—2"0) U (A +270—2+0", W +1—270—2—0")
=Qy—2+270+0", Hh+1—270).

Since Ay+1.—27%0>0 and O0cspo®, ,—2+27'0+0">0. The length I/
of the interval on the right hand side is [—0+2—09". Since [<{I'<<I(¢’),
we have a contradiction. Thus sp 0° is disjoint from (§,[—¢). Suppose
that the result is true for z>1 (n<{(20) 'I—1). If (nl+ (n+1)0, (n+1)
(I—0)) Nsp 0°#0, then
f=ed([—0",0"]+u,e)

is non zero for any fixed

Le (nl+ (n+1)0, (n+1)(1—0)) Nspa*

0" (0, min{y—nl— (n+1)0, (n+1)([—0) —u}).

Since yEsp 0°, we have f==0 and sp ¢/ Csp 6°() (sp 6°— .. (1) 7). There-

fore sp ¢ is disjoint frem
(=1+0, =D U (=D l+nd—nu+0",n(l—0) —u—0")
=((n—=1)1+nd—p+0", —0),

whose length is larger than [, for sp¢”=—sp¢’. This contradicts
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with the fact that I(f)<<I(p)=I. Thus the resultis true for n+1.
Q.E.D.

Proof of Proposition 4.1. (Continued). By our previous proofs
of (i) and (ii) we may assume that gop=1—¢.,=0 in the ramaining part
of the proof.

(ili) Suppose that 1 is a non zero element of Sp 2. For any ¢ (0,

50/3)
p=p(A+e) —p(A—e)>0.

Since p(A+¢) =sups;ip(A+¢, 0), there exists a projection g in Z(M’) N
Z(M) such that gp(A—e)=0 and 0<g<<p(A+¢,d) for some 0< (0, /2).
Since gp(A—e) =0, there exists a projection ¢’ €Z(M’) with 0<e'<q
and sp 6°' () (0, A—e—0) =0. On the other hand, since 0<g<<p(A+¢, ),
if fEZ(M®) and 0<f<q then spd” (0, A+e—0)=+0. Therefore, if
fEZ(M® and 0<f<e’, then sp 0’ I#£0 with I=(1—27"3¢, A+¢) and
hence sp 0’ NnI#0 by (i) in Lemma 4.2. Furthermore, we can define
I[(e’) by the same way as in Lemma 4.2. It follows from the above that
l—2e<l(e’)<A+¢e. By virtue of (ii) in Lemma 4.2 we have a projection
ec Z(M’) with 0<e<<e’ and spo*CI.(I(e’))ZUI.(0). Then for any
feZ(M) with 0<f<e we have

sp 0’ C L (1(e")) ZU L (0) C Le (W) ZU L (0).

Considering 3¢ as ¢, we have (iil).

(iv) Suppose that A&Sp 4 and 1>>0. We shall use the same notation
as in (iii). For any e= (0, &) let & be the set of all projections e
€ Z(M’) satisfying the same condition as in (iii). Put e.=sup{e:ec
F}. For any p€Z(M’) with p=1 we set p;=p&.. By means of Lemma
3.1 since p.=e. there exist projections e¢; and e, in Z(M’) such that
e<e., e, pe,e,=é,=¢€. and sp 0 Csp 0o+ 1. (0). This inclusion rela-
tion and the condition in (iii) imply that (sp 02+ 1. (0)) NnI. (1) #0 for
all e N. Since e,<<p, we have

(sp 07+ 1. (0)) Nnl (A) #0

for all zN. Since ¢ is arbitrary, AZCsp ¢° and hence 1ZCI";(0).
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(v) Since 2 is isolated in Sp A, Sph() (A—¢, A+¢&) ={A} for some
€ >0. For any e= (0, ¢,) let &, be the family of sets of non zero projec-
tions e’ in Z(M’) with mutually orthogonal carriers in Z(M) majorized
by ¢;=p(A+¢e) —p(A) satisfying that if f€ Z(M°) and 0<f<<e’ then sp ¢’
CcI.()ZUI(0) and spd”NnIl.(1)#0 for all n&N. Since &, is or-
dered by set inclusion and inductive, we have a maximal {¢,;: ¢ I} €%, by
Zorn’s lemma. Put p,=sup{e,:¢=I}. If gq,—p,70, there exists by (iii)
a non zero projection e’ € Z(M’) satisfying the same condition as e, €,
and ”g,=0 for all ¢ I, which contradicts with the maximality of &,.
Thus ¢;=p;. Putting e=sup{e,:¢c I}, we have e=gq; and spc*C . (1) Z
UL (0). Since ¢ is arbitrary, we have I';(0%) C1Z.

