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On Invariants G(d) and F(a) for an Automorphism
Group of a von Neumann Algebra

By

Akio IKUNISHI* and Yoshiomi NAKAGAMI**

Abstract

An invariant F for an automorphism group of a factor given by Connes is general-
ized to a general von Neumann algebra and the relation between F and a characteriza-
tion of an inner automorphism group of a von Neumann algebra due to Borchers are
discussed.

§ 1. Introduction

Let G be a locally compact abelian group, dt a Haar measure on

G, G the dual of G and <*, f> the value of f E E G at t^G. For

and

s f
JG

and r(g)-{ reG:g(r)=0}.
Let M be a von Neumann algebra, M* the predual of M and Aut Af

the group of automorphisms of M. A homomorphism ff of G into

Aut Af satisfying that the functions t^G^ $(6t C^)) are continuous for

all xG-M and $^.M* is called a representation of G on Af. Let

Rep(G, M) denote the set of all representations of G on M. For a

finite measure p. on G (resp. gf e L1 (G) ) , (JeRep(G, M) and xeM let

= f
JG

resp.

Let sp d" denote the intersection of F (g) with tf(g) =0 and spff(^:) the

intersection of T(g) with tT(g)^ = 0. For a closed subset JS of G, Ma (E)
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denotes the set of all x^M with spff(.r) cE. Let Mff^Mff({Q}), Z(M)

^MfW and Z(Mff) ^M'fl (M*Y . For projections e and /in Mff, e

denotes the carrier in Z(M) of e and eo~f the restriction denned by

in particular, tfe=e(7e or (Te is the restriction of (7 to Me. Furthermore^

spefff denotes the intersection of F(g) with eGf(g) =0, where efff(g) is

defined similarly as above.

Definition 1.1. G(ff) (resp. JC(<T)) denotes the set of all £eG such

that o~t is implemented by a unitary in Afff (resp. M) .

Then G((T) and K(ff) are subgroups of G and G(tf) C^((T). The

following definition is essentially due to Connes, [6].

Definition 1.2. 7^ (0") (resp. Fl ((T) ) denotes the intersection of all

sp(Je, e^Ma with ^^0 (resp. J = l).

Then jTo(0") is a closed subgroup of G and /^(^O ^/^((T). There

is no difference between 7^, ((T) and A ((T) if -M is a factor.

The main purpose of this paper is to show the relations among the

following four conditions for a closed subgroup S of G:

(A) for any non zero projection fin Z(Mff) and for any neighbour-

hood V of 0 there exists a non zero projection e in Z(Mff) such that

and 3dspG*c:S+V;

(B) G(ffe)=S± for all non zero e in Z(M<r);

(B') G((Te)=='S'-L and Sdspff* for all non zero e in Z(M');

(O r0((T)=r1(tr)=a
Using these conditions, we can state our main theorem.

Theorem 1.1. (i) The condition (A) implies the condition (Bx),

i£ condition (B') implies the condition (C).

(ii) 7/~ G/H Z5 compact, then conditions (A), (B7) a?z^ (C) are

equivalent.

(iii) /f G satisfies the second axiom of countability, 3={Q} and
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M* is separable, then conditions (A) and (B) are equivalent. In this

case, 6 is inner.

The implications (A) =^> (B) and (B') =» (C) are proved in Section 2

by similar techniques as Borchers, [4] . The implication (C) =» (A) for

a discrete SL is proved in Section 3 by similar ideas as Connes, [6] . The

statement (iii) implies the following corollary.

Corollary 1.1. If G satisfies the second axiom of countability,

G((T) =G and M* is separable, then o~ is inner.

The ergodicity of o~ implies the equivalence of conditions (A) , (B) and

(C) , whenever G/3 is compact (Remark 3.2) .

Let W(M) be the set of semi-finite, faithful and normal weights on

M+. For 0e W(Af), A$ and ff* denote the modular operator and modular

automorphism of 0, respectively.

Definition 1.3. S(Af) denotes the intersection of all spectrum of J#,

Theorem 1.2. If r0(O = W) ^{0}, then log(S(Me)\{0})

= /T
0(<7*) for any noil zero e in Z(M).

Finally, in Section 5 we shall give a characterization of an unbounded

derivation which corresponds to a representation of R on M.

§ 2. Proof of (i) in Theorem 1.1

The condition (A) implies the existence of a projection eQ in Mff

(or Z(Af)) such that Sdsp ffe°Cl3-rV and eQ = I. For this, let 3 be

the family of sets of non zero projections e in Mff (or Z(Afff)) such that

Hcsp GedS-\-V and their central carriers in Mare mutually orthogonal.

Then 2 is a non empty ordered set by set inclusion. Here we apply

Zorn's lemma to 2 and obtain a maximal set {ea} £ 3 . We complete

the proof by defining eQ by JH ea- Therefore the condition (A) implies

that 5* C 7^(0") CjTi((T) C p| {S+ V: as above} =3, which implies the con-

dition (C) .
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It is known that K(<f) =K(tf} for e^.M\ [4, Lemma 5.7; 6, Lemma

1.5.2].

Lemma 2.1. G(tfe) = G(<T8) /or

Proof. Since G((Te) cG((7e), it suffices to show the converse inclu-

sion for a non zero e in Afff. Suppose that t^G(fie). Then we have a

unitary v on e<^ such that v ^ M e
f f and 0V(.r) =vxv* for x^Me. Define

an operator u on £\^f by uyg=(?t
e(y)vg for y^M<> and ^^.eSi. Since

*tf) = (0V (z*y) vf | ̂ ) = (yf | 2:97)

whenever <?, 7/^eM, u is a unitary in Afg such that ue = v and ^e(y)

= uyu* for yeMg. Since t;eMffn^e, we have eG?(u)=Gf(u)e and

(G?(u)}e=v for all seG. For 5^G, y^Me and ^^eM, we have

_,-s (y) ) f = (T.a («) ̂ _, (y) f - (T/ (u) u*

Therefore ffs*(u)=u for all s<GG and hence u^MffC\Me. Consequently

we have G(tfe) cG((Tg). Q.E.D.

This lemma implies the equivalence between the conditions (B) and

(B,) G(<O ^S^ for all non zero / in Z(M) r\Z(Ma).

Let r be a representation of Z defined by rn = 0"nt for some fixed

^eGin this section, (t, sp f f(x))> denotes the set of all <X 7") with ^e

spff (jc) . In the following lemmas we shall identify the dual of Z with

the unit circle T.

