Publ. RIMS, Kyoto Univ. 12 (1976), 1-30

On Invariants $G(\sigma)$ and $\Gamma(\sigma)$ for an Automorphism Group of a von Neumann Algebra

By

Akio IKUNISHI* and Yoshiomi NAKAGAMI**

Abstract

An invariant Γ for an automorphism group of a factor given by Connes is generalized to a general von Neumann algebra and the relation between Γ and a characterization of an inner automorphism group of a von Neumann algebra due to Borchers are discussed.

§1. Introduction

Let G be a locally compact abelian group, dt a Haar measure on G, \widehat{G} the dual of G and $\langle t, \gamma \rangle$ the value of $\gamma \in \widehat{G}$ at $t \in G$. For $g \in L^1(G)$ and $\gamma \in \widehat{G}$

$$\widehat{g}\left(\gamma\right) \equiv \int_{g} g\left(t\right) \overline{\left\langle t,\gamma\right\rangle} dt$$

and $\Gamma(g) = \{\gamma \in \widehat{G} : \widehat{g}(\gamma) = 0\}.$

Let M be a von Neumann algebra, M_* the predual of M and Aut Mthe group of automorphisms of M. A homomorphism σ of G into Aut M satisfying that the functions $t \in G \mapsto \phi(\sigma_t(x))$ are continuous for all $x \in M$ and $\phi \in M_*$ is called a representation of G on M. Let $\operatorname{Rep}(G, M)$ denote the set of all representations of G on M. For a finite measure μ on G (resp. $g \in L^1(G)$), $\sigma \in \operatorname{Rep}(G, M)$ and $x \in M$ let

$$\sigma(\mu) x = \int_{\mathbf{G}} \sigma_t(x) \, \mu(dt) \quad \Big(\text{resp. } \sigma(g) \, x = \int_{\mathbf{G}} g(t) \, \sigma_t(x) \, dt \Big).$$

Let sp σ denote the intersection of $\Gamma(g)$ with $\sigma(g) = 0$ and sp_{σ}(x) the intersection of $\Gamma(g)$ with $\sigma(g)x=0$. For a closed subset E of \widehat{G} , $M^{\sigma}(E)$

Communicated by H. Araki, August 23, 1974.

^{*} Department of Applied Physics, Tokyo Institute of Technology, Tokyo.

^{**} Department of Mathematics, Tokyo Institute of Technology, Tokyo.

Present address: Department of Mathematics, Kyushu University, Fukuoka.

denotes the set of all $x \in M$ with $\operatorname{sp}_{\sigma}(x) \subset E$. Let $M^{\sigma} \equiv M^{\sigma}(\{0\}), Z(M) \equiv M \cap M'$ and $Z(M^{\sigma}) \equiv M^{\sigma} \cap (M^{\sigma})'$. For projections e and f in M^{σ}, \bar{e} denotes the carrier in Z(M) of e and ${}^{e}\sigma'$ the restriction defined by

$${}^{e}\sigma_{t}^{f}(x) \equiv \sigma_{t}(x), \quad x \in eMf$$

in particular, $\sigma^e \equiv {}^e \sigma^e$ or σ^e is the restriction of σ to M_e . Furthermore, $\operatorname{sp}^e \sigma^f$ denotes the intersection of $\Gamma(g)$ with ${}^e \sigma^f(g) = 0$, where ${}^e \sigma^f(g)$ is defined similarly as above.

Definition 1.1. $G(\sigma)$ (resp. $K(\sigma)$) denotes the set of all $t \in G$ such that σ_t is implemented by a unitary in M^{σ} (resp. M).

Then $G(\sigma)$ and $K(\sigma)$ are subgroups of G and $G(\sigma) \subset K(\sigma)$. The following definition is essentially due to Connes, [6].

Definition 1.2. $\Gamma_0(\sigma)$ (resp. $\Gamma_1(\sigma)$) denotes the intersection of all sp σ^e , $e \in M^e$ with $e \neq 0$ (resp. $\overline{e} = 1$).

Then $\Gamma_0(\sigma)$ is a closed subgroup of \widehat{G} and $\Gamma_0(\sigma) \subset \Gamma_1(\sigma)$. There is no difference between $\Gamma_0(\sigma)$ and $\Gamma_1(\sigma)$ if M is a factor.

The main purpose of this paper is to show the relations among the following four conditions for a closed subgroup Ξ of \widehat{G} :

(A) for any non zero projection f in $Z(M^{\sigma})$ and for any neighbourhood V of 0 there exists a non zero projection e in $Z(M^{\sigma})$ such that $e \leq f$ and $\Xi \subset \operatorname{sp} \sigma^e \subset \Xi + V$;

(B) $G(\sigma^e) = \Xi^{\perp}$ for all non zero e in $Z(M^{\sigma})$;

(B') $G(\sigma^e) = \Xi^{\perp}$ and $\Xi \subset \operatorname{sp} \sigma^e$ for all non zero e in $Z(M^{\sigma})$;

(C)
$$\Gamma_0(\sigma) = \Gamma_1(\sigma) = \Xi$$
.

Using these conditions, we can state our main theorem.

Theorem 1.1. (i) The condition (A) implies the condition (B'), and the condition (B') implies the condition (C).

(ii) If \widehat{G}/Ξ is compact, then conditions (A), (B') and (C) are equivalent.

(iii) If G satisfies the second axiom of countability, $\Xi = \{0\}$ and

 M_* is separable, then conditions (A) and (B) are equivalent. In this case, σ is inner.

The implications $(A) \Rightarrow (B)$ and $(B') \Rightarrow (C)$ are proved in Section 2 by similar techniques as Borchers, [4]. The implication $(C) \Rightarrow (A)$ for a discrete Ξ^{\perp} is proved in Section 3 by similar ideas as Connes, [6]. The statement (iii) implies the following corollary.

Corollary 1.1. If G satisfies the second axiom of countability, $G(\sigma) = G$ and M_* is separable, then σ is inner.

The ergodicity of σ implies the equivalence of conditions (A), (B) and (C), whenever \widehat{G}/Ξ is compact (Remark 3.2).

Let W(M) be the set of semi-finite, faithful and normal weights on M_+ . For $\phi \in W(M)$, \mathcal{A}_{ϕ} and σ^{ϕ} denote the modular operator and modular automorphism of ϕ , respectively.

Definition 1.3. S(M) denotes the intersection of all spectrum of Δ_{ϕ} , $\phi \in W(M)$.

Theorem 1.2. If $\Gamma_0(\sigma^{\phi}) = \Gamma_1(\sigma^{\phi}) \neq \{0\}$, then $\log(S(M_e) \setminus \{0\}) = \Gamma_0(\sigma^{\phi})$ for any non zero e in Z(M).

Finally, in Section 5 we shall give a characterization of an unbounded derivation which corresponds to a representation of R on M.

§ 2. Proof of (i) in Theorem 1.1

The condition (A) implies the existence of a projection e_0 in M^{σ} (or $Z(M^{\sigma})$) such that $\Xi \subset \operatorname{sp} \sigma^{e_0} \subset \Xi + V$ and $\overline{e}_0 = 1$. For this, let \mathscr{F} be the family of sets of non zero projections e in M^{σ} (or $Z(M^{\sigma})$) such that $\Xi \subset \operatorname{sp} \sigma^e \subset \Xi + V$ and their central carriers in M are mutually orthogonal. Then \mathscr{F} is a non empty ordered set by set inclusion. Here we apply Zorn's lemma to \mathscr{F} and obtain a maximal set $\{e_{\alpha}\} \in \mathscr{F}$. We complete the proof by defining e_0 by $\sum e_{\alpha}$. Therefore the condition (A) implies that $\Xi \subset \Gamma_0(\sigma) \subset \Gamma_1(\sigma) \subset \cap \{\Xi + V: as \ above\} = \Xi$, which implies the condition (C). It is known that $K(\sigma^e) = K(\sigma^{\bar{e}})$ for $e \in M^{\sigma}$, [4, Lemma 5.7; 6, Lemma 1.5.2].

Lemma 2.1. $G(\sigma^e) = G(\sigma^{\bar{e}})$ for $e \in M^{\sigma}$.

Proof. Since $G(\sigma^{\bar{e}}) \subset G(\sigma^{e})$, it suffices to show the converse inclusion for a non zero e in M^{σ} . Suppose that $t \in G(\sigma^{e})$. Then we have a unitary v on $e\mathcal{H}$ such that $v \in M_{e}^{\sigma}$ and $\sigma_{t}^{e}(x) = vxv^{*}$ for $x \in M_{e}$. Define an operator u on $\bar{e}\mathcal{H}$ by $uy\xi \equiv \sigma_{t}^{\bar{e}}(y)v\xi$ for $y \in M_{\bar{e}}$ and $\xi \in e\mathcal{H}$. Since

$$(uy\xi|uz\eta) = (\sigma_t^e(z^*y)v\xi|v\eta) = (y\xi|z\eta)$$

whenever ξ , $\eta \in e\mathcal{H}$, u is a unitary in $M_{\bar{e}}$ such that $u_e = v$ and $\sigma_t^{\bar{e}}(y) = uyu^*$ for $y \in M_{\bar{e}}$. Since $v \in M^{\sigma} \cap M_e$, we have $e\sigma_s^{\bar{e}}(u) = \sigma_s^{\bar{e}}(u)e$ and $(\sigma_s^{\bar{e}}(u))_e = v$ for all $s \in G$. For $s \in G$, $y \in M_{\bar{e}}$ and $\xi \in e\mathcal{H}$, we have

$$yv\xi = y\sigma_s^{\bar{e}}(u)\xi = \sigma_s^{\bar{e}}(\sigma_{-s}^{\bar{e}}(y)u)\xi$$
$$= \sigma_s^{\bar{e}}(u\sigma_{-t-s}^{\bar{e}}(y))\xi = \sigma_s^{\bar{e}}(u)\sigma_{-t}^{\bar{e}}(y)\xi = \sigma_s^{\bar{e}}(u)u^*yv\xi.$$

Therefore $\sigma_{s}^{\bar{e}}(u) = u$ for all $s \in G$ and hence $u \in M^{\sigma} \cap M_{\bar{e}}$. Consequently we have $G(\sigma^{e}) \subset G(\sigma^{\bar{e}})$. Q.E.D.

This lemma implies the equivalence between the conditions (B) and (B₁) $G(\sigma') = \Xi^{\perp}$ for all non zero f in $Z(M) \cap Z(M^{\sigma})$.

Let τ be a representation of Z defined by $\tau_n = \sigma_{nt}$ for some fixed $t \in G$ in this section. $\langle t, \mathrm{sp}_{\sigma}(x) \rangle$ denotes the set of all $\langle t, \gamma \rangle$ with $\gamma \in \mathrm{sp}_{\sigma}(x)$. In the following lemmas we shall identify the dual of Z with the unit circle T.

Lemma 2.2. $\langle t, \mathrm{sp}_{\sigma}(x) \rangle^{-} = \mathrm{sp}_{\tau}(x)$ for all $x \in M$.

Proof. Suppose that $\gamma \in \operatorname{sp}_{\sigma}(x)$. Let $g \in l^{1}(\mathbb{Z})$ with $\tau(g)x=0$. By setting $\mu \equiv \sum_{n \in \mathbb{Z}} g(n) \delta_{nt}$, we have $\sigma(\mu) x = \tau(g) x = 0$ and hence

$$\widehat{g}(\langle t, \gamma \rangle) = \widehat{\mu}(\gamma) = 0$$
.

Therefore we have $\langle t, \gamma \rangle \in \operatorname{sp}_{r}(x)$.

Choose any $g \in l^1(\mathbb{Z})$ so that \hat{g} vanishes on a neighbourhood V of $\langle t, \operatorname{sp}_{\sigma}(x) \rangle^-$. Setting $\mu \equiv \sum_n g(n) \delta_{nt}$, we have

$$\hat{\mu}(\gamma) = \hat{g}(\langle t, \gamma \rangle) = 0$$

on the neighbourhood $\{\gamma \in \widehat{G}: \langle t, \gamma \rangle \in V\}$ of $\operatorname{sp}_{\sigma}(x)$, and so $\tau(g)x = \sigma(\mu)x = 0$. Consequently, we have

$$\operatorname{sp}_{\mathfrak{r}}(x) \subset \langle t, \operatorname{sp}_{\mathfrak{s}}(x) \rangle^{-}$$
. Q.E.D.

We shall also identify the dual of Z with $(-\pi, \pi]$ and denote $[-\delta, \delta]$ by I_{δ} . For a projection $e \in Z(M^{\mathfrak{r}})$ and a closed subset E of $(-\pi, \pi]$, let $\phi(E, e)$ denote the projection onto the closed subspace spanned by $M^{\mathfrak{r}}(E) e \mathcal{H}$. Since Lemma 2.2 implies

$$M^{\sigma}(\{\gamma \in \widehat{G} \colon \langle t, \gamma \rangle \in E\}) = M^{r}(E),$$

we have $\phi(E, e) \in Z(M^{\sigma})$ for $e \in Z(M^{\sigma})$.

