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On the Dual of Besov Spaces

By

Tosinobu MURAMATU*}

§ 1. Introduction and Main Results

This paper is a supplement to the author's paper [6]. Here we

shall discuss the space Ba
pi00_($), a closed subspace of JB£>JO(,G), and

determine the dual of Besov spaces ££ig(J2) .

For a measure space (M, /*) and a Banach space X by Lp (M, p. ; X)

we denote the space of all X-valued strongly measurable functions f(x)

such that \f(x)lx<=Lp(M, fi) . For the sake of simplicity, we write

d*y=\y\~mdy, where yeMclT, L^(M- X) =Lp(M,d*y; X), l<p

<o°, and by L*™~ (M ; X) we denote the closed subspace of all func-

tions /eL*00 (M; X) which converge to zero as |y|->0 and as |y|-»oo.

We shall make use of the following conventions: p<^oo ~ <^oo for real

/>, l/oo -=l/oo = 0.

The space Bpt00_ (fl; X) is defined as follows:

Definition 1. 1. Let Q be an open set in Rn. For

o-C0;^Q is the space of all functions f^Lp (J2; X) such that

where Qj,y= {x\ x,x + y, • • • , ar-fjy efl}, and 5p(00_ (fl; X) is the space of

J2;X) such that

For ff = k+ 6, 0<C^<1, ^ is a positive integer, 5p>00_ (J2; X) is the space

of all /e Wp
k(S; X) whose all partial derivaties Daf of order ^ belong,

to £e
p>00_(,Q;X). Finally, for ff = k + 0, 0<0<1, * is a negative integer,
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Bp,co-(S', X) is the space of all / which can be expressed as

The space B1
OSi00_(T1) , where T1 is the 1-dimensional torus, is iden-

tical with the space of smooth functions due to Zygmund [7]. In his

paper it is shown that the space -Bp>00- plays an essential role in pro-

blems of the theory of real functions and of trigonometric series. Our

notation L%°°~ is due to Komatsu [3].

As in [6] we assume throughout this paper that Q is an open set

with the cone property, and by W (x) , t0, b, J(j we denote the same

things as in [6] (see p. 328, p. 329).

Now, we state our main results. By B^Q (I?71) we shall denote the

closed subspace of all f^Bpt<l(R
n) whose support is contained in J2.

Theorem 1.2. // !<^<oo, l<g<°o, l/p + l/p' = I, 1/q + I/q'

= 1, and if o~ is a real number^ then there exists unique continuous

bilinear form </, g> on B*tq(Q) XJBp/V.fl (•***) with the following prop-

erties: (z) I f j > - f f , KeJCj, 0<a<tQ, ^(

C0, f\x) ei*(fl), and if g^B^t0(R^9 then

(1-1)

f «'-« (t, y) (K (t, x, ̂ ^, y) ,g(x))dy,
J \ \ t I / x

(1-2)

= \f° W (a-** ( a, x, ^^L, y) , g (x) } dy .
J \ \ a I / „

(ii) // t>ff,

(fi), and if feB*.t(0), then

(1 - 3) (f(x) , \a dj \ r'-H (t, y, ?^, x}v(t, y) dy
\ Jo J \ t I I

dy,

" «=(«,,-,«.), |«| =«, + -+«., D,=9l9xh D"=DP-Dp.



ON THE DUAL OF BESOV SPACES 125

(1-4) (f(x)
\

= (VOX) (a-Ht(a,y,y^-,x),f(x)\ dy .
J \ \ a I ls

Here <<p (x) ,f(x) >I denotes the duality on 3) (8) X S)' (8) .

Theorem 1. 3. Let ff, p, q, p' , g', and ( , y be as in Theorem

1.2. Then Ba
piq(&) and Bj'%',fl(iZn) form a dual pair with respect to

< , > : (i) If g e B;,%,t s(R
n),andif<,f,gy = Oforallf^B'p,,(S),then

g = Q. (ii) If f e B ' , q ( f f ) , and if </, g> = 0 for all g e B;/,,,0 (*") , then

/=0.

