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On the Dual of Besov Spaces

By

Tosinobu MURAMATU®

§ 1. Introduction and Main Resulis

This paper is a supplement to the author’s paper [6]. Here we
shall discuss the space Bj ._(£), a closed subspace of Bj .(£), and
determine the dual of Besov spaces Bj,(2).

For a measure space (M, #) and a Banach space X by L? (M, u; X)
we denote the space of all X-valued strongly measurable functions f(x)
such that ||[f(x)|xeL? (M, ). For the sake of simplicity, we write
dyy=I|y|™™dy, where ye MCR"™, L,*(M; X)=L*(M,dy; X), 1=p
< oo, and by L, (M;X) we denote the closed subspace of all func-
tions feL,”(M; X) which converge to zero as |y|—0 and as |y|—>oco.
We shall make use of the following conventions: p< oo — <(oo for real
p,1/00—=1/c0=0.

The space Bj ._(2; X) is defined as follows:

Definition 1.1. Let £ be an open set in R". For 0<o<1
BS.._(2; X) is the space of all functions feL?(®; X) such that

| fx+y) —f (@) |2, x|y €Ly~ (R,

where 2;,={x; z,x+vy, -, z+jyE}, and B} . (2; X) is the space of
all feL?(; X) such that

If (x+2y) =2f (x+3) +f (@) [zr 0, 01y ELk™ (R").

For 0=%k+0,0<0=<1,kis a positive integer, B3 ._(2; X) is the space
of all fe W,*(Q; X) whose all partial derivaties D*f of order % belong,
to B . (2; X). Finally, for 6=£k+0, 0<0<1, k is a negative integer,
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124 TOSINOBU MURAMATU
Bj .. (2; X) is the space of all f which can be expressed as
=2l +D% 0 fa€BY - (2; X)P.

The space B . (T"), where T' is the 1-dimensional torus, is iden-
tical with the space of smooth functions due to Zygmund [7]. In his
paper it is shown that the space B} ._ plays an essential réle in pro-
blems of the theory of real functions and of trigonometric series. Our
notation L.~ is due to Komatsu [3].

As in [6] we assume throughout this paper that £ is an open set
with the cone property, and by ¥ (x), %, b, K; we denote the same
things as in [6] (see p. 328, p. 329).

Now, we state our main results. By Bj,3(R" we shall denote the

closed subspace of all f&BS,(R™ whose support is contained in £.

Theorem 1.2. If 1<p=<oo, 1<g<o0, 1/p+1/p"'=1, 1/9+1/q’
=1, and if 0 is a real number, then there exists unique continuous
bilinear form {f,9> on B3 (@) X By ¢.a(R™) with the following prop-
erties: (i) Lf j>—0, KeX;, 0<a<lt, u(t,z) €L,'([0,a]; L*(9)),
K'e Ky, f'(x) €L? (D), and if 9€B; . a(R"), then

1.1 <j;ad*t jt"""K <t, z, X=
_ j;ad*tjt"—n”(t’y)<K <t,x, i

1-2) < ja‘"Ko <a, z,*

- [roy(ex (a2

G) If i>0, HeX, v(t,2) €L ([0, a]; L” (@), H'eH, 9'(2)
eL”(®), and if fEB; (), then

Y y)ult,5)dy,0() )

2,5),0@ ) dv.

Y, 9) £ 6y, 9 () )

Y.y), g(x)> dy .

(1-3) <f(x), J;ud*t j 2t <t,y, y

—j d tjt“’ "o (¢, y)< <t Y,

b a=(a1,---,a,.), |a|=a;+---+a¢,., D,=6/6xj, Da=D1a1"'Dna".

x>’v(t,y)dy>

Z,z).f@) d,
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(1-4) <f(x), ja‘"Hc'(a,y, y

=)o) dy)

= [ro) (e (09,25 ). r@) ay

Here {p(x),f(x) ). denotes the duality on D Q) x 9D’ ().

