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Existence and Stability of Almost Periodic
Solutions in Almost Periodic Systems

By

Fumio NAKAJIMA*

§ 1. Introduction

We shall consider the existence of almost periodic solutions of the

almost periodic system of the form

(1-1) if = 11 *</(*)*/ (-=d/d£) for l^f^w,
.7=1

where x$ are real, k is a positive integer and a^(f) are almost periodic

functions of t. Under some conditions on ##(£), Theorem 1 shows that

the trivial solution of the first approximation of system (1-1) is uniformly

asymptotically stable in a subspace IT of Rn (see Definition 2) . Using this

fact, we obtain a nontrivial almost periodic solution of system (1 • 1) which

is uniformly asymptotically stable in a compact set @ and whose module is

contained in the module of ai3(£) . This is shown in Theorem 2.

Especially, in the case where <2y(£) in system (1-1) are constants,

the system governs one of mathematical models of gas dynamics (cf.

[2, p. 104] ) and has been studied by Jenks [4] . One of Jenks' results is

a special case of Theorem 2.

We denote by Rn the real Euclidean ;?-space. Let R= ( — oo, oo)

and J?+ = [0, oo ). For x in Rn, let \x\ be the Euclidean norm of x and

Xi be the z'-th component. We let

for

and
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n= {.re Rn; I>« = 0}.
i=l

For a continuous function f(t) on I? with values in Rn, H(f) denotes

the set of all functions 0(£) such that for some sequence tk,

f(t + t k ) - * g ( f ) in R as k-*oo ,

where the symbol" -V stands for the uniform convergence on any compact

set in 1?. Clearly f^H(f).

Definition I. An nXn matrix A(t) = (<z#(£)) is said to be irreduci-

ble if for any two nonempty disjoint subsets / and J of the set of n

integers {!,•••, n} with J(J J= {!,-••, n}, there exists an fin /and aj in J

such that

In the case where A(£) is scalar, A(£) is said to be irreducible if A(t)

^0. Otherwise, A(£) is said to be reducible, and we can assume without

loss of generality that A(t) takes the form of

where B(t) is zero or a square irreducible matrix.

We shall define stability properties. Here we denote by x(t, t0, o:0)

the solution of system (1-1) with initial condition (£0> XQ) .

Definition 2. Let x(f) be a solution of system (1-1) defined on R

and K be a subset of IT.

(i) x(f) is said to be uniformly stable (u. s for short) in K on

R^ if for each £>0 there exists a 5(e)>0 such that

\x(f)—x(t,t*, ^0)i<£ for ^^0

whenever xQ^K and |^(^0) "^oK^Cs) at some ^0 in -^+-

(ii) x(t) is said to be uniformly asymptotically stable (u. a. s for

short) in K on R+ if it is z^. 5 in K on J?+ and if there exists a

and, for each £>0 there exists a T(e) >0 such that

e for ^^

whenever x0^K and 1^(^0) —-^oK^o at some tQ in I?+.

(iii) x(f) is said to be u. a. s in the whole K on H+ if it is u. s in
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K on R+ and if for each £>0 and r>0 there exists a T(e, r)>0 such

that

\x(i)-x(t,tQ,xJ\<e for *2S*0 + T(e,r)

whenever xQ^K and |-r(£0) — -^oK?" at some £0 in -^+-

When R+ in the definitions (i), (ii) and (iii) is replaced by R, we

say that x(t) is u. s in K on jR, w. a. s in ^ on R and z*. a. 5 in the

whole K on R, respectively. Clearly Definition 2 agrees with the defini-

tions of the usual stability properties in the case where K = Rn.

§ 2. Linear Systems

Consider the system

(2-1) ±

where the nXn matrix A(£) = (##(£)) is bounded and uniformly contin-

uous on 1?. We shall state a generalization of one of Jenks' result

(Corollary 3 in [4]).

Theorem 1. Assume that system (2-1) satisfies the following

conditions ;

(i) S ay (0=0 for \^j<n,
t = l

(ii) ^(0^0/br zW,

(iii) each element in H(A) is irreducible.

Then the trivial solution of system (2 • 1) is u. a. s in II on R.