By Theorem 1.2 and Theorem 1.3 we observe that the mapping g

->lg, where /{,(/)=</, {7> for all f^Bp,q(S)9 is a continuous injection

from B-,°q,iD(Rn) into {Bp,q(S)}' (the dual space of BG
P](L(G)) , and the

mapping /->//, where i/(flr)=</,g> for all geS-/fl/,fl(Bn), is a con-

tinuous injection from Bff
pi(l(£) into {-Bp'V.aGR*)}7. In [6] we proved

that these mappings are surjective ([6] Theorem 9) if K!/^00, 1<C(?

<^oo — . But there are some other cases for which they are surjective.

Namely,

Theorem 1.4. Let P,q,p',q', and ff be as in Theorem 1.2. (i)

The dual of J3£)<2(J2) is canonically isomorphic to Sp/g',fi(JRn) , that is,

the mapping Q-*lg is an isomorphism if (a) 1<^<C°°, 1^^^°° — ,

q'=j£=oo—9 or (b) Q is bounded and p=oo, l<q<o° — , q'=j{=oo — . (ii)

The dual of S~/f l/f^(JRn) is canonically isomorphic to Ba
Vi<L(ff) , that is,

the mapping f-* lf is an isomorphism if (a) 1^/J7^00, l^^r/^°° — ,

— 9 or (b) Q is bounded and p' = oo, l<q'<w — , p= 19 q=£=oo — .

Some special cases of Theorem 1.4 are proved by Flett: The proof

of the fact that {B'Vtl(R*)}f = B~?^R*) for l<P<oo, and {££,_ (Rn}}'

= B-tl(R
n) for !<^<oo, is given in [1], and that of {^(T1)}'

= B-?00(T
1) and {££,_ (T1)}/-5;/1(T

1) for !<^<oo, where T1 is the

one-dimensional torus (circle), is given in [2].
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§2. The Space JL9(M,/*; 17)

We shall begin with observing some properties of the space

Lq(M,/ji;Lp) which is closely related to Besov spaces.

Lemma 2.1. Let (M, /JL) be a 0'-finite measure space, 1^^^°°,

{jE/fc}fc=i,2,..., be an increasing sequence of measurable sets of finite measure

whose union is M,f be a jj.-measurable function, and let fk(x) =min

{|/(X) 1, &}% fc(X), where %k is the characteristic function of Ek. Then

||/*IU»CjnHI/IUi'(*) as &->oo.

Proof. It is obvious that fk (x) ->\f(x) \ as k->oo for every x. If

1^/xC00, then the assertion follows from Fatou's lemma. Assume now

p=ooy and let lk = esssupfk(x). Since {fk(x)},k = 1929 ••-, is increas-

ing it follows that I — lim Zfc exists. The fact that fk(x)<\f(x)\ implies

that /<||/|U-<*)- On tne otner hand» it: is seen tnat i-^ \f(*) I =lim/*(j:)

^>r} = \Jk{x\fk(x) >r}, which gives the converse inequality. The proof

is complete.

Lemma. 2. 2. Let M be a measurable set in Rn, l^/>^°°, and

let l/p + l/p' = l, p/=^=oo~. If f is a measurable non-negative func-

tion such that

(2-1)

holds for all non-negative function g in L*p (M), then

and \\f\\L *'<c.

Proof. Let Ek = Mf} {x; l/^<|x|<^}, %fc be the characteristic func-

tion of Ek9 and let fk(x) — min{/(x), ^}%fc (x) . By Lemma 2.1 it is suf-

ficient to prove that \\fk\\LS'^ic-

(i) Case />=!. Let % fcr be the characteristic function of the set {x\

. Substituting %fcr for g, by (2-1) we have

r%kr(x)d*x< 1xr(x)f(x)d*x<c \Kkr(x)d*x.

Hence, for r^>c the measure of the set {x\fk(x)^>r} is equal to zero,
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that is, ess. sup/fc (x) <c.