Lemma 2.2. <*, sp f f(x)>~ =sprO) /or

Proof. Suppose that 7- espff(^). Let g e Z1 (Z) with r(g)^ = 0. By

setting /^Zlnez g(ri)8nt, we have (T(/^)x = r(g)x = 0 and hence

Therefore we have <(£, 7)

Choose any g^.ll(Z) so that g vanishes on a neighbourhood V of

<£, spff(^:)>". Setting //=2ng(7z)ffnt, we have
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on the neighbourhood {f^G'.^t, 7*>GE V} of sp^-r), and so r(g).r = 0"(/0 x

— 0. Consequently, we have

spr(^)c<*,sp,(.r)>-. Q.E.D.

We shall also identify the dual of Z with ( — 7T, TC] and denote

[ — (?,(?] by Id. For a projection eeZ(Afr) and a closed subset E of

( — 7T, TT] , let 0 (E, e) denote the projection onto the closed subspace span-

ned by Mc(E)eJH. Since Lemma 2.2 implies

we have (f>(E, e) £EZ(Mff) for e

The following Lemmas 2.3 and 2.4 have been obtained by Borchers,

[4], while we shall give their proofs for completeness.

Assume that <£, sptf>~C ( — 27T/3, 2;r/3) in Lemmas 2.3, 2.4 and 2.5.

Lemma 2.3. TAere exists a family {p(8}: 8<^ (0, 27T/3)} of pro-

jections in Z(Mff) such that p ( d ) is increasing in 8, sprp( f f )C/5 and

Proof. We shall define pn by induction. Put dn=2~n+27i:/3 and pl

=1. Then sp rPl C (— 27T/3, 27T/3) by assumption. Assume that

and ^y = l for j = 2, 3, -,». Put

: sp t*-C/.} «7T/3),

for some ee (0, 2;r — 65). Then d<dn^i,pn+i<pn and />n+1 = l. Since

,^B)=0, we have

Since spr5Csp9rPn and s p r 9 = — sp rg for q=pn(l — p)9

sp r^(1-^csp rp»\{(-2ff-e, -5) U (S, 25-fe)

Since spV^Csp V-E for e, f^Z(Mc) in general,
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sp rpcsp *»r*w-a+

c (!„-[£ 2^]) n (!»+[£ 2^])

Consequently, we have

sp T*»*i = Sp

Putting p(S)^pn+1 for <Je[<y n + 1 ,<y n) , raeiV, we have a family {/>(<?):

(0, 27T/3)} with the desired property. Q.E.D.

Lemma 2.40 For <2?z;y projection e in Z(Mff) , put

Then for any elt e2, ea, e,f in Z(M") and any closed subset E of

( — it, ?r], it holds that

(a) SCOcSCe.) if e,

(b)

(c)

(d) S(e) =0 if and only if e = 0;

(e)

(f)

Proof. (a) and (b) are obvious.

(c) We have

Since E is compact, it follows that

n (sp VB) + E) = n sp V
5>0 5>0

(d) ^ = 0 clearly implies S(e) =0. -By compactness, S(e) =0 im-

plies spV®'=0 for some 5>0. Therefore ^M/?(5)={0}. Since

= 1, « = 0.

(e) For any <J>0 and ee (0 , f f ) , since spt*w)C/,, p(8)(f>(Is,p(e'))

is the carrier in Z(MP(S)) o f p ( e ) and hence />((J) <^(/5, ̂ (s)) . There-

fore

(2-1) spV W ) cns
£>0
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Therefore

s(suPo = n ( u Spe«r*(s>)-c n ( u (sco+w
5>0 a 5>0 a

c n ( u sco+/.)-= n uusco)-+i} = c uscor.
fl>0 a <J>0 a a:

The converse inclusion is clear from (a).

(f) and (g) From (2-1) it follows that eMp(8) cMr(S(» +/,)

and £ (5) Mfd Mr ( - S(/) + Is). Therefore

Since />(ff) =1, Mp(S)M is weakly total in M Therefore

and hence

spVcS(e) -

By the arbitrariness of 5>0, we have (f) and

which is (g). Q.E.D.

Lemma 2.5.

^U)^sup{^eZ(M f f): S(^) C (-TT, A]}.

Then {e(JC): Ae ( — TT, TT]} z*5 a spectral resolution of the identity 'which

satisfies

(h) 5(e(

Proof. It is clear that e(A) is increasing in L Since

c( — 7T, A] by (e), we have

and hence lim^^(^) <^(/i). Therefore e(K) is right continuous in L
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Since <£, sp 0^>C ( — ft, n) by assumption, it follows from (d) that

lim e (2) =0 and lim e (A) = 1 .

(h) If ae( — TT, /I), there is a £>0 with a + I2S<=( — 7r, A), and

hence S(0(a + /, , />(ff))) C (-TT, A) V (0- It follows that e((

I,,/>(0))=0 and hence «$ sp ea/0rp(5). Therefore a & S (e (I, JJL\) .

Q.E.D.

Proof of (A)=^(B). Suppose that t^SL. The condition (A) as-

sures the existence of a projection q^Z(Mff) with § = 1 and <(£, sp tf"9)>~

C ( — 27T/3, 27T/3). For the proof of JJ^cGCd) we may assume by Lemma

2.1 that <^,sp(T>"c(-27r/3, 27T/3).

Using a spectral resolution {e(K) : /le ( — 7T, TT]} obtained in Lemma

2.5, we define a unitary u^Z(Mff) and a representation p of Z by

= f
J-

We shall show that M* ' (E) C Mp '(£) for any closed -E. Then, by [2],

we have p^t, and so, t ^ G ( f f ) .

Assume that spr (x} C E and g e Z1 (Z) such that (7 vanishes on a

neighbourhood of £. It follows from ((7) in Lemma 2.4 and (h) in

Lemma 2.5 that

p(<7):c=X!<7(n) «»*«*"
ne^

= LI 9 O) [ ] exP # (/^ - A) n} e (d£) xe (dfi)

Therefore spp (x) C E.

Since 3aFi((f) by the condition (A), the converse inclusion is clear

from the following lemma, which is a partial generalization of [6, Theo-

rem 2.3.1] for a factor.

According to [6, Lemma 2.3.8] we know that the spectrum Sp(0"{)

of fft on M as a Banach space is the closure (t, sp (T>~ of {<£, /> : 7 e sp (7} .
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Lemma 2.6. G (<7) C F1 (a} ^ .

Proof. Suppose that (T£(.r) =uxu* for all x^M with u^Mff.

Choose any £>0. Let 3 be the family of sets of (ea, Aa) of spectral

projections ea of u and complex numbers Aa of modulus 1 such that

(a) \\uea — Aaea\Ke; and

(b) ea's are mutually orthogonal.

Since 2 is ordered by set inclusion, we have a maximal set F^3 by

Zorn's lemma, say F= {(ea, Aa):(a), (b)}. By maximality, ^ea = \. Let

e^^2ea and v=^la~
luea. Then e^Mff, v is a unitary in Af and

fft (x) = uxu* — vxv*

for x^M. Since ||77^ — e\\<^£ and

e) is included in {z^C: \z\=l, |z — l|<2e>. If r esp (Te, then i <^,

r>-l|<2eby [6, Lemma 2.3.8]. Therefore |<^ r>-l|<2e for 7- eTi((T).

