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Remarks on the Coefficient Ring
of Quaternionic Oriented Cohomology Theories

By

Kazuhisa SHIMAKAWA*

§ I. Introduction

Let h* be a complex (or real) oriented cohomology theory. It has

recently been observed that the "formal group" of h* plays a very impor-

tant role in such a theory. Above all, D. Quillen [6] showed that the

formal group FU of the complex cobordism theory MU* ( ) is isomorphic

to the Lazard universal formal group, and its coefficients generate the

ground ring MU* (pt).

Unfortunately, in the case of quaternionic oriented cohomology theory

(see § 2), there exists no such formal group, since the tensor product

of quaternionic line bundles does not yield a quaternionic bundle.

This situation makes it difficult, for example, to produce enough generators

of MSp*(pt).

However there are some substitutes for the formal group. In par-

ticular, using the total Pontrjagin class of a certain quaternionic vector

bundle 2C (see § 3), N. Ja. Gozman [5] defined a subring A of MU* (pt)

which is contained in the image of the forgetful homomorphism (p: MSp*

(pt}-*MU*(pt).

In this paper, we will generalize his approach to arbitrary quater-

nionic oriented cohomology theory 7i*, and define a subring Ah of h* (pt)

which is generated by the coefficients of certain power series. Then it

will be shown that

Proposition 3. AKo = H/;>o KO~43' (pt),

and especially,
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Theorem, (a) A MS? contains an element zn<^MSp~*n(pf) =Qf% for

each n^>l, "which is represented by an Sp manifold Mn whose Chern

number s2n(Mn) is equal to

16/l2n if n + 1 = 2f for some />! ,

8A27l otherwise

where A2n=p if 2n-\-1=pg for some prime p and g^>l, and ^2n = l

otherwise.

(b) X*a&Z\&=MSp*(pt)®Z\ft=Z\&\zl,z* •.•,*„ ..•].

The author would like to express his gratitude to Prof. N. Shimada

and Mr. A. Kono for their kind advices in preparing the article.

§ 20 Notations and Preliminaries

Let h* be a multiplicative cohomology theory defined on the category

of CW (or finite CW) pairs, and let h* be the corresponding reduced

theory. We always assume that h* satisfies the additivity axiom.

Definition 1. We say that h* is quaternionic oriented if each

quaternionic vector bundle f has a Thorn class th(JT) ^h4n(M(£))

= &4n(M(?),°o) (;l = dimflf) such that

(a) natural for bundle maps,

(b) 4(?X^)-4(OA^We^(M(f)AMW),

(c) th (pt X H") - (T471! e £4n (54n)

where o"4n denotes the kn-fold suspension.

The symplectic cobordism theory MSp* ( ) is quaternionic oriented.

We define tMSp(%} as follows: let

be the classifying map of f , then f induces a map

which defines the desired class ^Sp(?) = [/] ^MSp4n (M(f)). It is easily

observed that this ^sp(f) satisfies the three conditions of Definition 1.

If there exists a multiplicative natural transformation /i:MSp* ( ) — »&*,

then A* is also quaternionic oriented by defining ^(f) = /^(^pC?))- Con-
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versely we have

*Proposition 1. (Universality of sympletic cobordism) Let h

be any quaternionic oriented cohomology theory defined on the cate-

gory of finite CW pairs. Then there exists a unique multiplicative

natural transformation fih: MSp*()-^h* such that

/k (***(£)) =**(£)•

Proof. (Compare [4] Theorem 5.1.) Let x(=MSpn(X), and let/:

&k~nX-*MSp(k) be the map representing x so that *=[/] =Gn~*kf* (tMsP

(??)) where f] is the universal bundle over BSp(k). Put

A (X) =<»«-<*/*(*» ft) )e£»(X).

This defines a unique natural transformation juh:MSp* ( ) — >A* such that

/fo(£jfsi»(£)) — 4(?) for any f. /^ is also multiplicative by the property

(b) of Thorn classes.

Remark. This universality is actually true for any quaternionic ori-

ented h* defined on the category of arbitrary CW pairs, provided that

A* is additive.

Now let yn be the canonical line bundle over HPn. Recall that

=HPnH1. Let in:HPn-*(HPn+\oo) be the inclusion and let pn

*n*^(^n) &h4(HPn). Then, using the commutative diagram:

0 - > MSp* (S4w+4) - > MSp* (HPn+l) - > MSp* (HPn) - > 0

1) - > A*

associated with the cofibration HPn-^HPn+1-*S4nr\ and by the similar

argument to that of [4] (8-1), we have inductively that:

(2-1) (a) A*(HP»)^A*(#0[A*]/(p»n+1),

(b) in*pn+i = Pn for !<>z.

Hence we can apply the Leray-Hirsch theorem to h* and obtain the

uniquely determined (total) Pontrjagin class (cf. [4], [8]):

Ph (?) = 1 + A* (£)+- + Pn (?) , A* (?)