(ii) Case l</><°°-. Taking g (x) =fk (x) p'~l we obtain

(II All v) P'< JA (x) ''-

and hence ||AIU.*'^.
(iii) £>oo — . Since %k^L^°°~y taking g = % f c , we have by (2-1) that

*l|L,i^

Lemma 2.3. Let (Mly JJL) be 6-finite measure space, M2 be a

measurable set in IT, !</>, #<°o, !//>+ !//>' = 1, l/q + l/q' = l, q

^oo— 5 and let Q(x,y) be a measurable function. Then

(2-2) ntf-jXJfj

holds for a/Z/eL/(M2;Lp(MO) if and only if

(2-3)

Proof. The fact that (2-3) implies (2-2) is a consequence of

Holder's inequality. Conversely assume that (2-2) holds for all / in

LJ (M2 • L* (MO) . Let 0 (y) = ||g (x, y) \\LP<(MI, if g (x, y) e Lp' (MO , and

0(y)=oo otherwise. Then, it is sufficient to show that

(2-4) 0eL/'(M,) and ||0||£..'<C .

To show this let {Ek} be an incresing sequence of measurable set in

Mj such that 0<^1(£fc)<°° and (jEk=-Mly gk (x, y) -min{|g (x, y) |, k}

y.k(x) , where %fc is the characteristic function of Ek, and let 0^ = 11^^

(x, y) \\LP(MJ- Then, by Lemma 2.2 (2-4) follows from the fact that

(2 • 5) JV (y) 0* (y) <**y <C |MU,< or.)

holds for any non-negative functions cp in L%q (M2) . First consider the

case where p = I. Let 0<^<l,£fc|,= {(:c,y) ; *6=Efc, gfc (x, y) >^0fc (y) } ,

ff*(y) =/*{•£ ;(^,y) e £*,*}> and let X* j 9 be the characteristic function of

EktV. For a complex number C let ^(C) = ICI/C if C^O and ^(0) =0.
Let f(x9 y)=(p (y) Gk (y) ~l%ki, (x, y) e (g (x, y) ) . Then
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J 9 Cv) 0* Cv) ̂ *3>S I \f(x>

Therefore, letting y— >1, we obtain (2-5). Next assume that

Let /(X y) - <p (y) * (g (*, y) ) {g, (x, y) /</jk (y) } »'-J if 0fc (y) =^0, and f(x, y)

= 0 if 0A (y) = 0. Then we have

J <P W 0* (y) ̂ *3>^ J J/(^, y) Q (x, y] li (dx) d*y

Finally let /(j;,y) =^(j:)^(y)^(g(j;,y)). Then we obtain (2-5) for

the case p=oo,

Lemma 2. 4. Let (Mly /^) , (A/2, ̂ 2) ^^ 6-finite measure spaces,

l^P, ^=°°? ^^ ^ X be a Banach space. Assume that K(x,$,y,y)
is a measurable function such that

sup | l£(j:,f,y,7)lA*(^),sup |.K:(^,f,y,^)|^2(Jy)<^(j:, f),
J 7 J

sup ^ (x, S ) ̂ , (df ) , sup jfe (x, f ) A: (<**) <C< oo.

Then the operator defined by

(Tu) (x, y) = J p? (^, f , y , 7) « (£, 7)

z's a bounded linear operator on Lq (Mly fa; Lp (M2, ^2; ^0)

^o^ greater than C.

Proof. This follows from Lemma 2.5 in [5].

Corollary 2. 5. Le£ (M1? ^), (M2, ^2), A ^ ^^ -K" ^ ^^ ̂  Lem-

ma 2. 4, awd let 1/p -f- l/^x - l/q -t- 1/^7 = 1. // u e= L9

t; e Lq' (Mlf fa ; Lp/ (M2, ^2) ) , ^Aew ^A^ integral

J J J J JC (x, f , y , if) u (x, y) v (f , T?) ^i (^) fa (dg) fa (dy) fa (dtj)

is absolutely convergent and its absolute value is not greater than
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Proof. From Lemma 2.4 it follows that

Therefore, making use of Holder's inequality twice, we obtain the de-

sired result.

In the following of this section X will denote a Banach space and

B will denote the unit ball in Rn.

Lemma 2.6. Let AdlT, QzdRm, l<g<°o-, 1/g + 1/V = 1,

, and let K(x,y) be a measurable function satisfying

(2-6) sup
X

(2-7) sup||X:(a;,y)IU^(fl inr|*i«)=^i(r)->0 as r-»0,
a;

(2-8) sup

Ag integral operator (Tf) (x) =$K(x,y)f(y)d*y is a bounded

operator from L^(Q2\ X) into L^°~ (Q^ X) .