Since £ is arbitrary, t^T^Y- Q.E.D.

Remark 2.1. If (TeAutM satisfies ||tf-l||<31/2 and if G is an

abelian subgroup of Aut 7l/ containing (T, then there exists a unitary

such that CT^Adw and p(u)=u for all

Remark 2.2. Let (TeRep(G, M). Under the condition (A), if G

satisfies the first axiom of countability, we can define S(e}, e^Z(Mff)

as a subset of G/GCtf)1 and then e(f) eZ(Af ), f eG/GC^)-1 as a spectral

measure ws:

^s— J <5, f > (^f ) , tf* = Ad ws

for all s<EG(<7).

Remark 2.3. Let (TeRep(G, M). If G is discrete, then G((T)

^AOr)-1-.

Proof of the implication (B')=KC). From the condition (B) and
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Lemma 2.6, we have F 1 ( f f } c : 5 . From the remaining condition of (B'),

we have ScToCtT). Therefore ro(<T) =A((T) =5. Q.E.D.

§ 3. Proofs of (ii) and (lii) in Theorem I.I

In the following we denote the carrier projection of x by §(x) and

the carrier of Q for gEzLl(G) by car (j.

Lemma 3.10 For any compact neighbourhood U of 0 in G and

for any projections el and ez in Mff (resp. Z(Af f f)) -with e1=
ze2

 = ^ there

exist projections /i and fz in Mff (resp. Z(Mff)) such that /1=/2 = 1,

/i<<?i, /2<e2, sp o"fl C U-r sp (T/2 <2?z^ sp (T/2C

Proof. Since e i=e 2 — 1, there exists a non zero xQ^M such that

Q = e1xQe2. There exists a goGEJL^G) with car (JQ — car (70 C U and (7 (g0) a:0

Puty0=0'(gQ)x0. Then e1yQe2 = yQ and spff(;y0) -spff(y0) C C7. Let/!0

= sup{s(<rt(y0*)):*eG} and /2°=sup{s((7£(yo)) : ̂ ^G}. Then we have

projections /J-° in Mff such that 0</y°<^- for j = l,2.

Let £F be the family of sets of (.ra, ga) ^MxL1(G) such that

(a) j:« = ^0:^=^=0;

(b) car ga — carg,, C C7; and

(c) projections ff are mutually orthogonal, where fia=sup {s((Tj

(y«*)): ^G} and ya=G(qa)xtt.

Since £F is ordered by set inclusion, we have a maximal set F^3

by Zorn's lemma, say F= {(xa, gj eMxL'CG) : (a), (b), (c)}. By

maximality, H/? = l. Let /2^sup{s((T,(ya)) : ^eG} and /y=2// for

j = l, 2. Since s((T t(ya*))^^s((T t(ya)) in M for each ^eG, we have f^

= f2
a and /!=/, = !.

Suppose that ^esp^1. For any compact neighbourhood V of j"

there exists a non zero x in Af^V) with x=fiaxfl
a for some a.

Since X=f1
axf1

a
9 it follows that ^8(ya*)j;(Ttl(ya)

::^::0 for some ^ and ^2

in G. Put y^^Cya*)^^^^). Since spff (y) C F — C7 and y=f2yf2, we

have Mff(Y-LOn^/2^{0}. Since yp (C7+sp (T/2) =^0 and C7-fsp(T/2

is closed, /e t/H-sp (7/2.

The remaining inclusion is proved similarly as above. Q.E.D.
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Lemma 3.2. A((Te) = A(ff8) for

Lemma 3.3. Let 3 (ff) be the set of all spffejrV for e in Mff

(or Z(Mff)) with e—\ and compact neighbourhoods V of 0 in G.

Then 3X00 is a filter base and A ((7) = f] {F:

These two lemmas are proved by combining Lemma 3.1 and similar

arguments as the proofs of [6, Lemmas 2.3.3 and 2.3.4].

We are now ready to give a sufficient condition for a problem of

Borchers which is proposed in the final remark in [4].

Proof of the implication (C)=>(A) in (ii). Since ro(ff)=3, it

follows that 3dsp(je for all non zero e in Mff (or Z(Mff)).

Suppose that f is a non zero projection in Mff (or Z(Mff} ) . For

any £ in (0,1) and tj^S-1- for j = l, 2, --,n, V denotes the set of / eG

such that 1 — e<Re<£y, /')> for all J = l, 2, • • • , ;z. Let 0 be the quotient map-

ping of G onto G/3.

Since A (<T) C ro (00 C A (ffO - A (ffO C A ((7), we have A (00 = A (00

= £*. By restricting our argument to Mf, we may assume that/'— 1 for the

moment. Since £F(0") in Lemma 3.3 is a filter base and G/3 is compact,

{0(F): Fe£F((T)} is also a filter base of compact sets. Since tj^S^ for

j" = l, 2, •••,«, we have VJ
rS=V and hence $~1((j>(V)} =V. Since sp (T

+ ro(00 =sp (T, we have ^(^(F)) =F for all FeSXff). Hence Lemma

3.3 implies that the intersection of all 0(F), F^3(o") is zero. Since

G/S* is compact, 0(-F) converges to 0 and hence there exists an F^2(o~)

such that 0CF)C0(V) or ^C V.

Consequently, sp(TeC Y for some non zero £ in Af f f(or Z(7Vf(T)) with

e<f. Q.E.D.

The case 3={0} is a special case where S"1 is not discrete.

Making a slight modification of [13, Theorem 5.2], we have the fol-

lowing lemma.

Lemma 3.4. If G satisfies the second axiom of countability, a

Borel multiplier a^Z2(G, T) with a(s, t) =a(t, 5) for s,t(=G is triv-
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ial9 namely, #<EJB2(G, T).

Proof. Let Ga=GxT be the extension of G by a, that is, the

product is defined by

(3 • 1) fa, AO fa, A2) = fo + *2, a fa, Q AM

for fa, A/) EiGa. Ga is given the product Borel structure of GX T. Since

G satisfies the second axiom of countability and a (s, t) =a(t, s) for s,

£eG, Ga is a locally compact abelian group with respect to the Weil

topology. Let j be an injection of T to Ga such that j(X) = (0, A) for

AEE T. Since j(T) is a topological subgroup of G" which is standard and

j is a Borel measure isomorphism, j is a homeomorphism by a Mackey's

theorem [13, Theorem 2.2]. Let Ga and J(T) denote the duals of Ga

and j(T), respectively. Let I be a mapping of j(T) to T such that

I: (0, A) ej (T) ->A€E T. Then lej(T) . Since Ga/j(T) ^ is isomorphic to
^

, we have the corresponding %*^Ga/j(T)± to l^j(T). If

then xeGa and % = Z on j(^). Put ^(0=%((^1))- From (3-1) we

have /9(O /?(*•) =/ffUi + ^)a(^i, O- Q-E.D.

