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Hopf Algebra Structure of mod 2 Cohomology
of Simple Lie Groups

By

Kiminao ISHITOYA,* Akira KONO* and Hirosi TODA*

Introduction

The purpose of the present paper is to determine the Hopf algebra

structure of the mod 2 cohomology JJ*(G; Z2) of each compact connected

simple Lie group G. For classical type G, the Hopf algebra H* (G; Z2)

is determined by Borel [6] and Baum-Browder [3], except the spinor

groups Spin(n) and the semi-spinor groups ,5s (4m). For exceptional type

G, it is determined by several authors [6], [8], [9], [15], except the

case G = AdE7 = E7/Zz.

In order to describe our results, we shall use the submodule TG* of

/J*(G;Zp) which consists of the transgressive elements with respect to

the fibering

G — * G/T -U BT

where T denotes a maximal torus of G.

The submodule TG* enjoys the following convenient properties. Let

al9 •", ai be a basis of the odd dimensional part TG
odd of TG*, then

and

which is a part of Theorem 1.1 and the non-simply connected version of

the main theorem of [16]. Furthermore, TG* is natural with respect

to the group homomorphism, closed under the action of the mod p Steen-

rod algebra, and each element x of T"G* is characterized by the diagonal
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map:

^(^)=^(^)-^(X)l--lg)jreIm7r+(X)T/ (see Theorem 2.2).

The Hopf algebra structure of Jf*(G;Zp) for G = Spin(n),

and AdE7 will be determined in § 3, § 4 and § 5 respectively. The essen-

tial part of the results are stated as follows, for the details see Theorems

3.2, 4.4 and 5.3:

H*(Spin(n); Z2) = Jfe, *; 3<i<n, z=£4, 8, • • • , 2s'1),

l,xt = 0 if i = 2l or i

j-i, Sq1z=
i + _/=2s-i l

H*(Ss(4m); Z2) = J(^,, z; 3<i<4m, i=£4, 8, • - - , 2s"1, 2r-l)

, 2s~1<4m<2s, deg^ = z, deg« = 2'-l, degy =

;. = 0 if z=2 J o

H*(AdE7; Z2) -Z2

(deg ^ = z)

0 (-^i) = $ fe) = 0 ,

§ I. A Transgression Theorem

Throughout the paper, G denotes a compact connected Lie group,

T a maximal torus of G, and p a prime. As is seen in § 2 of [16],

the fibering

(1-1) G-^
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is equivalent to the principal G-bundle

(1-2) G-^-*E-^BT

where E = EGxG and BT=~-EGXpt.
T T

Denote by TG* the graded submodule of JJ* (G; Zp) which consists

of the transgressive elements with respect to (1-1) or (1-2). Thus

(1-3) TG*=8~1(i*H*+l(BT,pt-,Z^

for the coboundary homomorphism d:PI*(G; Zp)—>H*+1(E, G; Zp) and the

homomorphism i*: H*+1(BT,pt; ZP)->£P+1(£, G; Zp) induced by the pro-

jection i. Remark that the definition of TG* is independent of the choice

of the maximal torus T since any maximal tori are conjugate to each

other and G is connected. Obviously we have

(1-4) Im7T+cTG* for 7T*:/I*(G/T;ZP)->^*(G;ZP).

The following theorem has been proved for simply connected G in

[16].

Theorem I.I There exist elements aly"'7ai of odd degrees such

that the following assertions hold:

(i) H* (G\ Zp) = J(<2i, • • • , <2t)(X)Im TT* as lmn*-modules.

(ii) TG*=<X, . . . , f l l> + I m 7 r h , Im7ra-=7T*(jy r+(G/T;Zp)).

(iii) H* (G/T; Zp) ^Im ;r*(g)Im z* ^5 Im i*-modules .

(iv) Im z* = H"* (-BT; Zp) /(r(a^), • • •, r (<z7) ) y«r transgression ima-

ges r(a^ of at.

(v) r(a f) <2r^ o//Z(9 relation in H*(BT;ZP), i.e.,

P(Imz*, 0 =P(H*(BT; Zp), ofl(l-^deg(r(ai)))
i=l

/or ^^ Poincare series P(£! Mn, 0 =Z3 dim Mi'^n •

Here J(a1?---,^) indicates the submodule spanned by the simple mono-

mials a1
£l---ai£l(si = 0 or 1) which are linearly independent, and (aty

does a submodule spanned by a^ Remark that / = rank G since H* (G/T;
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Zp) is finite dimensional and H* (BT-, Zp) is a polynomial algebra of I

generators of degree 2.

The following lemma is a special case of Theorem 1.1 of [16].

Lemma I. 20 Assume that there are elements aly'-',ai of odd de-

grees and a submodule M* of H* (G; Zp) satisfying the following

(i) H*(G\ Zp) = A(a^ • • • , <2Z)(X)M* by cup products ,

(ii) M*cIm7T*

and

(iii) P(H*(G/T; Zp), *) - P(M*9 f) - P(H*(BT; Zp), f) • f[(l - *degai+1).

Then, by suitable change of generators al9-",ai the assertions (i)

~(v) °/ Theorem 1.1 A0W.

Next we prove

Lemma 1. 3. (i) Theorem 1.1 holds for simply connected sim-

ple G.

(ii) If Theorem 1.1 holds for GI and G2, ^A^^ z£ holds for G1

XG 2 .

(iii) Let q be a prime and let Zq be a cyclic subgroup of order

q contained in the center of G. If Theorem 1.1 holds for G, then it

holds for G/Zq.

Proof, (i) follows from Propositions 3.1, 3.2 of [16].

(ii) is proved directly by use of the Kunneth formula.

If q=£p, then £T*(G;ZP) is naturally isomorphic to H*(G/Zg;Zp)

and (iii) is trivial.

