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and Differentiable Functions
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§ 1. Introduction

In [2] we see that any formal power series in two variables with
coefficients in R or C (in this paper only the real case will be considered,)
can be transformed to a polynomial by some automorphism change of the
variables. In [3] Whitney shows an example which is a convergent
series in three variables but which cannot be transformed to a polynomial.
In this paper we give a formal power series example in three variables
that is never transformed to be convergent (§ 2).

A formal power series is the Taylor expansion of some C* function

at the origin by E. Borel theorem. The followings refine it.

Theorem 1. Let f be a formal power series in the wariables
x= (2, x,). Let K be a positive real. There exists a C* function
g defined on |x|<K with the Taylor expansion at 0 Tg=f and which

is analytic except when x=0.

Theorem 2. There exists a homomorphism S from the R-alge-
bra & of formal power series in one wvariable x to the R-algebra
& of germs of C* function in one variable x at O such that the

composition ToS is the identity homomorphism of .

There is a question in Malgrange [1] whether any homomorphism
between the R-algebras of C* function germs is a morphism (see § 4).

Theorem 2 gives a counter-example to it (Corollary).

Recieved March 20, 1975.
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§2. An Example

The example of Whitney is an analytic function fin three variables
of the form xy(y—x) (y— (83+2)x) (y—v(2)x) where vy is a transcenden-
tal function with ¥(0) =4. If we replace the transcendental function a-
bove by a non-convergent formal power series, then f cannot be trans-
formed to a convergent one by any automorphism of the algebra of formal

power series.

Proof. Suppose it is not so, then there exist formal power series
in (X,Y, Z)-variables (X, Y, Z), v(X,Y,Z2), 2(X,Y,Z) such that
fx(X,Y,2),y(X,Y,2), 2(X, Y, Z)) is analytic and that the determinant
of Jacobian D(x,v,2)/D(X,Y,Z) does not vanish at 0. Moreover
we can assume %%:%%é g §> at (X, Y, Z)=(0,0,0). We
know Zariski-Nagata Theorem and the fact that the formal power
series ring and the convergent power series ring are unique factoriza-
tion rings. Therefore there exist formal power series ¢, ***,¢s in
(X, Y, Z)-variables such that ¢;(0) =1 for each i, ¢;-*-¢s=1, and ¢;x,
92y, ++,0s(y—v(2) x) are convergent. Let G; i=1,:--,5 be C* functions ‘n
(X, Y, Z)-variables such that TG;=¢; and G,---G;=1. We assume ¢z,
converge in a neighbourhood U of (X, 7Y, Z)=(0,0,0). Let ¢, =g,x2/G,,
voe, $s=¢s(y—v(2)x)/Gs in U. Clearly T¢,=x, -, T¢;=y—y(2)x, and
the Taylor expansions of ¢s— (¢,— @), ¢s— (fo— (3+S) @) and ¢;— (&,
—R(S)¢,) are zeros at 0. Here S, R are C~ functions in (X, Y, Z)-, =-
variables respectively such that 7'.S=z, TR=vy. From the assumption,
(g1x, 92y, Z) is an analytic local coordinates system around 0. Hence ¢,~*
(0) N$,"(0) is an analytic curve. These imply that the functions ¢;— (&,
—@,),-++ are zero identically on the curve ¢ ~'(0) N¢@,”'(0). On the other
hand (@, ¢, Z) also is a local coordinates system around 0. Thus, we
find C~ functions ¢ 7=3,4,5 j=1,2 flat at 0 such that

¢s - (¢z - ¢1) = ¢31¢1 + <,bsz¢z 5
‘754 - (¢z - (3 + S) ¢1) = ¢41¢1 + ¢42¢z 5
¢5 - (¢z —-R (S> ¢1) = ¢51¢1 + ¢52¢2 .

Hence the intersection of any two ¢;7'(0) are the same one ¢, '(0)
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N $,"*(0), and the intersection is described as (X, Y, Z) =(X(Z), Y(Z), Z)
where X(Z) and Y(Z) are analytic in Z-variable. We see easily that
the Taylor expansions at 0 of the cross ratios of (¢,7*(0), ¢,7*(0), ¢57(0),
$.7(0)) and (6,77(0), 3.7(0), ¢77(0), ¢s7*(0)) are 1/(3+=(X(Z), Y(2),
Z)) and 1/v(z(X(Z),Y(Z),Z)), respectively.

In the same way we find analytic functions y; =3, 4,5 7=1, 2 such
that %;(0) =0 and

Gi¢i = xilG1¢1 - x12G2¢2 i= 3: 4, 59

and we see that the cross ratios above are ¥aXew/%aulXs: and Xsi¥ss/AsiXze
respectively. Hence they are analytic, but both 2(X(Z), Y(Z), Z) and
v(z(X(Z),Y(Z),Z)) are not convergent by the assumption. That is a

contradiction.

