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On the Asymptotic Behavior of Solutions
of Semi-linear Wave Equations

By

Akitaka MATSUMURA*

Introduction

We first consider the following semi-linear wave equation in Part I:

(1) utt-4u-\-m2u + g\u\p~1u = 0

where m>0, g>0, ^>1, x^Rn, A = Laplacian. Recently, Glassey [1]

showed that if p is small (1<£<2 n = l; !<£<! + 2n~l nl>2}, scatter-

ing theory is impossible for complex solutions of (1) . We show in 1. 1

Glassey's result is also applicable even to real solutions. Segal showed

in [3] and [4] that scattering operator can be constructed for (1) if

p^>2 + 2n~1. We show in 1. 2 that the solution u+(x, f) of the free equa-

tion [(1) with Q = OJ to which a given solution u(x,t) of (1) is asymp-

totic in a weak sense as t— >-foo, exists if p^>~L-\-2n~1, n^>3.

In Part II, we consider the following semi-linear wave equation with

the first order dissipation:

(2) utt -Au + ut +/(«, ut, Vu) - 0 .

We show the asymptotic properties of the solutions of the linear equation

[(2) with /*=0] in 2. 1 and those of the nonlinear equation (2) in 2. 2

and 2. 3.

Notation. We denote by U the space of measurable functions u

on Rn whose ^>-th powers (l<r<Joo) are integrable with the norm

1/p

U
/ f= vu(xy\
\ J
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by C°° the space of infinitely differentiable functions, by Cj° the subspace of

C°° consisting of functions with compact support in Rn and by Hk the

usual Sobolev space on Rn with the norm

l*2= S u
LZ

here

Let J£ be a Banach space on jRn. Then &t
k(X) ^u(x, t) means that u(- , f)

belongs to X for all fixed t and u is &-times continuously differentiable

with respect to t in JT-topology. We denote grad u— (du/dx^ du/dx2, • • - ,

du/dx^) by Fz/. In Part I, all functions are generally complex-valued,

but in Part II, all functions are real-valued.

Part I

§ 1. 1. Extention of Glassey's Result

We consider the solutions of the Cauchy problem for the equation

(1). We take 0 = 1 without loss of generality. In [1], Glassey's result

is not valid for real solutions, because he assumes

Q(*)=Im (uutdx^ti.

Then we define the momentum P(£) by

P(t) =Re (utVudx

instead of Q(f) . We denote the energy norm || • ||e by

We have the following theorem which is valid for both real and complex

solutions.

Theorem 1. Let u(x, t) be a C2- solution of equation (1) with

Cauchy data in C0°° satisfying P(0)=^=0. Suppose that
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<3 if 71 = 1, !</><;i + 2;z-1 if n^2.

Then, there dose not exist any free solution v(x, t) in C0°° such that

^Q as *

Proof. We note the following energy equality holds: if u and v

are C0
Z solution of the nonlinear equation (1) and the free one respec-

tively, it follows that

(3)
P+ 1

. for all

We first show that P(t) is a time invariant vector. Differentiating

with respect to t directly,

dt
\
J
u/utdx+

-0.

Hence, we have

P(t)=P(G) for all £>0.

Suppose that there exists a free solution v^.CQ°° such that

\\u(t)-v(t)\\e-*V, as

Define

-Re ( vJ7v dx .

We note that P0(0 is also time invariant vector from the same argument

as before. Then

by using Schwarz's inequality
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Since ||F#||L* and \\vt\\L* are bounded from (3) and

we have

Hence, from P(t) — Po(t) = const., it follows

P(*)=P0(*)=P(0) for all

Then, the assumption P (0) =^=0 gives

0<|P(0)| = |Re {v/vdx\= -Re (

On the other hands, since vt is also free solution, we have from (3),

||w,(OII. = l|w.(0)||. for all t^O .

Therefore, there is a positive constant c0 such that

\\v(x,£)\'dx>c9 for all £>0 .