Theorem 1.3. Let 0,p,q,2",q, and { , > be as in Theorem
2. Then B; (2 and By . a(R™ form a dual pair with respect to
>: Q) If 9By p s (RY), and if {f,9>=0 for all f€B; ,(Q), then
0. (i) If feB; (@), and if {f,9>=0 for all 9B, ;. s(R"), then
0.

b

L.
<
g=

f=

By Theorem 1.2 and Theorem 1.3 we observe that the mapping ¢
—{;, where [,(f) =<{f, 9> for all feBs (2, is a continuous injection
from B;, o (R") into {B, (@)}’ (the dual space of Bj,(2)), and the
mapping f—I,, where [,(9) =<{f,9> for all gB; . s(R"), is a con-
tinuous injection from Bj,(2) into {By ., z(R™}’. In [6] we proved
that these mappings are surjective ([6] Theorem 9) if 1<p<lco, 1<g
<{oco—. But there are some other cases for which they are surjective.

Namely,

Theorem 1.4. Let p,q,p’,q’, and ¢ be as in Theorem 1.2. (i)
The dual of Bj () is canonically isomorphic to B,y a(R"™), that is,
the mapping §—1, is an isomorphism if (a) 1<p<loo, 1=<g=<oco—,
q'Foo—, or (b) @ is bounded and p=oco, 1<qg<oco—, ¢’s+o00—. (ii)
The dual of B,’.,a(R™) is canonically isomorphic to B} (2), that is,
the mapping f—1; is an isomorphism if (a) 1=p’'<oco, 1=qg'<oco—,
gFoo—, or (b) R is bounded and p’' =0, 1=q' oo —, p=1, g0 —.

Some special cases of Theorem 1.4 are proved by Flett: The proof
of the fact that {Bj,(R")}’ =B . (R") for 1=<p< oo, and {Bj . (R™}’
=B,(R") for 1<p<{oo, is given in [1], and that of {Bj,(TH)}’
=B, . (T") and {Bj ... (TH} =B, (T") for 1<p=<oo, where T" is the

one-dimensional torus (circle), is given in [2].
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§ 2. The Space LM, p; L?)

We shall begin with observing some properties of the space
LA(M, n; L?) which is closely related to Besov spaces.

Lemma 2.1. Let (M, y) be a 0-finite measure space, 1=p=oo,
{Ex} k=1,2,.., be an increasing sequence of measurable sets of finite measure
whose union is M,f be a pu-measurable function, and let f,(x) =min

{If (@) |, B} 2 (x), where ¥, is the characteristic function of E,. Then

[ felezan—=>1flzean as k—oo.

Proof. It is obvious that f, (x) —»|f(x)| as k—co for every x. If
1=<p< oo, then the assertion follows from Fatou’s lemma. Assume now
p=o0, and let I, =esssup f,(x). Since {f:(x)};£=1,2, -, is increas-
ing it follows that /=1im [, exists. The fact that f, () <|f(x)| implies
that I=<||f|lz=an. On the other hand, it is seen that {x; |f(x)|=limf} (z)
>rt = Ur{x; fi(x) >r}, which gives the converse inequality. The proof

is complete.

Lemma. 2.2. Let M be a measurable set in R", 1=p= o0, and
let 1/p+1/p’=1, p’stc0o—. If f is a measurable non-negative func-

tion such that
2-1 L{f(x)G(x) dyx=clg|z,an
holds for all non-negative function ¢ in L,*(M), then feL,* (M)

and | fz»=c.

Proof. Let E,=MN {x; 1/k<|x|<k}, x: be the characteristic func-
tion of E,, and let f, (x) =min{f(x), &} 4, (x). By Lemma 2.1 it is suf-
ficient to prove that |fi|..»=c.

(i) Case p=1. Let 3, be the characteristic function of the set {x;

fe(x) >r}. Substituting %, for g, by (2-1) we have
[ 711r (@ iz = [ 1w @f @ dsa=e 1@ e

Hence, for 7>c the measure of the set {x;f;(x) >r} is equal to zero,
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that is, ess. supf; (x) =c.
(i) Case 1<<p<loo—. Taking ¢(x) =f(x)? ' we obtain

Ufieo)”S (1@ 7S @) durZe (filur)

and hence |fi]z,»=c.
(iii) p=oco—. Since y,=L,”", taking g=1,, we have by (2-1) that

eS| @F @ dyr<cllz=c.