To prove this theorem, first of all we shall prove the following

lemmas.

Lemma 1. Consider the n-system xi=fi(t,x)^ 1<^< ,̂ 'where

fi(t,x) is continuous on RxRn, and assume that the initial value

problem has a unique solution.

(I) If Zj/K^-zO ~0> then the set II is invariant.

(II) If ft(t, x):>Q for xt = Q and all x^O, then the set D is

positively invariant, and in addition, if ^i=ifi{t,x} =0, then the set
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J2 is positively invariant.

The proof of the above lemma is obvious (for example, see [5, p.

270]). Obviously the assumptions in (I) and (II) hold for system (2-1)

satisfying conditions (i) and (ii) of Theorem 1.

Lemma 2. The trivial solution of system (2 • 1) is u. s in IT on

R and also u. s on R, if conditions (f) and (if) in Theorem 1 are

satisfied.

By using theorems in [3, p. 58] , we can easily prove Lemma 2.

Lemma 3. If each element in H(A) is irreducible ; then the each

element in H(A), say B(t) = (£#(£))> has the property that for any

two nonempty disjoint subsets I and J of the set of n integers {!,-••, n}

with I\JJ= {!,•••, n}, there exists an z'eJ and a j^J such that

Proof. Suppose not. Then there exists a B(t) = (£#(£)) in H(A)

and two nonempty disjoint subsets I and J of {l,--,n} with I\^J— {!,-••,

n} such that

limbij(t) =0 for all z'el and all j'e J.

Since B(t) is bounded and uniformly continuous on JR, there exists a

sequence tk,tk^> — oo as &->oo? such that

n as ^oo ,

where C(t) = (ctj- (t) ) e H(A) . Clearly

=0 for ^eJS and i

This shows the reducibility of C(£). This contradiction proves the lemma.

Lemma 4. Assume that conditions (if) and (iif) in Theorem I

are satisfied for system (2 • 1) and consider the system

(2-2) ± = B ( f ) x , BeH(A).

Let x(t) be a nontrivial solution of system (2-2) such that

x(t) eD on R.
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Then there exists a constant £>0 such that

xt(t)/\x(t)\^c for t<=R and l<Sz<Jrc .

Proof. First of all, letting x(f) = (xl(t) ,"-,xn(t)} be a solution of

system (2-2) such that x(t)^D on R, we shall show that if ^(^0) =0

at some tQ e R, then

Xt(i) = 0 for all £<^0 .

Since Xi(f) satisfies the equation

*i = *« (*) ** + 2 *</ (0 ^ »
J=fi

where (&y(0) =^(0> and since XIy=fi bij(t)Xj^>0, we have

(2-3) *,(*)^*« (*)*«(*),

^vhich implies

^(O^^iC^expj I bii(s)ds] for
\ J«0 /

Thus we obtain

=0 for ^^^05

because Xi(tQ) =0 and ^(^)^0 on 1?.

Now suppose that Lemma 4 is not true. Then for some B in

the corresponding system (2-2) has a nontrivial solution x(t),x(t) eD on

1?, such that for some sequence tkj

(2-4) *i(O/k(**)|->0 as k^oo.

Setting ^ic(t)=x(t-\-tk)/\x(tk)\,(j)k(t) satisfies

and

Since the sequence {0fc(0)| is bounded, {0^(0} is uniformly bounded

and equicontinuous on each finite interval in R, and hence Ascoli-Arzela's

theorem gives us a convergent subsequence of 0fc, which is again denoted

by (f>k9 such that

m -R f°r some function y(^) as &— >oo .
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We can also assume that

as

where C(t) = (c:j(t)) ^H(A). Therefore, y(i) is the solution of the

system

(2-5) *

on I? and |y(0)| =1. Moreover (2-4) implies that yi(0)=0.

Thus, as was proved above, we have

-0 for

For this y(t), we define two subsets I and J of {!,•••,»} by I
= {ll^z'^/z; y$(£)=0 for t^Ni, where NI may depend on yi(t}} and

«/={l<^w;y,(0>0 onH}. Then 7|J J= {1, • • • , rc}, {1} e= I and

since yCO^O. By Lemma 3,

(2-6) lim \cioj0(t) 1=7^=0 for some f 0e/ and some j*0ej.