The following Lemmas 2.3 and 2.4 have been obtained by Borchers, [4], while we shall give their proofs for completeness.

Assume that $\langle t, sp\sigma \rangle^{-} \subset (-2\pi/3, 2\pi/3)$ in Lemmas 2.3, 2.4 and 2.5.

Lemma 2.3. There exists a family $\{p(\delta): \delta \in (0, 2\pi/3)\}$ of projections in $Z(M^{\sigma})$ such that $p(\delta)$ is increasing in δ , $\operatorname{sp} \tau^{p(\delta)} \subset I_{\delta}$ and $\overline{p(\delta)} = 1$.

Proof. We shall define p_n by induction. Put $\delta_n \equiv 2^{-n+2}\pi/3$ and $p_1 \equiv 1$. Then sp $\tau^{\rho_1} \subset (-2\pi/3, 2\pi/3)$ by assumption. Assume that $p_j \in Z$ $(M^{\sigma}), p_{j-1} \ge p_j, \text{ sp } \tau^{p_j} \subset I_{\delta_j}$ and $\overline{p}_j = 1$ for $j = 2, 3, \dots, n$. Put

$$\begin{split} \delta &\equiv 2^{-1} \inf\{\varepsilon > 0: \text{ sp } \tau^{p_n} \subset I_{\varepsilon}\} \ (<\pi/3), \\ p &\equiv p_n \phi([\delta, 2\delta + \varepsilon], p_n) \in Z(M^{\sigma}), \\ p_{n+1} &\equiv p + p_n (1 - \overline{p}) \in Z(M^{\sigma}) \end{split}$$

for some $\varepsilon \in (0, 2\pi - 6\delta)$. Then $\delta \leq \delta_{n+1}, p_{n+1} \leq p_n$ and $\overline{p_{n+1}} = 1$. Since p_n $(1 - \overline{p})\phi([\delta, 2\delta + \varepsilon], p_n) = 0$, we have

$$\operatorname{sp}^{p_n(1-\bar{p})}\tau^{p_n}\cap(\delta,2\delta+\varepsilon)=\emptyset$$
.

Since sp $\tau^q \subset \operatorname{sp}^q \tau^{p_n}$ and sp $\tau^q = -\operatorname{sp} \tau^q$ for $q \equiv p_n(1 - \overline{p})$,

$$\operatorname{sp} \tau^{p_n(1-\bar{p})} \subset \operatorname{sp} \tau^{p_n} \setminus \{(-2\delta - \varepsilon, -\delta) \cup (\delta, 2\delta + \varepsilon)\} \subset I_{\delta}.$$

Since $\operatorname{sp}^{f} \tau^{\phi(E,e)} \subset \operatorname{sp}^{f} \tau^{e} - E$ for $e, f \in Z(M^{\mathfrak{r}})$ in general,

Akio Ikunishi and Yoshiomi Nakagami

sp
$$\tau^{p} \subset$$
 sp $p_{n} \tau^{\phi([\delta, 2\delta + \varepsilon], p_{n})} \cap$ sp $\phi([\delta, 2\delta + \varepsilon], p_{n}) \tau^{p_{n}}$
 $\subset (I_{2\delta} - [\delta, 2\delta + \varepsilon]) \cap (I_{2\delta} + [\delta, 2\delta + \varepsilon]) \subset I_{\delta}.$

Consequently, we have

sp $\tau^{p_{n+1}} =$ sp $\tau^p \cup$ sp $\tau^{p_n(1-\bar{p})} \subset I_{\delta} \subset I_{\delta_{n+1}}$.

Putting $p(\delta) = p_{n+1}$ for $\delta \in [\delta_{n+1}, \delta_n)$, $n \in \mathbb{N}$, we have a family $\{p(\delta): \delta \in (0, 2\pi/3)\}$ with the desired property. Q.E.D.

Lemma 2.4. For any projection e in $Z(M^{\circ})$, put

$$S(e) \equiv \bigcap \{ \operatorname{sp}^{e} \tau^{p(\delta)} \colon \delta > 0 \}.$$

Then for any e_1, e_2, e_α, e, f in $Z(M^{\sigma})$ and any closed subset E of $(-\pi, \pi]$, it holds that

- (a) $S(e_1) \subset S(e_2)$ if $e_1 \leq e_2$;
- (b) $S(p(\delta)) \subset I_{\delta};$
- (c) $S(\phi(E, e)) \subset S(e) + E;$
- (d) $S(e) = \emptyset$ if and only if e = 0;
- (e) $(\cup S(e_{\alpha}))^{-}=S(\sup e_{\alpha});$
- (f) $\operatorname{sp}^{e} \tau^{f} \subset S(e) S(f); and$
- $(g) \quad eM^{\mathsf{r}}(E)f \subset M^{\mathsf{r}}(\{S(e) S(f)\} \cap E).$

Proof. (a) and (b) are obvious.(c) We have

$$S(\phi(E,e)) \equiv \bigcap_{\delta > 0} \operatorname{sp}^{\phi(E,e)} \tau^{p(\delta)} \subset \bigcap_{\delta > 0} (\operatorname{sp}^{e} \tau^{p(\delta)} + E).$$

Since E is compact, it follows that

$$\bigcap_{\delta>0} (\operatorname{sp}{}^{e} \tau^{p(\delta)} + E) = \bigcap_{\delta>0} \operatorname{sp}{}^{e} \tau^{p(\delta)} + E \equiv S(e) + E \,.$$

(d) e=0 clearly implies $S(e) = \emptyset$. By compactness, $S(e) = \emptyset$ implies $sp^e \tau^{p(\delta)} = \emptyset$ for some $\delta > 0$. Therefore $eMp(\delta) = \{0\}$. Since $\overline{p(\delta)} = 1$, e=0.

(e) For any $\delta > 0$ and $\varepsilon \in (0, \delta)$, since sp $\tau^{p(\delta)} \subset I_{\delta}$, $p(\delta)\phi(I_{\delta}, p(\varepsilon))$ is the carrier in $Z(M_{p(\delta)})$ of $p(\varepsilon)$ and hence $p(\delta) \leq \phi(I_{\delta}, p(\varepsilon))$. Therefore

(2.1)
$$\operatorname{sp}^{e} \tau^{p(\delta)} \subset \bigcap_{e>0} \operatorname{sp}^{e} \tau^{\phi(I_{\delta}, p(\varepsilon))} \subset S(e) + I_{\delta}.$$

Therefore

$$S(\sup e_{\alpha}) = \bigcap_{\delta > 0} (\bigcup_{\alpha} \operatorname{sp}^{e_{\alpha}} \tau^{p(\delta)})^{-} \subset \bigcap_{\delta > 0} (\bigcup_{\alpha} (S(e_{\alpha}) + I_{\delta}))^{-}$$
$$\subset \bigcap_{\delta > 0} (\bigcup_{\alpha} S(e_{\alpha}) + I_{\delta})^{-} = \bigcap_{\delta > 0} \{ (\bigcup_{\alpha} S(e_{\alpha}))^{-} + I_{\delta} \} = (\bigcup_{\alpha} S(e_{\alpha}))^{-}.$$

The converse inclusion is clear from (a).

(f) and (g) From (2.1) it follows that $eMp(\delta) \subset M^{r}(S(e) + I_{\delta})$ and $p(\delta)Mf \subset M^{r}(-S(f) + I_{\delta})$. Therefore

$$eMp(\delta)Mf \subset M^{r}(S(e) + I_{\delta})M^{r}(-S(f) + I_{\delta})$$

 $\subset M^{r}(S(e) - S(f) + I_{2\delta}).$

Since $\overline{p(\delta)} = 1$, $Mp(\delta)M$ is weakly total in M. Therefore

$$eMf \subset M^{\tau}(S(e) - S(f) + I_{2\delta}),$$

and hence

$$\operatorname{sp}^{e} \tau^{f} \subset S(e) - S(f) + I_{2\delta}$$
.

By the arbitrariness of $\delta > 0$, we have (f) and

$$eM^{\mathsf{r}}(E)f \subset M^{\mathsf{r}}(S(e) - S(f)) \cap M^{\mathsf{r}}(E)$$
$$= M^{\mathsf{r}}(\{S(e) - S(f)\} \cap E),$$

which is (g).

Lemma 2.5. Let

$$e(\lambda) = \sup \{ e \in Z(M^{\sigma}) \colon S(e) \subset (-\pi, \lambda] \}.$$

Then $\{e(\lambda): \lambda \in (-\pi, \pi]\}$ is a spectral resolution of the identity which satisfies

(h) $S(e(\lambda, \mu]) \subset [\lambda, \mu].$

Proof. It is clear that $e(\lambda)$ is increasing in λ . Since $S(e(\lambda)) \subset (-\pi, \lambda]$ by (e), we have

$$S(\lim_{\mu\downarrow\lambda} e(\mu)) \subset \bigcap_{\mu>\lambda} S(e(\mu)) \subset \bigcap_{\mu>\lambda} (-\pi,\mu] = (-\pi,\lambda],$$

and hence $\lim_{\mu \downarrow \lambda} e(\mu) \leq e(\lambda)$. Therefore $e(\lambda)$ is right continuous in λ .

Q.E.D.

Since $\overline{\langle t, \operatorname{sp} \sigma \rangle} \subset (-\pi, \pi)$ by assumption, it follows from (d) that

$$\lim_{\lambda \downarrow -\pi} e(\lambda) = 0 \quad \text{and} \quad \lim_{\lambda \uparrow \pi} e(\lambda) = 1.$$

(h) If $\alpha \in (-\pi, \lambda)$, there is a $\delta > 0$ with $\alpha + I_{2\delta} \in (-\pi, \lambda)$, and hence $S(\phi(\alpha + I_{\delta}, p(\delta))) \subset (-\pi, \lambda)$ by (c). It follows that $e((\lambda, \mu])\phi(\alpha + I_{\delta}, p(\delta)) = 0$ and hence $\alpha \notin \operatorname{sp}^{e(\lambda, \mu]}\tau^{p(\delta)}$. Therefore $\alpha \notin S(e(\lambda, \mu])$. Q.E.D.

Proof of (A) \Rightarrow (B). Suppose that $t \in \Xi^{\perp}$. The condition (A) assures the existence of a projection $q \in Z(M^{\sigma})$ with $\overline{q} = 1$ and $\langle t, \operatorname{sp} \sigma^{q} \rangle^{-} \subset (-2\pi/3, 2\pi/3)$. For the proof of $\Xi^{\perp} \subset G(\sigma)$ we may assume by Lemma 2.1 that $\langle t, \operatorname{sp} \sigma \rangle^{-} \subset (-2\pi/3, 2\pi/3)$.

Using a spectral resolution $\{e(\lambda): \lambda \in (-\pi, \pi]\}$ obtained in Lemma 2.5, we define a unitary $u \in Z(M^s)$ and a representation ρ of Z by

$$u \equiv \int_{-\pi}^{\pi} \exp(-i\lambda) e(d\lambda), \ \rho_n \equiv (\mathrm{Ad} \ u)^n.$$

We shall show that $M^{\mathfrak{r}}(E) \subset M^{\rho}(E)$ for any closed E. Then, by [2], we have $\rho = \tau$, and so, $t \in G(\sigma)$.

Assume that $\operatorname{sp}_r(x) \subset E$ and $g \in l^1(\mathbb{Z})$ such that \widehat{g} vanishes on a neighbourhood of E. It follows from (g) in Lemma 2.4 and (h) in Lemma 2.5 that

$$\rho(g) x = \sum_{n \in \mathbb{Z}} g(n) u^n x u^{*n}$$

= $\sum_n g(n) \int \int \exp\{i(\mu - \lambda)n\} e(d\lambda) x e(d\mu)$
= $\int \int \widehat{g}(\lambda - \mu) e(d\lambda) x e(d\mu) = 0.$

Therefore $sp_{\rho}(x) \subset E$.

Since $\Xi \subset \Gamma_1(\sigma)$ by the condition (A), the converse inclusion is clear from the following lemma, which is a partial generalization of [6, Theorem 2.3.1] for a factor.

According to [6, Lemma 2.3.8] we know that the spectrum $\operatorname{Sp}(\sigma_t)$ of σ_t on M as a Banach space is the closure $\langle t, \operatorname{sp} \sigma \rangle^-$ of $\{\langle t, \gamma \rangle : \gamma \in \operatorname{sp} \sigma\}$.

Lemma 2.6. $G(\sigma) \subset \Gamma_1(\sigma)^{\perp}$.