Let q=P, G'=G/Zq_ and T'=T/Zq. Consider the cohomology spec-

tral sequence associated with the upper fibering in the following diagram:

C^ ^P /~*f *P ~R'7

\-J I / I P

\id \Tt p

G -JU G/T -1+ BT.
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In the spectral sequence, E2*'* =H* (BZP\ Zp) (g)H* (G; Zp) and the

differential <fr is trivial on Im 7T* since Im 7T* elm 7TP*. By the naturality

of the transgression, the elements a^ of TG* is also transgressive in this

spectral sequence. Let u be a generator of £T(.BZP; Zp) then H*(BZP;

Since <2j is of odd degree, r(^) =ci(/2&)r for some c{^Zp and deg ^

= 2r — 1. If <?i=0 for all z, then the spectral sequence collapses, which

contradicts the finiteness of J/* (G' ; Zp) . Thus cfc^0 for some &, and

further we may assume that Q=0 for i=

By a simple computation we have

for 2r = deg a fc-fl. Then a similar equality holds for H* (G' '; Zp) , and

the assumptions (i), (ii), (iii) of Lemma 1.2 are easily checked for G',

provided that z"p*(j3#) EElmTT'*. Consider the following exact and com-

mutative diagram:

0 - tH1 (BZP • Z,) - >ff 2 (5T" ; Z,) - >H2 (BT • ZJ-^H* (BZP • Zp)

TT2 (f~^ f^T1 . 7 \ n
 v Iir2 ff^f . V \r± ((j/J. ; £p) >rl (Lr ; Z,p) .

Then we see that p* is an epimorphism. Thus zp* ($#) elm TT'*, and

(iii) for the case g=^ follows from Lemma 1.2.

Proof of Theorem 1.1. For any compact connected Lie group G

there is a finite covering G^G such that G is the product of simply

connected simple Lie groups and a torus. By (i) and (ii) of Lemma 1.3,

Theorem 1.1 holds for G. The covering is divided into a sequence of

coverings of prime order. Then Theorem 1.1 holds for G by (iii) of

Lemma 1.3. Q.E.D.

§ 2. General Arguments

We use the following notations.

f^n i ( (—
 r~n * . j __ *\ 'y~» even __ ^~~! np 2i nn odd _ ^~~i /r~» 2i +1

J. Q \JL \— JL Q , Clc^ ^C i-f , -/. g / j J- G j -*• G ^ i -*• G •

Thus TG* = X]^-TG
odd + TG

even and, by (ii) of Theorem 1.1,
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(2-1) TG
even-Im7T and TG

odd-<X -,a^ = Zp
l.

Similarly we denote the submodule of the universally transgressive

elements in H+ (G; Zp) by

T T * _ V1 T T i _ T T odd i T 7 even
UG —2^uG—Ua -r UG ,

i

and that of the primitive elements by

^* = S P/ = PG°dd + PG
even= {xeP/+(G; Z,); 0(x) =0},

where

£(*:) = 0(;c) -j:®l-l®xe JT(G; ZP}®H+(G; Zp)

for the diagonal map (comultiplicatioii)

induced by the group multiplication

identifying H*(GxG;Zp) with H* (G; ZP}®H* (G; Z,) by Kiinneth for-

mula.

From the naturality of the transgression and the diagonal map we

have

(2 • 2) (i) If f: G-^G' is a homomorphism of compact connected Lie

groups, /*TG,*CTG*, /*CVcC70* and f*P0*C2Pg*.

(ii) For each cohomology operation ae.JZj, (the mod p Steenrod

algebra) ,

cC7G* and

As is easily seen

(2 - 3) C7ff* C T/ and t/G* C P/ .

From the associativity of jit it follows the (co) associativity of (j):

(2-4) (#8)1)0 =(1(8)0)0 and (0®1)0= (1<8>0)0 •

Consider a principal G-bundle G - > £ - > 5.

Lemma 2.1. If x^H^(G\Zp} is transgressive -with respect to

this G-bundle, $(x) -.r(X)leElm z*(8)H*(G; Zp).
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Proof. Let fi: ExG->E be the action of G and p^. BxG-^B be

the projection to the first factor. Then we have the following commuta-

tive diagram:

H*(G;Z,)

JL*

H* (G ; Z,) *®i H* (JB, G ; Zp) P>«I H* (B ; Z,)
<8>H* (G; Z,) " (g) H * (G ; Z,) ' (X)H* (G ; Zp) .

By the assumption, 5(^:)=^>*(y) for some y^H*(B;Zp)y and

* (y) -P* (y) 01 = 0>*(8)1) (y<8)l) -/»* (y) (g)l = 0 .

Thus <t>(x) -x(X)leKer (5(g)l) =Im(z'*(g)l) =Im z*(g)H*(G; Zp).

Q.E.D.

Remark that the lemma is valid for any associative H-space G and

any principal G-fibering.

No^v we apply the above lemma to the fibering (1 • 1) equivalent

to the principal G-bundle (1 • 2) .

Theorem 2. 2. For each x^H+ (G; Zp), the folio-wing three con-

ditions are equivalent'.

(i)

(ii)

(iii) ^ O) - x®\ e Im TT* (X)TG* .

We shall use the following notations:

(i) aI = a1
£l"-al

Sl for 1= (el9 • • • 9 e l ) and £^ = 0 or 1, /+/'

- - - , £ 1 + 0 for /=(£!,- »,£i) and /' = (e/, - • - , £ / ) , and !/!=

(ii) Q! is the ideal of H* (G; Zp) (g)H* (G; Zp) generated by Im TT+

p) and Q2- Jf* (G; Zp) (X)Im ;r*

Lemma 2.3. 0(/0=l(g)& mod Qj /or Aelm TT+ =TG
even ,
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0(x)^x(X)l + l(X);c modQ! for x^TG
M

and 0(^J)^ T\ a1'® a1" mod Q, .
i'+i»=i

This follows easily from Lemma 2.1.

