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Hopf Algebra Structure of mod 2 Cohomology
of Simple Lie Groups

By

Kiminao ISHITOYA,* Akira KONO* and Hirosi TODA*

Introduction

The purpose of the present paper is to determine the Hopf algebra
structure of the mod 2 cohomology H*(G; Z,) of each compact connected
simple Lie group G. For classical type G, the Hopf algebra H*(G; Z,)
is determined by Borel [6] and Baum-Browder [3], except the spinor
groups Spin(n) and the semi-spinor groups Ss(4m). For exceptional type
G, it is determined by several authors [6], [8], [9], [15], except the
case G=AdE,=FE,/Z,

In order to describe our results, we shall use the submodule T4* of
H*(G; Z,) which consists of the transgressive elements with respect to

the fibering
G —>G/T -5 BT

where T denotes a maximal torus of G.
The submodule 7T.* enjoys the following convenient properties. Let

a,, -+, a; be a basis of the odd dimensional part T,°% of T,*, then
H*(G; Z,) =4(ay, -+, a)) QIm 7*

and
T:*=<ay, ~,a>+Imn",

which is a part of Theorem 1.1 and the non-simply connected version of
the main theorem of [16]. Furthermore, 7:* is natural with respect
to the group homomorphism, closed under the action of the mod p Steen-

rod algebra, and each element x of T,* is characterized by the diagonal
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map:

p(x)=¢(x) —2zQR1—-1RxxIm 7" RXT* (see Theorem 2.2).

The Hopf algebra structure of H*(G; Z,) for G=Spin(n), Ss(4dm)
and AdE, will be determined in § 3, § 4 and § 5 respectively. The essen-

tial part of the results are stated as follows, for the details see Theorems

3.2, 4.4 and 5.3:

H*(Spin(n); Z,) =4(xy, z; 3<i<ln, i74,8, -+, 2'7"),
(2 '<n<2,deg x;=1,deg 2=2"—1, 2;,=0 if i=2" or i=>n)
(5(.761) =0, </’7(z) = 2 Zu@xaj1, S@z= Y TuZu_u;

i+ =281 1<z
H*(Ss(4m); Z,) =4 (x;, z; 3<i<4dm, 154, 8, -+, 2°"1, 2" —1)
RZ[v1/ (),

(dm=2"-0dd, 2°'<4m<2’, deg x; =1, deg 2=2°—1, degy=1,

x;=0 if i=2" or i>4m)

T =0, F@)= % (5 )9"@za+i-z® @+2-1),

1<5<i/2

- 47\
) (z) = < -J )yZLx2j®x2k—1+ Z $2i$zj®y ,
i+j+k=25-1 J i+7=25-1-1
0<i<y 0l

1 2 .
SQ Zz= Z Z2iXas 95+ Z YV X9 Xas—2i-2;
1<i<T-1-1 1< <2511

H* (AdE;; Z,) =2, [xb s, Sq4x5]/(x14, x5, (Sq4x5) 4)
X4 (Sq1x5, Z1s, S°Sq* x5, SQ°x 5, Sq'Sq’zys),
(deg x;=17)

$(x) =¢(x:) =0, ¢ (x15) =Sq'x:RSq" x5 + 2" Qs .

§ 1. A Transgression Theorem

Throughout the paper, G denotes a compact connected Lie group,
T a maximal torus of G, and p a prime. As is seen in §2 of [16],
the fibering

1-1) G > G/T — BT
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is equivalent to the principal G-bundle
1-2) G5 E -5 BT
where E=EG ;< G and BT=EG ;'<pt.

Denote by 7* the graded submodule of H*(G; Z,) which consists

of the transgressive elements with respect to (1-1) or (1-2). Thus
(1-3) Te*=0""'(*H*" (BT, pt; Z,))

for the coboundary homomorphism &:H*(G; Z,) - H**'(E, G; Z,) and the
homomorphism z*: H**'(BT, pt; Z,) >H" "' (E, G; Z,) induced by the pro-
jection 7. Remark that the definition of 7T,* is independent of the choice
of the maximal torus 7" since any maximal tori are conjugate to each

other and G is connected. Obviously we have
(1-4) Imn* CTs* for n*:H*(G/T; Z,) > H*(G; Z,).

The following theorem has been proved for simply connected G in

[16].

Theorem 1.1 There exist elements a,, -+, a, of odd degrees such

that the following assertions hold:
G H*(G;Z,) =4d(ay, -+, &) QIm 7* as Im n*-modules.
i) Tg*=<ay, - ay>+Imr", Ima" =n*(H (G/T; Z,)).
Gi) H*(G/T; Z,) =Im 7*Q@Im i* as Im i*-modules .

Gv) Im*=H*(BT; Z,)/(z(a), -, t(@)) for transgression ima-
ges t(a;) of a;.

(v) t(ay) are of no relation in H*(BT; Z,), i.e.,
1
P(Imi*, t) =P(H*(BT; Z,), t) [[ (1 — ges« @)
i=1
Sfor the Poincaré series P(Q M,, t) =Y dim M,-t".
Here 4(ay, -,a;) indicates the submodule spanned by the simple mono-

mials @,*--a;,°(6;=0 or 1) which are linearly independent, and <{a;>

does a submodule spanned by a;. Remark that /=rank G since H*(G/T};
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Z,) is finite dimensional and H*(BT; Z,) is a polynomial algebra of I
generators of degree 2.

The following lemma is a special case of Theorem 1.1 of [16].

Lemma 1.2. Assume that there are elements a,, -, a, of odd de-
grees and a submodule M* of H*(G;Z,) satisfying the following
Q) H*(G; Z,) =d(a, -+, a)) QM* by cup products,
(i) M*CImz*
and

(i) PUHNG/T; Zp), £)=P(M*, t)- P(H*(BT'; Z,), ) ;TE“ _ plegaser)

Then, by suitable change of genmerators a,,---,a, the assertions (i)
-(v) of Theorem 1.1 hold.

Next we prove

Lemma 1.3. (i) Theorem 1.1 holds for simply connected sim-
ple G.

(i) If Theorem 1.1 holds for G, and G,, then it holds for G,
XG,.

(i) Let g be a prime and let Z, be a cyclic subgroup of order
q contained in the center of G. If Theorem 1.1 holds for G, then it
holds for G/Z,.