Remark 3.1. This lemma is partly generalized as the following.

Every symmetric (i.e., a (5, t) =a(t, 5)) multiplier is trivial for an abelian

discrete group. For this we have only to assume the product topology on

Ga = GxT in the above proof.

Proof of (iii) in Theorem 1.1. We have only to prove that the

condition (B) implies the condition (A) . Since 0 G spffe (le) for any non

zero e in Mff (or Z(M(7)), we have 3= {0} Csp <5e.

Suppose that V is a neighbourhood of 5. Since Oe5*, we may

choose an open neighbourhood U of 0 with (U — C7)~C V. Since G((J)

= G and M* is separable, it follows from Lemma 3.4 and [8, 11, 12] that

there exists a strongly continuous unitary representation u of G in Mff

such that 6t(x) =utxut* for x^M and t^G. By virtue of Stone's the-

orem, we have a spectral resolution

ut= <*, rX^r)>
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where e(d^) is a spectral projection measure on G. Utilizing a

with e(t/-ff0)/V=0, we define a projection e by e(U+f<^f. Then

(or Z(Mff)) and 0<></. For all g^Ll(G) with car gcG\(C7-C7)

we have

= g(t)eutxut*edt
JG

for all *e=M. Therefore sp ffe C ( U- U) ~ C Y. Q.E.D.

Proof of Corollary 1.1. It is immediate from (iii) of Theorem 1.1.

The following proposition generalizes [6, Theorem 2.4.1].

Proposition 3.1. (i) If Z(M f f)cZ(M), then spff = ri(ff). In

particular, if Mff is a factor, ro(<T) =F1(ff).

(ii) If rQ(6~) = jT1(0>) =5 and S is discrete, then sp 0~ = S is necessa-

ry and sufficient for Z(Afff) C Z(M).

Proof. (i) Let e e Mff and / the carrier in Z(Mff) . If j e sp fff, there

exists an x^M such that spff(jc) p| (Y-f 7) ̂ 0 for any neighbourhood

V of 0. Since / is the carrier in Z(Mff) of e, there exist y and s in AT

with ezxye=^Q. Since spff(£2;.ry£) =sp f f(x), ^espt f 6 and hence sp (^

Csp 6e, which implies sp ̂ ^sp fff. Consequently, Pi((f) = fl ISP o~f:

/eZ(Mff) and /=!}. Since Z(M f f)cZ(M), we have spG = ri(ff).

(ii) By (i) wre have only to show the sufficiency. First we shall

show that if el and e2 in Ma have mutuall}^ orthogonal central carriers,

then e1ez = 0. Suppose that e^M", e2^Mff and e1e2=£IQ- Then there

exists a non zero x^M such that elxe2=x and spff(^:)={^} for some

Y^S. Put es=s(x). Since r,(6e^ =3 by Lemma 3.2 and since A^3)

^sptT68 from the assumption that 3 = spu~, it follows that there exists a

non zero y^Mes with sp<r(y) = { — 7}. Then ^1^y^2
=:^:3;7^0 and

Thus the product of central carriers of e1 and e2 is non zero.

Now, suppose e ^ Z ( M f f ) . Since e(1 — e) =0, we have e(l — < ? ) = 0

from the above. Since 1 = e+ (\ — e) <e + (1 — ̂ )^1, we have e = e,
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namely, eeZ(M). Q.E.D.

Remark 3.2. Assume that G/3 is compact. If Mff is a factor, then

the conditions (A), (B) and (C) are equivalent. For this we have only

to show that (B) implies (C). Since G((T) is discrete by assumption,

there exists by Lemma 4.4 a tf'eRep(G, M) such that ff'~ff, Z(Mff')

= Z(Mff) and G(ff) = (sp ff') 1. If Mff is a factor, then Mff/ is a factor and

hence /^(tf') = F 1 ( f f ^ =sp (7' by Proposition 3.1. Therefore sp 0"' is a

group and hence 3 = G(ff) ^ = sp ff' =T1(ff
/) by (B). Since ro((T) = ri(G)

by Proposition 3.1 and r i ( f f ) = r i ( f f / ) by Lemma 4.3, we have F0(ff)

= r i((T)=H, which is (C).

§ 4. Proof of (B) =» (C) and S-Set

In the following /e(A) denotes the e-neighbourhood of A el?, namely,

the open interval (A — £,

Proposition 4.1. For a 0"eRep(jR, Af) there exist projections qQ,

q^ in Z(Mff) p| Z(M ) <272<^ a^ increasing left continuous spectral resolu-

tion {p(A)eZ(M r)nZ(M):A>0> of qoo-qQ such that

(i) r0(^0=A((T t to) = {0};
(ii) ro((T1-f l-)=r l((T1-«-)=JR;

(iii) /or a^y ^o^ s:^ro AeSp A (h=fip(dX)), e0^ (0, A) arcrf se (0,

e0) there exists a non zero projection e^Z(Mff) majorized by

-/>(A-e0) satisfying that sp ̂ C/eC^ZIJ /s(0) anrf sp

/or aZZ 7ZGEJV and f^Z(Ma} with

(iv) z/ AeSp A awrf A>0,

(v) z/AeSp 7z z"5 isolated and ^=

Proo/. (i) Let SFo be the set of all projections p^Z(Mff) H Z(M)

such that for any e^Z(Mff) R Z(M) with 0<e<^ and for any /l>0 and

ffe (0, A/2) there exists a projection /eZ(Mff) with 0</<e and sp fffC\

(d, A — 5)=0. Put g0=sup{^:^e2r
0}. Using Zorn's lemma, we have

a projection £?0<EZ(Mff) such that e~Q = q0 and sp (Te° fl (8, A — 5) =0.
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Therefore

AC^Ocn H

and hence FQ(ffq°) = AC^0) = {0}.

(ii) Let SFoo be the set of all projections e^Z(Mff) such that sp 6e

=£R. Put g^sup^ieeESU. Then g0<2co and F^ff1'^ =ri(ff
1-q°°)

= R. Moreover, q^ e Z(Mff) f| Z(M) .

For the proof of the remaining part we must prepare the following

two lemmas. Before going into the proof we recall that if sp (7f| (d, A — 5)

=£0 with 0<25<A then for any £>0 there exist a A0e (<J, A — 5) and a

non zero x^.M such that

Lemma 4.1. Assume that qQ = ~L — q00=Q. For any

e (0, A/2) Z^z^ 2 |̂5 Z;^ ^Ae 5^2^ o/^ZZ projections e in Z(Mff) R Z(M) such

that if f is a projection in Z(Mff) with 0</<e then spfffC\ (5, A — 5)

. I/

/> (A) = sup sup {e :

then {/>(A): A>0} 25 a?z increasing and left continuous spectral resolu-

tion of the identity.