Proof. By Holder's inequality we have

and

If + f } IX (x, y)
I JfljOl*!** Jfi8\r|ar|iB J

Since g^oo— , it follows that \\f\\L^(a2\r\x\w->Q as l^l-^oo, and there-

fore limsup^^oollT/C^IU^Cr)!!/!!^^;^). Letting r->0, we have

F/(^)|U-*0 as |^|->oo. Similarly we have ||T/(.r)|U->0 as i^]->0, and

the proof is complete.

Corollary 2.7. Let fliCJtt", J22ClJ?m, !<^<g<oo (including

oo — ) .
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(T,/) (*) = minflxl ' lyl- ' , |*rr|y|r}/0y)rf*y (ff, r>0)

/or any f^L%p(Q2', X) . Then TI, T2 and T3 #r£ bounded operators

from L*p(Gt'9X) into L^^-X).

Proof. Let G (0 =^ f f if *<1 and C<r (0 = 0 if *>1. Then the kernel

of T! is CrCpklYlyOp" and that of T2 is C e r C l y l / p l ^ l ^ p ' - It is easy

to show that these kernels and min{|jc|cr|3;|"<r, |.r|~r|3;|r} satisfy the con-

ditions stated in Lemma 2.6 and [5] Lemma 2.5, which gives the desired

result.

§ 3. Besov Spaces jB£i00_

In this section we discuss the properties of the Besov spaces Bff
p]00_.

Throughout this section X is a Banach space.

Lemma 3. 1. If 1^^^°°, l^^o^^i^00? j is a non-negative in-

teger, K(t, x, z,y) e JCJ9 and if (T<J? then the mapping

is a bounded linear operator from Bff
p>qo (jj) into L^ ( [0, a] ; Lp (J2; X) ) .

Proof. With the aid of Corollary 2.7, the same reasoning as in

the proof of Lemma 4.1 in [6] gives the assertion.

Lemma 3.2, If !<^?<oo, l^go^tfiSS00? j is a non-negative in-

teger, K(t,x, z, y) e JG» and tf —$<J> then the mapping

u(t,x)» I t'd+t \K(t,x,-z9x + tz)u(t,x + tz)dz

is a bounded linear operator from L^9o([0, d\\ Lp($; X)) into
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Proof. Corollary 2.7 and the same argument as in the proof of

Lemma 4.2 in [6] give the conclusion.

By Lemma 3.1, Lemma 3.2 and the integral representation ([6]

Theorem 1) , we obtain the charaterization theorem for Besov spaces

££JOO_. That is,

Theorem 3.3. Let l5S/><°o, (Tel?, and let j be a non-negative

integer -with j>(7. Then /e5£j00_ (J2; X) if and only if /e

W,-(Q-X) andt-°<t-«K(x, (x-y)/£), /(y)>y eZV°-([0, <*]; L* (J2; X))

for any K(x,z) e JCj.

By Theorem 3.3 and Lemma 3.1 we have the following imbedding

theorem (c.f. Remark in [6] p. 357) .

Theorem 3.4. If 1^^^°°, 1<q<oo — , then the imbedding

operator

Bff
p,,(Q;X)-*Bff

p}00_(S-X)

exists.

Let l<g<°o-, u(t,x) eEl,/([0,a]; LP(S; .X)), and let for any

S>0 u£(t,x) =u(t, x) if £<£<<z and u(t, x) =0 if £<e. Thenue(t,x)

-^u(t,x) in L^CCO,^]; LP(J2; X)) as s-»0. This fact, Lemma 3.1,

Lemma 3.2, Lemma 3.1 in [6], and Lemma 3.4 in [6], give the follow-

ing theorem:

Theorem 3.5. {Approximation). Let K(t, x, z, y) e JC0,

^ z, x) dz = \,m be a positive integer,

Km(t,x,z,y)= 2 -D."{ifK(t,x,z,y')},

^°°-? and let 0~<m. Then for any f<=Bff
p)(l(Q\ X)

Um(t,x) =<f-*K(t,x9 (x-y)/t,y)J(y)\

converges to f in B°P}(1(Q\ X) as ^->0, and for any g ̂ Bff
p)q)5(R

n', X)

Vm (t,x)= <t-Km (t, y,(y-x) /t, x) ,
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converges to Q in Bff
p>(l>n(Rn; X) as £->0.