Proof. (i) follows from Propositions 3.1, 3.2 of [16].

(ii) is proved directly by use of the Kiinneth formula.

If g=£p, then H*(G; Z,) is naturally isomorphic to H*(G/Z,; Z,)
and (iii) is trivial.

Let g=p, G =G/Z, and T'=T/Z,. Consider the cohomology spec-

tral sequence associated with the upper fibering in the following diagram:

G- G’ -2 Bz,

b

G - G/T - BT.
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In the spectral sequence, E,**=H*(BZ,; Z,) QH*(G; Z,) and the
differential d, is trivial on Im z* since Im #*CIm 7,*. By the naturality
of the transgression, the elements a; of T:* is also transgressive in this
spectral sequence. Let u be a generator of H'(BZ,; Z,) then H*(BZ,;
Z) = 1) QZ,[Bu].

Since a; is of odd degree, tv(a;)=c;(fu)" for some ¢;E Z, and deg a;
=2r—1. If ¢;=0 for all Z, then the spectral sequence collapses, which
contradicts the finiteness of H*(G’; Z,). Thus ¢,540 for some £k, and
further we may assume that ¢;=0 for i=~k.

By a simple computation we have

Ex*=d(u,ar, -, e, -, @) @ (Z,[8u] / ((B) ") @Im %),

for 2r=dega,+1. Then a similar equality holds for H*(G’; Z,), and
the assumptions (i), (ii), (iii) of Lemma 1.2 are easily checked for G’,
provided that 7,*(Su) €Imz’*. Consider the following exact and com-

mutative diagram:

0 —H'(BZ,; Z,)—>H*(BT’; Z,)—>H*(BT; Zp)—LHZ (BZ,; Z,)

;K 13
z 1,

H*(G/T; Z,)~5H (G Z,).

Then we see that p* is an epimorphism. Thus 7,*(f%) €Im z’*, and

(iii) for the case g=p follows from Lemma 1.2.

Proof of Theorem 1.1. For any compact connected Lie group G
there is a finite covering G—G such that G is the product of simply
connected simple Lie groups and a torus. By (i) and (ii) of Lemma 1.3,
Theorem 1.1 holds for G. The covering is divided into a sequence of
coverings of prime order. Then Theorem 1.1 holds for G by (i) of
Lemma 1.3. Q.E.D.

§ 2. General Arguments
We use the following notations.
Tgi — {x = TG* ; deg = Z} s TGeven — Z ngi, TGodd — Z T(;Zi+1-
7 7

Thus Tg* =T =TF+Ts" and, by (ii) of Theorem 1.1,
7
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2-1) T =Im7n" and T%=<a,, -+, a0 =2,

Similarly we denote the submodule of the universally transgressive

elements in H*(G; Z,) by
Ua* — 2 UGi — Ugodd 4 UGeven ,

and that of the primitive elements by

Pg* =31 P'=Py"+ P ={zxc H" (G; Z,); ¢(x)=0},

where
¢ (x) =¢(x) —2x@1-1Qx€ H" (G; Z,) QH" (G; Z,)
for the diagonal map (comultiplication)
p=u*: H*(G; Z,) >~H*(G; Z,) QH* (G; Z,)
induced by the group multiplication
u: GXG-G
identifying H*(GXG; Z,) with H*(G; Z,) Q H*(G; Z,) by Kiinneth for-

mula.

From the naturality of the transgression and the diagonal map we

have
(2-2) (@) If f: G—>G’ is a homomorphism of compact connected Lie
groups, f'*Tgf*CTG*, JD’:UG'*C UG* and f*PG/*CPG*.

(ii) For each cohomology operation @A, (the mod p Steenrod

algebra),
aTCcTs*, aU*cUg* and aPg*C Pg*.
As is easily seen
(2-3) Us*CTe* and Ug*C Py*.
From the associativity of # it follows the (co)associativity of ¢:
(2-4) (PR d=1R¢H) ¢ and (R ¢= 1R 4.

Consider a principal G-bundle G —~S>E-ZB.

Lemma 2.1. If xe H*(G; Z,) is transgressive with respect to
this G-bundle, ¢(x) —xRXR1eIm *QQH*(G; Z,).
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Proof. Let Ji: EXG—E be the action of G and p,: BXG—B be
the projection to the first factor. Then we have the following commuta-

tive diagram:
H*(G; Z,) —> H*(E,G;Z,) <~ H*(B;Z,)
l ¢= u* l * l p*

H*(G:Z,) o H*(E,G:Z,) raH*(B;Z,)
RH*(G: Z,) ®H*(G;2) " ®H*(G;Zy).

By the assumption, 0(x) =p*(y) for some ye H*(B; Z,), and
(0RD) (¢ (x) —z®1) =7*(0(x)) —0(x) ®1=7*(@* () —p* (») X1
=@*QDA* (v) —p* (1 Q1= *®1) (y&1) —p* (») ®1=0.
Thus ¢(z) —z@1Ker (0Q1) =Im(*®1) =Im *QH* (G; Z,).
Q.E.D.

Remark that the lemma is valid for any associative H-space G and
any principal G-fibering.

Now we apply the above lemma to the fibering (1-1) equivalent
to the principal G-bundle (1.2).

Theorem 2.2. For each x€ H' (G; Z,), the following three con-

ditions are equivalent:
G) xeTs*.
(i) ¢(=x) —zR1eIm n*QH*(G; Z,).
) d(x) —xQRlelm 7*QRQT* .

We shall use the following notations:

(i) a&'=a’a for I=(e, -, &) and =0 or 1, I+T
=(g+&’, -, a+8") for I=(e, -, &) and I'=(¢/, -, &’), and |I|=¢
4ty

(i) Q, is the ideal of H*(G; Z,) QH*(G; Z,) generated by Imz*
QRH*(G; Z,) and Q,=H*(G; Z,) QIm n*QH* (G; Z,).

Lemma 2.3. ¢(h)=1Q% mod Q, for h&Imza™=Ts"",
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B (x) =2x®1+1Rx mod Q, for x&TF¥

and dla)= > a"Ra” modQ,.
1 {Tr=1

by
This follows easily from Lemma 2.1.

Proof of Theorem 2.2. Clearly (iii) implies (ii) and also (i) im-
plies (ii) by Lemma 2.1.

