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§ I. Introduction

In [2] we see that any formal power series in two variables with

coefficients in R or C (in this paper only the real case will be considered,)

can be transformed to a polynomial by some automorphism change of the

variables. In [3] Whitney shows an example which is a convergent

series in three variables but which cannot be transformed to a polynomial.

In this paper we give a formal power series example in three variables

that is never transformed to be convergent (§ 2).

A formal power series is the Taylor expansion of some C°° function

at the origin by E. Bore] theorem. The followings refine it.

Theorem 1. Let f be a formal power series in the variables

jc= (xl9'",a;n). Let K be a positive real. There exists a C°° function

g defined on \x\<^K with the Taylor expansion at 0 Tg=f and -which

is analytic except when x = 0.

Theorem 2. There exists a homomorphism S from the ^-alge-

bra 3 of formal power series in one variable x to the ^.-algebra

£ of germs of C°° function in one variable x at 0 such that the

composition T°S is the identity homomorphism of 2'.

There is a question in Malgrange [1] whether any homomorphism

between the B-algebras of C°° function germs is a morphism (see § 4).

Theorem 2 gives a counter-example to it (Corollary).

Recieved March 20, 1975.
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§ 2. An Example

The example of Whitney is an analytic function fin three variables

of the form xy (y — x) (y — (3 + z) x) (y — V (2) x) where v is a transcenden-

tal function with v(0) =4. If we replace the transcendental function a-

bove by a non-convergent formal power series, then f cannot be trans-

formed to a convergent one by any automorphism of the algebra of formal

power series.

Proof. Suppose it is not so, then there exist formal power series

in (X,Y,Z) -variables x(X,Y,Z), y(X,Y9Z), z(X,Y,Z) such that

f(x(X, Y, Z), y(X9 Y, Z), z(X, Y, Z)) is analytic and that the determinant

of Jacobian D (x, y, z) /D (X, Y, Z) does not vanish at 0. Moreover

we can assume ^/y'£ *1 = (0 1 0) at (X, Y, Z) - (0, 0, 0). WeD(X,Y,Z) \Q 0 i]
know Zariski-Nagata Theorem and the fact that the formal power

series ring and the convergent power series ring are unique factoriza-

tion rings. Therefore there exist formal power series Qi,"m
9Q5 in

(X, Y, Z)-variables such that (7<(0) =1 for each z", 0r--05 = l, and gix,

Qzy,'"')Q^(y~^(z)x} are convergent. Let Gt z" = !,•••,5 be C°° functions m

(X, Y, Z)-variables such that TGi = g£ and G1-"G5 = 1. We assume QiX,"-

converge in a neighbourhood U of (X, Y, Z) = (0, 0, 0). Let (f>i=QiX/Gl9

—, 05 = g5(y-v(^)x)/G5 in £7. Clearly T^=x, •-, 7% = y - KS) *, and

the Taylor expansions of 03— (^2 — 0i), 04 — (<&>— (3 + *S)^i) and 05— (02

— R(S)(/>1) are zeros at 0. Here 5, U are C°° functions in (X, Y, Z)-, z-

variables respectively such that TS=z, TR = v. From the assumption,

(giX, gzy, Z) is an analytic local coordinates system around 0. Hence ^~l

(0) n^T'W is an analytic curve. These imply that the functions 03— (02

— (f>i),-' are zero identically on the curve ^"^(O) fl^"1^)- On tne other

hand (0i, ^2> Z) also is a local coordinates system around 0. Thus, we

find C°° functions 0y z" = 3, 4, 5 j = l,2 fiat at 0 such that

03~ (02 — ̂ l) = 03101 + 03202 ;

04 — (02 — (3 + 5) 0j) = 04101 + 04202 J

05 — (02 — -R (5) 00 = 05101 + 05202 -

Hence the intersection of any two <t>t~l(Q) are the same one 0i~1(0)
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rW(0), and the intersection is described as (X, Y, Z) =(X(Z), Y(Z), Z)

where X(Z) and Y(Z) are analytic in Z-variable. We see easily that

the Taylor expansions at 0 of the cross ratios of (^i"1^), ^^(O), 0s"1 (0),

^-'(O)) and (^(O),^-1^),^-1^),^'1^)) arel/(3 + *(X(Z), Y(Z),

Z)) and l/v(z(X(Z), Y(Z),Z)), respectively.

In the same way we find analytic functions %y i = 39 4, 5 j = 1,2 such

that jfo(0)=^=0 and

G^ = %ilG101-%i2G24 z = 3, 4, 5,

and we see that the cross ratios above are %3i5C42/%4i%32 and %si%52/%5i%82,

respectively. Hence they are analytic, but both z (X(Z} , Y(Z) , Z) and

p(z(X(Z), Y(Z),Z)) are not convergent by the assumption. That is a

contradiction.