Suppose that I'(0%)#%1Z. Since I',(0%) is a subgroup, there exists
a projection ¢;& Z(M?) such that 0<{e;<<q; and sp 0% I;(1) =@ for some
0>0. Here we may assume that the above e is less than §/2. Since
e.:<e, it follows from Lemma 3.1 that there are projections e; and e, in
Z (M) such that e,<<e;, 0<e,<<e and sp0*Cspd™+L,,(0). This in-

clusion relation contradicts with the fact that
L, (D) Nsp 00, L,,(2) N (sp 0°+1,,(0)) =0.
Thus I',(6%) =2Z and hence (v) follows. Q.E.D

Remark 4.1. Let G be the additive group R and c<Rep(R, M).
If sp o is compact, then [I,(0) =1";(0) = {0}.

From the above proposition we have the following one.

Proposition 4.2. The condition (B) implies the condition (C),
if one of the following two assumptions is satisfied:

1) G=G(0); and

(i) G is the additive group R or Z with the usual topology,
G(0)#40} and I'y(0) #{0}.

For any ¢ and ¢’ in Rep(G, M), c~¢' if there exists a strongly
continuous mapping # of G to the unitaries in M such that u,,, =u,0,(%,)

and 0, (x) =u,0,(x)u,* for s,#€G and x& M. This equivalence relation
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~7” is called an “exterior equivalence” by Connes. The following lem-

ma follows immediately from Lemma 3.1.
Lemma 4.3. If 6~0¢’, then I'(0) =TI:(0").

The following lemma is used to relate the I',(6) with the algebraic
invariant S(M) which was defined in Section1 for a general von Neu-

mann algebra M.

Lemma 4.4. Assume either that G(0) is discrete or that G(0) is
closed and satisfies the second axiom of countability and M, is separa-
ble. Then there exists a 0’ €Rep(G, M) such that ¢'~0, M° C M,
Z(M)CZ(M*) and G(0) =G(c’") =(spa’)*.

Proof. By similar discussions as in the proof of Lemma 3.4 and
Remark 3.1, we have a strongly continuous unitary representation v of
G(0) in Z(M’) such that 0,(x) =v,xv,* for x&M and s€G(0). Since
G(0) is a closed subgroup of G, it follows from [6, Lemma 3.3.12] that
there exists a strongly continuous unitary representation « of G in Z(M")
such that #,=wv, for s&€G(¢). Define a 0’ €Rep(G, M) by 0,/ (x)=u*0,
(x)u, for t€G and x= M. Since u,,,=0,(#)u,, we have 0'~0 and

G(0)={teG: 0,/ =1} cG(0").

Since y,c M°C M", if ye Z(M"), then 0,(y) =u,0," (v)u,* =y and hence

yeM’. Since M°c M,y (M)’ (M)’ and hence ye Z(M’). Thus

Z(MYc Z(M). If 0/ (x) =wzw* for s€G(0’) and a unitary weZ

(M), then w,;we Z(M") and hence G(¢”) CG(6). Thus G(6) =G(d”).
Since G(6’) =(sp0¢’)* is clear, we complete the proof.

Proof of Proposition 4.2. () If G(6°) =G, then I',(0)CI:(0)
c {0} by Lemma 2.6, which implies the condition (C).

@ii) By (i) it suffices to consider the case G(0)=£G.

The case where G(0)=(sp0)*. Suppose that G=R (resp. Z).
Since H=G(0)* is discrete and G(0)=*G by assumption, there exists a
generator v € R (resp. [0,27)) of 5. Here we apply Proposition 4.1 to
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g. Since G(0)={0} by assumption, g,=1. Since I,(0)#{0} by as-
sumption, we have ¢,=0. Since = is discrete, we have a partition {p,:
ne N} (resp. {pp:n|m}, m=2n/y) in Z(M*) N Z(M) of the identity such
that