(2-5) (i) is equivalent to ¢(x)=0 mod Im 7*QH*(G; Z,),
thus (i) implies @ (x)=0 mod Q,.

By (i) of Theorem 1.1, such x is written uniquely in the form

x:}IJ a’h,+ZJ] aa’ (helmnt,a;€2,).

Then by Lemma 2.3,
0=¢ (@)= > [fll'@aphri- > > aa”®a’ mod Q.
I I’+I"= J
0

I 4Jr=d
| 1710 171, 1|+

This implies that A;=0 if |I|>0 and o, =0 if |J|>1. So, x satisfies
(i) proving that (ii) implies (i).
Finally we prove that (ii) implies (iii) by induction on deg . From
the induction hypothesis we have
d(h") €lm 7z*®Im 7* for A’ SImn* CT* with deg A’ <deg x.
Put ¢(x) =X h'’Ry; for b’ Imn”, deg h,’<degx, i€ H' (G; Z,).
k

By the associativity (2-4), we have

0= AR F @) ~ GOV F (@) =3 (h/®F 02 — § (") @)
=3 h/ Q3 :) mod ;.

We may choose {h:’} linearly independent. Then ¢ (y,) =0 mod Im
T*QH*(G; Z,). So, by (2-5) y, satisfies (ii), and y, does (i). Thus

¢ (x) —xR1=1Kz+ ; ' @y, € Im n* QT 6*. Q.E.D.

Corollary 2.4. P*CTy* Imn*={)>+Tc™" is a Hopf sub-al-
gebra of H*(G; Z,).
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Proof. If z€ePy*, ¢(x) —2Q1=1QRQzxcIm n*QH*(G; Z,). It fol-
lows z€T*. If z€lma* T, ¢(x) —xz®1leIm 1*QRT e CIm 7*
&®Im 7*. Thus the subalgebra Im 7* is closed under ¢. Q.E.D.

The notation

4,(by, -+, b,) C H*(G; Z,)
indicates the subspace having a p-simple system of generators {&;, -+, &n},
that is, the set {;°t---5,,~; 0<{e;<p} is a Z,-basis of 4,(by, -+, b»). Note
that
Az(bly ) bm) =A(bly e bm)
Since Z,[&]/(6") =4,(b, b?, -+, "), Hopf-Borel theorzm for the
Hopf algebra H*(G; Z,) has a form:
(2.6) H* (G; Zp) zd(al/’ T al’) ®Ap(bl,’ R bm’) ’
deg a;: odd, deg &;: even .
Also, applying the theorem to the Hopf sub-algebra Im 7*, we have
(2-6)" H*(G; Z,) =d(ay, -, @) R4y (by, -, ), a;€TFPY, b; T,
Imzn*=4,(by, -+, b)) and Ty*=<a,, -, a>+Imza*.

Lemma 2.5. Given any (2-6), there exist elements a;, b; which
satisfy (2-6)’, such that a;=a;, b;=>5;" (mod decomposables) and that
a;=a; (resp.b;=0b;) if a/ €T (resp. b’ €T¢E).

This is proved by changing the generators suitably by induction on
the degrees.

Lemma 2.6. Pyl%clay, -+, a)) and P cC{b/’, ---, b, for some

b/ €T " such that b;/=b; (mod decomposables).

Proof. By Corollary 2.4, P¥CT%=<a,, ---,a;>. Consider the
Hopf algebra B=Im n*=4,(0,,"-*,6,,). If the elements &,;’s are all primi-
tive, we can show that P(B) =P;*"=<b,, -+, b,,> by the same arguments
as in the proof of Theorem 2.2. Let E°(B) be the associated graded
Hopf algebra giver by the augmentation filtration {(B*)"}, then E'(B)
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is primitively generated and P(E°(B)) =<the classes of 4;>. Since there
is a natural injection of P(B) into P(E"(B)), the second assertion fol-
lows. Q.E.D.

§ 3. Structure of H*(Spin(n); Z,)

Consider the following fibering
(3-1) Spin (n) —SO (n) ——>BZ, for n>3,

where 0 is the universal covering and A is a map classifying p.

We use the following notation
(3-2) s=s(n) is the integer given by 2°'<{n<<2°,
N=1{1,2,2,2° .-}.

We quote the following result due to Borel [4], [5], [6].

Proposition 3. 1. () H*(SO(n); 7Z,) =4(ZT1, Ty, =+, Tu-y) Sfor T
EU,éO(n)-

(i1) Sq’fi=<§.>2i+j(20 if i+j=>n), in particular T;)=7T,.

(iii) The ideal Ker o* is generated by 7T, and Im o*=4(0*Z;;
i&N, i<n).

Gv) H*(Spin(n); Z,) =Im 0*QR4d(2) for an element z of deg z=2°
—1 which is transgressive with respect to the fibering (3-1) and
(2)50 in H*(BZ,; Z,).

Since Im p* is transgressive and 7(Im p*) =0 we have that

(3-3) . the element 2 in (iv) is determined modulo Im p*.
We put
(3-4) 2, =0*Z: € Ul pinmy -

It follows from ¢*Z,;=0 and Z,/=Z
(3:5) ;=0 if ;&N or if i>n.
Consider the fibering (1-1) for G=Spin(n):
Spin (n) —— Spin (n) /T —>BT .

Then the structure of H*(Spin(n); Z,) is given by the following
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Theorem 3.2. Putl=[n/2]. There exists an element 2 < T spinn)
such that 2&Im p*=4(x;;i&EN,i<n). Then we have the following
Q) H*(Spin(n); Z,) =4(xs, x5, ***, To—1, 2) @Im 7%,
() T§pinem =<Zs, s, ***5 Tuims, 2,
Tspinm +<1>=Im n* =4 (zy; JE N, 2/ <n),
(i) ¢(z:) =0 and ¢(2) =i+j§“ 22 Q) L2514
and i
(iv) S¢’z;= <j.>x,-¢,-, in particular xi=xy,

Sq' (2) =.+j§,_lx2ix”, Sqg’z=0 for j>1, 2=0.
i<i

Note that

(3-6) the above element z is unique if 72’ and unique up to Zy-,
if n=2° (=20).