Proof. In the following we denote sup{e: e^S?^} by

Since P(l,8)<p(/JL9d) for 0<A</^, it follows that p(X)<p(ju) for

0<A</J. Therefore />(A) is increasing in

Since f?^ ^C^-e,^ it follows that

lira/? (7 — e) = supp(& — e) = sup sup /»(/! — £, (J)
540 e>0 e>0 5>0

> sup supX^, £ + ̂ ) =PW>
e>0 5>0

and hence that />(A) is left continuous.

Putting Ao=l — lim^ooXA), we have p^G. Z(Mff} R Z(M) and

/> 0 0 =inf inf (1-
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Suppose that p^Q. If e is a projection in Z(AT) fl Z(M) with 0 <></>„„

then for any A>0 and fle (0, A/2) there exists a projection f^Z(Mff)

with 0<f<e and sp ff'n (5, A-5) =0. Thus /^a,. Since g0 = 0 by

assumption, it follows that lim^^ ^>(A) =1.

Putting />0=lim^o #W, we have pQ^Z(Mff) fl Z(M) and

= n s u p

Suppose that pQ=/=Q. If £ is a projection in Z(Mff) with 0<^e<^pQ, then

for any A>0 there exist a <5e (0, A/2) and a projection ^^^(M^), 0<^0

) such that sp (/R (5, A-fi) ̂ 0 whenever /eZ(Mff) and 0</

For any jU^>0 and its £-neighbourhood I£(/jC)ClR+ we shall show

^s(^) H sp (7e is non empty. For a given £ we have a positive A<O, for

which we get a 5 and a projection e0 as above. Choose an n^.N so that

jU<^n8 and put y=d/n. Since sp(Te°n (5, A — ff)=^=0, we have a non zero

.T! e Afeo and a Ax e (5, A — 5) satisfying

Let /! be the carrier in Z(Mff) of

sup {(^OOi)): t<=R},

where s(xO denotes the carrier of x^ Since f 1 ^ Z ( M f f ) and

we have sp (Jfl H (<J> A — (J) ̂ 0. Therefore we have a non zero

and a A2e (5, A — 5) satisfying spff(.r2) C/,(A2) H (ff, A — 5). Since

we have a vl G Afff and a ^ e 1? with

Let /2 be the carrier in Z(Mff) of

sup{<7t(s(y2)): ^efi}.

Since /2eZ(Mff) and 0</2<e0, we have sp (T/2 R (5, A - 5) =£0. We re-

peat the similar argument as above and obtain sets {xi,"m,3:n} dM and

{Ai, • • • , An} C (5, A — (?) satisfying

for j = l, ~-,n. Since y} is the carrier in Z(Mbr) of
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and X j + i ^ M f j for j = 2, • • • , n, we have sets {vl9 • • • , z>n-i} CM0" and {£1? • • • ,

£n_i} C 1? satisfying

for all k = 2,--,n. Since spff(yA:) C {25=1 sP<r (•£/)} ~, we have

j = l j = l

Since /l<n8<C£^n
j=l 4/» 8<^^<^^ — 8 and A<£, there exists an mEE-AT,

with # — £<CZ]7=i ^<C/^- Since d^nf], we have ^(XlTi1 ̂ -) C/g^), and

hence

and spff (yTO+i) C 7e (/^).

Since £ can be arbitrarily small, it follows that /^Gsp ffe. Since

is arbitrary, s p f i e = R. The arbitrariness of e^ Z(Mff) with 0<^^<A im-

plies that jT0 ((TPo) = R. Since q^ — 1 by assumption, we have a contradic-

tion. Thus A = 0, namely, lim^0/>W =0. Q.E.D.

The idea of the following lemma is essentially due to Borchers, [4] .

Lemma 4.2. For any ee(0, A/2) let p be a non zero projection

in Z(Ma} satisfying sp ffe fl 7e W ^0 /or <z# e^Z(Mff) with §<e<p.

For a non zero projection q in Z(Mff) if l(q) is defined by

ivhere k(e) denotes the supremum length of subintervales of (0,

\sp (Te, ^Aew

(i) sp(T'n^U)¥=0 /or a// ^eZ(Af t f) with 0<e<p and n

and

(ii) for any 5>0 there exists a projection e in Z(Mff) such that

0<e<p and sp tfe

Proof. (i) We shall use an induction argument. Suppose that sp 0~e

fWe(/0^0 for some w>0. For a non zero ^ in Af"(»7e(A)) let /

= sup{(T t(s(^)): ^eG}. Then 0<f<e<p. Since sp ̂  R 7e (A) ̂ =0 by as-
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sumption, we have a non zero y in M f f f ( I £ ( & ) ) . Since 0<C/f±£ and

fft'(x)y=£Q for some t^G, we have sp ffe f| (n + 1) Ie (A) =^=0.

(ii) We have nothing to prove if 8^>2~1l(p). For any positive

8<2~ll(p) there exists a projection e^Z(Mff) such that 0<e<£ and

k(e)>l(p)-8. Put l=l(p). We have then a subinterval (2~1ff ,Z-2~1

• f f ) + A 0 of (0, A + e) \sp tfe for some A0e/2. We shall show by induction

that (7i-l)J + 7z<y, 7z ( / -<y) )nsp0* = 0 for all rcGiJV with n<(2S)~1l.

For ;z = l we assume the contrary. Let <f>(E,e) for e^Mff denote the

projection onto the subspace spanned by Mff(E)eM. For any Ae (8,

l — d ) ^ s p f f e we have

for 5' e (0, min {A - S, I - d - A} ) . Since A e sp tfe, we have er ̂ 0 and sp (Te'

C sp <Te n (sp tfe - /,, (A) ") , for speff«(E'e) C sp (f - E with E= /,, (A) ". There-

fore sp 6e/ is disjoint from

Since A0 + /-2-1(J>0 and OeEsptf ' , A0-/l-f 2'15 + ff/>0. The length T

of the interval on the right hand side is l — d + A — d'. Since /<Z'</(V)>

we have a contradiction. Thus sp ffe is disjoint from (8,1 — 8). Suppose

that the result is true for n>\ (n< (28) ~ll-l}. If (nl+(n + Y)89 (n

, then

is non zero for any fixed

re (0, min{^-^- (n -4-1)5, (

Since fi e sp (Te, we have /^=0 and sp (T7C sp Ge H (sp (Te — Ig,, ( / d ) ' ) . There-

fore sp 6f is disjoint from

(-1 + 8, -8)\J((n-l)l + nd-fl + d",n(l-d)-tt-8"')

= ((n-l')l + nd-n + 8", -d),

whose length is larger than /, for sp fff= — sp fff. This contradicts
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with the fact that l(f)<l(P}=L Thus the result is true for rc + 1.