Lemma 2.3. Let (M, y) be 0-finite measure space, M, be a
measurable set in R", 1<p, ¢q<oo, 1/p+1/p'=1, 1/q+1/q¢'=1, ¢’
o0 —, and let g(x,y) be a measurable function. Then

@2 | [ @06 a@Dde] SCIflzsommran

holds for all feL,*(M,; L*(M,)) if and only if
2-3) gLy (My; L (M)  and 9]z, 2o arn =C .

Proof. The fact that (2-3) implies (2-2) is a consequence of
Holder’s inequality. Conversely assume that (2-2) holds for all f in
L (M; LP(My)). Let ¢(v) =9z, ) z> ey if 9(x,y) €L” (M,), and
¢ (y) =oo otherwise. Then, it is sufficient to show that

249 ¢peLy" (M;) and gz e=C.

To show this let {E,} be an incresing sequence of measurable set in
M, such that 0<lp,(E,) <oo and UE,=M,¢g,(x,y) =min{lg(z,y) |, k}
%z (), where 7, is the characteristic function of E,, and let ¢,=|g,

(x, ) |z?ary. Then, by Lemma 2.2 (2-4) follows from the fact that

(2-5) [0 )0:0) duy=Clolz.scx,

holds for any non-negative functions ¢ in L,?(M;). First consider the
case where p=1. Let 0<{y<{1,E,,={(z,y); xEEs, 9 (x, ) Z7¢: )},
0, () =pui{x;(x,y) €E,,}, and let y, , be the characteristic function of
E, ., For a complex number & let e({) =1{|/¢ if {0 and (0) =0.
Let f(z,5) =¢(3) 0:(¥) "%e(x,)e(@(z,5)). Then
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7 f(o @) e ) ey = fff(x, ¥) 9 (x,y) u(dx)dyy

éCHfHL*« (M43 L1(M,)) =C”<0||L*‘1 ) -
Therefore, letting y—1, we obtain (2-5). Next assume that 1< p<loo.

Let f(z,9) =9 e(9(z,¥)) {9: (x, ») /¢ ) } 7" if o (v) #0, and f(z, )
=0 if ¢,(y) =0. Then we have

[e0r0.0)dw= [ £ 900 1@

=ClSf 2,20ty r2ary =Cllgl e ary -
Finally let f(z,y) =x:(@)¢()e(@(x,¥)). Then we obtain (2-5) for

the case p=oo0,

Lemma 2.4. Let (M, 1), (M,, y:) be 0-finite measure spaces,
1=<p,q=o0, and let X be a Banach space. Assume that K(x,&,y,7)

is a measurable function such that

Sl;p j\lK(I’ 5’ y9 77) |/lz (dﬂ) ’ Sl}]p jIK(x’ Ey y, 77) |/"2 (dy) gk (I, S)s
sup £z, &) (@), sup [#(z, 8 1 (d2) SC<co.
Then the operator defined by

Tu) (2,3 = | [ Kz, 8,9, 0, 1) mde) mal@n)

is a bounded linear operator on LT(M,, ty; L® (M, ps; X)) with norm

not greater than C.
Proof. This follows from Lemma 2.5 in [5].

Corollary 2.5. Let (M, 1), (M, 11s), p, ¢ and K be as in Lem-
ma 2.4, and let 1/p+1/p"=1/q+1/q’=1. If us LM, yu,; L*(M,, 2))
and ve LY (M, u,; L* (M,, us)), then the integral

(][5 89, mu 0@ md) 1@ 1@y me@n)

is absolutely convergent and its absolute value is not greater than
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CH””LG(M,;LP(M,))HWHLWMl;LP’(M,))-
Proof. From Lemma 2.4 it follows that

j jsKu, &y, ) 1o &, 1) |1 (d8) 1 () € L¥ (M L (M)

Therefore, making use of Hélder’s inequality twice, we obtain the de-
sired result.