By (2-3), Z;€ Plowm implies x;E Piinmy, ie., ¢(x;) =0. By Corol-
lary 2.4, ;€T épinm)- By Proposition 3.1,

H*(Spin(n); Z,) =4(xsi-1, 23 1<i<D) QRd(xy;JE N, 21<n).
Apply Lemma 2.5, then z can be changed modulo Im p*=4(x;; i N,
i<(n) such that 2&€T§mm. 1(2)0 shows that 2 Im p*. Then Lemma
2.5 implies (i) and (ii) of Theorem 3.2. By the naturality of Sgf, (ii)
of Proposition 3.1 implies the first assertion of (iv) of Theorem 3.2.
Since Sq*z € Tipininy =0 for >0, Sg’z=0 for j>>1. Thus we have ob-

tained

(8:7) Theorem 3.2 holds except the assertion for ¢ (2) and S¢'z.
Now we have
Lemma 3.3. P =<xy;J&N, 25<n).

Proof. By Lemma 2.6, dim P§yinm <dim{x,;; & N, 2j<n).

Since x,; is primitive for all j, the equality holds.

Lemma 3.4. ¢(=)= Y c:xu®xy-, for some c,E Z,.

i+j=2s-
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Proof. By Theorem 2.2, ¢(2) = h;Qxy-; for some h,&Imr*.
7
Then

Zj 6(}11) Qxz5-1= (5@1) $(z) = (1®(5) 5(2) = ; h/®q§(x21_1) =0.

If x50, ¢ (h;) =0. It follows from Lemma 3.3 that h;=a,x,; for some
a; where 2{=2'—1—(2j—1)=2"—2j. Of course, a; is arbitrary if
.Z'g\i._1=0. Q.E.D.

Corollary 3.5. ¢(2) =0 and Sq'z=0 if n<9 or if n=2"""+1.

Proof. By dimensional reason ¢(z) =0 for these cases. By (2-2),
(ii) and by Lemma 3.3, Sq¢'z&Sq'Pépininy C Pigineny =0.

Lemma 3.6. The coefficients c¢; in Lemma 3.4 satisfy

Ci=Cp-1_; for i&EN, 2i<n/2, 2°—2i<n, and Sq'z= i§_2 CiTpi o5 — g

Proof. Since Sq'z€ Tsyimm CIm o*, Sg'z=>;cx’ for some ¢c;E Z,.
Since ¢(xh) = p_r 2" Rx" is symmetric, so is ¢ (Sg'z). On the other
hand, @(Sq'2)=S¢'¢(2)=> i+ j_ss-1¢:X2sRxs;. Thus ¢; =cpe1_s if 25D Tp0s;
#0, and the first assertion follows. Then we have ¢(Sg'z) =3 ;s
i (X0 Q Lasmpi +Las— s @ Xi) . S0, Sq'z— D icnes CiT2iZrs—9s € Plpinemy =0 by

Lemma 3.3, and the second assertion follows.

Lemma 3.7. Let n=2°, s=>4. For some c< Z,, we have

d(2)=c Y xu@®x;_1 and Sq'z=c D ToiTse s .
i+ j=2em1 i<z
Proof. By (3-7), S¢*2=S8¢'z;=0, Sq*xy=1i-Zy., and Sq’xsy_,
=(j—1)xy.1. Thus

0=¢(Sq’z) =Sq*¢ (2) = " Z LG (7 201 +2QZpp—1 + (G — 1) 2@ X341)

j=as

= Z _2(027:—1 +oa) (@ Zps—gi+1) -

1<k<as
Since 4k& N for 2°72<(2k<2°7!, we have
(3'8) Cop—1 — Cap; for 23_2<2k<23—1.
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Similarly,

0=¢(Sq'z) =Sq'¢ (=)
= H]_Zl:p_fi <<5> Zai14QZo5-1 +1(F— 1) Z0142QZay41 + <J —2— 1> x2i®xzj+3>

= > {(k—1) (cop-2t o) (@ Lrs_sp45)

1<z
+E(Co-st Co—1) (Tar—2QTao-se+5) }
and we have
(3-9) Cimes=Casm aANd Cym—1=Cuim+q1 for 2°72<4Am<2*,

It follows from (3-8) and (3-9) that c¢;_,=c¢; for 2°*+1<i<C2°"
Thus, by Lemma 3.6, ¢; is independent of 7<(2°"!, i& N, proving Lemma
3.7.

Next, consider the homomorphism
¥ H*(Spin(n); Z,) —> H* (Spin(m); Z,)

induced by the natural inclusion i: Spin(m) —=>Spin(n), m<n.
Lemma 3.8. *(x) =x;. If 2°7'<m<n=<2', i*(2) ==.

Proof. The first assertion follows from the well-known fact *(Z;)

=Z; and the commutativity of the following diagram:

Spin (m) ——SO (m) ——s BZ,

li li lid

Spin (n) ——> SO (n) ——BZ, .

If 227'"<m<n<2°, by (iv) of Proposition 3.1 and by the naturality
of the transgression 7, t(z*(2)) =7(2)50. By (i) of (2-2) and by (3-6)
i*(2) =z in H* Y (Spin(m); Z,). Q.E.D.

Proof of Theorem 3.2. 1t is known that H*(Spin(2%); Z,) is not
primitively generated for s=>4 (see Kojima [7]). It follows that c=1
in Lemma 3.7. Apply the naturality of ¢ and Sq' to 7* of Lemma 3.8,
then we see that the formulas on ¢(2) and Sg'(2) in Theorem 3.2 holds
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for n>>8. Together with (3:7) and Corollary 3.5, the proof of the

theorem has been established.

Remark 3.9. In the case n=2° the element 2 has not been unique-
ly determined. In the next §, we shall see that Tgan=<z) and this
is mapped injectively into Tépinan =<2, Zus-1» under the homomorphism 0,*
induced by a double covering 0,:Spi7(2°) —>Ss(2°). So, z may be fixed
as the image of 0,* if we fix 0, However, by an automorphism of
Spin(2°), 0, is changed to another covering p,: Spin(2°) —>Ss(2°) such
that 0,*(2) =0,* (2) +xps_1.

§ 4. Structure of H*(Ss(n); Z,), n=4m

Let n=4m and [=n/2=2m. It is well known that the center of
Spin(n) is isomorphic to Z,X Z, Let a be the generator of the kernel
of p: Spin(n) —>SO(n) and let b be another generator of the center.
So, SO(n) =Spin(n)/{ay and PO (n) =Spin(n)/{a,b>. Then the semi-
spinor group Ss(n), n=4m, is defined by Ss(n) =Spin(n)/{b>. By an

automorphism of Spin(n), b is carried to a-b. Thus

(4-1) Ss(n) =Spin(n) /{b>=Spin(n) /{a-b).