§ 3. Proof of Theorem 1

We prove only the case n = K=1. In the general case there is

nothing to prove moreover.

Let f be a formal power series X] anx% where an are reals. It is

enough to find sufficiently large reals mn such that X] an(l — exp( — 1

/mnx^)xn converges on

(1) the real interval [ — 1,1] with its each derivatives; and

(2) any compact subset of the complex domain

Proof of (1). For ?£>2 and k<^?i/3, we have

the &-th derivative of (1 — exp ( — \/

Here P(x, in) is a polynomial in x and uniformly converges to 0 when

77Z— » + oo. We can see that (1 — exp( — l/mxz))xn~k and exp( — 1/mx2)

are monotonous in the intervals [ — 1,0] and [0,1] Hence these func-

tions take the maximal values at x=—~L or 1. Now, it follows that

the &-th derivative of (1 — exp( — l/mxzy)xn uniformly converges to 0 when

TTZ— > + oo for n^>2 and k<^n/3. This proves (1).

Proof of (2) is also easy.

§ 4. Homomorphism

Proof of Theorem 2. Let X be the ordered set consisting of the
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pairs (A, 0). Here A is a subring of £F containing R and 0 is a homo-

morphism from A to S such that the composition T°0 is the identity

of A. Order two elements (A, 0), (£,</>) of X as follows

(A, 0)<:CB,0) if AcB and </>U = 0.

Apply Zorn's lemma, and X has a maximal element (A, 0).

Now, we prove that A of the maximal is itself EF. Assume that

A is a proper subset of 2% and that C is an element in 3 but not in

A. There are two cases,

(1). C is algebraic over A;

(2). C is not so.

The case (1). Let A[C] and A[£] be the ring generated by C over A

and the polynomial ring in ^-variable with coefficients in A respectively,

and let 6 be the homomorphism from A[£] to A[C] naturally defined by

0(t) = £. Let P(£) be an element of ker 0 whose degree as a ̂ -polynomial

takes the minimal in ker 6. For any element Q of ker 6, dividing Q

by P we have QQ' = PP'+R with Q'e A, P', JRe A[*]. Since R^kerd

and degree JR^degree P, we see jR = 0. Hence we have the equality (a)

QQ'=PP' for some Q'eA--{0} and P'eA|>]. Let P(*)=<M*+-

+ an+i. We may assume C~-^s for an integer 5 through some change of

the variable x. Let 0*P(0 denote (t)(a^tn-\ h0On+1). We shall de-

fine an extension homomorphism 0 of 0 from A[£] to <? such that

T°0(t)=xs and 0(ker0)=0. This follows from (a) if we choose a

germ g(.r) flat at 0 such that ^P^ + g) =0. Let y be a variable.

Then 0#P(.rs + :y) is a polynomial ^ynH h&w+i in y with coefficients in

8. We see that £n+1 is flat at 0 and that bn = (d(j)*P/d£)(xs) is not

flat. Because we have degree (dp/df)(t) = degree P(£) —1 and therefore

dp/dt&'ker 6. Put y=xNz for a sufficiently large Nand a new variable

z. We can divide b^-i h^i by xNbn. The quotient is Cj^H \-z

+ cn+l9 here cf are in Q and £n+1 is flat at 0. Applying the implicit

function theorem, we give a germ z(x) flat at 0 such that clz
N(x) H

-i-z^x) H-Cn+j^O. The germ g(x) =XNZ(X) is what we want Now we

have defined a homomorphism 0. It is clear that 0 induces a homomor-

phism p from A[C] to <J such that the composition Top is the identity

of A[C]. This contradicts the maximality of (A, 0). Hence A is £?.
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The proof of the case (2) is trivial from the proof of (1). Theorem 2

follows.

Remark. Even if we treat only the homomorphisms where the im-

age of a convergent power series is naturally defined, there are infinitely

many homomorphisms. We can prove this from the fact that any non-

convergent formal power series is algebraically independent over the con-

vergent series ring.

Definition [1]. An endomorphism u of S is called a morphism

if there exists a germ ([) with 0(0) =0 such that for any /*GEG, we have

The following answers the question in [1] .

Corollary. The composed homomorphism S°T is not a morphism.

Here S is defined in Theorem 2.

Proof. Suppose it is a morphism induced by some $. The first

derivative of (j) takes a non-zero value at 0. Hence S°T is an auto-

morphism, on the other hand we have S°T(f) =0 for f flat at 0.

Remark. The general preparation theorem in [1] does not hold in

the homomorphism case. That is, this S°T is quasifinite but not finite.
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