In the following of this section X will denote a Banach space and
B will denote the unit ball in R™.

Lemma 2.6. Let 2CR", CR" 1=¢g<oco—, 1/q+1/¢ =1,
1>0, and let K(x,y) be a measurable function satisfying

(2-6) sup 1K (z, 9)||z,2@p=C<o0,
@2-7 sup | K (z, ¥) || z,9@unrizpim =¢: () =0 as r—0, and
(2-8) S‘jp IK (x,y) “L*‘I’cng\nmm) =@z (r) >0 as r—oo,

Then the integral operator (Tf) (x)=[K(z,y)f(v)dyy is a bounded
operator from L,*(Q:; X) into Ly~ (@:; X).

Proof. By Holder’s inequality we have
1Tl 2200 00 =Cl fll 2,8 200 5
and

s @ =] |

2:N7lz|2B

i Lg\rlz;m } !K(x’ y) l ”f(y) ”Xd*y,

= M)fllzaes 0 +Clf |22 @wrizpsx -

Since g==oo —, it follows that |f|sce,rz»—0 as |lz|—>oo, and there-
fore lim sup z.o|Tf (2) |x=¢: (") | flz.0csxr. Letting r—0, we have
ITf(x)|x—0 as |x|—>oco. Similarly we have |[Tf(z)|x—0 as |x|—0, and

the proof is complete.

Corollary 2.7. Let 2,CR", 2,CR", 1=p=q=oco (including
oo—). And let
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T.f) @) = j 2y~ F ey (A, 0,00,

1yI=zplz|?

TH@ = [ _ arody 40,030

lylsplzi?

and
(Tof) @) = [min{jzlly|, 12171y 1Hf 0) duy 6, 7>0)

Sor any feL,»(%; X). Then T, T, and Ts are bounded operators
Jrom L,?(%; X) into L2(8; X).

Proof. Let ,(¢) =¢° if t=X1 and ,(¢) =0 if £>>1. Then the kernel
of Ty is & (plx|*/ly) p~° and that of T, is &, (ly|/plx/)p°. It is easy
to show that these kernels and min{|x|’|y|™’ |x| "|y|"} satisfy the con-
ditions stated in Lemma 2.6 and [5] Lemma 2.5, which gives the desired

result.

§ 3. Besov Spaces By, ..

In this section we discuss the properties of the Besov spaces B, .. .

Throughout this section X is a Banach space.
Lemma 3.1. If 1=p=<o0, 1=¢,=q;:= 0, j is a non-negative in-
teger, K(t,x,z,v) € K;, and if 6<j, then the mapping
th—UU(t’ .Z') :t_ﬂ<t_nK(t7 x; (.Z"—y) /t’ y) ’ f(y) >1I

is a bounded linear operator from B, (2) into L, ([0,a];L"?(2; X)).

Proof. With the aid of Corollary 2.7, the same reasoning as in

the proof of Lemma 4.1 in [6] gives the assertion.

Lemma 3.2. If 1=p=<o00, 1Zq,<qs =00, j is a non-negative in-
teger, K(t,x,2,v) €X;, and if —0<j, then the mapping

u(t,z)~ Jat"d*t J‘K(t, z, —z, x+t2)u(t, x+tz)dz
0

is a bounded linear operator from L, *([0,a];L?(Q;X)) into
Bg,, @2; X).
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Proof. Corollary 2.7 and the same argument as in the proof of
Lemma 4.2 in [6] give the conclusion.

By Lemma 3.1, Lemma 3.2 and the integral representation ([6]
Theorem 1), we obtain the charaterization theorem for Besov spaces
Bj ... That is,

Theorem 3.3. Let 1=p<oc0, 6 R, and let j be a non-negative
integer with j>0. Then f€Bj. (2; X) if and only if fe
W,™=(2; X) and t 7t ""K(z, (x—)/t), fF¥))y €Ly~ ([0,a]; L” (2; X))
for any K(x,z) € K;.

By Theorem 3.3 and Lemma 3.1 we have the following imbedding
theorem (c.f. Remark in [6] p. 357).