Proof. Suppose that $\sigma_{\iota}(x) = uxu^*$ for all $x \in M$ with $u \in M^{\sigma}$. Choose any $\varepsilon > 0$. Let \mathcal{F} be the family of sets of $(e_{\alpha}, \lambda_{\alpha})$ of spectral projections e_{α} of u and complex numbers λ_{α} of modulus 1 such that

- (a) $||ue_{\alpha} \lambda_{\alpha}e_{\alpha}|| < \varepsilon$; and
- (b) \bar{e}_{α} 's are mutually orthogonal.

Since \mathcal{F} is ordered by set inclusion, we have a maximal set $F \in \mathcal{F}$ by Zorn's lemma, say $F = \{(e_{\alpha}, \lambda_{\alpha}): (a), (b)\}$. By maximality, $\sum \overline{e}_{\alpha} = 1$. Let $e \equiv \sum e_{\alpha}$ and $v \equiv \sum \lambda_{\alpha}^{-1} u \overline{e}_{\alpha}$. Then $e \in M^{\sigma}$, v is a unitary in M^{σ} and

$$\sigma_t(x) = uxu^* = vxv^*$$

for $x \in M$. Since $||ve-e|| < \varepsilon$ and

$$\operatorname{Sp}(\sigma_t^e) \subset \{\lambda \mu^{-1}: \lambda, \mu \in \operatorname{Sp}(v_e)\},\$$

$$\begin{split} & \operatorname{Sp}(\sigma_{t}^{e}) \text{ is included in } \{z \in \mathbb{C} \colon |z| = 1, |z-1| < 2\varepsilon\}. \quad \text{If } \gamma \in \operatorname{sp} \sigma^{e}, \text{ then } |\langle t, \gamma \rangle - 1| < 2\varepsilon \text{ by } [6, \text{Lemma 2.3.8}]. \quad \text{Therefore } |\langle t, \gamma \rangle - 1| < 2\varepsilon \text{ for } \gamma \in \Gamma_{1}(\sigma). \\ & \text{Since } \varepsilon \text{ is arbitrary, } t \in \Gamma_{1}(\sigma)^{\perp}. \end{split}$$

Remark 2.1. If $\sigma \in \operatorname{Aut} M$ satisfies $\|\sigma - 1\| < 3^{1/2}$ and if G is an abelian subgroup of Aut M containing σ , then there exists a unitary $u \in M$ such that $\sigma = \operatorname{Ad} u$ and $\rho(u) = u$ for all $\rho \in G$.

Remark 2.2. Let $\sigma \in \operatorname{Rep}(G, M)$. Under the condition (A), if G satisfies the first axiom of countability, we can define S(e), $e \in Z(M^{\sigma})$ as a subset of $\widehat{G}/G(\sigma)^{\perp}$ and then $e(\dot{\gamma}) \in Z(M^{\sigma})$, $\dot{\gamma} \in \widehat{G}/G(\sigma)^{\perp}$ as a spectral measure u_s :

$$u_s \equiv \int \overline{\langle s, \dot{\gamma} \rangle} e(d\dot{\gamma}), \quad \sigma_s = \mathrm{Ad} \; u_s$$

for all $s \in G(\sigma)$.

Remark 2.3. Let $\sigma \in \operatorname{Rep}(G, M)$. If G is discrete, then $G(\sigma) = \Gamma_1(\sigma)^{\perp}$.

Proof of the implication $(B') \Rightarrow (C)$. From the condition (B) and

Lemma 2.6, we have $\Gamma_1(\sigma) \subset \Xi$. From the remaining condition of (B'), we have $\Xi \subset \Gamma_0(\sigma)$. Therefore $\Gamma_0(\sigma) = \Gamma_1(\sigma) = \Xi$. Q.E.D.

§3. Proofs of (ii) and (iii) in Theorem 1.1

In the following we denote the carrier projection of x by s(x) and the carrier of \hat{g} for $g \in L^1(G)$ by car \hat{g} .

Lemma 3.1. For any compact neighbourhood U of 0 in \widehat{G} and for any projections e_1 and e_2 in M^{σ} (resp. $Z(M^{\sigma})$) with $\overline{e}_1 = \overline{e}_2 = 1$ there exist projections f_1 and f_2 in M^{σ} (resp. $Z(M^{\sigma})$) such that $\overline{f}_1 = \overline{f}_2 = 1$, $f_1 \leq e_1, f_2 \leq e_2, \text{ sp } \sigma^{f_1} \subset U + \text{ sp } \sigma^{f_2}$ and $\text{ sp } \sigma^{f_2} \subset U + \text{ sp } \sigma^{f_1}$.

Proof. Since $\overline{e}_1 = \overline{e}_2 = 1$, there exists a non zero $x_0 \in M$ such that $x_0 = e_1 x_0 e_2$. There exists a $g_0 \in L^1(G)$ with car $\widehat{g}_0 - \operatorname{car} \widehat{g}_0 \subset U$ and $\sigma(g_0) x_0$ $\neq 0$. Put $y_0 \equiv \sigma(g_0) x_0$. Then $e_1 y_0 e_2 = y_0$ and $\operatorname{sp}_{\sigma}(y_0) - \operatorname{sp}_{\sigma}(y_0) \subset U$. Let $f_1^o \equiv \sup \{ \operatorname{s}(\sigma_t(y_0^*)) : t \in G \}$ and $f_2^o \equiv \sup \{ \operatorname{s}(\sigma_t(y_0)) : t \in G \}$. Then we have projections f_j^o in M^σ such that $0 < f_j^o \leq e_j$ for j = 1, 2.

Let \mathcal{F} be the family of sets of $(x_{\alpha}, g_{\alpha}) \in M \times L^{1}(G)$ such that

- (a) $x_{\alpha} = e_1 x_{\alpha} e_2 \neq 0;$
- (b) $\operatorname{car} \hat{g}_{\alpha} \operatorname{car} \hat{g}_{\alpha} \subset U$; and

(c) projections $\bar{f_1}^{\alpha}$ are mutually orthogonal, where $f_1^{\alpha} \equiv \sup \{s(\sigma_t (y_{\alpha}^*)): t \in G\}$ and $y_{\alpha} \equiv \sigma(g_{\alpha}) x_{\alpha}$.

Since \mathcal{F} is ordered by set inclusion, we have a maximal set $F \in \mathcal{F}$ by Zorn's lemma, say $F = \{(x_{\alpha}, g_{\alpha}) \in M \times L^{1}(G): (a), (b), (c)\}$. By maximality, $\sum \bar{f_{1}}^{\alpha} = 1$. Let $f_{2}^{\alpha} \equiv \sup\{s(\sigma_{t}(y_{\alpha})): t \in G\}$ and $f_{j} \equiv \sum f_{j}^{\alpha}$ for j=1, 2. Since $s(\sigma_{t}(y_{\alpha}^{*})) \sim s(\sigma_{t}(y_{\alpha}))$ in M for each $t \in G$, we have $\bar{f_{1}}^{\alpha} = \bar{f_{2}}^{\alpha}$ and $\bar{f_{1}} = \bar{f_{2}} = 1$.

Suppose that $\gamma \in \operatorname{sp} \sigma^{f_1}$. For any compact neighbourhood V of γ there exists a non zero x in $M^{\sigma}(V)$ with $x = f_1^{\alpha} x f_1^{\alpha}$ for some α . Since $x = f_1^{\alpha} x f_1^{\alpha}$, it follows that $\sigma_{t_2}(y_{\alpha}^*) x \sigma_{t_1}(y_{\alpha}) \neq 0$ for some t_1 and t_2 in G. Put $y \equiv \sigma_{t_2}(y_{\alpha}^*) x \sigma_{t_1}(y_{\alpha})$. Since $\operatorname{sp}_{\sigma}(y) \subset V - U$ and $y = f_2 y f_2$, we have $M^{\sigma}(V - U) \cap M_{f_2} \neq \{0\}$. Since $V \cap (U + \operatorname{sp} \sigma^{f_2}) \neq \emptyset$ and $U + \operatorname{sp} \sigma^{f_2}$ is closed, $\gamma \in U + \operatorname{sp} \sigma^{f_2}$.

The remaining inclusion is proved similarly as above. Q.E.D.

Lemma 3.2. $\Gamma_1(\sigma^e) = \Gamma_1(\sigma^{\bar{e}})$ for $e \in M^{\sigma}$.

Lemma 3.3. Let $\mathcal{F}(\sigma)$ be the set of all $\operatorname{sp} \sigma^e + V$ for e in M^{σ} (or $Z(M^{\sigma})$) with $\overline{e} = 1$ and compact neighbourhoods V of 0 in \widehat{G} . Then $\mathcal{F}(\sigma)$ is a filter base and $\Gamma_1(\sigma) = \cap \{F: F \in \mathcal{F}(\sigma)\}.$

These two lemmas are proved by combining Lemma 3.1 and similar arguments as the proofs of [6, Lemmas 2.3.3 and 2.3.4].

We are now ready to give a sufficient condition for a problem of Borchers which is proposed in the final remark in [4].

Proof of the implication (C) \Rightarrow (A) in (ii). Since $\Gamma_0(\sigma) = \Xi$, it follows that $\Xi \subset \operatorname{sp} \sigma^e$ for all non zero e in M^σ (or $Z(M^\sigma)$).

Suppose that f is a non zero projection in M^{σ} (or $Z(M^{\sigma})$). For any ε in (0, 1) and $t_j \in \Xi^{\perp}$ for j=1, 2, ..., n, V denotes the set of $\gamma \in \widehat{G}$ such that $1-\varepsilon < \operatorname{Re}\langle t_j, \gamma \rangle$ for all j=1, 2, ..., n. Let ϕ be the quotient mapping of \widehat{G} onto \widehat{G}/Ξ .

Since $\Gamma_0(\sigma) \subset \Gamma_0(\sigma^f) \subset \Gamma_1(\sigma^f) = \Gamma_1(\sigma^f) \subset \Gamma_1(\sigma)$, we have $\Gamma_0(\sigma^f) = \Gamma_1(\sigma^f) = \mathcal{I}_1(\sigma^f) = \mathcal{I}_1(\sigma^f)$ = \mathcal{I} . By restricting our argument to M_f , we may assume that f=1 for the moment. Since $\mathcal{F}(\sigma)$ in Lemma 3.3 is a filter base and \widehat{G}/\mathcal{I} is compact, $\{\phi(F): F \in \mathcal{F}(\sigma)\}$ is also a filter base of compact sets. Since $t_f \in \mathcal{I}^\perp$ for $j=1, 2, \dots, n$, we have $V + \mathcal{I} = V$ and hence $\phi^{-1}(\phi(V)) = V$. Since sp $\sigma + \Gamma_0(\sigma) = \text{sp } \sigma$, we have $\phi^{-1}(\phi(F)) = F$ for all $F \in \mathcal{F}(\sigma)$. Hence Lemma 3.3 implies that the intersection of all $\phi(F)$, $F \in \mathcal{F}(\sigma)$ is zero. Since \widehat{G}/\mathcal{I} is compact, $\phi(F)$ converges to 0 and hence there exists an $F \in \mathcal{F}(\sigma)$ such that $\phi(F) \subset \phi(V)$ or $F \subset V$.

Consequently, sp $\sigma^e \subset V$ for some non zero e in M^{σ} (or $Z(M^{\sigma})$) with $e \leq f$. Q.E.D.

The case $E = \{0\}$ is a special case where E^{\perp} is not discrete.

Making a slight modification of [13, Theorem 5.2], we have the following lemma.

Lemma 3.4. If G satisfies the second axiom of countability, a Borel multiplier $\alpha \in Z^2(G, T)$ with $\alpha(s, t) = \alpha(t, s)$ for $s, t \in G$ is trivial, namely, $\alpha \in B^2(G, T)$.

Proof. Let $G^{\alpha} \equiv G \times T$ be the extension of G by α , that is, the product is defined by

$$(3\cdot 1) \qquad (t_1, \lambda_1) (t_2, \lambda_2) \equiv (t_1 + t_2, \alpha(t_1, t_2) \lambda_1 \lambda_2)$$

for $(t_j, \lambda_j) \in G^{\alpha}$. G^{α} is given the product Borel structure of $G \times T$. Since G satisfies the second axiom of countability and $\alpha(s, t) = \alpha(t, s)$ for $s, t \in G, G^{\alpha}$ is a locally compact abelian group with respect to the Weil topology. Let j be an injection of T to G^{α} such that $j(\lambda) = (0, \lambda)$ for $\lambda \in T$. Since j(T) is a topological subgroup of G^{α} which is standard and j is a Borel measure isomorphism, j is a homeomorphism by a Mackey's theorem [13, Theorem 2.2]. Let \widehat{G}^{α} and j(T) denote the duals of G^{α} and j(T), respectively. Let l be a mapping of j(T) to T such that $l: (0, \lambda) \in j(T) \to \lambda \in T$. Then $l \in \widehat{j}(T)$. Since $\widehat{G}^{\alpha}/j(T)^{\perp}$ is isomorphic to $\widehat{j}(T)$, we have the corresponding $\chi^* \in \widehat{G}^{\alpha}/j(T)^{\perp}$ to $l \in \widehat{j}(T)$. If $\chi \in \chi^*$, then $\chi \in \widehat{G}^{\alpha}$ and $\chi = l$ on j(T). Put $\beta(t) \equiv \chi((t, 1))$. From (3.1) we have $\beta(t_1)\beta(t_2) = \beta(t_1+t_2)\alpha(t_1, t_2)$.