Note that

(4-1) Ss(4) = Spin(3) X SO(3) and Ss(8) =SO(8).
Let

(4-2) Ss () = PO (n) -~ BZ,

be a fibering consists of a double covering 0’ and a map A’ classifying

’

o’. We use the following notations
(4-3) s=s(n) for 2°7'<n<<2’,
r=r(n) for n=2"-0dd (r=2)

and N=N(#n)=NU{2"—1} where N={1,2,22 2% ... 2 ...},
We quote the following result due to Baum-Browder [3].

Proposition 4. 1. (i) There are elements v=H', x€ H* ' and
w, € H' for i#2"—1 such that w;=0 for i€ N or i>n and
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H*(Ss(n); Zy) =4(ws, x; i N, 0<i<n)RZ,[7]/ (@), 77 =0.
o' if r=>3, j=1 and i=2""1—1,
() Sq’ (ws) ={

<;> wiy; 4f otherwise.

i) Fewd= 3 (%)o@, .

<5<
Gv) wuovelmp'*. =z is transgressive with respect to the fiber-

ing (4-2) and v(x)=~0.

In order to apply Theorem 1.1, we change the generators:

(4-4) Lypjo1 = Wy_y +TWy;—, for 2j—12"—1, 1,
Xy =Wy; and y=7T .

Here we use the following convention
(4-4)’ 2;=0 for i€N and for i>n  x,=1.

Obviously (I=n/2=2m),
(4-5)  H*(Ss(n); Z) =4(xs, ;i€ N, 0<i<n) @ Z[y]/ (")

=4y, 31, 23 1<J<I, j#277)
Q4 (x5 27 N, 0<2/<n) QZ[¥*]/ (¥").

From the above proposition it is directly verified

Lemma 4.2. () ¢(&) =¢(»*) =0,

(1—5-(1'2:‘) = . 2 <£>y2k®x2j—2k

<k<j

and
q_g(xzj—l) :x2j~2®y+l Z ; <J2 1>y2k®x2j—2k—l (j?&zr_l> .

<k
(i) Sq'zy,;=0,

Sq Zoj + 32— for jF£277F jFE27T or r=2
q Xoj—1—

Y Y g, Jor j=2770, r>3,

S =5 ) e (72 —1) and Sg'y =)y
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Consider the fibering (1-1) for G=S8s(n):

Ss (n) —>8s(n) /T ——BT .
Lemma 4.3. y,y% and z;(i&N) belong to Ty, .

Proof. Each element of H'(Ss(n); Z,) is universally transgressive,
in particular so is y. Thus yETgm. By (@) of (2-2) and (2-1),
V=8¢'yET¢wmCImz* and y"eEImrn*CT&u,. The second formula of
Lemma 4.2, (i) shows that x,; satisfies (ii) of Theorem 2.2. Thus x;
ET§m. Similarly it follows from the last formula of Lemma 4.2, (i)
that x,-1 € T - Q.ED.

Now applying Lemma 2.5 to (4-5), we see the existence of an ele-
ment z of T such that z—x&decomposablesCIm o’*. Thus t(2)
=71(x) 50, and we have by Lemma 2.5 that

(4-6) the following theorem holds except the assertion for ¢(z) and
Sq*(2).

Theorem 4.4. There exists an element 2T 5y such that v(2)
#+0 with respect to the fibering (4-2) and that the following holds.

@) H*(Ss(n); Z,) =4(zs, 2; iE N, 0<i<n) @Z[y]/ ("), ¥ =0.
(11) T;sd(él):<y: x2j—1’ zZ; 1<j£l’j#21‘_l>s
Im 7* =15 + T = 4 (225 27 € N, 0<2i<n) R Z,[y*]/ (v").

(i) ¢ and Sq* for y and x; are given in Lemma 4.2.

L. P47\
v) ¢ = < ij>yhx21®$2k-1+ Z] 12i$21®y s
i+ 7+ k=281 i+ j=28-1-1
i>0 0<i<s

Sq' ()= '+jZ—25-1x2ix2j + 2 yzrzixz]-

i+ j=28-1-1
04 0y

and Sq¢’ (2) =0 for 7>1.

The remaining part of this section is devoted to determine ¢ (2) and

Sq¢'(2). Consider the following map between two fiberings (3-1) and
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(4-2):

Spin (1) —— SO (n) ——BZ,
o ] e
Ss(n) —>PO (n) —>BZ,,

where @, is the natural projection (double covering).
Lemma 4.5. 0,*(2) =z, 0,*(y) =0 and o0*(x;) =x; for i&N .

Proof. By the naturality of the transgression, 7(0,*(2)) =7(2)=+~0
in the upper fibering. By (i) of (2:2), 0,*(2) €T épincny- Then we can
take 2=0,*(2) in Theorem 3.2. Next consider the spectral sequence as-

sociated with the fibering
Spin () —> Ss () L ,BZ,.

Then the only non-trivial differential is given by the transgression 7 (Zs-,)
#0in H* (BZ,; Z,). Thus we have that the kernel of o,*: H*(Ss(n); Z,)
—> H*(Spin(n); Z,) is the ideal generated by y. So, 0,*(y) =0 and
0% () #0 for i€N and i<<n. If 7is odd, 0*(x:) € Tépinemy =<x:> by
(i) of (2-2) and (ii) of Theorem 3.2. Thus @,* (x;) =z; for odd i&N.
For even i& N, by (i) of Lemma 4.2, x;=Sq¢'x;_, +y-f for some f. Then
00 (1) =00* (Sg'z; 1 +y-f) =8q' (0 (:-1) ) =Sq'x; -, = ;. Q.E.D.

We use a similar notation as in § 2:
4-7) (i) xT=zrxfxiy for J=(6, ", &0 €21), =0 or 1,
where z,; and ¢ are omitted if jeN. |J|=2"¢, d(J) =2 2j5. J+J
= (o g te, ) for J=(ny 8, ).

(ii) R, denotes the ideal of H*(Ss(n); Z,) QH* (Ss(n); Z,) gener-
ated by y®1. R,=R,QH*(Ss(n); Z,).