Let the data of the free solution v be supported in the ball \

Then, by the support property and Holder's inequality, we have

0<>0< {\v(x,i)\'dx= f \v(x,f)\ldx
J J\x\<k + t

a \ 2/(p+i) / r
\v(x,t)\'^dx} Idx

I \ J\x\<k + t

/ r \2/(p+i)
<const. /CP-D/(P+1)-^ I \v(x, £)\*+ldx) for all *>

where p is as in equation (1). Thus there exists a positive constant

such that

~n(2""1)/2 for all

We define

= Re (vts - vut) dx .
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Differentiating H(t} with respect to £,

—H(t) -Re (u(dv-m2v} -v(Au-m2u-u\u\p~1} dx
dt J

-Re (vu\u\p~ldx

(v\u\*~l(u-v)dx

where

J1= J|z;| u\*'-l\u-v\dx, I2= J v\2\ \u\*~l-\v\*-l\dx.

Recalling that our free solution v satisfies ||'y(£)||00=:::0(£~n/2) as

first for the special case ^ = 2, n — \ or 2, we have

1= f|t;l|«||«-i;

We now take the general case \<^p<^l -\-2n~1 for ?z^>3 or 1<<£<C2 for

^ = 1 or 2. Then, using Holder's inequality, we have

/ r \ (2-p)/2 / /» \ (p-l)/2 / p

Sl^lir^ J \v\*dx) ( J !^i2^) ( J |t;-

<const. r w^-1^|« (0 - v (Ole = o (r rz(p~1)/2) .

For J2, we have

1/2

<const. t-w-'

Thus both /! and 72 satisfy the same estimate for sufficiently large t, and it
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follows that there is a positive constant cz such that

—H(f) >czt-
n(p-w

dt ^ =

for large enough t, say t^T. Hence,

PIT (*2T

H(2T)-H(T)>cz\ t-**-Wdt>cl\ t~1dt>
JT JT

However, Schwarz's inequality gives

\H(t)\=\Re \u(vt-Ut)+Ut(u

<lu(t)\\e\u(f)-v(f)\\e.

Thus |jHX*)|->0 as £-» + oo, so that \H(2T)\ + \H(T)\ -»0 as T-^ + oo.

A sufficiently large choice of T in the inequality above yields the desired

contradiction and completes the proof. Q.E.D.

§ 1. 2. Remarks on Weak Dispersion

We consider the solutions of the Cauchy problem for (1) with initial

data u(x,G) =$(x), ut(x,G) =(p(x). If n = 3, for example, scattering

operator is constructed for p^>8/3 and impossible for l<C.£2S5/3. For

5/3<C^^8/3, we don't know if scattering theory can be constructed,

but we can get the following weak result. We denote by B the positive

selfadjoint operator (mzI—S)l/z in L2, by <( , >L2 inner product, and by

DB the domain of B as a Hilbert space relative to the inner product

Moreover, we denote by H the Hilbert space direct

sum of DB and Lz with inner product and norm <( , )>#, \ - \ H and by (J)

the element of H with component x in DB and component y in L2.

We define

17 (^0=

cos ^S, sin^B/B\ / 0
I ^[^(0] =

BsmtB, cos tB/ \-\u(t)\p~lu(t)

Then, we have the following
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Theorem 2. Let u(x,t) be an 6?(Hl(}L**) ^St
l(Lz) solution of

the equation (1) with Cauchy data 0 (x) e H1 f| L2p, (}j(x)^Lz. Sup-

pose that

Then there exists a unique free solution v(x, t) ^S^H1) {~}£t
l(Lz} such

that

<lJ(t)-V(t\ W(t)XyH-*Q as *-> + oo, for any

Proof. This proof is almost similar to the proof of Theorem 4

in [3]. We note that energy equality (3) is valid also for u^Q^(IIl

n^2p) n<£7(£2) and vtEg^H1) f1<5V(£2) by using Friedrichs' mollifier ar-

guments and that W(t) is the unitary operator on H, i.e. (W(t}X, W(t) •

y>/jr = <Z", YyH for all X,Y^H. Now U(f) satisfies the integral equa-

tion

(4) [7(0=1^(0^/0+ [lW(t-s)K\U(s)'\ds.
Jo

We define S(t) =W( — t)U(t) and represent by Z an arbitrary fixed ele-

ment in Z), where

From (4), <S(£) satisfies

Then we have

Noting that W(t) Z is a free solution, say of the form (J$)), it follows

that
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Recalling that ||^(s)||TC^const. (l + s)'71'2 and (3), it holds that if pl>2

<const. f'(l + *)-»/* (\u(s)f+\u(i)\*+ldxds

< const.

and if 2>p>l+2n~~1

rt / r \ (2-p)/2
<const. IWir1 |^|2Jr \ J

< const.