Theorem 3.4. If 1=p=<oo, 1=<g=<oco—, then the imbedding

operator

B;,,(2; X) =B .- (2; X)

exists.

Let 1=5g<c0o—, u(¢t,x) €L, *([0,a]; L?(2; X)), and let for any
e>0 u. (¢, x) =u(t,x) if e<t=<a and u(¢,x) =0if t<e. Then u.(¢, x)
—u(t,z) in L,([0,a]; L?(2; X)) as e—0. This fact, Lemma 3.1,
Lemma 3.2, Lemma 3.1 in [6], and Lemma 3.4 in [6], give the follow-

ing theorem:

Theorem 3.5. (Approximation). Let K(¢, x,z,v) € K,, [K(O,

z,2,x)dz=1,m be a positive integer,

Kat,z,2,9) = X ~ DK, 7,2,9)},
a

lal<m !
1=p=<oc0, 1=<g=<oo—, and let 0<m. Then for any feB; ,(2; X)
Un(t,2) ="K (¢, z, (x—y) /,9) ./ ) )y
converges to f in By ,(2; X) as t—0, and for any g Bj , (R"; X)

Va @, 2) =t Kn(t,y, 0 —2) /2,7), 9 (¥) Dy
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converges to § in By, a(R"; X) as t—0.

Since for ueL,” ([0, a]; L?) u. does not converge to # as e—0in
L.~ ([0,a];L?) unless u=L,~" ([0, a]; L?), the conclusion of Theorem
3.5 is not valid in case g=oo. Consequently, the present author should
have assumed that g<co— in [6] Theorem 5. Also, in the assertion
that C,™ is dense in Bj,s(R™ ([6] p. 368) he should have assumed
that p<loo and g=<oco—.

For a measurable set M in R" and a Banach space X L,”’(M; X)
denotes the space of functions f such that |x|~f(x) €L,*(M; X), and

their norm is defined by

||f||L,P."(M:x>=|| |z|~°f (x) ”L*Pw;x) .

Let X and Y be Banach spaces contained in a Hausdorff vector
space E. The mean interpolation space due to Lions and Peetre, which
is denoted by (X, Y),, 0<0<1, 1<p=<oo, is the space of means

f= j;wu (8) dyt, uEL*p’—ﬁ7 (R,; X) mL*p’l—g (R,;Y).

Lemma 3.6. Let 0 and v be real numbers, 05t, 0<0<1, u
=1—0)6+0t, and let M be a measurable set in R". Then

L™ (M; X)), L™ (M; X)) g, CL"7*(M; X)
C Ly M; X)), Ly (M; X)) g,

with continuous injections.

Proof. Assume that 1=0—1>0 (the case where 1<{0 is discussed
analogously). Let fe (Ly”"(M; X),L,>"(M; X))s,-. Then there

exists #(¢,x) such that

F@= | uendu,

and u (2, z) € Ly (Ry; L™ (M5 X)) N Ly (Ry 5 L™ (M X)),
It follows from this that

e @={ [+ [ el ru e, Dledar,
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< |7 GaP/0 I, ©) lomrondat
z

1z]2
[ /) e ) e ot

Therefore, by Corollary 2.7 we have |z *f(z)|zxeLy"" (M; X). Con-
versely, let feL,”*(M; X). Let p=C,(R,) such that [ @) dst=1,
and define # (¢, x) =¢(¢|x|™)f(x). Then it is obvious that
F(x) = j”u ¢, 2)d,t .
0

Since

I°12c1 = (2, ) |2 st 0 = j(/) Ez]™) @zl 2|74 (@) | xduz

and since the kernel ¢(¢]x!™") (¢|x|™)’ satisfies the conditions stated in
Lemma 2.6 (this fact is a consequence of a simple calculation), it fol-
lows from Lemma 2.6 that £’z (¢, x) € L, (R, ; L,*° (M; X)). The same
observation gives that #*~'u (¢, x) € L, (R, ; L, (M; X)). Hence f is
an element of (L,"(M; X), Li*" (M; X))p,co--

Theorem 3.7. Let 0 and t© be real numbers, 0=~t, 0<0<1, and
let py=QA—-0)0c+0tv. Then

(B3, (2; X)), B;,0,(2; X) )p,00-=Bj,.- (2; X),
(H, (2; X)), Hy (85 X))o, =Bj,co— (2; X)

Proof. This follows from Lemma 3.6 and Theorem 3.3 (see Proof
of [6] Theorem 8).