I'y(0°*) =I'1(0"*) =nyZ (resp. {ny:n|m}),

which is the condition (C) for 0% over M, . Since /G\/an is compact,
the conditions (B’) and (C) are equivalent over M, by (ii) of Theorem
1.1 and hence G(0°)*=nyZ (resp. {ny: n|m}) for all non zero ec Z(M")
with ¢<p,. On the other hand, the condition (B) implies G(0®)* =5 for
all eeZ(M’). Thus p,=1 and p,=0 (m=~n) for some nE NN, namely,
H=nyZ. Since 71 is a generator of &, n=1. Thus I,(0) =I,(0) =E.
The general case. For a given ¢ we choose a ¢’ asin Lemma 4.4.
Then G(0) =G(0¢’)=(spd’)* and hence I',(¢") =I"(0") =G(0’)* from
the above. Since G(0’) =G(6) =E* by the condition (B), we have
I'y(0’)=TI,(0")=E. Therefore I';((0")°) =X for all non zero e Z(M").
Since M°C M” by Lemma4.4, if e is a projection in Z(M?), I',(0°)
=I1((0")?) by Lemma 4.3, and hence I',(0) =I",(0) =5, which is the
condition (C). Q.E.D.

Proof of Theorem 1.2. Since G/I',(6*) is compact and I'4(0%)
=71",(06%) by assumption, the condition (B’) holds by (ii) of Theorem
1.1 and hence G(0)=I,(0%)* is discrete. Applying Lemma 4.4, we
have a 0ERep(R, M) such that 6~0* and spcCG(06%)t. The condi-
tion (B’) implies that

G(0*) =G((0%)%) =I',(6*)* and TI',(0*) Csp(0?)®
for all non zero e in Z(M’") and hence that
sp 0C G(0%) +=TI",(0%) Csp(a%)°.
Since 0~¢* implies 0=¢" for some ¢ & W (M) by [6, Theorem 1.2.4], we
have
(4-1) N{spa*: g€ W(M)} Iy (0?).

On the other hand, since 0%~¢* for all ¢ in W(M), it follows from
Lemma 4.3 that
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I'y(o%) cI'y(0%) =TI';(0*) Csp o’

and hence
(4-2) I'y(0®) =N{spa*: g W(M)}.

Since sp 0*=1log (Sp(4,) N R.*) by [6, Lemma 3.2.2] and Z(M) C M for
peW(M), we have a desired result.

§ 5. Unbounded Derivation

Before going into the definition of a derivation, we recall that 6(g) is
o-weakly continuous on M for g L'(G). For the sake of completeness
we shall give a slightly different proof from [2, Proposition 1.4].

Let M, be the unit ball of M with the ¢-weak topology. Choose
a compact KCG for a given ¢>0 such that

j 10() |de<c .
G\K

Since the dual representation ¢’ on M, of 6d&=Rep(G, M) is strongly
continuous [1, Proposition 1 in § 6], for any 4 <G, >0 and ¢ = M, there
exists a neighbourhood V; of #; such that

sup sup [{ (0, —0,,) (z), ¢y <27%e.

tEV; zEM,
Since K is compact, we can find a finite covering V;, j=1, -, n of K.
Since 0y, is 0-weakly continuous, there exists a neighbourhood N; of 0
in M, such that [{0,,(IV;), 3| <27%. Set N=(1j_.N;. Since t€K be-
longs to some V,
<0, (x), $)I <I<(0,—0.,) (2), ¢ +[<0:,(x), $D <e
for all x&N. Therefore

Ko @z 8i=<e [ lo@ de+21g] |19 @1as

=gl +2l¢lDe

for all z&N. Thus ¢o0(g) is 0-weakly continuous on M, and hence
on M by Banach’s theorem. Consequently, 0(g) is 0-weakly continuous.
Now we shall generalize the concept of a derivation of M to the

unbounded case as the following, [7].
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Definition 5.1. A linear operator & on M is called a self-adjoint
derivation of M if the domain D(0) of 0 is a 0-weakly dense *-subalgebra
of M and

0(xy) =0(x)y+x0(y), 0(z*) =—0(x)*

for all x, y€D(0). In addition, § is said to be spatial (resp. inner) if
there exists a self-adjoint operator % (resp. h,M) whose domain is in-

variant under D(J) and which satisfies

0(x) =hx—xh=[h, x]

for all x&D(0).

For a linear operator 0 on a Banach space E, an x& E is analytic
(resp. entire) for § if the function t€ Rw> Y 5 o(n!) 7'#"0"x € E exists and
is analytic in some neighbourhood of O(resp. entire). For a representa-
tion 0 of R on E, an x&E is analytic (resp. entire) for ¢ if the function
t~0,(x) is analytic in some neighbourhood of O (resp. entire).