Therefore, if p^>1+ 2n~l, n^>3 right hand sides are integrable, so that

(5) <S(*)-S(O,Z>*-»0 as f ,^-> + oo.

Next, we can show that 115(^)11^ is bounded because (3) gives

(6)

Now, the fact that D is dense in H and (5) and (6) imply that there

exists a unique SQ^H such that

<S(J) -So, ZyH-*Q as £-> + oo for any Z^H.

Let V(t) be the free solution given by V(f) = W(t)SQ. Then for any

Z in H,

Finally we show the uniqueness. Suppose that there exist the two differ-

ent free solutions Vi, V2 which satisfy the above conditions. From the

above arguments, we have

Taking Z=y1(0)-V1(0),
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Since ||Vi(£) ~~-ViCOII f f is constant, this contradiction implies V1 = V2.

Q.E.D.

Part II

§ 2« 1. Solutions of Linear Problem

We consider the linear equation

with

*V (*£* 0) •-— u) ( O C j

t) t \ oc 0 j ~~* (!) C jc i

We can represent the solution of (7) as follows :

vrx £\ —K^

Let Ri(^t) be the Fourier transform of Ki(x, t) (f = l,2). Then

satisfies

(8)
at

We can solve (8) exactly, so that

0=
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Lemma 1. ///eL"lnHc"/2:i+'+|a|(l<TO<2), then

dti \dx

d W 9 V «+1.1-1).
If feLn^Hw^i+la^\ then

Here and hereafter c denotes some constant.

Proof. We note that

where / denotes Fourier transform of /. We show lemma 1 only for
|| (d/df)i(d/dx) "(j^!*/)!^. For the other cases, we can give proofs in

the same way. We use the following

(10)
o

sup l£|V-cH?12'<c(l + £)-fc/2 for all *>0
o^If|<5

which are easily verified. From (9), we have

We take a small fixed <?>0 and divide the last integral into four parts:

r = r + r + r + r ^71+/2+/s+/4J Jifiai Ji/s<if|<i Jssi?i£i/2 Jieis*

We estimate Ii^It as follows :

e_ (V2 ) tr j f r o n
' l= Jifisi ^f2-!
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1/2

SUP

sup

sup

<c f
Jifi<5

+

since -4!?|2<-l+Vl-4|f|2<-^,;;2 for |f|

<c f jfi«-n«ie-'i 'i ' i/(f)irff+«-«/» r
J|f!<<5 Ji

+«-'/«( J

+ 1 = 1 l<m<2

Therefore, from the above estimates, we have

I i II f II "N|im-h||/|li:»/2:+i+|ai;.

Q.E.D.
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Lemma 2. We suppose 0(.r) ̂ C0°°, </>(:£) eC0°°. Then the solution

of (7) satisfies

at ' \dx

The proof of this lemma follows immediately from the lemma 1

taking m = 'L.

% 2. 2. Solutions of Semi-Linear Equations

We consider the following semi-linear wave equation

(2) «,« - J« + «, +/(«, ««/«) = 0 ,

We assume that/(z:) =f(z1} z2, • • • , zBt!) is C* function on J?"*2 and satisfies

that, for |z|<[l,

(11)

if k>\a\>i

where a= (al9 a2, • • - , an+2), />>!.

As to the estimates of composite function f(v (x, t) ) , we have

Lemma 3. Suppose that /eC[n/2:]"ln"s(5^[(H-[V23)/2]) satisfies

(11) and v(x, 0 t=et'(If™
+l+r). Then, f(v(x, 0)

(12) ||/(v)||c^+i+.<c||w|rf||v||^+1+.A(B^
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HU) for l<g<2, pq>2 .