Now the z"o-th equation of system (2-5) takes the form of

and hence

(2-7) Z>«..t(*)y.(0=0 ^

because of the definition of the set I. Since each term in the left hand

side is nonnegative, all of them are equal to zero. Therefore

= 0 for

which implies, by (2-6),

y/0(*o) =0 at some *0 -

This contradicts the definition of the set of «/. The proof is completed.

The following proposition is an immediate result of Lemma 4.

Proposition 1. Under conditions (if) and (iii) in Theorem 1,

system (2-2) has no nontrivial solution x(t) such that

on R,

where dD = {x e D ; Xi = 0 for some z, l^z'SS^}.
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Lemma 5. Consider a nonhomogeneous system corresponding to

system (2-1)

(2-8) i = A (0

and assume that A.(f) satisfies all conditions in Theorem^. If f(f)

is bounded and continuous on R+ -with values in Rn and if the in-

tegral of 2?=i./i(0 Z5 bounded on R+, then all solutions of system
(2-8) are bounded on R+.

Proof. It is sufficient to show that (2 • 8) has at least one bounded

solution on R+, because the trivial solution of (2-1) is uniformly stable

by Lemma 2. We shall consider the system with real parameter e

(2-9) x

and show that for a sufficiently small e, system (2-9) has a bounded

solution on R+, which implies the existence of a bounded solution on

R+ for system (2-8) by replacing x in (2-9) with x/s.

For a 0<^d<^l/\/n and for the 7Z-vector e each of whose components

is 1, let D' be a convex cone defined by

where <( , )> denotes the inner product and \x\2 = (x,xy. Then clearly

Every solution x(t) of (2-9) satisfies

because of condition (i). By integrating the both sides,

E*i(0=e ('llfiWds + I for .r(0)eJ2.
i=3 JO i=0

When x(£)^D', we have

±xt(f)='(x(t},ey^\x(f)\ -\e\-S,
t = l

and hence

(2-10) (l

where
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M=i=sup f'i;
«>0 JO i=l

Therefore, in order to show the boundedness of x(f) with .r(O) in $,

it is sufficient to prove that x(t)^D' on jR+ if £ is sufficiently small.

Now suppose that for each solution x&(t) of (2-9) with xe(0) in

J2, there exists an se^>0 such that

*e (5e)

We can assume that

x£(t£)<=dD at some *e,
and

x£(t)^D'-D for

where 9J^T and jST denote the boundary and the closure of the set K,

respectively. If we set ye(£) = xs(t-
Jrt£

>), 3>e(£) is a solution of the system

such that ye(0)e9A y£(re)e9Z)' at re = 5e-fe>0 and ys(t)sD'-D

for 0<:*<;re. Thus, by (2-10),

) for 0

The same argument involving Ascoli-Arzela's theorem as in the proof of

Lemma 4 enables us to assume that

ye(t)->z(t) in R for some function z(t) as e— >0

and

in R for some B(t) in f/(A) as e->0 .

Therefore z(t) satisfies z = B(t)z and clearly, for r — lim re>
e-»0

(2 -11) z(t)<=D'-D for

and

(2-12) Vkl^l^COI^l/

Moreover we have z (0) e 9Z), which implies by Lemma 1 that

*(*) eD on IT.

From this and (2-11) it follows that

(2-13) z(t)e=Dr\D'-D = dD for
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Now we show that r=oo. In fact, if r<°°, we have

y£(re)-^2;(r) as £-»0 .

Thus z(r)e5>jD' because ye (r£) e 9Z)', and hence

which contradicts (2-12). Therefore (2-12) and (2-13) hold for r =00.

Moreover this enables us to assume that

- f f ) ^ all teR

and

z(t) ^dD for all t*=R,

because H(B) is compact in the sense of the convergence "— »". This

contradicts the conclusion in Proposition 1. This proves that x(t)^D'

on R+ if e is sufficiently small. The proof is completed.

Lemma 6. If for each B in H(A) , the trivial solution of the

system

is u. s on R and u. a. s on R+, then the trivial solution of system

(2-1) is u. a. s on R.