Since for #eZ,#°°([0, d\\ Lp) UB does not converge to u as e— »0 in
L*°°([P9 a\\Lp) unless u^L*00' ([Q9a]-,Lp) , the conclusion of Theorem

3.5 is not valid in case q=oo. Consequently, the present author should

have assumed that g^oo— in [6] Theorem 5. Also, in the assertion

that C0°° is dense in Bff
p)(l}D(Rn) ([6] p. 368) he should have assumed

that p<^oo and #<oo — .

For a measurable set M in Rn and a Banach space X L*Piff (M\ X)

denotes the space of functions f such that \x\~fff(x) ^L%P(M;X}9 and

their norm is defined by

\\f\\L *,«(M;X, = \\\X-*f(x}\\L^(M,x}.

Let X and Y be Banach spaces contained in a Hausdorff vector

space E. The mean interpolation space due to Lions and Peetre, which

is denoted by (X, Y)0>p, 0<C0<C1? 12^>2S°°, is the space of means

/= f
Jo

Lemma 3.6. Let 6 and t be real numbers, ff^r, 0<C0<C1,

— (1 — 0)0" +0r, and let M. be a measurable set in Rn. Then

'(Af; X)

C (L^1^ (M; X) , V>r (M; X) ) ,,„_

-with continuous injections.

Proof. Assume that \ = G — r>0 (the case where A<0 is discussed

analogously) . Let /e (L*~>a (M; X) , L*°°'r (M; X)) ,;00_. Then there

exists u (t, x) such that

and

It follows from this that

f'
Jo
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f
Jo

Therefore, by Corollary 2.7 we have \\x-*f(x) |Ue£*°°~ (M; X). Con-

versely, let feL^-^CM; JT). Let ^eC0(l?+) such that $R

and define &(£, 3;) =<^(£|.r|~x)/(.r) . Then it is obvious that

/(*)= PaC*,*)^*.
Jo

Since

and since the kernel 0>(£|.r!~x)(£|.r|~x)* satisfies the conditions stated in

Lemma 2.6 (this fact is a consequence of a simple calculation) , it fol-

lows from Lemma 2.6 that t'u(t,x) eL*°°~ (R+ ; Z/*1><r (M; X)) . The same

observation gives that ^"^ (^, x) eL*00" (1?+ ; L^1'"" (M; -X")) . Hence/ is

an element of (V»'(Af;X), V'r (M; X) ), f C O_.

Theorem 3.7. Z/^ 6 and r ^ real number s> &=£=?,

. Then

(Hp* (J2; X) , Hi (Q- X) ),,._ =B;, ._ (fl; X)

Proof. This follows from Lemma 3.6 and Theorem 3.3 (see Proof

of [6] Theorem 8).

Theorem 3.8. If k is an integer, and if l^^?<o°, then Wp
k($)

c->Bpj00_(1G) with continuous injection.

Proof. Let *>0, /e Wp*(fl), and let K(x, z) ="£lal=kDz
aK(x, z) ,

Ka^J{.lf Then, since $Ka(x, —z)dz = Q,
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where /(Q° (x) = Daf(x) . Since

fw(x)\\L'-*0 as

it follows that (t~k-nK(x, (o:-y)A),/(y)>,eLJ|B-([0,a];L'(fl))> and

hence /e=BJ j00_(,Q). If &<0, ft=Wp
k(Q), K^JCQ, this facts follows from

the identity

where /=S|B|S_»I>«/a, faeL'(G), and ̂ '^(x.z) = Aa^(^, z).

§ 4. Proof of the Main Results

To prove the main results the following is fundamental.

Lemma 4. 1. Let K(t9 x, z, y) e JCJt H(t, x, z, y) e J{i5

Then,

sup I j JO, £, j;, y) |^x, sup I \J(s, t, x, y) \dy<C mm(sjrj, tls~l)
y J x J

holds for 0<5, t<a<^tQ, where C is a constant independent of s,t.

Proof. From the identity

(see [6] p. 336)

it follows that

J(s,t,x,y)=

This implies that

{\J(s,t,x,yyidx<C1s
i-Ti-n f Jz f

J Jy + tbB Jz+sb
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and

f!J(5,^^y)!^<C^-^-^ f dz( dy = Csjt-j.
J Jx+sbB Jz+tbB

In the same way we have

(«, *, x, y) Idy^OV, VO, *, *, y) \dx<Ct<S~
l .