Remark 3.1. This lemma is partly generalized as the following. Every symmetric (i.e., $\alpha(s, t) = \alpha(t, s)$) multiplier is trivial for an abelian discrete group. For this we have only to assume the product topology on $G^{\alpha} = G \times T$ in the above proof.

Proof of (iii) in Theorem 1.1. We have only to prove that the condition (B) implies the condition (A). Since $0 \in \operatorname{sp}_{\sigma^e}(1_e)$ for any non zero e in M^{σ} (or $Z(M^{\sigma})$), we have $\Xi = \{0\} \subset \operatorname{sp} \sigma^e$.

Suppose that V is a neighbourhood of Ξ . Since $0 \in \Xi$, we may choose an open neighbourhood U of 0 with $(U-U)^- \subset V$. Since $G(\sigma)$ =G and M_* is separable, it follows from Lemma 3.4 and [8, 11, 12] that there exists a strongly continuous unitary representation u of G in M^σ such that $\sigma_t(x) = u_t x u_t^*$ for $x \in M$ and $t \in G$. By virtue of Stone's theorem, we have a spectral resolution

$$u_t = \int_{\Gamma} \overline{\langle t, \gamma \rangle} e(d\gamma),$$

where $e(d\gamma)$ is a spectral projection measure on \widehat{G} . Utilizing a $\gamma_0 \in \widehat{G}$ with $e(U+\gamma_0)f \neq 0$, we define a projection e by $e(U+\gamma_0)f$. Then $e \in M^{\sigma}$ (or $Z(M^{\sigma})$) and $0 < e \leq f$. For all $g \in L^1(G)$ with car $\widehat{g} \subset \widehat{G} \setminus (U-U)$ we have

$$e(\sigma(g)x)e = \int_{g} g(t) eu_{t}xu_{t}^{*}edt$$
$$= \int_{U} \int_{U} \widehat{g}(\gamma - \gamma')e(d\gamma)xe(d\gamma') = 0$$

for all $x \in M$. Therefore sp $\sigma^e \subset (U-U)^- \subset V$. Q.E.D.

Proof of Corollary 1.1. It is immediate from (iii) of Theorem 1.1.

The following proposition generalizes [6, Theorem 2.4.1].

Proposition 3.1. (i) If $Z(M^{\sigma}) \subset Z(M)$, then sp $\sigma = \Gamma_1(\sigma)$. In particular, if M^{σ} is a factor, $\Gamma_0(\sigma) = \Gamma_1(\sigma)$.

(ii) If $\Gamma_0(\sigma) = \Gamma_1(\sigma) = \Xi$ and Ξ is discrete, then sp $\sigma = \Xi$ is necessary and sufficient for $Z(M^{\sigma}) \subset Z(M)$.

Proof. (i) Let $e \in M^{\sigma}$ and f the carrier in $Z(M^{\sigma})$. If $\gamma \in \operatorname{sp} \sigma^{f}$, there exists an $x \in M$ such that $\operatorname{sp}_{\sigma}(x) \cap (V+\gamma) \neq \emptyset$ for any neighbourhood V of 0. Since f is the carrier in $Z(M^{\sigma})$ of e, there exist y and z in M^{σ} with $ezxye\neq 0$. Since $\operatorname{sp}_{\sigma}(ezxye) = \operatorname{sp}_{\sigma}(x)$, $\gamma \in \operatorname{sp} \sigma^{e}$ and hence $\operatorname{sp} \sigma^{f} \subset \operatorname{sp} \sigma^{e}$, which implies $\operatorname{sp} \sigma^{e} = \operatorname{sp} \sigma^{f}$. Consequently, $\Gamma_{1}(\sigma) = \cap \{\operatorname{sp} \sigma^{f}: f \in Z(M^{\sigma}) \text{ and } \overline{f} = 1\}$. Since $Z(M^{\sigma}) \subset Z(M)$, we have $\operatorname{sp} \sigma = \Gamma_{1}(\sigma)$.

(ii) By (i) we have only to show the sufficiency. First we shall show that if e_1 and e_2 in M^{σ} have mutually orthogonal central carriers, then $\bar{e}_1\bar{e}_2=0$. Suppose that $e_1\in M^{\sigma}$, $e_2\in M^{\sigma}$ and $\bar{e}_1\bar{e}_2\neq 0$. Then there exists a non zero $x\in M$ such that $e_1xe_2=x$ and $\operatorname{sp}_{\sigma}(x)=\{\gamma\}$ for some $\gamma\in \Xi$. Put $e_3\equiv \operatorname{s}(x)$. Since $\Gamma_1(\sigma^{e_3})=\Xi$ by Lemma 3.2 and since $\Gamma_1(\sigma^{e_3})$ $=\operatorname{sp} \sigma^{e_3}$ from the assumption that $\Xi=\operatorname{sp} \sigma$, it follows that there exists a non zero $y\in M_{e_3}$ with $\operatorname{sp}_{\sigma}(y)=\{-\gamma\}$. Then $e_1xye_2=xy\neq 0$ and $xy\in M^{\sigma}$. Thus the product of central carriers of e_1 and e_2 is non zero.

Now, suppose $e \in Z(M^{e})$. Since e(1-e) = 0, we have $\overline{e}(1-e) = 0$ from the above. Since $1 = e + (1-e) \leq \overline{e} + \overline{(1-e)} \leq 1$, we have $e = \overline{e}$, namely, $e \in Z(M)$.

Q.E.D.

Remark 3.2. Assume that \widehat{G}/\overline{Z} is compact. If M^{σ} is a factor, then the conditions (A), (B) and (C) are equivalent. For this we have only to show that (B) implies (C). Since $G(\sigma)$ is discrete by assumption, there exists by Lemma 4.4 a $\sigma' \in \operatorname{Rep}(G, M)$ such that $\sigma' \sim \sigma$, $Z(M^{\sigma'})$ $= Z(M^{\sigma})$ and $G(\sigma) = (\operatorname{sp} \sigma')^{\perp}$. If M^{σ} is a factor, then $M^{\sigma'}$ is a factor and hence $\Gamma_0(\sigma') = \Gamma_1(\sigma') = \operatorname{sp} \sigma'$ by Proposition 3.1. Therefore $\operatorname{sp} \sigma'$ is a group and hence $\Xi = G(\sigma)^{\perp} = \operatorname{sp} \sigma' = \Gamma_1(\sigma')$ by (B). Since $\Gamma_0(\sigma) = \Gamma_1(\sigma)$ by Proposition 3.1 and $\Gamma_1(\sigma) = \Gamma_1(\sigma')$ by Lemma 4.3, we have $\Gamma_0(\sigma)$ $= \Gamma_1(\sigma) = \Xi$, which is (C).

§ 4. Proof of $(B) \Rightarrow (C)$ and S-Set

In the following $I_{\varepsilon}(\lambda)$ denotes the ε -neighbourhood of $\lambda \in \mathbb{R}$, namely, the open interval $(\lambda - \varepsilon, \lambda + \varepsilon)$.

Proposition 4.1. For a $\sigma \in \text{Rep}(\mathbf{R}, M)$ there exist projections q_0 , q_{∞} in $Z(M^{\sigma}) \cap Z(M)$ and an increasing left continuous spectral resolution $\{p(\lambda) \in Z(M^{\sigma}) \cap Z(M): \lambda > 0\}$ of $q_{\infty} - q_0$ such that

- (i) $\Gamma_0(\sigma^{q_0}) = \Gamma_1(\sigma^{q_0}) = \{0\};$
- (ii) $\Gamma_0(\sigma^{1-q_\infty}) = \Gamma_1(\sigma^{1-q_\infty}) = \mathbf{R};$

(iii) for any non zero $\lambda \in \text{Sp } h$ $(h \equiv \int \lambda p(d\lambda)), \varepsilon_0 \in (0, \lambda)$ and $\varepsilon \in (0, \varepsilon_0)$ there exists a non zero projection $e \in Z(M^{\circ})$ majorized by $p(\lambda + \varepsilon_0) - p(\lambda - \varepsilon_0)$ satisfying that $\operatorname{sp} \sigma' \subset I_{\varepsilon}(\lambda) \mathbb{Z} \cup I_{\varepsilon}(0)$ and $\operatorname{sp} \sigma' \cap nI_{\varepsilon}(\lambda) \neq \emptyset$ for all $n \in \mathbb{N}$ and $f \in Z(M^{\circ})$ with $0 < f \le e$;

(iv) if $\lambda \in \text{Sp } h$ and $\lambda > 0$, then $\lambda \mathbb{Z} \subset \Gamma_1(\sigma)$; and

(v) if $\lambda \in \text{Sp } h$ is isolated and $q_{\lambda} \equiv p(\lambda+0) - p(\lambda)$, then $\Gamma_0(\sigma^{q_{\lambda}}) = \Gamma_1(\sigma^{q_{\lambda}}) = \lambda \mathbb{Z}$.

Proof. (i) Let \mathcal{F}_0 be the set of all projections $p \in Z(M^{\sigma}) \cap Z(M)$ such that for any $e \in Z(M^{\sigma}) \cap Z(M)$ with $0 < e \le p$ and for any $\lambda > 0$ and $\delta \in (0, \lambda/2)$ there exists a projection $f \in Z(M^{\sigma})$ with $0 < f \le e$ and sp $\sigma^{f} \cap$ $(\delta, \lambda - \delta) = \emptyset$. Put $q_0 = \sup\{p: p \in \mathcal{F}_0\}$. Using Zorn's lemma, we have a projection $e_0 \in Z(M^{\sigma})$ such that $\bar{e}_0 = q_0$ and sp $\sigma^{e_0} \cap (\delta, \lambda - \delta) = \emptyset$. Therefore

$$\Gamma_1(\sigma^{q_0}) \subset \bigcap_{\lambda>0, 0 < \delta < \lambda/2} \mathbf{R} \setminus \{(-\lambda + \delta, -\delta) \cup (\delta, \lambda - \delta)\} = \{0\},\$$

and hence $\Gamma_0(\sigma^{q_0}) = \Gamma_1(\sigma^{q_0}) = \{0\}.$

(ii) Let \mathscr{F}_{∞} be the set of all projections $e \in Z(M^{\sigma})$ such that sp $\sigma^{e} \neq \mathbf{R}$. Put $q_{\infty} \equiv \sup\{\overline{e}: e \in \mathscr{F}_{\infty}\}$. Then $q_{0} \leq q_{\infty}$ and $\Gamma_{0}(\sigma^{1-q_{\infty}}) = \Gamma_{1}(\sigma^{1-q_{\infty}})$ = \mathbf{R} . Moreover, $q_{\infty} \in Z(M^{\sigma}) \cap Z(M)$.

For the proof of the remaining part we must prepare the following two lemmas. Before going into the proof we recall that if sp $\sigma \cap (\delta, \lambda - \delta)$ $\neq \emptyset$ with $0 < 2\delta < \lambda$ then for any $\varepsilon > 0$ there exist a $\lambda_0 \in (\delta, \lambda - \delta)$ and a non zero $x \in M$ such that

$$\operatorname{sp}_{\sigma}(x) \subset I_{\varepsilon}(\lambda_0) \cap (\delta, \lambda - \delta).$$

Lemma 4.1. Assume that $q_0=1-q_{\infty}=0$. For any $\lambda > 0$ and $\delta \in (0, \lambda/2)$ let $\mathcal{F}_{\lambda,\delta}$ be the set of all projections e in $Z(M^{\sigma}) \cap Z(M)$ such that if f is a projection in $Z(M^{\sigma})$ with $0 < f \le e$ then $\operatorname{sp} \sigma^{f} \cap (\delta, \lambda - \delta) \neq \emptyset$. If

$$p(\lambda) = \sup_{0 < 2\delta < \lambda} \sup \{e : e \in \mathcal{F}_{\lambda,\delta}\},\$$

then $\{p(\lambda): \lambda > 0\}$ is an increasing and left continuous spectral resolution of the identity.

Proof. In the following we denote $\sup\{e: e \in \mathcal{F}_{\lambda,\delta}\}$ by $p(\lambda, \delta)$. Since $p(\lambda, \delta) \leq p(\mu, \delta)$ for $0 < \lambda \leq \mu$, it follows that $p(\lambda) \leq p(\mu)$ for $0 < \lambda \leq \mu$. Therefore $p(\lambda)$ is increasing in $\lambda > 0$.