Proof. Let x(t, t0, XQ) be the solution of (2-1). Since the trivial

solution of (2-1) is u. s on 1?, as is seen from Definition 2, (ii) it is

sufficient to show that for each £>0 there exists a T(e)>0 such that

for some t,

whenever t0^R and \x0 <^$Q = d(l.), where £ ( • ) is the number in Defini-

tion 2,(i).

Now suppose that there exists an £>0 and sequences {tk} in R and

{xk} in Rn such that |^fc|^^o and

for all t,tk<Lt<*t

Since \xk\<8Q = d(T),

for
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Setting <l>k(t)=x(t + tk9tk9xk)9 <pk(i) satisfies

and

ff(e)^l&(0 ̂ 1 for O^t^k.

We can assume that

0*(0~>3;(^) in ^+ f°r some function y(£) as &—»oo

and

A(* + O-»£(*) in 1? for some B(t) in //(A) as &->oo .

Therefore y(£) is a solution of the system

(2-14) y = B(t)y

and

ff(e)^b(0l^l on IT.

On the other hand, we have

y(f) —»0 as £—>oo ,

because the trivial solution of (2-14) is u. a. s on R+. Therefore there

arises a contradiction. Thus the proof is completed.

Now we are in position to prove Theorem 1. On the set 77 which

is invariant for system (2-1), the system is written as the (^ — 1)-system

(2-15) x' = A'(f)x'

where xr = (xl9 • • • , xn-^ ^Rn~l and A'(t) is an (n — l)X(n — l) matrix

whose (i,j) element is given by ay(t) —ain(f) for l^z, j^n — 1.

First of all we shall show that for each Bf in H(A'), the system

(2-16) ±' = B'(f)x'

has an exponential dichotomy on R+, and as is well known (cf. [6]), it

is equivalent to show that the system

(2-17) ±'=B'(t)x'+f(t)

possesses at least one bounded solution on R+ for any continuous bounded

function f (f) on R+. For each B/ (t) in H(A'} there corresponds some
in H(A) such that the (i,j) element of B' (f) is equal
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to *„(*) -bin(f) for l^z, j^n-1. For /"(*) = #(*), -, /.-i(0), let

g(t) be defined by

<7i (*)=/«(*) for

Obviously g(£) and the integral of 2i=i(7*(0 ( = 0) are bounded on

i?+. Applying Lemma 5 to the ^-system

(2-18) ± = B(i)x + g(£),

we obtain the bounded solution x(t) on jR^ with .r(O) =0, and

i*i(0=0 which yields

Hence we can verify that x1 (f) = (^(0, "S *n-i(0) is a bounded solution

on jR+ of system (2-17).

The exponential dichotomy of (2-16) implies further that the trivial

solution is u. a. s on 1?+, because the trivial solution is u. s on R by

Lemma 2. Therefore it follows from Lemma 6 that the trivial solution of

(2-15) is u. a. s on 1?, i. e., the trivial solution of (2-1) is u. a. s in II

on jR. The proof is completed.

§ 3. Nonlinear System

We shall consider the nonlinear almost periodic system of the type

(3-1) xi = ay ( t) g, O,.) for 1 ̂ »^n ,
.7=1

where A(t) = (a,y(t)') is almost periodic function of t with conditions

(i) S^, (0=0 for
i = l

and

(ii)

In addition, assume that Qj(u) are continuously differentiable for &^>0,

g/(0)=0 and gj(ti)>0 for w>0.
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Theorem 2. Under the assumptions above, system (3 • 1) pos-

sesses a nontrivial almost periodic solution in Q 'whose module is

contained in the module of A(t). In addition to the assumptions

above, if A(t) is irreducible, then the above almost periodic solution

is unique in Q, -which remains in J2° on R, and it is u, a. s in the

whole & on R, where $° — {x^Q\ ^i>0 for all i, 1<^*<^}, and if A(t)

is reducible, then at least one of the above almost periodic solutions

p(f) satisfies that p(f) e<5J2 on R, where d&= {x^@;Xi = Q for some

Remark. As will be seen from the module containment, the above

almost periodic solution is a critical point in the case where A(t) is a

constant. Hence Theorem 2 is a generalization of one of Jenks' results

(Theorem 2 in [4]).