Theorem 3.8. If % is an integer, and if 1<p< oo, then W,*(2)

B . (R) with continuous injection.

Proof. Let k=0, feW,*(2), and let K(x,2) =) 0=eD."K (x, 2),
K, K,. Then, since [K,(x, —2)dz=0,

14

k(= 22)50) = 3 (K@ -0 (@@t o @)
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where f (z) =D% (x). Since

lF < @+y) —f“@)|2—0 as |y|—>0,
it follows that (¢7*"K(x, (x—v)/2), f(y)>,eLy>" ([0, a]; L?(R)), and
hence feBE.._ (2. If k<0, fe W, (@), Ke K, this facts follows from
the identity

(oK (n 252)sw)

= 3 [remxeo @, - (@) ~fu@) sz,
a|l=—k
where =2 \0<_ 1D focL?(®), and K (z,2) =D,*K (z, 2).

§4. Proof of the Main Results

To prove the main results the following is fundamental.

Lemma 4.1. Let K(¢,x,2,y) e X,;, HE, x,2,v) € K;, and let

J(s, b, x,y) =s"t" JK <s, z, zTx , x>H<t,y, y;z’ z>dz .
s
Then,
sup j IJ (s, ¢, z,y) |dx, sup j‘!J(S, ¢, z,y) |dy=C min (st 77, £s™)
Y z

holds for 0<s, t=a<t, where C is a constant independent of s, ¢t.

Proof. From the identity

K(om 22,0 = o R 2575
(see [6] p. 336)

it follows that

J(s, ¢, x,y) = s ff?,s(s, 2, 2% ac>Dz’8 {H <t, 2, 27 y>}dz .
18T t

S

This implies that

jms, t, z,y) |dz<C,s""t=1- f

Y

dz j‘ dx=Csit7.
+tbB z+80B
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and

jms, t, z,y) |dy<Cis'"t=I=" j

z+5bB

dz j dy=Cs't=7 .
z+tbB

In the same way we have

ju(s, b 2,9 ldy=<Cs™, (1752, 2,9)de=Ces.

Lemma 4.2. Let 0 be a real number, i and j be non-negative
integers, —j<0<i, 1<p=oo, 1=qg=<oo, 1/p+1/p’=1, 1/q+1/q"=1,
K, x, z,v) € K, un(t, x) € L ([0, a]; L (D), k=1, ---, my, H'(¢, x, 2, v)
e K, va(t, )€ Ly ([0, a]; L* (D), h=1, -, I, K" (&, x, z,v) € Ko, [ (x)
el?(@), k=1, -, my, H'(¢, x, 2z, y) € K,

gho(x) ELP’(‘Q)’ h=1’ ”'3107
and let

F@ =3 [ du [rrregi(e e T2 y)ut,nay

+ Zk] ja‘"K,c" <a, x, r=y ,y>fk°(y)dy,

a

g(x)= 2] j“ dyt jt_n_ath <t, v, Yy~
= Jo

p ,x>vh(t,y)dy

+ Zh} ja‘"Hh" <a,y, y;x ,x>9n°(y)dy-

Then

CHVNDS ﬁ“d*s js"uk(s,x) <s""Kk1<s,y,y—x,x>,g(y)> dz

S
=3 [R@ (K (o 25 2] 9) de
t, 2

(
= ; f dyt jt‘“vh &, 2) <t‘"H,L‘<

v

) ) dz

+ 3 00w <a-"Hh° (45222, 9),f@)) dz.