Since $\mathcal{F}_{\lambda,\varepsilon+\delta} \subset \mathcal{F}_{\lambda-\varepsilon,\delta}$, it follows that

$$\begin{split} \lim_{\varepsilon \downarrow 0} p(\lambda - \varepsilon) &= \sup_{\varepsilon > 0} p(\lambda - \varepsilon) = \sup_{\varepsilon > 0} \sup_{\delta > 0} p(\lambda - \varepsilon, \delta) \\ &\geq \sup_{\varepsilon > 0} \sup_{\delta > 0} p(\lambda, \varepsilon + \delta) = p(\lambda), \end{split}$$

and hence that $p(\lambda)$ is left continuous.

Putting $p_{\infty} \equiv 1 - \lim_{\lambda \to \infty} p(\lambda)$, we have $p_{\infty} \in Z(M^{\circ}) \cap Z(M)$ and

$$p_{\infty} = \inf_{\lambda > 0} \inf_{\delta > 0} (1 - p(\lambda, \delta)).$$

Suppose that $p_{\infty} \neq 0$. If e is a projection in $Z(M^{\sigma}) \cap Z(M)$ with $0 < e \le p_{\infty}$, then for any $\lambda > 0$ and $\delta \in (0, \lambda/2)$ there exists a projection $f \in Z(M^{\sigma})$ with $0 < f \le e$ and sp $\sigma' \cap (\delta, \lambda - \delta) = \emptyset$. Thus $p_{\infty} \le q_0$. Since $q_0 = 0$ by assumption, it follows that $\lim_{\lambda \to \infty} p(\lambda) = 1$.

Putting $p_0 \equiv \lim_{\lambda \to 0} p(\lambda)$, we have $p_0 \in Z(M^{\sigma}) \cap Z(M)$ and

$$p_0 = \inf_{\lambda > 0} \sup \{ p(\lambda, \delta) : 0 < 2\delta < \lambda \}.$$

Suppose that $p_0 \neq 0$. If *e* is a projection in $Z(M^{\sigma})$ with $0 < e \leq p_0$, then for any $\lambda > 0$ there exist a $\delta \in (0, \lambda/2)$ and a projection $e_0 \in Z(M^{\sigma})$, $0 < e_0$ $\leq ep(\lambda, \delta)$ such that sp $\sigma^{f} \cap (\delta, \lambda - \delta) \neq \emptyset$ whenever $f \in Z(M^{\sigma})$ and 0 < f $\leq e_0$.

For any $\mu > 0$ and its ε -neighbourhood $I_{\varepsilon}(\mu) \subset \mathbf{R}_+$ we shall show $I_{\varepsilon}(\mu) \cap \operatorname{sp} \sigma^{\varepsilon}$ is non empty. For a given ε we have a positive $\lambda < \varepsilon$, for which we get a δ and a projection e_0 as above. Choose an $n \in \mathbb{N}$ so that $\mu \leq n\delta$ and put $\eta \equiv \delta/n$. Since $\operatorname{sp} \sigma^{\varepsilon_0} \cap (\delta, \lambda - \delta) \neq \emptyset$, we have a non zero $x_1 \in M_{\varepsilon_0}$ and a $\lambda_1 \in (\delta, \lambda - \delta)$ satisfying

$$\operatorname{sp}_{\sigma}(x_1) \subset I_{\eta}(\lambda_1) \cap (\delta, \lambda - \delta).$$

Let f_1 be the carrier in $Z(M^{\sigma})$ of

$$\sup\{\sigma_t(s(x_1)):t\in \mathbf{R}\},\$$

where $s(x_1)$ denotes the carrier of x_1 . Since $f_1 \in Z(M^{\sigma})$ and $0 < f_1 \le e_0$, we have $\operatorname{sp} \sigma^{f_1} \cap (\delta, \lambda - \delta) \neq \emptyset$. Therefore we have a non zero $x_2 \in M_{f_1}$ and a $\lambda_2 \in (\delta, \lambda - \delta)$ satisfying $\operatorname{sp}_{\sigma}(x_2) \subset I_{\tau}(\lambda_2) \cap (\delta, \lambda - \delta)$. Since $x_2 \in M_{f_1}$, we have a $v_1 \in M^{\sigma}$ and a $t_1 \in \mathbf{R}$ with

$$y_2 \equiv \sigma_{t_1}(x_1) v_1 x_2 \neq 0$$
.

Let f_2 be the carrier in $Z(M^{\sigma})$ of

$$\sup \{ \sigma_t(\mathbf{s}(y_2)) \colon t \in \mathbf{R} \}.$$

Since $f_2 \in Z(M^{\sigma})$ and $0 < f_2 \le e_0$, we have sp $\sigma^{f_2} \cap (\delta, \lambda - \delta) \neq \emptyset$. We repeat the similar argument as above and obtain sets $\{x_1, \dots, x_n\} \subset M$ and $\{\lambda_1, \dots, \lambda_n\} \subset (\delta, \lambda - \delta)$ satisfying

$$\operatorname{sp}_{\sigma}(x_j) \subset I_{\eta}(\lambda_j) \cap (\delta, \lambda - \delta)$$

for $j=1, \dots, n$. Since f_j is the carrier in $Z(M^{\sigma})$ of

$$\sup \{ \sigma_t(\mathbf{s}(y_i)) : t \in \mathbf{R} \}$$

and $x_{j+1} \in M_{f_j}$ for $j=2, \dots, n$, we have sets $\{v_1, \dots, v_{n-1}\} \subset M^\sigma$ and $\{t_1, \dots, t_{n-1}\} \subset \mathbf{R}$ satisfying

$$y_k \equiv \sigma_{t_{k-1}}(\cdots \sigma_{t_2}(\sigma_{t_1}(x_1)v_1x_2)v_2x_3\cdots)v_{k-1}x_k \neq 0$$

for all $k=2, \dots, n$. Since $\operatorname{sp}_{\sigma}(y_k) \subset \{\sum_{j=1}^k \operatorname{sp}_{\sigma}(x_j)\}^-$, we have

$$\operatorname{sp}_{\sigma}(y_k) \subset \sum_{j=1}^k I_{\eta}(\lambda_j) \subset I_{n\eta}(\sum_{j=1}^k \lambda_j).$$

Since $\mu \leq n\delta < \sum_{j=1}^{n} \lambda_j$, $\delta < \lambda_j < \lambda - \delta$ and $\lambda < \varepsilon$, there exists an $m \in N$, m < nwith $\mu - \varepsilon < \sum_{j=1}^{m} \lambda_j < \mu$. Since $\delta = n\eta$, we have $I_{\delta}(\sum_{j=1}^{m+1} \lambda_j) \subset I_{\varepsilon}(\mu)$, and hence

$$y_{m+1} \in M_{e_0} \subset M_e$$
 and $\operatorname{sp}_{\sigma}(y_{m+1}) \subset I_{\varepsilon}(\mu)$.

Since ε can be arbitrarily small, it follows that $\mu \in \operatorname{sp} \sigma^{\epsilon}$. Since $\mu(>0)$ is arbitrary, $\operatorname{sp} \sigma^{\epsilon} = \mathbf{R}$. The arbitrariness of $e \in Z(M^{\sigma})$ with $0 < e \leq p_0$ implies that $\Gamma_0(\sigma^{p_0}) = \mathbf{R}$. Since $q_{\infty} = 1$ by assumption, we have a contradiction. Thus $p_0 = 0$, namely, $\lim_{\lambda \to 0} p(\lambda) = 0$. Q.E.D.

The idea of the following lemma is essentially due to Borchers, [4].

Lemma 4.2. For any $\varepsilon \in (0, \lambda/2)$ let p be a non-zero projection in $Z(M^{\mathfrak{s}})$ satisfying $\operatorname{sp} \sigma^{\mathfrak{s}} \cap I_{\varepsilon}(\lambda) \neq \emptyset$ for all $e \in Z(M^{\mathfrak{s}})$ with $0 < e \leq p$. For a non-zero projection q in $Z(M^{\mathfrak{s}})$ if l(q) is defined by

$$\sup\{k(e):e\in Z(M^{o}),\ 0< e\leq q\},\$$

where k(e) denotes the supremum length of subintervales of $(0, \lambda + \varepsilon)$ \sp σ^{e} , then

(i) sp $\sigma^e \cap nI_{\varepsilon}(\lambda) \neq \emptyset$ for all $e \in Z(M^{\sigma})$ with $0 < e \leq p$ and $n \in \mathbb{Z}$; and

(ii) for any $\delta > 0$ there exists a projection e in $Z(M^{\sigma})$ such that $0 < e \leq p$ and sp $\sigma^{e} \subset I_{\delta}(l(p)) \mathbb{Z} \cup I_{\delta}(0)$.

Proof. (i) We shall use an induction argument. Suppose that sp $\sigma^e \cap nI_{\varepsilon}(\lambda) \neq \emptyset$ for some n > 0. For a non zero x in $M^{\sigma^e}(nI_{\varepsilon}(\lambda))$ let $f \equiv \sup\{\sigma_t(\mathbf{s}(x)): t \in G\}$. Then $0 < f \le e \le p$. Since sp $\sigma^f \cap I_{\varepsilon}(\lambda) \neq \emptyset$ by as-

sumption, we have a non zero y in $M^{\sigma t}(I_{\varepsilon}(\lambda))$. Since $0 < f \le e$ and $\sigma_t^e(x)y \neq 0$ for some $t \in G$, we have sp $\sigma^e \cap (n+1)I_{\varepsilon}(\lambda) \neq \emptyset$.

(ii) We have nothing to prove if $\delta > 2^{-1}l(p)$. For any positive $\delta \le 2^{-1}l(p)$ there exists a projection $e \in Z(M^{\sigma})$ such that $0 < e \le p$ and $k(e) > l(p) - \delta$. Put $l \equiv l(p)$. We have then a subinterval $(2^{-1}\delta, l-2^{-1} \cdot \delta) + \lambda_0$ of $(0, \lambda + \varepsilon) \setminus p \sigma^e$ for some $\lambda_0 \in \mathbf{R}$. We shall show by induction that $(n-1)l+n\delta$, $n(l-\delta)) \cap p \sigma^e = \emptyset$ for all $n \in N$ with $n < (2\delta)^{-1}l$. For n=1 we assume the contrary. Let $\phi(E, e)$ for $e \in M^{\sigma}$ denote the projection onto the subspace spanned by $M^{\sigma}(E)e\mathcal{H}$. For any $\lambda \in (\delta, l-\delta) \cap p \sigma^e$ we have

$$e' \equiv e\phi([-\delta', \delta'] + \lambda, e)$$

for $\delta' \in (0, \min\{\lambda - \delta, l - \delta - \lambda\})$. Since $\lambda \in \operatorname{sp} \sigma^e$, we have $e' \neq 0$ and $\operatorname{sp} \sigma^{e'} \subset \operatorname{sp} \sigma^e \cap (\operatorname{sp} \sigma^e - I_{\delta'}(\lambda)^-)$, for $\operatorname{sp}^e \sigma^{\phi(E,e)} \subset \operatorname{sp} \sigma^e - E$ with $E \equiv I_{\delta'}(\lambda)^-$. Therefore $\mathbf{s} \supset \sigma^{e'}$ is disjoint from

$$egin{aligned} &(\lambda_0+2^{-1}\delta,\lambda_0+l-2^{-1}\delta)\cup(\lambda_0+2^{-1}\delta-\lambda+\delta',\lambda_0+l-2^{-1}\delta-\lambda-\delta')\ &=(\lambda_0-\lambda+2^{-1}\delta+\delta',\lambda_0+l-2^{-1}\delta). \end{aligned}$$

Since $\lambda_0 + l - 2^{-1}\delta > 0$ and $0 \in \operatorname{sp} \sigma^{e'}$, $\lambda_0 - \lambda + 2^{-1}\delta + \delta' > 0$. The length l'of the interval on the right hand side is $l - \delta + \lambda - \delta'$. Since $l < l' \le l(e')$, we have a contradiction. Thus $\operatorname{sp} \sigma^e$ is disjoint from $(\delta, l - \delta)$. Suppose that the result is true for n > 1 $(n < (2\delta)^{-1}l - 1)$. If $(nl + (n+1)\delta, (n+1)$ $(l - \delta)) \cap \operatorname{sp} \sigma^e \neq \emptyset$, then

$$f \equiv e\phi([-\delta'', \delta''] + \mu, e)$$

is non zero for any fixed

$$\mu \in (nl+(n+1)\delta, \ (n+1)(l-\delta)) \cap \operatorname{sp} \sigma^{\epsilon}$$
$$\delta'' \in (0, \min\{\mu-nl-(n+1)\delta, \ (n+1)(l-\delta)-\mu\}).$$

Since $\mu \in \operatorname{sp} \sigma^e$, we have $f \neq 0$ and $\operatorname{sp} \sigma^f \subset \operatorname{sp} \sigma^e \cap (\operatorname{sp} \sigma^e - I_{\delta''}(\mu)^-)$. Therefore $\operatorname{sp} \sigma^f$ is disjoint from

$$(-l+\delta, -\delta) \cup ((n-1)l+n\delta-\mu+\delta'', n(l-\delta)-\mu-\delta'')$$
$$= ((n-1)l+n\delta-\mu+\delta'', -\delta),$$

whose length is larger than l, for sp $\sigma' = -sp \sigma'$. This contradicts

with the fact that $l(f) \leq l(p) \equiv l$. Thus the result is true for n+1. Q.E.D.