Proof of Theorem 2.2. Clearly (iii) implies (ii) and also (i) im-

plies (ii) by Lemma 2.1.

(2-5) (ii) is equivalent to 0(^)^0 mod Im 7T*(X)H* (G; Zp) ,

thus (ii) implies (j)(x)=Q mod Qi .

By (i) of Theorem 1.1, such x is written uniquely in the form

7 (A/ e Im TT+,

Then by Lemma 2.3,

0=4 (a;) ^S I] ^'(gJa^Az+i; I] a^'®^' mod Q, .

This implies that A/ = 0 if 1 1|>0 and O0 = 0 if | J|>1. So, x satisfies

(i) proving that (ii) implies (i).

Finally we prove that (ii) implies (iii) by induction on deg x. From

the induction hypothesis we have

0(/zOeIm7r*(X)Im7r* for /i'elm 7T+cT/ with

Put £(*)=EV(8)y* for Velm7r+, degA/<deg^:, ykSEH+ (G; ZJ.
k

By the associativity (2 • 4) , we have

o= (i<g$)0(x) - ($8>i)£(:c) =S(A/<8>0Gy.) -0(V)<8>y»)
A;

^S A/(g)0 (y*) mod Q2 .
fc

We may choose {/i/} linearly independent. Then 0(yfc) =0 mod Im

7T*(X)/f*(G;Zp). So, by (2-5) yk satisfies (ii), and yk does (i). Thus

. Q.E.D.

Corollary 2. 4. P6* c Te*. Im re* = <1> + TG
even is a Hopf sub-al-

gebra of H*(G;ZP~).
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Proof. If X^PG*, ^(^)-o:(8)l=l(8)a:eIm7r*(g)H*(G;Zp). It fol-

lows x^Ta*. If xeIm7r+cTG
even, 0(^)-xg)leIm7r*(x)TG

evencIm7r*

(X)Im 7T*. Thus the subalgebra Im 7T* is closed under 0. Q.E.D.

The notation

indicates the subspace having a />-simple system of generators {bl9"'9bm},

that is, the set {£i£ '---£m
£ro; 0<e<<£} is a Zp-basis of Jp(&1? • • • , £m). Note

that

Since Zp[&]/(ZO=4(MV",*pr~ l), Hopf-Borel theorem for the
Hopf algebra H* (G; Zp) has a form:

(2-6) H*(G;Z,)=J(fl/.-.W)<8>4(V, •",*»'),

deg at : odd, deg bj : even .

Also, applying the theorem to the Hopf sub-algebra Im 7T*, we have

(2-6)' £T*(G;Zp)=J(a l5 ..., ^)(x)Jp(^, -,^m), ^eTG
odd,

Im7T*=Jp(&1, - - - , & T O ) and TG* =(al9 • • • , az> + Im 7T+ .

Lemma 2.5. Given any (2-6), there exist elements aiy bj 'which

satisfy (2-6)', such that ai=at', bj=b/ (mod dec ompo sables) and that
d (resp. b/ e TG

even) .

This is proved by changing the generators suitably by induction on

the degrees.

Lemma 2. 6. P0
M^al9 • • - , O a^ PG

evenC<^x, -, ^m
x> /or

en such that b/=bj (mod dec ompo sable s) .

Proof. By Corollary 2.4, PG°ddcTG°dd = <al5 • • • , ̂ >. Consider the

Hopf algebra B = Imn* =4p(b1,--,bm) . If the elements b/s are all primi-

tive, we can show that P(B) =PG
even = (b1,--, bmy by the same arguments

as in the proof of Theorem 2.2. Let E*(B) be the associated graded

Hopf algebra giver by the augmentation filtration {(5+)r}, then
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is primitively generated and P(E°(B}) = <(the classes of b^. Since there

is a natural injection of P(B} into P(jE°(jB)), the second assertion fol-

lows. Q.E.D.

§ 3. Structure of H * (Spin O) ; Z2)

Consider the following fibering

(3-1) Spin(n)—^>SO(n)~^BZ2 for

where p is the universal covering and A is a map classifying p.

We use the following notation

(3-2) 5 = 5(72) is the integer given by 2s~l<n<2* ,

AT= {1, 2, 22, 23, .-}.

We quote the following result due to Borel [4], [5], [6].

Proposition 3. 1. (i) H*(SO(n); Z2) = A(xl9 x* • • • , Zcn_0 /or

(ii) 5^^ = f . j xi+/ ( = 0 if i +j>n) , z^ particular x? = ^

(iii) The ideal Ker p* is generated by xl9 and Im 0* =

(iv) H*(Spin(n); Z2) =Im p*(g)J(2;) /or <2/z element z ofdegz =

— 1 'which is transgressive ^v^th respect to the fibering (3-1)

Since Im p+ is transgressive and r(Imp+) := :0 we have that

(3-3) - the element z in (iv) is determined modulo Imp*.

We put

(3-4) x, = p^xt^Ul
SpinW .

It follows from p*Xi=Q and xi
z = x2i

(3-5) ^ = 0 if i^N or if z>» .

Consider the fibering (1-1) for G = Spin(?i):

Spin (ri) -^>Spin (») /T-^BT .