Proof. By Lemma 2.2 Corollary 1 in [6] we have
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(7K (5,9, 2%, 2),00))

K

= ; L dyt js‘"K,ﬂ(s, Y, y—sx , x>dy J\t‘""th <t, 2z, z—ty’ y)

X v, (¢, 2)dz

+ 2] jS’”KJ(&y, Y=z ,x>dy ja‘"Hn" <a, z,z;y,y>9n°(z)dz

s
= jad*t jJ,ﬁ}, (s,¢,x,2)t v, (¢, 2)dz+ > jJi%(s, a, x,2)9,(2)dz ,
h 0 13

where

Jin(s, t,x,2) =sT"t " ij <s, y, Y% ,x>Hn" <t,z, z_ty,y>dy,
S

», £=0,1)

since for any g L? (£) the integrals

[[&e(sm 222, 2) e (1,2, 522 ) o @dvds, 0, u=0,1)
S

are absolutely integrable. Analogously, we can obtain

(K (0,3, =% 2), 9 )

v
_y j At JJ,S; (@t z,2)t~"vn (2, D) dz+ 3] jJ,gg(a, a,z,2) 92 (2)dz ,
h 0 h
and therefore the left hand side of (5-1) is equal to

3 j‘a dys Juk (s, x)dx j‘m dyt Js"t"’ en (S, 8, x,2) v, (2, 2)dz
k,h 0 0
w3 [ (w65, 2)dz (8.6, 0, 2,900 @ dz
k,h 0
+3 (fr@dz [ au jz-v % (a,t,z,2) va(t, ) de
k,h 0

+ an Ifko (z)dx IJ,??, (a,a,x,2) 9, (2)dz .

The same computation gives that its right hand side is equal to the sum
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of the same iterated integrals, except that the order of the integration
is different. Thus, (4-1) follows from Fubini’s theorem, if it is shown
that the above integrals are absolutely integrable, which follows from

Corollary 2.5 and Lemma 4.1 in view of the fact that
j‘ St~ min (s7t 77 5T dyt = j st min (s, 5T dys
0 0

:_1_—]—7,}_

j+o i—0

Hence the proof of the lemma is complete.

Corollary 4.3. Let 0,j,0,9,7",a", Ki', ur, Ki*, fi' be as in Lemma

4.2, and assume that

N rd*t jt”*"K,ﬁ(t,x, r—y ,y)uk (t,y)dy
% 0 t

s jaK (2,2, x;y,y>fk°(y)dy=0
Then

; Lad*s js”uk (s, x) <s‘"K,C1<s, v, y—x , x), g(y)> dx

s y

+ 2}; jfk°(x)<a‘”Kk°<a,y, y—* ,Jc>,y(y)> dx=0

a

for every g€ By . s(R™).

Proof. This follows from Lemma 4.2 and the integral representa-
tion ([6] Theorem 1).

Proof of Theorem 1.2. Let {f, 9> be a continuous bilinear form
with the property stated in the theorem and let m, %k, [, 2~ be integers
such that m=k=0, m—k>—0, [=h=0, [—h>0. Then, from the in-

tegral representation it follows that

F@= 3 |t (oM (2 222) e 9) + 2.0 0)ydy

+ 3 [aut [emenngen (2, 2 Yy 0 dy
[BIsk Jo t
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+ 2 ja"ﬂ‘”“wm“"ﬁ’ (= x;y>f*"(y)dy
Ee=)

+ ja‘"w,,L(x, £y >fm (»dy,

a

(for the definition of #% u,, fs and f., see [6] p. 344) which gives

@2 =3 [T (oo ofo@) Ve Dz
+ = fd*t fth—'ﬂ*uﬁ (¢, 2) VA (¢, 2) dx

v 3 [£@ (-1 @) dat jfw<x>gw<x>dx,
18I=Zh

where

Valt,2) =t M. (y, 0—2)/8),9(3) Dy»

VE(t, 2) =t M (y, (y—2) /), 9 () Dy,

9o () =a"0n(y, 0—2)/a),9 () Dy, 9" (x) =DY..(x).
Hence the bilinear form is unique. Conversely, the form defined by
(4-2) is a continuous bilinear form on B, (2) X Bz s (R™) (see [6]
Theorem 2 and [6] Lemma 3.3). Furthermore, it is obvious that the

identities (1-1) and (1-2) follows from Corollary 4.3, and the identities
(1-3) and (1-4) follows from Lemma 4.2. Thus Theorem 1.2 is com-

pletely proved.