§ 3. Proof of Theorem 1

We prove only the case n=K=1. In the general case there is
nothing to prove moreover.

Let f be a formal power series ) a,x" where a, are reals. It is
enough to find sufficiently large reals m, such that > a,(1—exp(—1
/m,x*))x" converges on
(1) the real interval [—1,1] with its each derivatives; and
(2) any compact subset of the complex domain 0<(|z|<1.

Proof of (1). For =2 and 2<n/3, we have

the k-th derivative of (1—exp(—1/mz®))x"
=n-(n—k+1)(A—exp (—1/mx®))x" *+ P(x, m)exp(—1/mx?).

Here P’(x,m) is a polynomial in & and uniformly converges to 0 when
m—+oo. We can see that (1—exp(—1/mx?))x"* and exp(—1/mx?)
are monotonous in the intervals [—1,0] and [0,1] Hence these func-
tions take the maximal values at x=—1 or 1. Now, it follows that
the k-th derivative of (1 —exp(—1/mx%)x" uniformly converges to 0 when
m—+oo for n=>2 and k<n/3. This proves (1).

Proof of (2) is also easy.

§ 4. Homomorphism

Proof of Theorem 2. Let X be the ordered set consisting of the
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pairs (A, ¢). Here A is a subring of & containing R and ¢ is a homo-
morphism from A to & such that the composition 7@ is the identity
of A. Order two elements (A4,9), (B,¢) of X as follows

(A, 8)=(B,¢) if ACB and ¢[4=¢.

Apply Zorn’s lemma, and X has a maximal element (A4, @).

Now, we prove that A of the maximal is itself &. Assume that
A is a proper subset of &, and that £ is an element in & but not in
A. There are two cases,
(1). & is algebraic over A;
(2). ¢ is not so.
The case (1). Let A[{] and A[¢] be the ring generated by £ over A
and the polynomial ring in #-variable with coefficients in A respectively,
and let 0 be the homomorphism from A[£] to A[{] naturally defined by
0(t) =C. Let P(¢) be an element of ker § whose degree as a #polynomial
takes the minimal in ker . For any element Q of ker0, dividing Q
by P we have QQ’'=PP’ + R with Q'€ A, P', R€ A[¢]. Since R&kerl
and degree R=<degree P, we see R=0. Hence we have the equality (a)
QQ’'=PP’ for some Q'€ A—{0} and P’ A[¢]. Let P(¢) =a;t"+--
+a,+;. We may assume {=ux' for an integer s through some change of
the variable x. Let ¢4P(¢) denote ¢(a;,) "+ -+ +¢(an+1). We shall de-
fine an extension homomorphism @ of ¢ from A[£] to &€ such that
Te®(¢t)=x° and O(ker ) =0. This follows from (a) if we choose a
germ ¢g(x) flat at O such that ¢,P(x'+g) =0. Let y be a variable.
Then ¢4P(z*+7y) is a polynomial &;y"+ -+ +b,,; in ¥ with coefficients in
&. We see that b,,, is flat at 0 and that b,=(0¢,P/0¢t)(x*) is not
flat. Because we have degree (0p/0%)(¢) =degree P(¢) —1 and therefore
op/0tetker 0. Put y=x"2 for a sufficiently large N and a new variable
z. We can divide b,y"++--+b,.; by xb,. The quotientis c¢;2"+---+=z
+Cpi1, here ¢; are in € and c,.; is flat at 0. Applying the implicit
function theorem, we give a germ z(x) flat at O such that ¢c,2"(x) +---
+2(x) +¢,.:=0. The germ ¢(x) =x"2(x) is what we want. Now we
have defined a homomorphism @. It is clear that @ induces a homomor-
phism p from A[&] to & such that the composition Top is the identity
of A[&]. This contradicts the maximality of (A,¢). Hence A is .
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The proof of the case (2) is trivial from the proof of (1). Theorem 2

{ollows.

Remark. Even if we treat only the homomorphisms where the im-
age of a convergent power series is naturally defined, there are infinitely
many homomorphisms. We can prove this from the fact that any non-
convergent formal power series is algebraically independent over the con-

vergent series ring.

Definition [1]. An endomorphism « of & is called a morphism

if there exists a germ ¢ with $(0) =0 such that for any f&¢&, we have

u(f) =fo¢.
The following answers the question in [1].

Corollary. The composed homomorphism SoT is not a morphism.
Here S is defined in Theorem 2.

Proof. Suppose it is a morphism induced by some ¢. The first
derivative of ¢ takes a non-zero value at 0. Hence S°7 is an auto-

morphism, on the other hand we have SeT'(f) =0 for f flat at 0.

Remark. The general preparation theorem in [1] does not hold in

the homomorphism case. That is, this So7" is quasifinite but not finite.
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