Lemma 4. 2. Let ff be a real number, i and j be non-negative

integers, -j<ff<i, 1<P<°°, !<?<oo, l/p + l/p' = l, l/q + l/q' = l,

S),k=l,-,mt,HS(t,x,z,y)<=Jt» ff*° (x) e U' (Q) , A =

and let

t

f fl-^.0 (fl, a:, ̂ ^ ,̂ y) // (y) ̂ y ,
J \ a I

t '

+ I] f fl-Hfc° (fl, y, ^=^-, ^)^
f t J \ a /

Then

(4-1) S f " J*5 f5ff
M, (5, x) /5-X*1 (5, y , ̂ ^, x) , y (y)

fcjoj \ \ s /

+ S f /»° W («""^*° («, y, ̂ ^, x) , fir (y) \ ^x
* J \ \ a l l y

dz
t y

Proof. By Lemma 2.2 Corollary 1 in [6] we have
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X

+ £ (V"£V (*, y, ̂ A *) <*y f a-W (a, z, ̂ , yV (z) dz
ft J \ s ' J \ a I

= ZI f d*t f ^*i (^, *, -^, «) ̂ "'^^ (*, z}dz+^ \Jll(s, a, x, z)ffh\z)dz ,ft Jo J h J

where

JZH(J, *, x, z) =*-<- f X,' (5, y, ̂ ^, a:)^' (*, z, ̂ ^, y) dy ,
J \ 5 / \ t I

since for any peLy'(J2) the integrals

f f^/ (5, y, ^^ ,̂ x) fl»' («, x, ̂ =y, y) p (x) rfyrfz, (v, A = 0, 1)
J J \ 5 / \ t '

are absolutely integrable. Analogously, we can obtain

= S f " ̂ ** f ̂  («. ^> ̂ . *) «~'»» (*, «) ̂  + S f ̂ °i («> «, ̂ ,
ft JO J ft J

and therefore the left hand side of (5-1) is equal to

E J^ ̂ ** J^* (^, ^) ̂  J^ d*t ^sfft~aJll (s, t, x, z) vh (t, z) dz

-r I] f a ̂ *5 \uk (s, x) dx (sGJH 0, a, x, z) ffh° (z) dz
fc.ft Jfl J J

+ H f /»' (x) <** f " ̂ *^ f r' JS (a, i, x, z) w» («, «) Jz
fc.ft J JO J

,1 W Ac f Jll (a, a, x, z) ffj (z) <& .
J

The same computation gives that its right hand side is equal to the sum
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of the same iterated integrals, except that the order of the integration

is different. Thus, (4-1) follows from Fubini's theorem, if it is shown

that the above integrals are absolutely integrable, which follows from

Corollary 2.5 and Lemma 4.1 in view of the fact that

j j '
f*oo POO

sfft-ffmm(sjt-j,s-tti)d*t= sfft~ff mm(sjrj,
Jo Jo

l-ff

Hence the proof of the lemma is complete.

Corollary 4.3. Let (5,j,p,q,pf,qf,Kk^uk,Kk^fk be as in Lemma

4.2,, and assume that

r / x—v \
+ XI a~nKk* (a, x, ?-, y fk° (y) dy = 0

* J \ a I

Then

dx
y

for every g e 5^, fl (I^n) .

Proof. This follows from Lemma 4.2 and the integral representa-

tion ([6] Theorem 1).

Proof of Theorem 1. 2. Let </, gy be a continuous bilinear form

with the property stated in the theorem and let m, k, Z, h be integers

such that w>^>0, m — k^> — ff, £>A2^0, l—h^>ff. Then, from the in-

tegral representation it follows that

f K ̂  (V*Afa (x, ^ -̂) {«« (*, y) + **/.(B) (y) } dy
JO J \ ^ /
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(for the definition of ua, uft, fp and fM see [6] p. 344) which gives

(4 • 2) </, gy = £ f " d*t \ K (t, x} + t*fj» (x) } Va (t, x) dx
\a\=k Jo J

,(*)(-1) wg.™ (x) dx + J/U (*) jr. (*) <** ,

where

F« (*, x) = t~\Ma (y,(y- x) /*) , fir (y) >„ ,

y*(*,*) =r»<^(0^)Cy, Ov-^/O^Gy)),,

^ (^) = fl-»<fi)» (y, (y - *) A), ̂  (y) \, ^=o(a) W - Dagoa (x).