Then the structure of H* (Spin (n) ; Z2} is given by the following
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Theorem 3. 2. Put 1= [n/2~]. There exists an element

such that z&Imp*=A(Xi\i&N,i<^ri). Then we have the following

(i) H* (Spin(n); Z2) = A(x,, x5, • • • , xzl^ z) (g)Im TT* ,

(11) J. Sptn(n) =\^3, X5, •", X2i-i, Z/,

(iii) 0OO=0 and $(z)= ]C
i + j=2s

€>o

(iv) SqjXi=( . J X i + j , in particular Xi=xzi,

Sq1 (z) = I] xzixzj , ^^ = 0 for j >1, ^2 = 0

Note that

(3-6) the above element z is unique if n^=2s and unique up to xzi-i

if rc = 2s ( = 2Z).

By (2-3), Xi^Psow implies ^ePjpin(n), i.e., $(xt)=0. By Corol-

lary 2.4, Xi^Tspin(n)- By Proposition 3.1,

; j & N, 2j<n) .

Apply Lemma 2.5, then z can be changed modulo Im p* = A(XI\ i& N,

i<^n) such that z^Tj'pinw- f(z)^Q shows that z& Imp*. Then Lemma

2.5 implies (i) and (ii) of Theorem 3.2. By the naturality of Sql, (ii)

of Proposition 3.1 implies the first assertion of (iv) of Theorem 3.2.

Since Sqziz^Tls
p^ = Q for z>0, SqJ'z = Q for j>l. Thus we have ob-

tained

(3-7) Theorem 3.2 holds except the assertion for $(z} and Sqlz.

Now we have

Lemma 3. 3. P%£w=<xv\j&N9 2j<ri>.

Proof. By Lemma 2.6, dim Pj^(n)<dim<:cy; j&N, 2j<ri).

Since x2j is primitive for all j, the equality holds.

Lemma 3.4. <?(^) = X] cix2i^xli-i for some
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Proof. By Theorem 2.2, <j>(z) =^hj§<)x2j-l for some t

Then

3
x2j^ -0 .

If .Tgy-i^O, <j)(hj) — 0. It follows from Lemma 3.3 that hj=aiX2i for some

at where 2i = 2s — 1— (2j — 1) = 2S — 2;. Of course, at is arbitrary if

-r2,--i = 0. Q.E.D.

Corollary 3.5. 0(*)=0 awrf 5g^ = 0 (f ;z<9 or z/ ;z = 2f"1 + l.

Proof. By dimensional reason 0(2) =0 for these cases. By (2-2),

(ii) and by Lemma 3.3, Sqlz e SqlP!fciw C Ps
2;,n(n) = 0.

Lemma 3. 6. TAe coefficients ct in Lemma 3.4 satisfy

ci = c2S-l-.i for i&N, 2i<n/2, 2* — 2i<n9 and Sq1z= X

Proof. Since SgteeTf^(B)CIm 0*, 5^ = 27^ for some

Since 0(.r7) =27/+7*=7-rJ/(8)-r/'r ig symmetric, so is $(Sq1z^). On the other

hand, $(Sqlz)=Sql(j)(z) = J2>i+j=zs-iCix2i®x2j. Thus ^=^2,-i_i if xzi®x2S-2i

^0, and the first assertion follows. Then we have $(Sq1z) — 2i<2s-2

^i(^2t(X)^2S-2i+^2S-2i(X)x2i). So, ^^-Xl^s-i^^^^-H^PJptncn) =0 by

Lemma 3.3, and the second assertion follows.

Lemma 3.7. Let n = 2s, s>4. For some ceZ2, we have

j-i and Sqlz = c

Proof. By (3-7), Sq2z = Sq1x2i = 0, Sq2x2i = i-x2i+2 and

= 0" — l)^,-!. Thus

Since 4k&N for 2s'2<2k<2s-\ we have

(3-8) czk.,=c2k for 2S-2<2^<2S'1 .
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Similarly,

4(8)^-1 + *^= H

and we have

(3-9) ctn-2 = c4m and c^-^^+i for 2s

It follows from (3-8) and (3-9) that <;<-!=<;< for 2f"2 + l<f<2'~1.

Thus, by Lemma 3.6, ^ is independent of z<^2s~1, i&N9 proving Lemma

3.7.

Next, consider the homomorphism

z * : H* (Spin (n) ; Z2) - > H* (5/>m ( m) ; Z2)

induced by the natural inclusion i: Spin (m)-^> Spin (n), m<in.

Lemma 3. 8. z* (xt) =x{. If 2s~1<m<^<2s, z* (2;) =2;.

Proof. The first assertion follows from the well-known fact z* (3:f)

= ^i and the commutativit}^ of the following diagram:

Spin (m) ~^SO (m) -^BZ2id
Spin 00

If 2s"1<;w<n<2s, by (iv) of Proposition 3.1 and by the naturality

of the transgression r, r (£*(*)) =r(«)=^=0. By (i) of (2-2) and by (3-6)

z* (2) = * in Hzs-1 (Spin (m) ; Z2) . Q.E.D.

Proof of Theorem 3.2. It is known that H * (Spin (2s} ', Z2) is not

primitively generated for 5>4 (see Kojima [7]). It follows that c = l

in Lemma 3.7. Apply the naturality of 0 and Sq1 to z* of Lemma 3.8,

then we see that the formulas on (j)(z) and Sql(z) in Theorem 3.2 holds
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for n^>3. Together with (3-7) and Corollary 3.5, the proof of the

theorem has been established.

Remark 3. 9e In the case n = 2s, the element z has not been unique-

ly determined. In the next §, we shall see that TJJ^}) =(z) and this

is mapped injectively into TJ^1^) — <X ̂ zs-i) under the homomorphism p0*

induced by a double covering pQ:Spin(2s) - >Ss(2s). So, z may be fixed

as the image of p0* if we fix p0. However, by an automorphism of

Spin (2s), pQ is changed to another covering p1: Spin(2s) - >Ss(2s) such

that Pi*(z) = p0*(*0

§ 4. Structure of U* (Ss (n) ; Z2) , n = 4>m

Let n = 4:m and l = n/2 = 2m. It is well known that the center of

Spin (n) is isomorphic to Z2 X Z2. Let a be the generator of the kernel

of p: Spin(n) - >SO(ri) and let b be another generator of the center.