Proof of Proposition 4.1. (Continued). By our previous proofs of (i) and (ii) we may assume that $q_0=1-q_{\infty}=0$ in the ramaining part of the proof.

(iii) Suppose that λ is a non zero element of Sp *h*. For any $\varepsilon \in (0, \varepsilon_0/3)$

$$p \equiv p(\lambda + \varepsilon) - p(\lambda - \varepsilon) > 0.$$

Since $p(\lambda+\varepsilon) = \sup_{\delta>0} p(\lambda+\varepsilon, \delta)$, there exists a projection q in $Z(M^{\sigma}) \cap Z(M)$ such that $qp(\lambda-\varepsilon)=0$ and $0 < q \le p(\lambda+\varepsilon, \delta)$ for some $\delta \in (0, \varepsilon/2)$. Since $qp(\lambda-\varepsilon)=0$, there exists a projection $e' \in Z(M^{\sigma})$ with $0 < e' \le q$ and sp $\sigma^{e'} \cap (\delta, \lambda-\varepsilon-\delta)=\emptyset$. On the other hand, since $0 < q \le p(\lambda+\varepsilon, \delta)$, if $f \in Z(M^{\sigma})$ and $0 < f \le q$ then sp $\sigma^{f} \cap (\delta, \lambda+\varepsilon-\delta) \neq \emptyset$. Therefore, if $f \in Z(M^{\sigma})$ and $0 < f \le e'$, then sp $\sigma^{f} \cap I \neq \emptyset$ with $I \equiv (\lambda-2^{-1}3\varepsilon, \lambda+\varepsilon)$ and hence sp $\sigma^{f} \cap nI \neq \emptyset$ by (i) in Lemma 4.2. Furthermore, we can define l(e') by the same way as in Lemma 4.2. It follows from the above that $\lambda-2\varepsilon < l(e') < \lambda+\varepsilon$. By virtue of (ii) in Lemma 4.2 we have a projection $e \in Z(M^{\sigma})$ with $0 < e \le e'$ and sp $\sigma^{e} \subset I_{\varepsilon}(l(e')) Z \cup I_{\varepsilon}(0)$. Then for any $f \in Z(M^{\sigma})$ with $0 < f \le e$ we have

$$\operatorname{sp} \sigma^{f} \subset I_{\varepsilon}(l(e')) \mathbb{Z} \cup I_{\varepsilon}(0) \subset I_{\mathfrak{s}\varepsilon}(\lambda) \mathbb{Z} \cup I_{\mathfrak{s}\varepsilon}(0).$$

Considering 3ε as ε , we have (iii).

(iv) Suppose that $\lambda \in \text{Sp } h$ and $\lambda > 0$. We shall use the same notation as in (iii). For any $\varepsilon \in (0, \varepsilon_0)$ let \mathcal{F} be the set of all projections $e \in Z(M^{\sigma})$ satisfying the same condition as in (iii). Put $e_{\varepsilon} \equiv \sup\{e: e \in \mathcal{F}\}$. For any $p \in Z(M^{\sigma})$ with $\overline{p} = 1$ we set $p_{\varepsilon} \equiv p\overline{e}_{\varepsilon}$. By means of Lemma 3.1 since $\overline{p}_{\varepsilon} = \overline{e}_{\varepsilon}$ there exist projections e_1 and e_2 in $Z(M^{\sigma})$ such that $e_1 \leq e_{\varepsilon}, e_2 \leq p_{\varepsilon}, \overline{e}_1 = \overline{e}_2 = \overline{e}_{\varepsilon}$ and sp $\sigma^{e_1} \subset \operatorname{sp} \sigma^{e_2} + I_{\varepsilon}(0)$. This inclusion relation and the condition in (iii) imply that $(\operatorname{sp} \sigma^{e_2} + I_{\varepsilon}(0)) \cap nI_{\varepsilon}(\lambda) \neq \emptyset$ for all $n \in \mathbb{N}$. Since $e_2 \leq p$, we have

$$(\operatorname{sp} \sigma^p + I_{\varepsilon}(0)) \cap nI_{\varepsilon}(\lambda) \neq \emptyset$$

for all $n \in \mathbb{N}$. Since ε is arbitrary, $\lambda \mathbb{Z} \subset \operatorname{sp} \sigma^p$ and hence $\lambda \mathbb{Z} \subset \Gamma_1(\sigma)$.

(v) Since λ is isolated in Sp h, Sp $h \cap (\lambda - \varepsilon_0, \lambda + \varepsilon_0) = \{\lambda\}$ for some $\varepsilon_0 > 0$. For any $\varepsilon \in (0, \varepsilon_0)$ let \mathcal{F}_{λ} be the family of sets of non zero projections e' in Z(M'') with mutually orthogonal carriers in Z(M) majorized by $q_{\lambda} \equiv p(\lambda + \varepsilon) - p(\lambda)$ satisfying that if $f \in Z(M'')$ and $0 < f \le e'$ then sp $\sigma' \subset I_{\varepsilon}(\lambda) \mathbb{Z} \cup I_{\varepsilon}(0)$ and sp $\sigma' \cap nI_{\varepsilon}(\lambda) \neq \emptyset$ for all $n \in \mathbb{N}$. Since \mathcal{F}_{λ} is ordered by set inclusion and inductive, we have a maximal $\{e_{\iota} : \iota \in I\} \in \mathcal{F}_{\lambda}$ by Zorn's lemma. Put $p_{\lambda} \equiv \sup\{\bar{e}_{\iota} : \iota \in I\}$. If $q_{\lambda} - p_{\lambda} \neq 0$, there exists by (iii) a non zero projection $e'' \in Z(M'')$ satisfying the same condition as $e_{\iota} \in \mathcal{F}_{\lambda}$ and $\bar{e}'' \bar{e}_{\iota} = 0$ for all $\iota \in I$, which contradicts with the maximality of \mathcal{F}_{λ} . Thus $q_{\lambda} = p_{\lambda}$. Putting $e \equiv \sup\{e_{\iota} : \iota \in I\}$, we have $\bar{e} = q_{\lambda}$ and sp $\sigma' \subset I_{\varepsilon}(\lambda) \mathbb{Z} \cup I_{\varepsilon}(0)$. Since ε is arbitrary, we have $\Gamma_1(\sigma^{q_1}) \subset \lambda \mathbb{Z}$.

Suppose that $\Gamma_0(\sigma^{q_1}) \neq \lambda \mathbb{Z}$. Since $\Gamma_0(\sigma^{q_1})$ is a subgroup, there exists a projection $e_{\lambda} \in \mathbb{Z}(M^{\sigma})$ such that $0 < e_{\lambda} \leq q_{\lambda}$ and sp $\sigma^{e_1} \cap I_{\delta}(\lambda) = \emptyset$ for some $\delta > 0$. Here we may assume that the above ε is less than $\delta/2$. Since $\overline{e}_{\lambda} \leq \overline{e}$, it follows from Lemma 3.1 that there are projections e_1 and e_2 in $\mathbb{Z}(M^{\sigma})$ such that $e_1 \leq e_{\lambda}$, $0 < e_2 \leq e$ and sp $\sigma^{e_2} \subset \operatorname{sp} \sigma^{e_1} + I_{\delta/2}(0)$. This inclusion relation contradicts with the fact that

$$I_{\mathfrak{d}/2}(\lambda)\cap \mathrm{sp}\ \sigma^{e_2}{
eq} \emptyset,\ I_{\mathfrak{d}/2}(\lambda)\cap (\mathrm{sp}\ \sigma^{e_1}{+}I_{\mathfrak{d}/2}(0))=\emptyset \ .$$

Q.E.D

Thus $\Gamma_0(\sigma^{q_\lambda}) = \lambda \mathbf{Z}$ and hence (v) follows.

Remark 4.1. Let G be the additive group **R** and $\sigma \in \text{Rep}(\mathbf{R}, M)$. If sp σ is compact, then $\Gamma_0(\sigma) = \Gamma_1(\sigma) = \{0\}$.

From the above proposition we have the following one.

Proposition 4.2. The condition (B) implies the condition (C), if one of the following two assumptions is satisfied:

(i) $G = G(\sigma)$; and

(ii) G is the additive group **R** or **Z** with the usual topology, $G(\sigma) \neq \{0\}$ and $\Gamma_0(\sigma) \neq \{0\}$.

For any σ and σ' in Rep(G, M), $\sigma \sim \sigma'$ if there exists a strongly continuous mapping u of G to the unitaries in M such that $u_{s+t} = u_s \sigma_s(u_t)$ and $\sigma_t'(x) = u_t \sigma_t(x) u_t^*$ for $s, t \in G$ and $x \in M$. This equivalence relation " \sim " is called an "exterior equivalence" by Connes. The following lemma follows immediately from Lemma 3.1.

Lemma 4.3. If
$$\sigma \sim \sigma'$$
, then $\Gamma_1(\sigma) = \Gamma_1(\sigma')$.

The following lemma is used to relate the $\Gamma_0(\sigma)$ with the algebraic invariant S(M) which was defined in Section 1 for a general von Neumann algebra M.

Lemma 4.4. Assume either that $G(\sigma)$ is discrete or that $G(\sigma)$ is closed and satisfies the second axiom of countability and M_* is separable. Then there exists a $\sigma' \in \operatorname{Rep}(G, M)$ such that $\sigma' \sim \sigma$, $M^{\sigma} \subset M^{\sigma'}$, $Z(M^{\sigma'}) \subset Z(M^{\sigma})$ and $G(\sigma) = G(\sigma') = (\operatorname{sp} \sigma')^{\perp}$.

Proof. By similar discussions as in the proof of Lemma 3.4 and Remark 3.1, we have a strongly continuous unitary representation v of $G(\sigma)$ in $Z(M^{\sigma})$ such that $\sigma_s(x) = v_s x v_s^*$ for $x \in M$ and $s \in G(\sigma)$. Since $G(\sigma)$ is a closed subgroup of G, it follows from [6, Lemma 3.3.12] that there exists a strongly continuous unitary representation u of G in $Z(M^{\sigma})$ such that $u_s = v_s$ for $s \in G(\sigma)$. Define a $\sigma' \in \text{Rep}(G, M)$ by $\sigma_t'(x) \equiv u_t^* \sigma_t$ $(x) u_t$ for $t \in G$ and $x \in M$. Since $u_{t+s} = \sigma_t(u_s) u_t$, we have $\sigma' \sim \sigma$ and

$$G(\sigma) = \{t \in G: \sigma_t' = 1\} \subset G(\sigma').$$

Since $u_t \in M^{\sigma} \subset M^{\sigma'}$, if $y \in Z(M^{\sigma'})$, then $\sigma_t(y) = u_t \sigma_t'(y) u_t^* = y$ and hence $y \in M^{\sigma}$. Since $M^{\sigma} \subset M^{\sigma'}$, $y \in (M^{\sigma'})' \subset (M^{\sigma})'$ and hence $y \in Z(M^{\sigma})$. Thus $Z(M^{\sigma'}) \subset Z(M^{\sigma})$. If $\sigma_s'(x) = wxw^*$ for $s \in G(\sigma')$ and a unitary $w \in Z$ $(M^{\sigma'})$, then $u_s w \in Z(M^{\sigma})$ and hence $G(\sigma') \subset G(\sigma)$. Thus $G(\sigma) = G(\sigma')$. Since $G(\sigma') = (\operatorname{sp} \sigma')^{\perp}$ is clear, we complete the proof.

Proof of Proposition 4.2. (i) If $G(\sigma^e) = G$, then $\Gamma_0(\sigma) \subset \Gamma_1(\sigma) \subset \{0\}$ by Lemma 2.6, which implies the condition (C).

(ii) By (i) it suffices to consider the case $G(\sigma) \neq G$.