By Theorem 2.2, ¢(2) €EIm 7" QT s%s). Then by (4-6) we have

4-8) (=Y  aNTQruat 2 by Qy

2 +d(J) +2k=28 2i+d(T)=25—2

for some af,, b,,E2Z,.

Lemma 4.6. In (4-8) we can take af ;=1 for 2’ =2 y.
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In fact, (0,*®00*) 3 (2) =2 a5 2’ @zp-1 coincides with ¢ (0" (2))
=¢(2) =X i1 ju9s-1 ZuQZy-; in Theorem 3.2. The only question might
occur to the term Xy XXy, which may not be in (0,*®0,*)-image.
But
(4-9) x;=0 if =>2°—2" and s¥r,
since 2°—2">n=2"-0dd unless 2°=2"=n.

Next, we prove the following lemma by use of the associativity

(PR ¢=(1R¢)¢ of ¢.

Lemma 4.7. &= > ("5 yn,@a.,
i+j+k=25-1 4
07
+ s ; leix2i®y + b (20 Qy + HZ; YiRxs1), bEZ,.
j=2s-1— i+ j=2s-1
1<i< 0<i

Proof. By Lemma 4.2,
3 (v*) =1Qy* and ¢(x;) =2,,R1+1Rx,;; mod R,. Then it follows
from (4-8), modulo R,=R,QH*(Ss(n); Z,),

GRDF@D = ats 3] 2@y e @rues
F Db 3] 2@ R
= UQDFE@ =3 dhe’® @n-®y+ T (51" @zuean.
Comparing the coefficients, we have
ay ;=0 if '\ J|>1 and y*2'®xy-150,
biy=0  if [J[>2 and y*2/£0,
b ;=0 if |JI>0, >0 and y*2'50,
and using Lemma 4.6,

bos=aly =1 if x'=zy, 2'=2u2y7#0(#7s) and j+1£2"7",

(LﬁJ= <l + ]: — 1) ag;}-‘,k — <Z + é— 1> if xJ =, y“xu®xzz¢_1#0

and i+ k=271,

Here, b,=1 for x’=xyx,;0(i=~j) since either j+15<2""  or i+1
#£277". Also, if i+4=2""" and 2'=ux,, x,;=0 by (4-9) and af,y"x’
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®x2k—1 =0.

Now it remains to fix the coefficients of the terms in the following
(4-10) Zys—sQY, V' RZps—gi-y (0<2<<27'—1) and y" *Qy,

which are all trivial or non-trivial for n=%2° or n=2° respectively.

Let n=2° and let b, a; and &’ be the coefficients of the terms of
(4-10) in (4-8) respectively. Compare the coefficients of y*Q Xy z;»
Ry, ¥*QYQRZze-pi-zj-1 and YRy* 'Ry in the equality (§®1)¢(z)
=(1R¢)¢(z). Then we have

b=a; for 2°—2{—2& N,
)= (P Ny and =0,
J J
For even i<2 '—2, b=a;=as,. For i=2"1—2, ai=<;>ai=<g>
-a;_s=a;_,=b. Consequently the coefficients of the equality of the lemma
are all fixed. Q.E.D.

Lemma 4. 8. Lemma 4.7 holds for =0, and

1 . 2
Sq (z) = Z Xy Lyj+ Z Y XaiZoj .
i+ j=2s-1 i+j=28-1-1
0<i<g 0<i<y

Proof. Since Sq'y=3?% R, is closed under Sg*. Consider Sq'(§(2))
modulo R;. For j+£2=2""", k>1, the equality Sg'(x:;Qxw—_1) =25;Q) (X
+9°%y_») holds, even for £=2""1, 277 since x,; =0 for 2<2" "' by (4-9).

Then it follows from Lemma 4.7

Sq' ((Z (z) ) EZ x2j® (22 + VT —2) +.<2 xzil'zj®y2 + bx23_2®y2 .
i<y

On the other hand, S¢'(2) €S¢'Tse, C T =Imz*. So, we may

put

Sg'(x)= 3 ¢k sv*x for some ¢, ,EZ,.
2%+ d () =28

As in the proof of Lemma 4.7, we have
F(Se' ()= crs Y 2" Qy*z” mod R,.
JriTr=d

From the naturality ¢(Sq'(2)) =S8¢'(§(2)), the coefficients ¢y, of
v*27£0 satisfy the following relations:
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Cro=0 if |J|>2 or if £>1,
cos=cry=1if |J|=2 and ¢, ,=b if |J|=1.
Thus the lemma is proved except the triviality of the coefficient & of

V°Zpe_y If n5£2°, x4_,=0 and we may take 6=0 by (4-10).
Let n=2°, and let Q be the ideal of H*(Ss(2%); Z,) generated by

the elements x;’s. By (i) of Lemma4.2, x*=Sq¢'z;=x,;. It follows
from (ii) of Theorem 4.4 that H*(Ss(2%); Z,)/Q=4(z)RZ[y]/ ().
By (i) of Lemma 4.2, x;=0, Sq'z;=0(%~2°"") and Sq¢'zy-i_,=y*" mod
Q. Then we have

Sq' (4 (2)) =by""@y*", $(Sq¢'(z))=0 mod Q,

for the ideal Q; generated by Q®1 and 1XQ. Thus 5=0 completing
the proof of Lemma 4.8.

Proof of Theorem 4.4. The assertions (i), (i) and (iii) are estab-
lished by (4-6). For even >0, S¢’ (2) €T & =0 by (ii), and S¢’*'(2)
=S5¢'Sq’ () =0. Thus S¢’(z) =0 for 7>>1. The remaining part of the
assertion (iv) follows from Lemma 4.8 and the following (4-11).

Q.ED.

(4-11) <Z_§]>E<Z—;k> mod 2 if i+j+k=2'—1.
For,
(a+8)" "= (@ +5) /(@ +B) =1] a'b~+~

and (a+b+c)zt—152(a+b)lczt-—t—1EZ<i‘§j>aibjczt—i—j—1'
Similarly
(a+b+c)2¢—IEZ<i_};k>aibzﬁ~i—k—lck’

and (4-11) follows.