So, SO(n)=Spin(ri)/(a> and PO(ri) =Spin(n)/(a, by. Then the semi-

spinor group Ss(ri), n = 4m, is defined by Ss(ri) = Spin (n) /(by. By an

automorphism of Spin(n), b is carried to a-b. Thus

(4-1) Ss(n) =Spin

Note that

(4 • 1) ' 55 (4) = Spin (3) X SO (3) and Ss (8) ^ SO (8) .

Let

(4 - 2) & (») ~PO (n) -->BZ2

be a fibering consists of a double covering pr and a map A' classifying

p'. We use the following notations

(4-3) s = s(n) for 2s~1<n<2s ,

r = r(n) for n = 2r-odd (r>2)

and F = ^7(7z)=ATU{2 r-l} where AT- {1, 2, 22, 23, • • - , 2r, • • •} .

We quote the following result due to Baum-Browder [3].

Proposition 4. 1. (i) There are elements v^H1, x^Hzs~l and
1 for i=^2r -~ 1 sz^7/z that ze^O /or z'eAT or i>n and
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ft;21"1 if r>3, j=l and i = 2r~l-l,
(ii)

.}wi+j zj other-wise.

(iii)
W

(iv) ze>i5 z;elm ((/*. _r zs transgressive -with respect to the fiber-

ing, (4-2) and r(

In order to apply Theorem 1.1, we change the generators:

(4-4) x2j-1 = -w2j_1-^vw2j--2 for 2j — I=£2r — I, 1,

.r^ = w;y and y = t; .

Here we use the following convention

(4-4)' jct = 0 for z'eAf and for i>n. xQ = I.

Obviously (l = n/2 =

(4-5) H*(Ss(n)-, Z2)

1^27;

From the above proposition it is directly verified

Lemma 4. 2. (i) 0(3;) — $(y2t) — 0,

= 2

(ii) 5«1j:tf = 0>

^•+y%-2 /o
5g'a:y-i=-

-.^ /or j = 2r-1, r>3 ,

= . y
J/
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Consider the fibering (1-1) for G = Ss(n):

Lemma 4. 3. y, y2J and xt(i&N} belong to TfsM .

Proof. Each element of t£(Ss(n)\Z^ is universally transgressive,

in particular so is y. Thus yeTjs(n). By (ii) of (2-2) and (2-1),

y2 = Sq1y^Tjs(n}c:Im7r*y and y2/elm 7T+cT^s(n). The second formula of

Lemma 4.2, (i) shows that xzj satisfies (ii) of Theorem 2.2. Thus xZj

£^T*s(n)- Similarly it follows from the last formula of Lemma 4.2, (i)

that *„_,€= 77.(n). Q.E.D.

Now applying Lemma 2.5 to (4-5), we see the existence of an ele-

ment z of TJs^1) such that z — .r edecomposablesclm p'*. Thus r(#)

, and we have by Lemma 2.5 that

(4-6) the following theorem holds except the assertion for (j)(z) and

£«*(*).

Theorem 4.4. There exists an element seTJJ^1) such that r(z)
twith respect to the fibering (4-2) and that the following holds.

(i)

(ii) Ts°
d
(
d
n) =<y, ar^j, 2;

Im 7T* = <1> + TIJS = J (*„ ; 2j

(iii) 0 and Sql for y and xt are given in Lemma 4.2.

(iv) $(z)=

2]

and Sqj (z) = 0 for j

The remaining part of this section is devoted to determine $(z) and

). Consider the following map between two fiberings (3-1) and
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(4-2):

Spin (») -?-> SO (n) —U£Z2

id
I I

Ss (n) -^>PO 00 ~^BZ2,

where pQ is the natural projection (double covering).

Lemma 4. 5. A)*00 = *, p0*(y) =0 a^J p0*(^t) =^i /or z^JV .

Proof. By the naturality of the transgression, r(p0*(^)) =r

in the upper fibering. By (i) of (2-2), p0*(^) ^Tjp^V)- Then we can

take 2 = p0*(2;) in Theorem 3.2. Next consider the spectral sequence as-

sociated with the fibering

Spin (n) -^Ss 00 -^BZ2 .

Then the only non-trivial differential is given by the transgression r(^2r-i)

^0 in Hzr(BZ2; Z2). Thus we have that the kernel of A>* : H* (Ss(n) ; Z2)

- >H*(Spin(n)\ Z2) is the ideal generated by y. So, /Oo*(y)= =0 and

Po*te)¥:0 for z^AT and i<n. If z is odd, p0* te) ^Tjp£n(n) =<Xi> by

(i) of (2-2) and (ii) of Theorem 3.2. Thus p0*(^0=^ for odd f^JV.

For even i&N, by (ii) of Lemma 4.2, xi = Sq1xi-1 +y -f for some/. Then

-1+y/) =5^(Po*(^i-i)) =5^^-!=^. Q.E.D.

We use a similar notation as in § 2:

(4-7) (i) xj = x(?*--'xyj'~xl\-l2 for J= (e>, • • • , £ / , - • • , fii-0, e, = 0 or 1,

where xzj and ey are omitted if j^N. \J\=^^, d(J) =J] 2/£y. J+J'

= (...,ey + e/,-) for J' = (..., e/, ...).

(ii) ^ denotes the ideal of H*(Ss(n) ; Z2) ®H* (Ss(n) ; Z2) gener-

ated by y(g)l. R2 = R1(^)H*(Ss(n')-yZ2).