Q.E.D.

Proof of Proposition 4.1. (Continued). By our previous proofs

of (i) and (ii) we may assume that qQ = 1 — q00 = 0 in the ramaining part

of the proof.

(iii) Suppose that A is a non zero element of Sp h. For any £GE (0,

£o/3)

Since p (^ + e) = sup5>0^ (A + e, (?) , there exists a projection q in Z(M*) f)

Z(M) such that gp(A-e) = 0 and 0<g</>(A + e, #) for some £e (0, e/2).

Since qp(k — e) =0, there exists a projection e'^Z(Mff) with 0<V<<?

and sp <f'n (ff, A — e — 5) =0. On the other hand, since 0<<?</>(>l + e, ff),

if/EEZ(M f f) and 0<f<q then sp ffTl (<?, A + £-<J) 7^0. Therefore, if

/eZ(Mff) and 0<f<e', then sp^n/7^0 with 7=(A-2-13e, A + e) and

hence sp^n^7=^0 by (i) in Lemma 4.2. Furthermore, we can define

l(e') by the same way as in Lemma 4.2. It follows from the above that

)<^ + £- By virtue of (ii) in Lemma 4.2 we have a projection

with OO<*' and sp <f de (/(*') )^U ^(0). Then for any

with 0</<^ we have

Considering 3£ as £, we have (iii).

(iv) Suppose that A^Sp h and A>0. We shall use the same notation

as in (iii). For any £<E (0, £„) let 3 be the set of all projections e

eZ(Mff) satisfying the same condition as in (iii). Put ££=sup{e: e^

3}. For any^?eZ(M f f) with />=! we setp£=pe£. By means of Lemma

3.1 since ps=e£ there exist projections ^ and ^2 in Z(Mff) such that

^i<^e, ez<p&, ei = ez
 = e£ and sp (Tei C sp (Tez + /£ (0) . This inclusion rela-

tion and the condition in (iii) imply that (sp 6** + 7£ (0) ) f] ̂ 7£ (A) ̂ =0 for

all 7zeJV. Since ez<p, we have

for all n£EN. Since £ is arbitrary, AZdsp(Tp and hence
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(v) Since A is isolated in Sp h, Sp h f] (A — £o» ̂  + So) = W f°r some

£0>0. For any ee (0, e0) let £FA be the family of sets of non zero projec-

tions ef in Z(Mff) with mutually orthogonal carriers in Z(M) majorized

by qi=p(A + s) —p(X) satisfying that if f ^ Z ( M f f ) and 0</<e' then sp fff

C/ e(A)ZU/£(0) and sp <? f| nl£ (A) ̂ 0 for all rcGEJV. Since £F, is or-

dered by set inclusion and inductive, we have a maximal {ef: ££E/} £=2^ by

Zorn's lemma. Put pi=sup{ec: C&I}. If Qi—p^Q, there exists by (iii)

a non zero projection e"^Z(M*) satisfying the same condition as ^EEEFj

and e//ec
==0 for all £EE/, which contradicts with the maximality of £F^.

Thus qx~P3L' Putting e=sup{ec: c&I}, we have g =<?A and sp (Te C I£ (A) Z

U/e(0). Since S is arbitrary, we have A (<7*0 <= AZ.

Suppose that FQ(ffqi^)=^^Z. Since ro(ff
q*) is a subgroup, there exists

a projection e j leZ(Afr) such that 0<[^<^ji and s p f f e i r \ I s W ~$ f°r some

C?>0. Here we may assume that the above £ is less than 5/2. Since

ei<^e, it follows from Lemma 3.1 that there are projections el and ez in

Z(MO such that ^<^, 0<^2<^ and sp (7e2 C sp (Tei + 18/2 (0) . This in-

clusion relation contradicts with the fact that

is/2w n (SP ^+/M(O)) =0 .
Thus roOT*0=>lZ and hence (v) follows. Q.E.D

Remark 4.1. Let G be the additive group R and (TeRep(I?, M),

If sp ff is compact, then FQ(^ =Fi((f) = {0}.

From the above proposition we have the following one.

Proposition 4.2. The condition (B) implies the condition (C),

z/" cw£ of the folio-wing two assumptions is satisfied:

(i) G = G((T); arcrf

(ii) G z*5 ^A^ additive group R or Z ze;z"£/& the usual topology,

For any ff and 0"' in Rep(G, M) , o~^o~f if there exists a strongly

continuous mapping u of G to the unitaries in M such that us+t = uso~s(ut)

and tf/Ca:) =uto~t(x')ut* for s, t^G and x^M. This equivalence relation
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"~" is called an "exterior equivalence" by Connes. The following lem-

ma follows immediately from Lemma 3.1.

Lemma 4.3. If ff~ff', then Fl (<r) = A (O .

The following lemma is used to relate the F0(ff) with the algebraic

invariant S(-M) which was defined in Section 1 for a general von Neu-

mann algebra M.

Lemma 4.4. Assume either that G(u") is discrete or that G(6F) is

closed and satisfies the second axiom of countability and M* is separa-

ble. Then there exists a tf'eRep(G, M) such that ff'~ff, M f f d M f f ' ,

and G(<f) = G(tf') = (sp ff') \

Proof. By similar discussions as in the proof of Lemma 3.4 and

Remark 3.1, we have a strongly continuous unitary representation v of

G(tf) in Z(Mff) such that G9(x) =vsxvs* for x<=M and s<EG((T). Since

G((T) is a closed subgroup of G, it follows from [6, Lemma 3.3.12] that

there exists a strongly continuous unitary representation u of G in Z(Mff)

such that Ug = v, for s*EG(tf). Define a tf'eRep(G, M) by tf/O) =tit*fft

(x)ut for ^eG and ^ceM. Since ut+s = 6t(us}ut, we have ff'^0" and

G(<T) -

Since ut(=Mffc:Mff', if yeZCAf*'), then (Tt(y) =ut$t
f (y)ut* =y and hence

y e Mff. Since Mff C Mff/, y e (AT) x C (Mff) x and hence y e Z(Mff) . Thus

Z(Mff ')ciZ(Mff). If (T/(o:)=w^T«;* for s€EG((T') and a unitary iv^Z

(MO, then ^sweZ(Mff) and hence G(tf') cG((T). Thus G((T) =G(a").

Since G((T/) — (sp (T') ^ is clear, we complete the proof.

of Proposition 4.2. (i) If G((f) =G, then T0 ((T) C A ((T)

C {0} by Lemma 2.6, which implies the condition (C).