If 0, € R is a strongly continuous one parameter group of uniformly

bounded operators on E, then

(5-1) xhs<ﬁlz> v j‘Ro‘, (x)exp <—2i;2—>dt

for x€ E, are entire for ¢ and x is the limit of x; as A—0. Furthermore
if 0 is the generator of 0, then
o zﬂ

Z—'”an(xx)”<+00, for all teR.

n=07

In the following a linear operator & on M is said to be O-weakly
closed if the graph of § in M@ M is o-weakly closed.

Proposition 5.1. Let d=Rep(R, M) and 0 be a linear operator
on M whose domain D(0) is the set of x< M for which t™'(0,(x) —x)

is O-weakly convergent as t | 0, and

0x= htl;]l (i) 7'(0,(x) —x)

Jor all x€D(0). Then
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Q) D(0) is a 0-weakly dense *-subalgebra of M and 0 is a self-
adjoint 0-weakly closed derivation of M,

(ii) for any non-zero real number A, A—1i0 has the 0-weakly con-
tinuous inverse (A—1i0) ™' and |(A—1i0) <A

(ili) the set of entire elements for 0 is 0-weakly dense in M,

(Gv) 0 is spatial(resp.inner) if and only if 0 is spatial(resp.
inner); and

(v) the infinitesimal generator of the dual representation ¢’ of 0
is the dual of 0.

Conversely, if 0 is a self-adjoint 0-weakly closed derivation of
M and if for any non-zero real number L, A—1i0 has an inverse and
| (A—20) " <|A| 7Y, then there exists a unique representation 0< Rep(R,

M) of which 0 is an infinitesimal generator.

Proof. (i,ii) It is clear that D(d) is a *-subalgebra of M and 0 is
a self-adjoint derivation of M. Define ¢, for A>0 by

Or= ﬁmlo‘, exp(—A)dt.

Applying the same argument as the one parameter semi-group theory on
a Banach space, we know that the range of ¢, coincides with D(J), that
27'¢=(A—10) " and that ¢,(x) converges O-weakly to x as A—>oo for
xe M. Therefore D(0) is 0-weakly dense in M. Since ¢, is 0-weakly
continuous as shown at the begining of this Section, § is 0-weakly closed.

(iii) x; in (5-1) is entire for 0 and 0-weakly converges to x as
A—oo. Therefore we conclude (iii).

(iv) Suppose that ¢ is spatial (resp. inner). There exists a self-ad-
joint operator A (resp. AM) such that ¢,(x) =uxu,* and u, =exp(ith).
Since

(@) (0, (x) —x) E=ux (it) " (u,* —1) €+ Git) T (w,—1) xE,
if x&D(0) and § is in the domain D(4) of %, then xé=D(A) and
0(x)é=[h,z]E Since D(%) is dense in I, we have dz=[h, z].
Conversely, suppose that ¢ is spatial (resp.inner). Let 2 be a self-

adjoint operator which induces ¢ as in Definition 5.1. Put z,=exp(ith).

Denote by H“ (resp. M®) the set of entire elements for u(resp.?).
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We shall show by induction that x4 ® CD(A") for €N and x& M®.
By the assumption for A, x{“CD(k). If x4H“cD(h"™), then

onzf = Z< Jrz(~hyre,

for £€H®. Since (0"x)é€D(h), we know that

n

hhag = (0"2) — Z( )itz (— by

is in D(A) and hence xé€D(A"™).
If x&M® and &, 7€ 9, then

C@ &) = 3 @)@ (@Dl

Il

S (B e

7)

— - G (Zt) n—k (Zt) k
_nZ:tchZ:o( (n— k)r( Ry ( K )

Since &, 7€ 9, the right hand side is absolutely convergent. Therefore

(0.(x)élm) = (x Z (n) 7 (—ith)"¢] Z‘ (m) = (—izh)™)

= (x(exp(—ith))§&lexp(—ith)7)
= ((exp(ith))x (exp(—ith))€|7n).

Since H® is dense in Y and M® is ¢-weakly dense in M, we have
0,(x) = (exp(ith) ) x (exp(—ith)) for z= M.

(v) Let 0’ and *0 be the infinitesimal generator of the dual ¢’ on M,
of ¢ and the dual of @, respectively. For 1>>0, the dual of (1—:0)~?
is (A—7'0)~" Since ¢’'C’0, (A—id’) ' (A—70)"". Since the domain
of (A—10") " is My, we have (A—40") '=(1—70) ! and hence, 0’ =°0.