By Theorem 2.2, 0 (2;) elm 7r+(X)Ts°s
d
(t). Then by (4-6) we have

(4-8) 0(*)= H 4^2

2t + d(J) + 2fc = 2s 2i+d(J)=2S-2

for some a^j, bi

Lemma 4.6. /^ (4-8) we can take a%jJ = ~L for xj = xzs^2k.
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In fact, (p0*(8)A>*)0(*) =2^?, jJ^®^*-! coincides with

= 0(2;) =Xji+y=2«-i Xzi^Xzj-! in Theorem 3.2. The only question might

occur to the term xzs-Zr®xZr-i which may not be in (p0*0Po*) -image.

But

(4-9) *, = 0 if z>2s-2r and s^r,

since 2s-2r>n = 2r -odd unless 2s = 2r = n.

Next, we prove the following lemma by use of the associativity

of $.

Lemma 4. 7. $(z)=
t + j +

Proof. By Lemma 4.2,

0(3/2*)=l(X);y2i and $(xzj) =x2j.(X)H-l(X)^- mod J?j. Then it follows

from (4-8), modulo R^R^H* (Ss(ri)-9 Z2),

Comparing the coefficients, we have

aij = Q if |J|>1 and 3

*« f j = 0 if |J|>2 and y2

*,.j = 0 if |J!>0, z>0 and

and using Lemma 4.6,

j) and j

if ^J=^ yM*.,<
and e

Here, &0,j = l for xj = xzix2j^Q (i^j) since either J + 1^27""1 or z
r~1. Also, if z + ̂ -27"-1 and ^ = ̂ , *y = 0 by (4-9) and af§Jy

8
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Now it remains to fix the coefficients of the terms in the following

(4-10) x2*-2(g)y, yzi®xzs-zi^ (0<f<2s-1-l) and yzs~z®y ,

which are all trivial or non-trivial for n=^2s or n = 2s respectively.

Let n = 2s and let b, at and V be the coefficients of the terms of

(4-10) in (4-8) respectively. Compare the coefficients of y2*®xZs-2i-2

(X)y, yZi®y2J®X2*-2i-2j-i and yz®yzs~*®y in the equality

= (1(8)0) ^W- Then we have

&=a, for 2s-2i

For even i<2s~1~2, b = at = at+1. For z = 2'"1-2, at =

'ai-2 = ai-2 = b. Consequently the coefficients of the equality of the lemma

are all fixed. Q.E.D.

Lemma 4. 8. Lemma 4.7 holds for b = 0, and

Sql(z)= x;

Proof. Since Sq1y = y2, R! is closed under jSg1. Consider Sql(<J)(z)}

modulo ^j. For j + ̂  = 2*~1, £>1, the equality ^(^-(^Xgfc-i) ^^•(^(xgfc

+ y2^-2) holds, even for * = 2r-1, 2r~\ since ^ = 0 for ̂ <2r'1 by (4-9).

Then it follows from Lemma 4.7

On the other hand, Sq*(z) e ^T^ C T|^ =Im 7T+. So, we may

put

Sql(z)= X] ckljy*kxj for some c fc j
2fc + d(J)=2s

As in the proof of Lemma 4.7, we have

From the naturality 0(5^ (2:)) =5^(0(2;)), the coefficients £ fc ij of

satisfy the follo^wing relations:
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cktJ = 0 if |J|>2 or if &>1,

CQ,J = cltJ = \ if |J| = 2 and c1,J = b if jj| = l.

Thus the lemma is proved except the triviality of the coefficient b of

y2x2S-2. If n=£2*9 xzs-z = 0 and we may take & = 0 by (4-10).

Let n = 2s, and let Q be the ideal of H* (Ss (2s) ; Z2) generated by

the elements ^'s. By (ii) of Lemma 4.2, xi
2 = Sqlxi—xzi. It follows

from (ii) of Theorem 4.4 that H*(Ss(2s}; Z2)/Q = J(*)(X)Z2[y]/(;y2S).

By (ii) of Lemma 4.2, xt=0, Sq1xi^0(i^=2s~1) and Sq'x^-^y**'1 mod

Q. Then we have

S<?($(z»=by»-v®^-\ 0CV(*))=0 modQ,

for the ideal Ql generated by Q®1 and l(g)Q. Thus Z? = 0 completing

the proof of Lemma 4.8.

Proof of Theorem 4.4. The assertions (i), (ii) and (iii) are estab-

lished by (4-6). For even j>0, Sq! (z) eTJ^-O by (ii), and Sq3'+1(z)

= Sq1Sq3 (z) =0. Thus Sq3 (z) =0 for J>1. The remaining part of the

assertion (iv) follows from Lemma 4.8 and the following (4-11).

Q.E.D.

(4-11) .^. mod 2 if i+j+k = 2t-l.
\ z /

For,

and (

Similarly

and (4-11) follows.

§ 5. Structure of H*(AdE7; Z2)

Let £7 be the compact simply connected Lie group of type E7. The

mod 2 cohomology ring £f*(J£7;Z2) is determined by Araki [1]. As is

seen in [16] or by use of Theorem 1.1 we have
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Proposition 5. 1. (i) There are elements ^eH"*(E7;Z2) for

i = 3, 15 such that

H*(E7; Z2) =Z2|>3, e6, e^/(ez\ e5
4, e9

4)(g)A(e15, e17, e2S, e21)

-where

e5 = Sq2es, e<> = Sq*e5, e17 = Sq8eg, ezs=Sqse15 and e27 = Sq4e2Z.

(ii) Ts^ = (ei, e5, eg, e15, e17, e2S, <?27>

and <1> + TI7n = Im TT* = A (e,\ e5\ e*}.