(ii) By (i) it suffices to consider the case G((T)=^:G.

The case where G((T) = (sp 0")1. Suppose that G = R (resp. Z).

Since S'^G((T)J- is discrete and G($}=/=G by assumption, there exists a

generator /el? (resp. [0, 2?r)) of 51. Here w^e apply Proposition 4.1 to
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(T. Since G((7)^{0} by assumption, q00 = ~L. Since FQ(ff)=^{0} by as-

sumption, we have qQ = 0. Since S is discrete, we have a partition {pn:

n^N} (resp. {pn: n\ m} , m=2n/ri in Z(Ma} fl Z(M) of the identity such

that

7To(<T*'0=/T
1(0*'0=»r£ (resp. {nr:n\m}),

which is the condition (C) for ffPn over MPn. Since G/nyZ is compact,

the conditions (B') and (C) are equivalent over MPn by (ii) of Theorem

1.1 and hence G (ffe) -1 = nf Z (resp. {nj".n\m}) for all non zero e ^ Z ( M f f )

with e<pn. On the other hand, the condition (B) implies G ( f f e ) ± = 3 for

all e(=Z(Mff). Thus Ai = l and pm = 0 (m^n) for some n<=N, namely,

B = nj-Z. Since 7 is a generator of 3, n — \. Thus T^((f) =F1(ff} = 3.

The general case. For a given ff we choose a (T7 as in Lemma 4.4.

Then G((f) =G(O = (sp (T')-1 and hence AC^) =/T
1(O ^GC^)1 from

the above. Since G((T') — G((T) ^S*1 by the condition (B), we have

A ((T') =ri(G'} =3. Therefore ^(((T')6) =3 for all non zero e<=Z(Mff).

Since MffdMff' by Lemma 4.4, if e is a projection in Z(Mff), AC^)

^^(((T')6) by Lemma 4.3, and hence FQ(ff) =F1(ff) =3, which is the

condition (C). Q.E.D.

Proof of Theorem 1.2. Since G/T0((T
0) is compact and ro(^)

= ri(ff*) by assumption, the condition (B') holds by (ii) of Theorem

1.1 and hence G(tf) =ro(ff*) ^ is discrete. Applying Lemma 4.4, we

have a (TeRep(l?, M) such that G~ G* and sp <rcG(<T*) -1. The condi-

tion (B') implies that

G(^)-G(((T0)e)=ro((T01 and ro(^)

for all non zero e in Z(Mff ) and hence that

sp (TCG^)1^/^^) Csp((TOe •

Since ff^ff* implies 6 = 6* for some 0eW(Af) by [6, Theorem 1.2.4], we

have

(4-1) n{sp(T*:0eW r(M)}cr0((r l).

On the other hand, since 6*^6* for all 0 in W7(M), it follows from

Lemma 4.3 that



AUTOMORPHISM GROUP OF A VON NEUMANN ALGEBRA 23

r0 (0*) c r, (O = A (0*) c sP <r*
and hence

(4-2) r0(^) = n {sp (T*: 0GE W(M)|.

Since sp <r* = log (Sp(^) R-K+*) by [6, Lemma 3.2.2] and Z(M) cM'* for

0GEW(Af), we have a desired result.

§ 5. Unbounded Derivation

Before going into the definition of a derivation, we recall that G(g) is

CF-weakly continuous on M for g ZEL1 (G) . For the sake of completeness

we shall give a slightly different proof from [2, Proposition 1.4].

Let M! be the unit ball of M with the (T-weak topology. Choose

a compact Kd.G for a given £^>0 such that

f \g(£)\dt<e.
JG\K

Since the dual representation 6r on M* of (7eRep(G, M) is strongly

continuous [1, Proposition 1 in § 6], for any tjGEG, £>0 and 0GE Af* there

exists a neighbourhood V} of tj such that

sup sup !

Since ^ is compact, we can find a finite covering VJy j = l, • • - , » of ^.

Since (T^ is (T-weakly continuous, there exists a neighbourhood A^- of 0

in M such that | <(Tt,(^}) , 0>l<2~1£. Set N^ R ?=iA^. Since ^e^ be-

longs to some V},

for all x&N. Therefore

<£ f |ff(0!*+2W f \g(f)\dt
JK JG\K

for all x^.N. Thus (f)°ff(g) is tf-weakly continuous on JVfj and hence

on Af by Banach's theorem. Consequently, 6(g) is (T-weakly continuous.

Now we shall generalize the concept of a derivation of M to the

unbounded case as the following, [7].
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Definition 5.1. A linear operator S on M is called a self -adjoint

derivation of M if the domain D(5) of d is a (T-weakly dense *-subalgebra

of M and

for all .r, yeD(5). In addition, 5 is said to be spatial (resp. inner) if

there exists a self-adjoint operator h (resp. h^M) whose domain is in-

variant under D(5) and which satisfies

S (x) =hx — xh= [h, x~\

for all -re:D((J).

For a linear operator d on a Banach space E, an x^E is analytic

(resp. entire) for <J if the function £^RH> 2"-o(»0 ~ltn8nx^.E exists and

is analytic in some neighbourhood of 0 (resp. entire). For a representa-

tion o~ of JR on J£, an x GE £ is analytic (resp. entire) for <T if the function

t^(Jt(x) is analytic in some neighbourhood of 0 (resp. entire).

If o"t, t^R is a strongly continuous one parameter group of uniformly

bounded operators on E, then

1/2

for x^E, are entire for (T and x is the limit of x^ as A—>0. Furthermore

if d is the generator of (7, then

]T]—\\Sn(xx) |K -f °°, for all t^R.

In the following a linear operator 5 on M is said to be (J-weakly

closed if the graph of d in M©M is (T-weakly closed.

Proposition 5.1. Let ff<=Rep(R9 M) and d be a linear operator

on M -whose domain D(5) is the set of x<E^Mfor -which t~l(6t(x) —x)

is 6-weakly convergent as t J, 0, and

dx= lim (it)~l(6t(x) —x)

for all x^D(S}. Then
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(i) D(5) is a () --weakly dense *-subalgebra of M and S is a self-

adjoint ff-weakly closed derivation of M\

(ii) for any non-zero real number A, & — id has the 0 '--weakly con-

tinuous inverse (l-i§}~1 and | |(A-z<J) ~1||<| A |~ ! ;

(iii) the set of entire elements for d is (3 -weakly dense in M\

(iv) d is spatial (resp. inner) if and only if o~ is spatial (resp.

inner); and

(v) the infinite simal generator of the dual representation 6r of o~

is the dual of d.

Conversely, if S is a self-adjoint ff-iveakly closed derivation of

M and if for any non-zero real number A, A — id has an inverse and

||(A — z'fl)"1!!^ A]"1, then there exists a unique representation (TeRep(jR,

of -which S is an infinitesimal generator.