To prove the theorem, first of all we shall prove the following

lemmas.

Lemma 7. Consider the linear system

(3-2) x = M(t)x

and its perturbed system

(3-3) x = M(t)x+f(t,x),

-where M(t) and f(t, x) are continuous -with respect to its arguments,

respectively, and f(t,x)=o(\x\) uniformly for t^R. Assume that

the set U is invariant for both systems (3 • 2) and (3 • 3) . If the

trivial solution of system (3 • 2) is u. a. s in 77 on R, then the trivial

solution of system (3-3) has also the same stability property.

Proof. Let x' = (xl9-",xn-1) for x= (xl9 • • - , x^) e Rn. Then there

are positive constants c1 and c2 such that

(3-4) Cl\x'\<,\x\<^c2\x'\ for x in H ,

because xn= — (x±-\ ----- h.rn-i). On the set 77", systems (3-2) and (3-3)

are written as

(3-5) x' = M(f)x'
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and

(3-6) x' = M*(t)

respectively, where the (i,j) element of M' (f) 9 l<[z, j^n — 1, is given

by my (t) — min(t) for M(£) = (wy(£)) and g(£, .r') = o(|.r/|) uniformly

for t^R. Inequality (3-4) shows that the trivial solution of (3-2) is

u. a. s in 77 if and only if the trivial solution of (3 • 5) is u. a. s, and we

have also the same equivalence between (3-3) and (3-6). As is well

known, if the trivial solution of (3 • 5) is u. a. s, then the trivial solution

of (3-6) has also the same stability property. Thus our assertion is

clear.

The following lemma is obtained by the slight modification of Seifert's

result [8].

Lemma 8. Consider the almost periodic system

(3-7) ±

-where f(t, x) is almost periodic in t uniformly for x^Rn and for

a constant L>0, \f(t, x) — f(t, y)\ <^L\x — y\ for t^Randx.y^Q.

Assume that the set Q is positively invariant for system (3-7) and

all solutions in Q on R are u. a. s in Q on R. Then the set of such

solutions is finite and consists of only almost periodic solutions <f>i9-"9 $>m

-which satisfy

I&W ~~0/ W^/9 on R f°r i^J and some constant /3>0 .

Now we shall prove Theorem 2. Since the last statements of The-

orem 2 are alternative, under each assumption of these satements we shall

prove the existence of almost periodic solutions in J2 and the module

containment.

First of all, we shall consider the case where A(£) is irreducible.

Since system (3-1) satisfies the conditions of Lemma 1, the set Q is

positively invariant, namely, y(t) e j? on R+ for a solution y(t) of (3-1)

with y(0)eJ2, and furthermore we can assume that

y(t) <EJ2 on R

because of the almost periodicity of A(t) . We shall show that this
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is u. a. s in S on R. If we set x=y(t) + z in system (3-1), then

for ^ in Q and

(3-8) *, = ]£^(00Xy/(0)*/ + 0 ( l * l ) forl^z^z,
3 — 1

and 77 is invariant for the above system. Considering the first approxi-

mation of system (3-8)

(3-9) z = M(t)z,

where M(t) = (mi3 (£)) is defined by ^L^^f) =aij{t)gj(yj(t}} , condition

(i) implies that TI is also invariant for (3-9). Then, by Lemma 6, if

the trivial solution of (3 • 9) is shown to be u. a. 5 in H on R, then the

trivial solution of (3-8) has the same stability, and consequently y (t) is

u. a. 5 in S on R. Therefore it is sufficient to show that the trivial

solution of (3 • 9) is u. a. 5 in II on R.