Suppose that § is a self-adjoint ¢-weakly closed derivation of M and
that |[(A—20) 7Y|<<|1]"! for any A5£0. Denote by ¢’ the dual of § on
M,. Since |(A—10") Y <|1]|7%, by the Hille-Yosida theorem, 0’ is the gen-
erator of a strongly continuous contraction one parameter group 0’ on
M,. The dual 0 of ¢’ is a 0-weakly continuous contraction one parameter

group on M. Moreover (v) is valid for ¢ and the generator of 0 is
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o-weakly closed. Since the bidual of a closed linear map is itself, the
generator of ¢ is the dual of ¢, namely, §. Therefore we have for any

entire elements x and v,

0:@a ) = 1 @) 3 o) = 33 wr ) 8" (23) = 0. (e),

7, (z%) = Z (Zt) o™ (2%) = 2( 1’5) o™ (z)* =07, (z)*.

n=0

Since (iii) is valid for §, we conclude the multiplicativity and self-adjoin-

tness of 0,. Therefore ¢, is a *-automorphism. Q.E.D.

Remark 5.1. In the above proposition M® is a core of 0 with
respect to the ¢-weak topology on M. Indeed, if x&D(0), then x; defin-
ed by (5-1) converges O-weakly to x. Furthermore 0 (x;) = (0x); con-

verges O-weakly to 0x as 1—0.

Lemma 5.1. If 0 is the infinitesimal generator of 0€Rep(R, M),
then Sp 0=sp 0.

Proof. Suppose that A&sp 0= —sp 0 and {¢, I >=-exp(i£l) for t=R.
Define a function g€ L'(R) for any a>0 by

g(@)=exp(—a){t, 2y  (t>0); g(&)=0  (¢=0).

Since 7(0—A4) is the infinitesimal generator of a one parameter group

t—<t, >0, we have

HOES fexp(—at) t, WD0dt= —i(A—ia—0)7!

and §(—2) =a™'. Therefore, by [6,Lemma2.3.6], we have ||(A—ix
—0) |Za™" and hence
(5-3) lim |(A—za—0) Y|=o0
ald
Consequently, A& Sp 4.

Assume that
lim |(A—ia—0) | <oo .
all

By the resolvent equation, (A—ia—0) ' converges in norm to a bounded
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operator pas & | 0 and p=(A—0)"". Therefore A& Sp ¢ implies (5.3) and
hence that there exist for any ¢>>0 a positive ® = R and a non zero ye M
such that 2a<{e and

el (A—ia—0) "yl >2]y] .
By putting z=|z||"'2 for 2=(A—ia—0) "'y, we have
[(A—0) z| <[ (A — i — 0) x| + ez | <e .

From the equation

& w0, (2) —z = j G5y 5000 GG —2)) (@) ds,
it follows that

lo. () =<2, Dxl|<| t]e.
Therefore, by [6, Lemma 2.3.6], we have —A€spo=—spo. Q.E.D.

Lemma 5.1 and Theorem 1.1 give following corollaries. It is clear
that z& M’ if and only if 0x=0. Therefore the restriction ¢° of § to M,
is a derivation corresponding to ¢°. For a derivation 0, we denote by

M’ the set {x& M: 0x=0}.

Corollary 5.1. Let 0 be a derivation of M which is the infini-
tesimal generator of a representation in Rep(R, M). The following
conditions are equivalent for 1>0:

() N{Spd:ec M’ e£0} =N{Spdec M’ e=1} =1Z; and

(ii) for any non zero projection f in Z(M?®) and for any neighbour-
hood V of 0, there exists a non zero projection e in Z(M®) such that
e<f and IZcSp0°*CIZ+ V.

Corollary 5.2. Let § be a derivation of M which is the infinitesi-
mal generator of a representation in Rep(R, M). If M, is separable,
then the following conditions are equivalent:

(i) 0 is inner; and

(ii) for any non zero projection f in Z(M®) and for any >0
there exists a non zero projection e in Z(M®) such that e<f and
6°]=<e.
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Since the separability of M, is unnecessary for the implication (ii)
= (1) in Corollary 5.2, we have Corollary 5.3, which is a restatement of

a result of Borchers [3, Theorem]. We shall restate it more precisely.

Corollary 5.3. Let § be a derivation of M which is the infinites-
imal generator of a representation in Rep(R, M). If there is a non
negative self-adjoint operator k implementing 0, then 0 is inner, and
a self-adjoint operator hyM implementing 0 is uniquely determined by
the condition that 2||he|=|0%| for all e Z(M®). In particular, Sp
(he) +||he|<Sp N R,.
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