Hence the bilinear form is unique. Conversely, the form defined by

(4-2) is a continuous bilinear form on B°ptq (SS) X Bp'\>,D (Rn) (see [6]

Theorem 2 and [6] Lemma 3.3). Furthermore, it is obvious that the

identities (1 • 1) and (1 • 2) follows from Corollary 4.3, and the identities

(1-3) and (1-4) follows from Lemma 4.2. Thus Theorem 1.2 is com-

pletely proved.

Proof of Theorem 1.3. (i) Let j>-ff, and let K^JCj. Then

for any u(t, x) €=!,*« ([0, a]; Z/CG))

dx

t

Hence, by Lemma 2.3 we have (t~nK (t9y9 (y-x) /t, x) , g (y) >y = 0. Also,

if K^JCQ and if fQ e Lp (J2), then

\ \
dx
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and therefore (a~nK(a,y,(y — x)/a,x), <7 (y) >*, = 0. These facts imply

that # — 0, in view of the integral representation. The proof of part

(ii) is analogous to that of (i) .

Proof of Theorem 1. 4. Let </, #> be the bilinear form on 5J>g(fl)

X-Bj,%,ffl(JRn) defined in Theorem 1.2. It is already known that the

mapping g^>lg and f^lf are continuous injections, where lg (/) =<(/, <7)>

and l f ( f f ) = ( f , g y , so that it is sufficient to prove their surjectivity.

(i) For the case where l</?<C°o, l<g<C°°— this fact has been

proved in [6].

(ii) Case p = q = l. Since the dual of Ll(\Q,a\xQ,d*tdx) is

L°°([0, a] xG,d*tdx), this fact can be proved in the same way as for

the case (i) .

(iii) Case l<£<oo, q = l. Let /e {B^Cfi)}', and let J be the

imbedding operator from Br
p)q(G) into B p f l ( G ) 9 where (T<r and 1<^

<oo-. Then /oje { ,̂g (G)}' = B-?q,jD(Rn), so that there exists g

such that loj=lg. To prove ^e^/^CIT), let

, £>0, and define

u(t, x) for t>S ,

0 for

Then ^ f f- rw£ (t, x) e L^9 ( [0, a]; L33), and therefore

where V(t, y) =<t~nK(t, x, (x-y)/t, y) , £(*)>,. Since

we have

f« f
J^^ ^M (^, .2

Je J

Letting e->0, by Lemma 2.3 we obtain that t°V(t, x) eL^00 ([0, d\\.

U
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This and the fact that #<E W~rD(Rn) imply that g^B^i00^(Rn'} , accord-

ing to Theorem 2 in [6]. Therefore I— lg is continuous on Bptl(S) .

Since l-lg = 0 on J(B;, ,(£)), which is dense in B$tl(S) (see [6] The-

orem 5), it follows that l=lg on Ba
Vjl(S) . Thus the mapping g**lg is

surjective.

(iv) Case p = l, l<<?<oo — . Making use of the imbedding oper-

ator Bitl(S)-^Biiq(S)9 by the same argument as in case (iii) we obtain

the desired result in this case.

(v) Case lO<oo, q=oo~. With the aid of the imbedding BG
p)f

— > Bp} oo _, where 1<V<C°° — , the same argument gives the desired con-
clusion.

(vi) Case where p = oot l<g<oo — , and Q is a bounded domain.

Let J be the imbedding Br,q->B^)q, where l<r<oo and r = 6-^n/r, and

let /e {Biig(J3))'. Then ZoJe {BJifl(0)}'=B^,ffl(ir), and hence there
exists ff^B~/q^a(Rn) such that loj=lg. Since U' ($) is continuously

imbedded in #(£), it follows that g <=B^^(Rn) dW^ (Rn) . The re-

mainder part of the proof is the same as in case (iii) .

Similarly we can find that the mapping f^>lf is surjective, and the

theorem is completely proved.
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