§ 5. Structure of H*(AdE;; Z;)

Let E; be the compact simply connected Lie group of type E,. The
mod 2 cohomology ring H*(E;; Z,) is determined by Araki [1]. As is

seen in [16] or by use of Theorem 1.1 we have



HopPF ALGEBRA STRUCTURE OF MOD 2 COHOMOLOGY 161

Proposition 5.1. (i) There are elements e;c H'(E;; Z,) for
1=3, 15 such that

H*(Eq; Z,) = Zy[ e, €5, €01/ (&', €5, e5") QA (es, enr, a3, 1)
where

Q.2 Q4 Q8 Q8 Qe
e =Sqes, e,=3Sq"e;, e;=Sq"€,, e =Sq"e;; and ey =S¢ €.

(ii) Tg‘:d:<33y €5, €9, €15, €17, €23, ez7>
and A>+Tg=Imn*=A4(e’, e, €).

Thomas [14] showed that S¢’e;;~0 in E;, and thus in E;. So,
(5-1) Sq’es=ey .

The following is due to Kono-Mimura-Shimada [9] or Toda [15]:

Lemma 5.2. Pz =0.

As is well known the center of E, is a cyclic group of order 2,
and so denoted by Z,. The quotient group of E; by the center is denoted
by AdE,, and the natural projection (double covering) by

p: E——>AdE,=E,/7,.

We use the following notations:

-2 @ es=es, ex=e; and ez=ey,
(i) M={1,2,5,6,9,10,15,17, 18, 23, 27}
and M=DM\J {16, 24, 28}.

Then the results on H*(AdE;; Z,) are summarized as follows.

Theorem 5.3. (i) There exist elements x;< H'(AdE;; Z,) for
1€ M such that p*(x;) =e; if i1, 2, xl=x, if 2i€M and

H*(AdE;; Z,) =4(x;; i€ M)
= Z2 I:xl! X5, xg] / (x145 x54y x94) ®A (xe» Z155 L17y Loss x27) .
(ﬁ) ng%., :<-1'1’ L5, Ly, 15, L1175 L3, xz7>

and <1> + T:}i’%‘: :Im ﬂ* = A (ny gy X10, xlB) .
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(iii) P g, =Lz, 5, Zs, Zey Loy L1oy Tz, Trg)
5(«'515) =x:0Qx5 + Qx5 ,
(z (xzs> =x5Qx5 -+ xs®x17
and 5(9627) =215Q % +210Q) X7 .

(iv) For i€ M, the relations S¢’x;,= <§>xi+i hold, where z;,;=0

if i+je& M, Tyg=TeLig, Toa=LeXis ANA Tz = T10L1s.

(More precise results will be seen later.)

Let T be a maximal torus of E,. As is well known the center Z,
is a subgroup of 7. According to Watanabe [17], we take elements
ty, >+, b, x of H*(BT) such that

(5-3) Q) H*BT)=Z[t,  tr,x]/Bx—c1), ac:=t;+ - +1,

(i) the actions of @(E;) on H*(BT) contain the permutations
of t;’s.

The inclusions Z,C 7T C E; induce maps

(5-4) t=¢"ot’: BZ,—~>BT-_>BE,.

Lemma 5.4. () ¢'*: H'(BE,)—> H'(BT) is injective and its
image is generated by c,—A4x* where c,= Y tit;.
1=i<i<t

(i) ¢*: H*(BE;; Z,)—> H'(BZ,; Z,) is bijective.

Proof. (" is a fibering with a fibre E;/7T. Since BE; is 3-connected,

we have a Serre exact sequence
H*(E,/T) —> H*(BE,) — H*(BT') — H*(E,/T).

H*(E,/T) is given by Theorem 4.1 of [16], in particular H*(E,/T) =0
and 7* induces an isomorphism H*(BT) /{c,—4x*>=H*(E,/T). Thus (i)
follows. By (i) of (5-3), H*(BT; Z,) =Z,[t, .-+, t;]. Obviously H*
(BZy; Z,) =Z,[v], yeH'. Put T"=T/Z,. From the fibering BZz—"—>
BT—— BT’, we have an exact sequence 0— H'(BZ,; Z,)—> H*(BT";
Z,)—> H*(BT; Zz)—":»Hz(BZz;Zz). Since T and 7" are tori of the
same dimension, they are isomorphic to each other. It follows easily

that ¢'* is not trivial, i.e., ¢’*(¢) =y* for some z. Since Z, is the center,
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the action of the Weyl group @(E,) is trivial on BZ, It follows from
(ii) of (5-3) and from the naturality of the action that ¢/* (%) =---=¢*
(#)=3". By (i), a generator x, of H*(BE,; Z,) =Z, is mapped onto
¢"*(x,) =c,—4x*=c, (mod 2). Thus

¢* (zg) ="*(c) =1si§gc,* () * (x;) = < ; >y4:y4 ,

and (ii) follows. Q.E.D.

Consider the following fibering
(5-5) E,~*>AdE,~>BZ,.

Lemma 5.5. There erxist elements x; of H'(AdE,; Z,) for ic M
such that

() H*(AdLE;; Z,) =d4(x;; i€ M),
()  Ti%, =<z, Ts, To, Tis, Tar, Tas, Tor,
>+ THF, =Im n* =4(x,, X6, o, Z1s),
Gil) x;=r*O") for i=1,2, p*(x;) =e; for i#1,2,
Gv) x=S¢z =z, x2:=S¢'xs, £,=Sq*xs, x10=5¢xs=x7,

— 8 —_ 9 — 2 i 8 — 4
Ty =8¢°%s, Tis =S =24", Tos=5¢"T1; and xy=S5q¢"xs;.

Proof. ey is universally transgressive and its transgression image
x, generates H*'(BE;; Z,). By (ii) of Lemma 5.4, we have that the trans-
gression T with respect to (5-5) maps e to t(e) =¢*(x) =y". The
generators e; belong to T#, i.e., they are transgressive with respect to

the fibering
(5-5)’ E,—~>E,/T—>BT .