Proof of Theorem 1.83. (i) Let j>—0, and let K X;. Then
for any u(¢,x) €L ([0, a]; L (D))

fd*t j}m (¢, ) <t“"K <t,y’ y—t:c ’x>,g(y)> T

=/f jv-n 1y YTZ >=
\ Dd*t t K(t,y, p ,:c)u(t,x)dx,g 0.

Hence, by Lemma 2.3 we have <t "K (,y, (y —x) /t,x),9 () >,=0. Also,
if Ke X, and if f,eL?(2), then

[r@(ek (49,277, 2),00)) da

Y
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{Jo (a5 ) )0,

and therefore <a™*K(a,y, (y—x)/a,x), 9(y)>,=0. These facts imply
that =0, in view of the integral representation. The proof of part

(ii) is analogous to that of (i).

Proof of Theorem 1.4. Let {f,g)> be the bilinear form on B} ,(2)
X By, a(R") defined in Theorem 1.2. It is already known that the
mapping g+1[, and f/[, are continuous injections, where ,(f) =<{f, 9>
and /,(9) =<f, 9>, so that it is sufficient to prove their surjectivity.

(i) For the case where 1<p<{oo, 1<{q< oo — this fact has been
proved in [6].

(ii)) Case p=qg=1. Since the dual of L'([0,a] X8, ds«tdx) is
L= ([0, a] X2, dytdx), this fact can be proved in the same way as for
the case (i).

(i) Case 1<p<{oo, g=1. Let [€{B,:(2)}’, and let J be the
imbedding operator from B} ,(£) into Bj.(£), where ¢<{r and 1<q
<{oo—. Then loJe{B; ()} =By 4 z(R"), so that there exists ¢
€B;5,,a(R") such that loJ=/,. To prove g€ B;’ ., 3(R"), let Ke X,
—0<Jj, u®,x) €L, (]0,a]; L*(2)), €>0, and define

u(t,z) for t=e,
us(ty x) = {

for t<e.
Then ¢°~*u. (¢, x) € L,*([0,a]; L?), and therefore

([Faue [k (2, T2y, ), 7)
0

— j dt j Puct,y) Ve, v)dy,

where V(¢,y) =G "K (¢, x, (x—y) /t,v),9(x)>,. Since
K 1= 11 () |=CIT(F)IBS:

we have

[faut [t 2 v, 2z | <C el uguonn

Letting ¢—0, by Lemma 2.3 we obtain that £2°V (¢, x) € L,> ([0, a]; L* (2)).
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This and the fact that g€ W57;(R™) imply that g = B, .., 2 (R"), accord-
ing to Theorem 2 in [6]. Therefore [—1, is continuous on Bj,(Q).
Since [—1,=0 on J(B; ,(2)), which is dense in B3,(2) (see [6] The-
orem 5), it follows that /=[, on B3,(£). Thus the mapping g~/ is
surjective.

(iv) Case p=1, 1<{g<oo—. Making use of the imbedding oper-
ator Bf,(2) —»B{,(2), by the same argument as in case (iii) we obtain
the desired result in this case.

(v) Case 1<p<{oo, g=oo0—. With the aid of the imbedding B},
—BY ._, where 1<{r<{oco —, the same argument gives the desired con-
clusion.

(vi) Case where p=o00, 1<g<oo—, and £ is a bounded domain.
Let J be the imbedding B} ,—BZ ,, where 1<r<{co and r =0 +2/r, and
let e {B%,,(2))’. Then loJ= {B;, (@)} =B ,a(R"), and hence there
exists §€ By ., a(R") such that loJ=[, Since L” () is continuously
imbedded in L'(), it follows that g€ Big s (R*) C Wiz (R™). The re-
mainder part of the proof is the same as in case (iii).

Similarly we can find that the mapping f~/, is surjective, and the

theorem is completely proved.
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