Clearly M(t) is bounded and uniformly continuous on R, and we

have

=0 for !<:.;<>

and

(3 - 10) m^ (0 =av (f) g, (yy (0 ) ̂ 0 for £=£;

because of conditions (i) and (ii), respectively. Thus M(f) satisfies con-

ditions (i) and (ii) in Theorem 1. Condition (iii) of Theorem 1 will

be verified in the following way. Applying the same argument as in the

proof of Lemma 4 to system (3 • 1) , we can see that there exists a constant

such that

(3-11) i;>y<(0^ for *e^ and

and hence there is a constant c'>0 such that

(7i(y«(*))2Sc' for *efi and

Therefore, (3 • 10) implies

for £=

which guarantees that each element of H(M) is irreducible, because A(t)

is irreducible and almost periodic. Thus it follows from Theorem 1 that
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the trivial solution of (3-9) is u. a. s in IT on 1?, i.e., all solutions of

system (3 -1) in @ on R are u. a. s in Q on R. Therefore Lemma 8

concludes that system (3 • 1) possesses an almost periodic solution in J2

which remains in J2° by (3-11), and the set of solutions in Q on R is

finite and consists of only almost periodic solutions <f>i, • • • , <f>m which satisfy

10* (0 """$/(£) I SS$ on -R f°r i^J arjd some constant

Next we shall show that there exists a T^>0 such that each solution

x(t, t0, XQ) of (3-1) with XQ^$ satisfies that for some <f>j and the constant

SQ of Definition 2, (ii),

at some ̂ >

which implies

(3-12) k(*, *o,*o) -&(*)! -*0 as £->oo,

because 0y is u. a. s in J2. Suppose that this is not true. Then there

exists a small constant C£^>0 less than $ and sequences {tk} in R and

{.rfc} in $ such that

I2ia for a11 *e [**»

Since /(£, ^:) is almost periodic in £, we can choose a sequence

, such that

, x) in i?XJ2 as

If we set ([jj(t,K) =^j(t + rk) for l<>j<,m and ^m+i(t,k} =x(t-rth, tk, xk) ,

these w-j-l functions (pj(t,k) satisfy

and

on JR for 1^,/^w,

for tl>-k/2:>tk

because ^m+i(tk — rk,k)=xk^@. Moreover,

for i^j

We may assume that (/>y(£, ^) — ></>/(£) in 1? for some function ^-

+ 1, as &— >oo. Therefore 0y (j = l,---,^) are solutions of system (3-1),
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because f(t + rk, x) -*f(t, x) in I?X,0 as &— »oo, and

on 1? for I^i<^m + I

for t=£j, l^z, j^

which shows that system (3-1) has m + 1 distinct solutions in Q on R.

This is a contradiction. Therefore, 0/(£) is u. a. s in the whole Q on

R, if the uniqueness of (j)j is shown.

Now we shall prove the uniqueness of (f>j. Suppose (f>i=/=(f>j for _y'^>2

and set

\ \x(t,Q, .TO) —A (01-^0 as £-*°°}

and

52={j:0el0; \x(t, 0, .r0) — 0yO)l^O for some <f>j,j"^2, as

Then Si and 52
 are open sets in O9 and moreover these sets are nonempty

and disjoint, because \<t>i(t) —<f>j(t)\^a on 1? for j"2>2. On the other

hand, (3-12) shows that fl = *SiU*52, which contradicts the connectedness

of J2. Thus the uniqueness of an almost periodic solution is proved, and

moreover, as is seen from [7], this uniqueness guarantees the module

containment of the almost periodic solution.

Now consider the case where A(t) is reducible. We can assume

that A(i) takes the form of

\B(?)

where B(t) is zero or a square irreducible matrix of order m, 2<^m

<^7z — 1. If B(t) is zero, system (3-1) obviously has the constant solution

p(f) in dQ such that pt(i) =Q for I<^i<^n — I and pn(t) =1. In the

latter case, if we set in system (3-1)

xk = Q for \^k<Lm—-n and yi = xn-m+i for

then system (3-1) is reduced to the lower dimensional system

(3-13) yi = i3MOff/(tt) fo r l^ f^m,
y=i

where B(t) = (bis(t)} . Since S(^) is irreducible, the above system

(3-13) has an almost periodic solution y ( f ) such that



ALMOST PERIODIC SYSTEMS 47

for !<:*<> and f] y*(0 =1

and furthermore the module of y(t) is contained in the module of

i.e., of the module of A(£). Thus, system (3-1) has an almost periodic

solution p(t) in d@ on J? such that Pi(f) = 0 for 1<J£<^7Z —ra and />*(£)
= yi-n+TO(0 for TZ —m + l^z"<j77. The proof is completed.
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