By the naturality of the transgression for the natural map of (5-5)
to (5-5)’, e/’s are transgressive with respect to (5-5). Since t(e;) =»",
7(e;) =0 for >3, thatis, ¢;=p* (x;") for some x;”, >>3. In the spectral
sequence associated with the fibering (5-5): E,=H™*(BZ,; Z,) Y H* (E;;
Zy) = Z,[y]X4(e;), the only non-trivial differential is d,(1Re;) =y*Q1.
Then E.=Z,[y]/(¥") X4 (e; i#£3), and we have H* (AdE;; Z,) =4(x,,
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Zy, x;i>3). By Lemma 2.5, we can choose ;€T }yz, such that z;=zx;
(mod decomposables) and that (i) and (ii) of the lemma hold. By (i)
of (2-2), p*(x;) €T%,. By (ii) of Proposition 5.1, T =<e;> for ie M
and 7>3. Thus p*(x;) =e;, >3, and (iii) of the lemma is proved.
By (i) of this lemma, Tz, =<x;) for i€M and {518 and Tiiz,
={ &y, ToXsXrny. We may choose i3 as Tis=x,2. Since S¢’ is closed in
T}k, the relation (iv) holds, up to undetermined coefficients. The coeffi-
cients are fixed by applying p* and comparing the coefficients in (i) of
Proposition 5.1 with (i) of (5-2). For example, p* (xs) =e;=e*=3Sq"¢;
=8q¢'Sq’e; = Sq'es=p* (Sq'z;), and this implies Sg'x;= ;. Q.ED.

Lemma 5.6. (i) x’=0 for i=2,6,10,15,17,18, 23, 27.

(i) The relation quxi=<;:>xi+,- in (iv) of Theorem 5.3 holds
for 1=1,2,5,6,9,10,17,18.

(iii) (i) of Theorem 5.3 holds. Sq'xy;=xex1, Sq' T =xexs and

1.
Sq' 2y = Z10Xss.

Proof. Obviously ;€ Pisz,. By Theorem 2.2, ¢ (x5) €Im 7" Q7T 555 .-
It follows from (ii) of Lemma 5.5, ¢ (xs) =0, ie., 25E Pisz,. By (ii) of
(2-2), S¢Pjse,C Pish,. Then it follows from (iv) of Lemma 5.5
(5-6) (&, Xy, Xs, X, Loy Lo, L1z, T1s) C Pllag,

Also by Lemma 2.6
(5-6)’ Plp,Clxi; i€ M).

For i=2,6,10,17, 18, x;= Pfyg, implies € Pi, which is trivial by
(5-6)": x22=0. For i=15,23,27, z*=S¢'z;=S¢'Sq"' 'z;. z;€T g, im-
plies S¢' 'z, Tz, which is trivial by (ii) of Lemma 5.5. Thus z;°=0
for 1=15, 23,27, and (i) is proved.

Obviously the relation in (ii) holds for j=0, for 7>>7 and also for
j=i by (i) of this lemma and (iv) of Lemma 5.5. Let 0<{j<{7 and
consider the cases both that PjZ =0 and that <;> =0 (mod 2) or i+j&& M.

For such cases Sq"xi=0=<;.>xi+,-. Then, the remaining cases are the

following ones:

(@) j=1 and i=5,9,17; (8) j=i—1 and i=5,9;
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(r) j=i—2 and 7=6, 10; 0) i+7=15,23,27,and =9, 10,17, 18.

For the cases () and (B) the relation follows from (iv) of Lemma
3.5. and the Adem relation Sq¢'Sqg*=3Sg¢**' (i=4k+1). For the case
(1), we have Sq“xa:Sq‘Sq’x;,:(Sq5+quSq3)x5=x52=<2>xm and Sz,

=S¢} (%) = (Sg*zs) =z = <180> zs. For the case (0), (3) —0 (mod 2).
For i=9,17, we have S¢°z;= (S¢’Sq*+S¢°Sq") x;=Sq¢°x;,, and S¢’z;.,
=8¢'Sq*x;.1=0. We have also, S¢"z;; = (S*Sq® + S¢°Sq") 1, =Sq¢’x;s and
Sq*x1s=Sq"Sq®x,s=0. _

Consequently the relation S¢’z;= <;> x;4; in (ii) is established.

By Theorem 2.2

¢ (x15) =ax:,Q x5+ bxsQxy for a, b Z,.

Since Sq'zs € Tigr, =< X1, Sq'Z1s=cxsxyy for some cEZ,. Then c(xy

Rxs+ 1R x10) = (ZSQI (z35) = Sq15 (z15) = az10 Q@ x5+ bxsQ 1. It follows
from Lemma 5.2, a=b=c=1. That is,

B (x15) =210 Q x5 + 2R xy and Sq'zy; =xex10 =15 .
By use of (i) and the Cartan formula,

¢ (£25) =4 (Sq°x15) =S°B (15) =215@%5 + 2@ Zur
and ¢ (zu) =6 (Sq'zw) =S5q'¢ () =x:Q%s + 210 Q%11 .

Thus x5, T, T Pliz, and the equality holds in (5-6).
Finally Sq'x:»&T i35, ={xex1sy, Sq'xnET 135, ={Z1xsy, and the last

two formulas of (ili) are proved as above. Q.E.D.

Lemma 5.7. The relation Sqfxi=<;->xi+j in (iv) of Theorem
5.3 holds for i=15, 23, 27.

Proof. First consider even j=2k. Since S¢**z;ET25%., the non-trivi-
al cases are the following ones:
quxm:xm quxm:xzs, Sq*xs =y and Sq*zis=Zy.

The first case is reduced to (5-1) by applying p*. The seconed and
the third cases are the definitions. For the last one, Sq“z;;= (Sq*Sq®
+8q¢"°Sq* + SQHSQI) Z15=8q" %35+ Sq"°x:1; + Sq" (xsZ10) = oz
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Together with Lemma 5.6, we see that the formula of the lemma
holds for =1 and for even j=2k. For odd j=2k-+1,

quxi :SQISQZk-Ti= <21k> Sqlxi+2k = <21k> <i+12k>xi+1 = <j'>xi+j . QED

Proof of Theorem 5.3. (i) follows from Lemma 5.5 and (i) of
Lemma 5.6. Then (ii) of the theorem is (ii) of Lemma 5.5. (iii) of the
theorem is (ili) of Lemma5.6. (iv) follows from (ii) of Lemma 5.6

and Lemma 5.7. Q.E.D.
By quite a similar but a little simpler arguments, we have

Proposition 5.8. Theorem 5.3 holds for H*(E;; Z,) by omitting
Xy, Xy, by adding x,€ P} with x=x, and by replacing M by {3,5, 6,
9,10, 15,17, 18, 23, 27} .
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