Here and hereafter, we represent by h(y) some nondecreasing nonnegative

and continuous function on 3>2>0, and \\v\\cs means 2|a|^s sup| (d/dx)av(x)\.

We omit the proof. (See von Wahl [5]). For the nonlinear term /

we consider the three cases

case 1. /=

case 2. f=f(ut,Pu),

case 3. f—f(u, ut, 7u) .

If ;z = l, we have the following

Theorem 3. (n = l) We suppose $(x) , (/;(^)eCS° and

* 4- ||0||

Furthermore, we suppose that f(z)^O^k satisfies (11). Then, there

exists a small positive constant S0 such that the Cauchy problem for

(2) has a unique Cz^k solution for Q<^v^<eQ and p 'which satisfies the

following conditions, and we have

if P>2 for case 1 and 2 or p^>3 for case 3

(13)
dt

for 0<*+.;<2 + A

(14)

for

for case 1, or 2>p>^7~1 for case 2

(15)

(16)

dt \dx
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for 0<*+./<l + *.

Here, s represents

' 1 for case 1,

s= • \ for case 2,

, 0 for case 38

If ri^>2, we treat only ^I>2. We have the following

Theorem 4. (^^2) TFe suppose <f>(x), </»(#) eC0°

I ̂ / "* - .

Furthermore, -we suppose that f(z)^CLn/21+1+k satisfies (11) and

/0r n = 2 case 3, or ^>>2 for the other cases. Then, there exists a

small positive constant eQ such that the Cauchy problem for (2) has a

unique G? (H1 >"*i+»+*) n^C/^72^2^) solution for

Here, s represents

' 1 /or case 1,

5= • f for case 2,

, 0 /or ĉ 5̂  3.

Proof of Theorem 3. The existence and uniqueness for local solution

are well known so that we show decay estimates which show a priori

estimates for global solution. Then we suppose the solution u(x, f)

exists. u(x, f) satisfies the integral equation
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(17) u (0 = v (0 - JVi (* - r)*/(* (r) , ut (r) , ux (r) ) Jr ,

where v(t) is the solution of linear equation (7) whose Cauchy data are

equal to (2). Differentiating (17) with respect to I, we have

(18) ut (0 = vt (0 - -^i (* - r)*/(« (r) , ut (r) , ux (r) ) ̂ r .
Jo dt

We only give a proof for the case 1, f=f(ut). For the other cases, we

can give proofs by almost the same way. We first note that for a,

f (* - r + l)-a (r + l max

that is shown in Segal [4]. From (18) and Lemma 2,

9+ r
Jo

Now, we suppose /»>2. Then Lemma 1 with m = 1 gives

(19)

Lemma 3 gives

!!/

Substituting the above into (19),

putting M(t) - suPo<r<e (1 -f r) 5/4p^ (r) ||fc, 1?

fa-f^-r)-3/4(l4-r)-(5/4)17(A/(r))Vr
Jo

so that

Therefore, there exists £0 such that M(t)<^c for 0<£^£0 (cf [4]) so that

(20) k(OII*,i^d + 0"8/4.

Next, from (18) and Lemmas 1, 2 and 3,
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ll«. (0 l^c (1 + fl -*'* + c f '(1 + 1 - r) -I", (r) ||J+IA (||«, (r) ||,
Jo

^c (1 + 0 -"2 + c f '(1 + 1 - r) -3/2 (1 + r)
JO

Hence,

(21) l
Furthermore, for z = 0, 1,

(22) m'mwxwj.)',- rvj_w_i_)V,*/)*.
\dtJ\dxl \dt/\dx) Jo\dt/\Qx/dt/\dx

By Lemma 2, we have

9 W 9 V ,— v(
dt/ \dx'

By virtue of Lemmas 1 and 3, we have

I ( ) ( ) K i * f ( u t ( f ) } dr
Jo I \ f)t I \ dx ' LZ

p
_^c \ (_!-{-£ — "c) \\Ut(r)||c* ||^i(r) U

Jo

substituting (20) and (21) into the above,

rt
<c (l + *-r)-(1/4)-

Jo

for

Analogously, we have

» (S/2)P-l/2)

for 0<i+j<k+I.