Proof. (i, ii) It is clear that D(<J) is a *-subalgebra of M and d is

a self-adjoint derivation of M. Define 0A for A>0 by

poo

,= A<T t
Jo

Applying the same argument as the one parameter semi-group theory on

a Banach space, we know that the range of <^ coincides with D(ff ) , that

/TV*— (A — id) ~l and that &(•£:) converges (T-weakly to x as A^oo for

x^M. Therefore D(o) is (J-weakly dense in M. Since 0A is (T-weakly

continuous as shown at the begining of this Section, 8 is (T-weakly closed.

(iii) Xj, in (5-1) is entire for 8 and (T-weakly converges to x as

A->oo. Therefore we conclude (iii).

(iv) Suppose that o~ is spatial (resp. inner) . There exists a self-ad-

joint operator h (resp. hf]M) such that 6t(x) —utxu* and ut =

Since

if x<=D(8) and £ is in the domain D(A) of A, then .rfeD(A) and

^(.r)^^ [A, .r]?. Since D(/i) is dense in M, we have (J.r = [A, .r] .

Conversely, suppose that 5 is spatial (resp. inner) . Let h be a self-

adjoint operator which induces 8 as in Definition 5.1. Put «t = exp(z"£/i).

Denote by ^<e) (resp. M(e)) the set of entire elements for &(resp. S) .
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We shall show by induction that xM^ cD(An) for n<=N and

By the assumption for h, x&(e} cD(A) . If .r^T6' C D (An) , then

for fe^(e). Since ((To:)? eD(A), we know that

is in D(A) and hence ;cf eD(AnTl).

If xeM(e) and f, 7?eEjre), then

- ;

= s71=0 k=Q \ (n~k) I

Since ?, ^ej^(e), the right hand side is absolutely convergent. Therefore

= (x (exp ( — f^) ) f! exp ( — ith) ff)

= ( (exp (jitK) ) j: (exp ( - z^A) ) ?| ̂ ).

Since ^f(e) is dense in M and 7if(e) is (T-weakly dense in M, we have

fft (x) = (exp (ith) ) j: (exp ( — ith) ) for x e M

(v) Let 5" and *(? be the infinitesimal generator of the dual ff' on M*

of (T and the dual of d, respectively. For A^>0, the dual of (A —z'5)"1

is (l-i'Sy1. Since 5'C^, a-^O-'c^-^)-1. Since the domain

of (A-iff7)"1 is M*, we have (Jl-fff7) ^= (A-f£5) -1 and hence, ff7='<J.

Suppose that 5" is a self-adjoint (T-weakly closed derivation of M and

that IKA-ffi)"1!^^!"1 for any A^O. Denote by 8' the dual of 5 on

M*. Since || (A-x'fl7) ''H^UT1, by the Hille-Yosida theorem, d' is the gen-

erator of a strongly continuous contraction one parameter group <5f on

M%. The dual 0" of ff' is a (T-weakly continuous contraction one parameter

group on M. Moreover (v) is valid for (T and the generator of ff is
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(T-weakly closed. Since the bidual of a closed linear map is itself, the

generator of (T is the dual of 8', namely, 8. Therefore we have for any

entire elements x and y,

fft ( * ) f f t ( y ) = S ^? ff*(*) f] -^£0" (y) = f] -££- ff"foO = ff,to),

n = 0 72 j n = 0 n !

Since (iii) is valid for 5, we conclude the multiplicativity and self-adjoin-

tness of fft. Therefore fft is a *-automorphism. Q.E.D.

Remark 5.1. In the above proposition M(e} is a core of 5 with

respect to the (T-weak topology on M. Indeed, if x^D(S), then Xj, defin-

ed by (5-1) converges (T-weakly to x. Furthermore 8(xd — (8x)i con-

verges (T-weakly to dx as A—>0.

Lemma 5.1. If 8 is the infinitesimal generator of (TeRep(jR, Af),

then Sp £ = sp (T.

Proof. Suppose that /l^sp (7= — sp 0" and -C^, A)^exp(z^) for

Define a function 0EE!/(!?) for any Q^^>0 by

Since i(8 — X) is the infinitesimal generator of a one parameter group

Tj, we have

ff (0) = f exp ( -
Jo

- - A - a -

and g( — A)=a~1 . Therefore, by [6, Lemma 2.3.6], we have ||(A — z'

— ff)"1!!^^"1 and hence

(5-3) limlKA-za-Sr^oo.
aiO

Consequently, A €= Sp 5.

Assume that

By the resolvent equation, (A — za — 5) ~1 converges in norm to a bounded
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operator p as a | 0 and p — (A — 8}~\ Therefore AeSp 8 implies (5.3) and

hence that there exist for any £>0 a positive a^R and a non zero y^M

such that 2<2 <£ and

By putting x^H^H"^ for z=(i. — ia — S)~ly, we have

||(A-ff):r||<||(;i-ra-0):c||

From the equation

= r<5,AX.o(i(*-
Jo

it follows that

Therefore, by [6, Lemma 2.3.6], we have — /l^sp (7= — sp (7. Q.E.D.

Lemma 5.1 and Theorem 1.1 give following corollaries. It is clear

that x^MG if and only if Sx = 0. Therefore the restriction de of d to Me

is a derivation corresponding to o~e. For a derivation 5, we denote by

Ms the set

Corollary 5.1. Let 8 be a derivation of M which is the infini-

tesimal generator of a representation in Rep(/Z, Af). The following

conditions are equivalent for A>0:

(i) n{$pSe:e^M\e^O} = ni$pSe:e^Ms,e=I}=lZ-, and

(ii) for any non zero projection f in Z(MS} and for any neighbour-

hood V of 0, there exists a non zero projection e in Z(MS) such that

e<f and AZeSp (fcAZ-f V.

Corollary 5.2. Let 8 be a derivation of M 'which is the infinitesi-

mal generator of a representation in Rep(fi, M) . If M* is separable,

then the folio-wing conditions are equivalent:

(i) 8 is inner; and

(ii) for any non zero projection f in Z(M8) and for any £>0

there exists a non zero projection e in Z(M8) such that e<f and

W\\<e.
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Since the separability of M* is unnecessary for the implication (ii)

=> (i) in Corollary 5.2, we have Corollary 5.3, which is a restatement of

a result of Borchers [3, Theorem]. We shall restate it more precisely.

Corollary 5.3. Let d be a derivation of M 'which is the infinites-

imal generator of a representation in Rep(i?, M). If there is a non

negative self-adjoint operator k implementing d, then d is inner, and

a self-adjoint operator hyM implementing 8 is uniquely determined by

the condition that 2\\he\\ = \\de\\ for all e^Z(Ms}. In particular, Sp
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