The case where $G(\sigma) = (\operatorname{sp} \sigma)^{\perp}$. Suppose that $G = \mathbf{R}$ (resp. \mathbf{Z}). Since $\Xi = G(\sigma)^{\perp}$ is discrete and $G(\sigma) \neq G$ by assumption, there exists a generator $\gamma \in \mathbf{R}$ (resp. $[0, 2\pi)$) of Ξ . Here we apply Proposition 4.1 to σ . Since $G(\sigma) \neq \{0\}$ by assumption, $q_{\infty} = 1$. Since $\Gamma_0(\sigma) \neq \{0\}$ by assumption, we have $q_0 = 0$. Since Ξ is discrete, we have a partition $\{p_n: n \in N\}$ (resp. $\{p_n: n \mid m\}, m \equiv 2\pi/\gamma$) in $Z(M^{\sigma}) \cap Z(M)$ of the identity such that

$$\Gamma_0(\sigma^{p_n}) = \Gamma_1(\sigma^{p_n}) = n\gamma Z \quad (\text{resp. } \{n\gamma : n \mid m\}),$$

which is the condition (C) for σ^{p_n} over M_{p_n} . Since $\widehat{G}/n\gamma Z$ is compact, the conditions (B') and (C) are equivalent over M_{p_n} by (ii) of Theorem 1.1 and hence $G(\sigma^e)^{\perp} = n\gamma Z$ (resp. $\{n\gamma: n | m\}$) for all non zero $e \in Z(M^{\sigma})$ with $e \leq p_n$. On the other hand, the condition (B) implies $G(\sigma^e)^{\perp} = \Xi$ for all $e \in Z(M^{\sigma})$. Thus $p_n = 1$ and $p_m = 0$ $(m \neq n)$ for some $n \in \mathbb{N}$, namely, $\Xi = n\gamma Z$. Since γ is a generator of Ξ , n = 1. Thus $\Gamma_0(\sigma) = \Gamma_1(\sigma) = \Xi$.

The general case. For a given σ we choose a σ' as in Lemma 4.4. Then $G(\sigma) = G(\sigma') = (\operatorname{sp} \sigma')^{\perp}$ and hence $\Gamma_0(\sigma') = \Gamma_1(\sigma') = G(\sigma')^{\perp}$ from the above. Since $G(\sigma') = G(\sigma) = \Xi^{\perp}$ by the condition (B), we have $\Gamma_0(\sigma') = \Gamma_1(\sigma') = \Xi$. Therefore $\Gamma_1((\sigma')^e) = \Xi$ for all non zero $e \in Z(M^{\sigma})$. Since $M^{\sigma} \subset M^{\sigma'}$ by Lemma 4.4, if e is a projection in $Z(M^{\sigma})$, $\Gamma_1(\sigma^e) = \Gamma_1((\sigma')^e)$ by Lemma 4.3, and hence $\Gamma_0(\sigma) = \Gamma_1(\sigma) = \Xi$, which is the condition (C). Q.E.D.

Proof of Theorem 1.2. Since $\widehat{G}/\Gamma_0(\sigma^{\phi})$ is compact and $\Gamma_0(\sigma^{\phi}) = \Gamma_1(\sigma^{\phi})$ by assumption, the condition (B') holds by (ii) of Theorem 1.1 and hence $G(\sigma) = \Gamma_0(\sigma^{\phi})^{\perp}$ is discrete. Applying Lemma 4.4, we have a $\sigma \in \operatorname{Rep}(\mathbf{R}, M)$ such that $\sigma \sim \sigma^{\phi}$ and sp $\sigma \subset G(\sigma^{\phi})^{\perp}$. The condition (B') implies that

$$G(\sigma^{\phi}) = G((\sigma^{\phi})^{e}) = \Gamma_{0}(\sigma^{\phi})^{\perp} \quad \text{and} \quad \Gamma_{0}(\sigma^{\phi}) \subset \operatorname{sp}(\sigma^{\phi})^{e}$$

for all non zero e in $Z(M^{\sigma^{\theta}})$ and hence that

$$\operatorname{sp} \sigma \subset G(\sigma^{\phi})^{\perp} = \Gamma_0(\sigma^{\phi}) \subset \operatorname{sp}(\sigma^{\phi})^e.$$

Since $\sigma \sim \sigma^{\phi}$ implies $\sigma = \sigma^{\phi}$ for some $\psi \in W(M)$ by [6, Theorem 1.2.4], we have

$$(4\cdot 1) \qquad \qquad \cap \{\operatorname{sp} \sigma^{\psi} \colon \psi \in W(M)\} \subset \Gamma_0(\sigma^{\phi}).$$

On the other hand, since $\sigma^{\phi} \sim \sigma^{\psi}$ for all ψ in W(M), it follows from Lemma 4.3 that

$$\Gamma_{\mathfrak{0}}(\sigma^{\phi}) \subset \Gamma_{\mathfrak{1}}(\sigma^{\phi}) = \Gamma_{\mathfrak{1}}(\sigma^{\phi}) \subset \operatorname{sp} \sigma^{\phi}$$

and hence

(4.2)
$$\Gamma_0(\sigma^{\phi}) = \bigcap \{ \operatorname{sp} \sigma^{\phi} \colon \psi \in W(M) \}.$$

Since sp $\sigma^{\phi} = \log (\operatorname{Sp}(\mathcal{A}_{\phi}) \cap \mathbf{R}_{+}^{*})$ by [6, Lemma 3.2.2] and $Z(M) \subset M^{\sigma^{\phi}}$ for $\psi \in W(M)$, we have a desired result.

§ 5. Unbounded Derivation

Before going into the definition of a derivation, we recall that $\sigma(g)$ is σ -weakly continuous on M for $g \in L^1(G)$. For the sake of completeness we shall give a slightly different proof from [2, Proposition 1.4].

Let M_1 be the unit ball of M with the σ -weak topology. Choose a compact $K \subset G$ for a given $\varepsilon > 0$ such that

$$\int_{G\setminus K}|g(t)|dt < \varepsilon.$$

Since the dual representation σ' on M_* of $\sigma \in \operatorname{Rep}(G, M)$ is strongly continuous [1, Proposition 1 in § 6], for any $t_j \in G$, $\varepsilon > 0$ and $\phi \in M_*$ there exists a neighbourhood V_j of t_j such that

$$\sup_{t\in \mathbb{V}_{j}} \sup_{x\in M_{1}} |\langle (\sigma_{t} - \sigma_{t_{j}})(x), \phi \rangle| < 2^{-1} \varepsilon.$$

Since K is compact, we can find a finite covering V_j , $j=1, \dots, n$ of K. Since σ_{t_j} is σ -weakly continuous, there exists a neighbourhood N_j of 0 in M_1 such that $|\langle \sigma_{t_j}(N_j), \phi \rangle| < 2^{-1} \varepsilon$. Set $N \equiv \bigcap_{j=1}^n N_j$. Since $t \in K$ belongs to some V_j ,

$$|\langle \sigma_t(x), \phi \rangle| \leq |\langle (\sigma_t - \sigma_{t_j})(x), \phi \rangle| + |\langle \sigma_{t_j}(x), \phi \rangle| < \varepsilon$$

for all $x \in N$. Therefore

$$egin{aligned} &|\langle \sigma(g) \, x, \phi
angle| \leq & e \int_{\mathbb{K}} |g(t)| dt + 2 \|\phi\| \int_{g \setminus \mathbb{K}} |g(t)| dt \ & \leq & (\|g\|_1 + 2 \|\phi\|) \, arepsilon \end{aligned}$$

for all $x \in N$. Thus $\phi \circ \sigma(g)$ is σ -weakly continuous on M_1 and hence on M by Banach's theorem. Consequently, $\sigma(g)$ is σ -weakly continuous.

Now we shall generalize the concept of a derivation of M to the unbounded case as the following, [7].

Definition 5.1. A linear operator δ on M is called a *self-adjoint* derivation of M if the domain $D(\delta)$ of δ is a σ -weakly dense *-subalgebra of M and

$$\delta(xy) = \delta(x)y + x\delta(y), \ \delta(x^*) = -\delta(x)^*$$

for all $x, y \in D(\delta)$. In addition, δ is said to be *spatial* (resp. *inner*) if there exists a self-adjoint operator h (resp. $h_{\eta}M$) whose domain is invariant under $D(\delta)$ and which satisfies

$$\delta(x) = \overline{hx - xh} = \overline{[h, x]}$$

for all $x \in D(\delta)$.

For a linear operator δ on a Banach space E, an $x \in E$ is analytic (resp. entire) for δ if the function $t \in \mathbb{R} \mapsto \sum_{n=0}^{\infty} (n!)^{-1} t^n \delta^n x \in E$ exists and is analytic in some neighbourhood of 0 (resp. entire). For a representation σ of \mathbb{R} on E, an $x \in E$ is analytic (resp. entire) for σ if the function $t \mapsto \sigma_t(x)$ is analytic in some neighbourhood of 0 (resp. entire).

If σ_i , $t \in \mathbf{R}$ is a strongly continuous one parameter group of uniformly bounded operators on E, then

(5.1)
$$x_{\lambda} = \left(\frac{1}{2\pi\lambda^2}\right)^{1/2} \int_{\mathbf{R}} \sigma_t(x) \exp\left(-\frac{t^2}{2\lambda^2}\right) dt$$

for $x \in E$, are entire for σ and x is the limit of x_{λ} as $\lambda \rightarrow 0$. Furthermore if δ is the generator of σ , then

$$\sum_{n=0}^{\infty} rac{t^n}{n!} \| \delta^n(x_{\lambda}) \| < +\infty, ext{ for all } t \in \mathbf{R}$$
 .

In the following a linear operator δ on M is said to be σ -weakly closed if the graph of δ in $M \oplus M$ is σ -weakly closed.

Proposition 5.1. Let $\sigma \in \text{Rep}(\mathbf{R}, M)$ and δ be a linear operator on M whose domain $D(\delta)$ is the set of $x \in M$ for which $t^{-1}(\sigma_t(x) - x)$ is σ -weakly convergent as $t \downarrow 0$, and

$$\delta x = \lim_{t\downarrow 0} (it)^{-1} (\sigma_t(x) - x)$$

for all $x \in D(\delta)$. Then

(i) $D(\delta)$ is a σ -weakly dense *-subalgebra of M and δ is a selfadjoint σ -weakly closed derivation of M;

(ii) for any non-zero real number λ , $\lambda - i\delta$ has the σ -weakly continuous inverse $(\lambda - i\delta)^{-1}$ and $\|(\lambda - i\delta)^{-1}\| \leq |\lambda|^{-1}$;

(iii) the set of entire elements for δ is σ -weakly dense in M;

(iv) δ is spatial(resp. inner) if and only if σ is spatial(resp. inner); and

(v) the infinitesimal generator of the dual representation σ' of σ is the dual of δ .

Conversely, if δ is a self-adjoint σ -weakly closed derivation of M and if for any non-zero real number λ , $\lambda - i\delta$ has an inverse and $\|(\lambda - i\delta)^{-1}\| \leq |\lambda|^{-1}$, then there exists a unique representation $\sigma \in \operatorname{Rep}(\mathbf{R}, M)$ of which δ is an infinitesimal generator.

Proof. (i, ii) It is clear that $D(\delta)$ is a *-subalgebra of M and δ is a self-adjoint derivation of M. Define ϕ_{λ} for $\lambda > 0$ by

$$\phi_{\lambda} = \int_{0}^{\infty} \lambda \sigma_{t} \exp\left(-\lambda t\right) dt$$

Applying the same argument as the one parameter semi-group theory on a Banach space, we know that the range of ϕ_{λ} coincides with $D(\delta)$, that $\lambda^{-1}\phi_{\lambda} = (\lambda - i\delta)^{-1}$ and that $\phi_{\lambda}(x)$ converges σ -weakly to x as $\lambda \to \infty$ for $x \in M$. Therefore $D(\delta)$ is σ -weakly dense in M. Since ϕ_{λ} is σ -weakly continuous as shown at the begining of this Section, δ is σ -weakly closed.

(iii) x_{λ} in (5.1) is entire for δ and σ -weakly converges to x as $\lambda \rightarrow \infty$. Therefore we conclude (iii).

(iv) Suppose that σ is spatial(resp. inner). There exists a self-adjoint operator h (resp. $h\eta M$) such that $\sigma_t(x) = u_t x u_t^*$ and $u_t = \exp(ith)$. Since

$$(it)^{-1}(\sigma_t(x)-x)\xi = u_t x(it)^{-1}(u_t^*-1)\xi + (it)^{-1}(u_t-1)x\xi$$
,

if $x \in D(\delta)$ and ξ is in the domain D(h) of h, then $x\xi \in D(h)$ and $\delta(x)\xi = [h, x]\xi$. Since D(h) is dense in \mathcal{H} , we have $\delta x = \overline{[h, x]}$.