Thomas [14] showed that Sq2e15=^=0 in EQ, and thus in E7. So,

(5-1) Sq2e15 = e17.

The following is due to Kono-Mimura-Shimada [9] or Toda [15]:

Lemma 5.2. Pi57 = 0.

As is well known the center of E7 is a cyclic group of order 2,

and so denoted by Z2. The quotient group of E7 by the center is denoted

by AdE7, and the natural projection (double covering) by

p: E, >AdE, = E,/Zt.

We use the following notations:

(5-2) (i) e6 = es\ ew = e5
2 and e1B = eg*9

(ii) M= {1, 2, 5, 6, 9,10,15,17,18, 23, 27}

and M-MU{16,24,28}.

Then the results on H*(AdE7;Zz) are summarized as follows.

Theorem 5.3. (i) There exist elements xi^Hi(^AdE1\Z^) for

such that p*(xt) =et if i=£l, 2, xt
2 = x2i if 2z<EM and

H*(AdE7-, Z2) =A(xi-, zeM)

= Z2 \_Xl, X5, Xg] / \Xi , X5 , Xg ) (X)yl (jC6, X15, X17, X2Z, X27) .

(ll) J- AdE1
 == \-^l> -^5> -^9> -^15? -^17> -^23> -^27/

?, = Im TT* = ^ (x2, xs, xw, xls).
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(ill) •LAdE1
 = \^lj 3^2, X5, X6, ^95 &1Q9 &179 -̂ 18 /

and

(iv) For i€zM, the relations Sq*Xi=( -}xi+j hold, 'where xi+J =

if i+j&M, X16 = x6xw, X2i = x6x18 and X28 =

(More precise results will be seen later.)

Let T be a maximal torus of E7. As is well known the center Z2

is a subgroup of T. According to Watanabe [17], we take elements

tl9-",tj, x of H*(BT) such that

(5-3) (i) H^(BT)=Zltl9'",t7,x-]/(3x-c1), £, = *, + . ~+*T ,

(ii) the actions of 0(jE7) on H* (J3T) contain the permutations

of */s.

The inclusions Z2cTcJ57 induce maps

(5-4) c = c"oc': BZ2~^BT-^BE7.

Lemma 5.4. (i) c"*: H4(BE7*) - >H4(BT) is injective and its

image is generated by cz — 4xz 'where c2= XI *&•
l<,i<j<Z?

(ii) c*: H^BE^Z^ - >H\BZ2-,Z2) is bijective.

Proof, c" is a fibering with a fibre E7/T. Since BE7 is 3-connected,

we have a Serre exact sequence

Hs (E7/T) - >H* (BE7) -^H\BT) -^->H* (E7/T) .

H*(E7/T) is given by Theorem 4.1 of [16], in particular H*(E7/T)=0

and i* induces an isomorphism H4 (BT) /<c2 - 4x2> ̂  ^f4 (£7/T) . Thus (i)

follows. By (i) of (5-3), H*(BT; Z2) =Z2[A, •-, ^]- Obviously H"*

CBZ2;Z2)=Z2[;y], ye//1. Put T/=T/Z2. From the fibering J3Z2-^-»

5T - >£T', we have an exact sequence 0 - >H1(BZZ-, Z2) - >HZ(BT'\

Z2) - >H2(BT-JZ2)-^H2(BZ2;Z2). Since T and T' are tori of the

same dimension, they are isomorphic to each other. It follows easily

that c'* is not trivial, i.e., £'*(£$) =yz for some z". Since Z2 is the center,
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the action of the Weyl group @(E7) is trivial on BZ2. It follows from

(ii) of (5-3) and from the naturality of the action that c'* (A) = ••• =lf*

(O =y2- By (i), a generator x± of H* ( BE7 ; Z2) = Z2 is mapped onto

C''*(xj=c2-4xt = c2 (mod 2). Thus

and (ii) follows. Q.E.D.

Consider the following fibering

(5 • 5) E7-

Lemma 5. 5. There exist elements xt of H'(AdE7; Z2) for z'
such that

(i) H* (AdE, ;Z2)=A(xl;i^

V11/ ^ AdE1^
=\^l7 X5, Xg, X15, XYI^ X2

<1> + Trd
es7 = Im TT* = J (x2j :̂6, ,r10, x18) ,

(iii) ^ =/* (y ) /or z - 1, 2, £* (xO = et for i=£I, 2,

(iv) xz = Sqlxl=xl\ x6 = Sq1x5j Xg = Sq4x5, xw = Sq5x5=

qsx15 and x27 =

Proof. £3 is universally transgressive and its transgression image

x± generates H4(BE7; Z2). By (ii) of Lemma 5.4, we have that the trans-

gression r with respect to (5-5) maps £3 to r(e3) =c*(x^ =y*. The

generators et belong to T^7, i.e., they are transgressive with respect to

the fibering

(5-5)' E7-^-*E7/T - >BT .

By the naturality of the transgression for the natural map of (5-5)

to (5-5)', e/s are transgressive with respect to (5-5). Since r(e3) =y4,

r(e^) =0 for f>3, that is, ei=p*(xi') for some x/, i^>3. In the spectral

sequence associated with the fibering (5-5): E2 = H* (BZZ\ Z2) (X)H* (E7;

Zz) =Z2[y~] (2)4(6^, the only non-trivial differential is ^4(1(X)^3) =y4g)l.

Then E00-Z2[y]/(y4)(X)J(^;^3), and we have H* (AdE7; Z2) = J(^,
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x2, Xi \ z>3). By Lemma 2.5, we can choose Xi^Tj_dE^ such that xi=xj

(mod decomposables) and that (i) and (ii) of the lemma hold. By (i)

of (2-2), p*(xt)^T^. By (ii) of Proposition 5.1, TiT = O,> for zGEM

and z">3. Thus P*(xi)=ei? z>3, and (iii) of the lemma is proved.