Thus, we can get the desired estimates (13) and (14) for z = 0,1. For
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i>2, we have

(23) (JLY(JLYU = right hand side of (22)
\ dt i \9x'

i-2

- S

Our problem is the last term. For the moment, we suppose that

<24) - - *9 \s

E
s=l

9
dt C*rl-S

for 0<z'<z'0.

Then, let's show (13) and (14) for z" = z0 + l. From (8), it follows

>2
S+1 m, where Ai,2 = -

> < i * <

Hence, from (23) with f = z'0 + l, we have

Qxl \\Qtl

*o-l|

_
dt

substituting (24) into the above

u 9 \s
^

fc + 2-s,

In the same way, we have

i-l-s

9*.

Thus, (13) and (14) hold for f = z"04-l and this clearly shows that (24)
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holds for z = z0 + l. Therefore, we can get the desired decay estimates

inductively because (24) is true for i = 0, 1 as we verified already.

If 1</><C2, Lemmas 1 and 2 give

lk(0 ll.+i^e(l + 0 -(6/4) +<: f'(l + t-r) -«"
Jo

+ «/(««) 11.+,) rfr.

Then choosing w as pm = 2 in Lemma 3,

<<7£ (1 + 0"8/4 + c f'(l + * - r)-<*+s>'4||«, (r) || J+1 A (||«. (r) ||
Jo

We can get

by the same method as before. The remainder is same as P>2.

Q.E.D.

We omit the proof of the Theorem 4 because we show it by the

same way as in the Theorem 3.

§ 2» 3. Special Case f =\ut\
 p~luf, n = l

We consider the following equation

(25) utt-u

with

For this case, we can get the decay estimates without the smallness

conditions of 0 and (/>. We first prepare the following

Lemma 4. Let u(x, t) be a C0
2 solution of the Cauchy problem

for (25). Then

k(OIU K(OIU--*o as ^-> + oo.

Proof. From (21), we have

(26) f {ut
z (r) dx d-c<E, J («,' (0 + u*u (t) + «f, (0 ) ̂ <£ for
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where E is some constant that depends only on ff) and </;. From (26) ,

we have

( (u?(tl)dx} -( (u?(tj)dx\ = 4 f V \u?dx\[ \ututtdx]dr

<zE\ r (u?(-c)dxdr .
I J«2 J I

Therefore, | |# t(£)IU* ig asymptotic to constant as t— » + °°. If this con-

stant is not zero, it contradicts (26). Thus we have

Furthermore, from

we have

Q.E.U.

Theorem 5. W<? suppose that (/)(x) eC0°°, 0(^)eCo°° ^/^ />>!.

Then, the Caucliy problem for (25) /ia^ a unique C2 solution such

that; if

dt ' \dx

d \\
'.fcc

for *'+./<

Proof. We only give a proof for ^2^2 because the reasoning for

is almost the same. (18) and Lemmas 1 and 2 give
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For this case, we use

that are easily verified by the modified lemma 3. Therefore, we have

where

7(0, 0 =£(! + *- r) -"Ck (r) ib + IK (r) ||.) IN, (r) (Ml* (r)||r 2 ̂ r .

Now, we divide 1(0,0 into 7(0, */2) +7(*/2, *) and define M(0

by

It follows that

i \ r
0, 4«) ^c

& ' */0

^+r'"
, sup

2

J(l/2)«

-5/4
sup

2

From the above estimates, we have

pa
M(f)<c + c

Jo

-\-c sup

Then, by Lemma 4, the choice of sufficient large t, say t>T> gives

c(i/sup<({||« (r) US'1 +1|« (r) ||S-'||« (r) |U.} <1.

Therefore, we have
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M(f)<c + c f(l + r)-5/4M(r)Jr for all t>T .Jo

This implies

!!«. (Oilm

so that we can get the conclusion by the same way as in Theorem 3.

Q.E.D.
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