Conversely, suppose that δ is spatial(resp. inner). Let h be a selfadjoint operator which induces δ as in Definition 5.1. Put $u_t \equiv \exp(ith)$. Denote by $\mathcal{H}^{(e)}$ (resp. $M^{(e)}$) the set of entire elements for $u(\operatorname{resp.} \delta)$. We shall show by induction that $x\mathcal{H}^{(e)} \subset D(h^n)$ for $n \in \mathbb{N}$ and $x \in M^{(e)}$. By the assumption for h, $x\mathcal{H}^{(e)} \subset D(h)$. If $x\mathcal{H}^{(e)} \subset D(h^n)$, then

$$\delta^n x \hat{\varsigma} = \sum_{k=0}^n {n \choose k} h^k x \, (-h)^{n-k} \hat{\varsigma} \; ,$$

for $\xi \in \mathcal{H}^{(e)}$. Since $(\delta^n x) \xi \in D(h)$, we know that

$$h^n x \xi = (\delta^n x) \xi - \sum_{k=0}^{n-1} \binom{n}{k} h^k x (-h)^{n-k} \xi$$

is in D(h) and hence $x \xi \in D(h^{n-1})$.

If $x\!\in\!M^{\scriptscriptstyle\!(\!e\!)}$ and ξ , $\eta\!\in\!\mathcal{H}^{\scriptscriptstyle\!(\!e\!)}$, then

$$\begin{aligned} (\sigma_{\iota}(x)\,\xi|\eta) &= \sum_{n=0}^{\infty} \,(n\,!)^{-1}(it)^{n} \,(\,(\delta^{n}x)\,\xi|\eta) \\ &= \sum_{n=0}^{\infty} \,\frac{(it)^{n}}{n\,!} \Big(\sum_{k=0}^{n} \,\Big(\frac{n}{k}\Big)h^{k}x \,(-h)^{n-k}\xi\,\Big|\,\eta\Big) \\ &= \sum_{n=0}^{\infty} \,\sum_{k=0}^{n} \,\Big(x \frac{(it)^{n-k}}{(n-k)\,!} \,(-h)^{n-k}\xi\,\Big|\frac{(it)^{k}}{k\,!} \,(-h)^{k}\eta\,\Big) \end{aligned}$$

Since $\xi, \eta \in \mathcal{H}^{(e)}$, the right hand side is absolutely convergent. Therefore

$$egin{aligned} & (\sigma_t(x)\,\xi|\,\eta) = (x\sum_{n=0}^\infty\,(n!)^{-1}(-ith)^n\xi|\,\sum_{m=0}^\infty\,(m!)^{-1}(-ith)^m\eta) \ & = (x(\exp(-ith))\,\xi|\exp(-ith)\,\eta) \ & = ((\exp(ith))\,x(\exp(-ith))\,\xi|\,\eta). \end{aligned}$$

Since $\mathcal{H}^{(e)}$ is dense in \mathcal{H} and $M^{(e)}$ is σ -weakly dense in M, we have $\sigma_t(x) = (\exp(ith))x(\exp(-ith))$ for $x \in M$.

(v) Let δ' and ${}^{i}\delta$ be the infinitesimal generator of the dual σ' on M_* of σ and the dual of δ , respectively. For $\lambda > 0$, the dual of $(\lambda - i\delta)^{-1}$ is $(\lambda - i^{i}\delta)^{-1}$. Since $\delta' \subset {}^{i}\delta$, $(\lambda - i\delta')^{-1} \subset (\lambda - i^{i}\delta)^{-1}$. Since the domain of $(\lambda - i\delta')^{-1}$ is M_* , we have $(\lambda - i\delta')^{-1} = (\lambda - i^{i}\delta)^{-1}$ and hence, $\delta' = {}^{i}\delta$.

Suppose that δ is a self-adjoint σ -weakly closed derivation of M and that $\|(\lambda - i\delta)^{-1}\| \leq |\lambda|^{-1}$ for any $\lambda \neq 0$. Denote by δ' the dual of δ on M_* . Since $\|(\lambda - i\delta')^{-1}\| \leq |\lambda|^{-1}$, by the Hille-Yosida theorem, δ' is the generator of a strongly continuous contraction one parameter group σ' on M_* . The dual σ of σ' is a σ -weakly continuous contraction one parameter group on M. Moreover (v) is valid for σ and the generator of σ is σ -weakly closed. Since the bidual of a closed linear map is itself, the generator of σ is the dual of δ' , namely, δ . Therefore we have for any entire elements x and y,

$$\sigma_{t}(x)\sigma_{t}(y) = \sum_{n=0}^{\infty} \frac{(it)^{n}}{n!} \,\delta^{n}(x) \,\sum_{n=0}^{\infty} \frac{(it)^{n}}{n!} \delta^{n}(y) = \sum_{n=0}^{\infty} \frac{(it)^{n}}{n!} \,\delta^{n}(xy) = \sigma_{t}(xy),$$
$$\sigma_{t}(x^{*}) = \sum_{n=0}^{\infty} \frac{(it)^{n}}{n!} \,\delta^{n}(x^{*}) = \sum_{n=0}^{\infty} \frac{(-it)^{n}}{n!} \,\delta^{n}(x)^{*} = \sigma_{t}(x)^{*}.$$

Since (iii) is valid for δ , we conclude the multiplicativity and self-adjointness of σ_t . Therefore σ_t is a *-automorphism. Q.E.D.

Remark 5.1. In the above proposition $M^{(e)}$ is a core of δ with respect to the σ -weak topology on M. Indeed, if $x \in D(\delta)$, then x_{λ} defined by (5.1) converges σ -weakly to x. Furthermore $\delta(x_{\lambda}) = (\delta x)_{\lambda}$ converges σ -weakly to δx as $\lambda \rightarrow 0$.

Lemma 5.1. If δ is the infinitesimal generator of $\sigma \in \text{Rep}(\mathbf{R}, M)$, then $\text{Sp } \delta = \text{sp } \sigma$.

Proof. Suppose that $\lambda \in \operatorname{sp} \sigma = -\operatorname{sp} \sigma$ and $\langle t, \lambda \rangle \equiv \exp(it\lambda)$ for $t \in \mathbb{R}$. Define a function $g \in L^1(\mathbb{R})$ for any $\alpha > 0$ by

 $g(t) \equiv \exp(-\alpha t) \overline{\langle t, \lambda \rangle}$ $(t>0); g(t) \equiv 0$ $(t\leq 0).$

Since $i(\delta - \lambda)$ is the infinitesimal generator of a one parameter group $t \mapsto \overline{\langle t, \lambda \rangle} \sigma_t$, we have

$$\sigma(g) = \int_0^\infty \exp(-\alpha t) \overline{\langle t, \lambda \rangle} \sigma_t dt = -i(\lambda - i\alpha - \delta)^{-1}$$

and $\hat{g}(-\lambda) = \alpha^{-1}$. Therefore, by [6, Lemma 2.3.6], we have $\|(\lambda - i\alpha - \delta)^{-1}\| \ge \alpha^{-1}$ and hence

(5.3)
$$\lim_{\alpha \downarrow 0} \| (\lambda - i\alpha - \delta)^{-1} \| = \infty .$$

Consequently, $\lambda \in \text{Sp } \delta$.

Assume that

$$\lim_{\alpha\downarrow 0} \|(\lambda\!-\!i\alpha\!-\!\delta)^{-1}\| < \infty.$$

By the resolvent equation, $(\lambda - i\alpha - \delta)^{-1}$ converges in norm to a bounded

operator ρ as $\alpha \downarrow 0$ and $\rho = (\lambda - \delta)^{-1}$. Therefore $\lambda \in \text{Sp } \delta$ implies (5.3) and hence that there exist for any $\varepsilon > 0$ a positive $\alpha \in \mathbf{R}$ and a non zero $y \in M$ such that $2\alpha < \varepsilon$ and

$$\varepsilon \| (\lambda - i\alpha - \delta)^{-1} y \| > 2 \| y \|$$
.

By putting $x \equiv \|z\|^{-1}z$ for $z \equiv (\lambda - i\alpha - \delta)^{-1}y$, we have

$$\|(\lambda-\delta)x\|\leq \|(\lambda-i\alpha-\delta)x\|+\|i\alpha x\|<\varepsilon.$$

From the equation

$$\overline{\langle t, x \rangle} \sigma_t(x) - x = \int_0^t \overline{\langle s, \lambda \rangle} \sigma_s \circ (i(\delta - \lambda))(x) ds$$
,

it follows that

$$\|\sigma_t(x)-\langle t,\lambda\rangle x\|<|t|\varepsilon$$

Therefore, by [6, Lemma 2.3.6], we have $-\lambda \in \operatorname{sp} \sigma = -\operatorname{sp} \sigma$. Q.E.D.

Lemma 5.1 and Theorem 1.1 give following corollaries. It is clear that $x \in M^{\sigma}$ if and only if $\delta x = 0$. Therefore the restriction δ^{e} of δ to M_{e} is a derivation corresponding to σ^{e} . For a derivation δ , we denote by M^{δ} the set $\{x \in M: \delta x = 0\}$.

Corollary 5.1. Let δ be a derivation of M which is the infinitesimal generator of a representation in $\text{Rep}(\mathbf{R}, M)$. The following conditions are equivalent for $\lambda > 0$:

(i) $\cap \{ \operatorname{Sp} \delta^e : e \in M^\delta, e \neq 0 \} = \cap \{ \operatorname{Sp} \delta^e : e \in M^\delta, \overline{e} = 1 \} = \lambda \mathbb{Z}; and$

(ii) for any non zero projection f in $Z(M^{\delta})$ and for any neighbourhood V of 0, there exists a non zero projection e in $Z(M^{\delta})$ such that $e \leq f$ and $\lambda Z \in \text{Sp } \delta^e \subset \lambda Z + V$.

Corollary 5.2. Let δ be a derivation of M which is the infinitesimal generator of a representation in $\text{Rep}(\mathbf{R}, M)$. If M_* is separable, then the following conditions are equivalent:

(i) δ is inner; and

(ii) for any non zero projection f in $Z(M^{\delta})$ and for any $\varepsilon > 0$ there exists a non zero projection e in $Z(M^{\delta})$ such that $e \leq f$ and $\|\delta^{e}\| \leq \varepsilon$. Since the separability of M_* is unnecessary for the implication (ii) \Rightarrow (i) in Corollary 5.2, we have Corollary 5.3, which is a restatement of a result of Borchers [3, Theorem]. We shall restate it more precisely.

Corollary 5.3. Let δ be a derivation of M which is the infinitesimal generator of a representation in $\operatorname{Rep}(\mathbf{R}, M)$. If there is a non negative self-adjoint operator k implementing δ , then δ is inner, and a self-adjoint operator $h\eta M$ implementing δ is uniquely determined by the condition that $2\|he\| = \|\delta^e\|$ for all $e \in Z(M^{\delta})$. In particular, $\operatorname{Sp}(he) + \|he\| \subset \operatorname{Sp} \delta^e \cap \mathbf{R}_+$.

Acknowledgements

The authors would like to thank Dr. O. Bratteli for pointing out an error on a derivation and Professor H. Araki for taking pains of reading the manuscript carefully and indicating some errors.

References

- Aarnes, J. F., Continuity of group representations, with applications to C*-algebras, J. Functional Analysis, 5 (1970), 14-36.
- [2] Arveson, W., On groups of automorphisms of operator algebras, J. Functional Analysis, 15 (1974), 217-243.
- [3] Borchers, H. J., Energy and momentum as observables in quantum field theory, Comm. Math. Phys., 2 (1966), 49-54.
- [4] ——, Characterization of inner *-automorphisms of W*-algebras, Publ. RIMS, Kyoto Univ., 10 (1974), 11-49.
- [5] Choda, H., On a decomposition of automorphisms of von Neumann algebras, Proc. Japan Acad., 49 (1973), 809-811.
- [6] Connes, A., Une classification des facteurs de type III, Ann. Sci. École Norm. Sup.,
 6 (1973), 133-252.
- [7] Gille, J. F., An exponentiation theorem for unbounded derivations, Ann. Inst. H. Poincaré, 13 (1970), 215-220.
- [8] Ikunishi, A. and Nakagami, Y., Automorphism group of von Neumann algebras and semi-finiteness of an infinite tensor product of von Neumann algebras, to appear.
- [9] ——, On an invariant Γ for an automorphism group of a von Neumann algebra, Japan–U. S. Seminar on C*-algebras and Applications to Physics, (1974), 185–189.
- [10] Kadison, R. and Ringrose, J. R., Derivations and automorphisms of operator algebras, *Comm. Math. Phys.*, 4 (1967), 32-64.
- Kallman, R. R., Groups of inner automorphisms of von Neumann algebras, J. Functional Analysis, 7 (1971), 43-60.

- [12] Moore, C. C., Restrictions of unitary representations to subgroups and ergodic theory: group extensions and group cohomology, in *Group representations in Mathematics and Physics*, edited by V. Bergmann, Lecture Notes in Phys. 6, pp. 1-35, Springer-Verlag, Berlin, 1969.
- [13] Parthasarathy, K. R., Multipliers on locally compact groups, Lecture Notes in Math. 93, Springer-Verlag, Berlin, 1969.
- [14] Sakai, S., C*-algebras and W*-algebras, Springer-Verlag, Berlin, 1971.