By (ii) of this lemma, Tj^7 = <^> for z'eM and i=£I8 and Tj8dl?7

= <(x18, X2x6x10). We may choose x18 as .r18 = .rg2. Since SgJ is closed in

T*aEl9 the relation (iv) holds, up to undetermined coefficients. The coeffi-

cients are fixed by applying p* and comparing the coefficients in (i) of

Proposition 5.1 with (i) of (5-2). For example, p* (XQ) = eQ = es
2=^Sqzes

= Sq1Sq2ez = Sq1e5=p*(Sq1x5), and this implies Sqlx, = xQ. Q.E.D.

Lemma 5. 6. (i) xf = 0 for i = 2, 6, 10, 15, 17, 18, 23, 27.

(ii) The relation SqjXi—i -]xi+j in (iv) o/ Theorem 5.3 holds

for £ = 1,2,5,6,9,10,17,18.

(iii) (iii) of Theorem 5.3 holds. Sq1x15 = x6x1Q, Sq1x23=xQx18 and

Sq x27 =

Proof. Obviously x^Pl
A(lEi. By Theorem 2.2, 0(x5) elm 7T+(g)T^|7.

It follows from (ii) of Lemma 5.5, 0(-r5) =0, i.e., ̂ 5ePjd^7. By (ii) of

(2-2), S^PL*7cPjJjJ7. Then it follows from (iv) of Lemma 5. 5

(5 • 6) \Xi, x2.-> x$-> XQ, X9) xw, X1

Also by Lemma 2.6

For z' = 2, 6, 10, 17, 18, ̂ ePj^ implies ^2ePj|£7 which is trivial by

(5-6)': xt* = Q. For z = 15, 23, 27, x^Sq'x^Sq'Sq^x,. x^TidEi im-

plies Sql~1xi^TjL
i
dE

i
7 which is trivial by (ii) of Lemma 5.5. Thus -r/ = 0

for z = 15, 23, 27, and (i) is proved.

Obviously the relation in (ii) holds for j = 0, for j^>i and also for

j — i by (i) of this lemma and (iv) of Lemma 5. 5. Let 0<O'<O" and

consider the cases both that PJJJ7 = 0 and that ( * Wo (mod 2) or i+j&M.
/ i\For such cases SqjXi = 0 = ( .}xi+J. Then, the remaining cases are the

following ones:

(a) j = l and z = 5,9,!7; (/?) j = i-l and z = 5,9;
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(r) j = i-2 and £ = 6,10; (5) i+j = 15, 23, 27, and z = 9, 10, 17, 18.

For the cases (a) and (/?) the relation follows from (iv) of Lemma

3.5. and the Adem relation Sq1Sq2k = Sq2k+1 (£ = 4& + l). For the case

(r), we have Sq*x6 = Sq*Sqlx5= (Sq* + Sq2Sq*)x5 = x5
2= (x1Q and Sq*x1Q

x18. For the case (£), * =0 (mod 2).

For £ = 9,17, we have Sq°xt = (SqzSq* + Sq*Sql}xi = Sq*xi+l and Sq*xi+1

= SqlSq*xi+l = 0. We have also, Sq10x17 = (SqzSq* + SqgSq^ X17 = Sqgx18 and

Sqgxu = StfSJxa = 0.

Consequently the relation Sq*xt = f -}xi+j in (ii) is established.

By Theorem 2. 2

for a,b^Z2.

Since /Sg1.̂  e Tj^7 = <^6^io>, Sqlx15 = cx6x1Q for some c^Zz. Then c(x10

® :̂6 + x60^10) = ^Sq1 (x15) = Sq1^ (x15) = ax1Q (X) x6 + &r6 (X) ̂ 10. It follows

from Lemma 5.2, <2 = ^ = c::=l. That is,

and

By use of (ii) and the Cartan formula,

and 0 (XZT) = $ (Sq4x2Z) — Sq*ij) (xzz) = .r18(X).r9 + x1Q

Thus x15, x2Z, xzl&P*dEi and the equality holds in (5-6).

Finally Sqlxzz <E TA*S, = <^6^is>, ^^27 ̂  ^id^7 = <-^io^i8>, and the last

two formulas of (iii) are proved as above. Q.E.D.

Lemma 5.7. The relation Sq*Xi=( -}xi+j in (iv) of Theorem

5.3 holds for £ = 15, 23, 27.

Proof. First consider even j = 2k. Since 5#2fc^ e Tj^, the non-trivi-

al cases are the following ones:

Sq2x15=x17, Sq*x15 = x2s, Sq*x2Z=x27 and *Sg12.r15=:r27.

The first case is reduced to (5-1) by applying p*. The seconed and

the third cases are the definitions. For the last one, Sq12xl5 = (Sq*Sq8

+ Sq10Sq2 + S^Sq1) X15 = Sq4x2Z + Sqwx17 + Sq11 (x6x10) = X27.
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Together with Lemma 5.6, we see that the formula of the lemma

holds for j = 1 and for even j = 2k. For odd j = 2&-j-l,

Q.E.D.

Proof of Theorem 5.3. (i) follows from Lemma 5.5 and (i) of

Lemma 5.6. Then (ii) of the theorem is (ii) of Lemma 5.5. (iii) of the

theorem is (iii) of Lemma 5.6. (iv) follows from (ii) of Lemma 5.6

and Lemma 5.7. Q.E.D.

By quite a similar but a little simpler arguments, we have

Proposition 5.8. Theorem 5.3 holds for H*(E7;Zz) by omitting

xl9x2, by adding x3eP|7 'with xz
z = x6 and by replacing M by {3,5,6,

9,10,15,17,18,23,27}.
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