244 KAZUHISA SHIMAKAWA

for 1 <[.;'<]« = dimtff, such that

PL >*(/*£) =/*(#*(£))

PII. /»*(&©£,) =#*(£,)•/•»(&)

PHI. /»*(??») =l+ft.

From the uniqueness, it follows that if ju:h*-*h* is a multiplicative

natural transformation of cohomology theories such that #(£&(?)) — 4(f)
for any £, then

(2-2) A (/*(£))=/»*(£).

Now assume that A* is complex oriented, that is, each complex vector

bundle f has a Thorn class ET^(?) which satisfies the conditions similar

to those of Definition 1. Then A* is also quaternionic oriented, simply

by defining 4(?) — ffft(?) for any quaternionic vector bundle f. In this

case, /i* has two kinds of characteristic classes i.e. the Pontrjagin class

/»*(£) and the Chern class ch(^ which is (CI) natural, (CII) multipli-

cative, and (CHI) <:*(?„) =1 +A* (3^(£n)) where £„ is the canonical

complex line bundle over CPn and jn: CPn^(CPn+\ oo).

Lemma 1. Le£ f &£ #?z n- dimensional quaternionic vector bundle

over X. Then

'where i\ X— >(Af(f),cxj) z*5 £/i£ natural inclusion.

Proof. Let ^ be the canonical quaternionic line bundle over

= S5jp(l) and let en: HPn-*HP°° be the inclusion. By (2-1) h* (HP°°)

= lim°A*(HPn) =h*(pf) [[Poo]] where p^ is the unique element such that
n

£n*Poo— pn- Then obviously we have

A* OO= P. = *'.*(«* CO)

where *.: JB5/»(l)-»(Af5/»(l), oo). Therefore A* C?) =»*('»(?)), «': ̂

->(M(i?), oo) for any 6^(1) bundle V over X.' By the splitting principle

and the property PII, we then have



COEFFICIENT RING OF SOMETCOHOMOLOGY THEORIES 245

for any Sp(n) -bundle £. Similarly we have

for any U(iri) -bundle f .

§ 3. Construction of Ah

From now on let h* be a quaternionic oriented cohomology theory.

Consider the complex bundle

over HP00 X HP00 where f] and ^' are the canonical quaternionic line bun-

dles in the first and second factors. Then C is a self-conjugate complex

vector bundle, and hence 2C — C©C is naturally a 4-dimensional quaterni-

onic bundle, where C is the complex conjugate of C

Let /*H2C)=2/=o/>/(2O be the total Pontrjagin class of 2£. Since

h*(HP-XHP^ = h*(pt)\_[_xh,yh-\-] where *A = A*(?) and yA = A*(?')

(compare the proof of Lemma 1), we may consider />/(2C), l<i./5S4, as

a formal power series with coefficients in A* (££) (in fact, in 7z4* (pt) ) .

Definition 2. Ahdh**(pt) is the subring generated by the coeffi-

cients of the power series />/(2C), 1^^"^4.

If A* is another quaternionic oriented cohomology theory and /JL\ h*

— >/i* is a multiplicative natural transformation such that ^(^(f)) :=^(O

for any quaternionic bundle f, then ^(^-(2C)) =^/(2Q from (2-2).

Hence,

Lemma 2. Ah = fJL(A J c!m(A*(#0 -^>h*(pt)). In particular, Ah

d!m(MSp* (pt}^>h* (pt)) where fih is the natural transformation of

Proposition 1.

Now assume that A* is complex oriented, and let F be a formal

group of A*, so that

for any complex line bundles <? and ^. Then the formal power series

are related to F as follows (see Gozman [5]). Let
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/: CP" X CP-->HP- X HP-

be the standard inclusion. Then we have

where f and f ' are canonical complex line bundles over the first and

second factors of CP^xCP00. Put Ci= (f<8>c?')0(F(8)c7F') and £2
so

(3-1)

Note that Ci and Cz are quaternionic line bundles. Also f induces the

homomorphism :

/*
h* (HP" x HP-} - > h* ("CP x CP")

, y]] - > h* (pf) [[«, t,]]

where ar=A*(i?), y=A*(?') eA4(ffP") and M = Cl
ft(f), w

(CP00) . Since

/* (a:) = A" (I©?) = C2" (f ©F) (by Lemma 1)

=c,*(f) •*»(?)

= ww where F(u,u} =0

and

/*(y) — ̂ ^ where F(v, z;) =0 ,

it follows that

(3-2) /* £5 a?z isomorphism onto the subaigeora

Now we have

/*(#»(2O)=#*(2(C.e«) (by (3-1))

= (1 + A* (Ci0Ci) + A* (Ci0Ci) ) * •

Here
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A*(Ci®C«) = c2"(Ci) + c,»(C.) (by Lemma 1)

and
A* (C.0C.) =*,*(£)<:,»(:,)

= F(u, v)F(n, t;) F(u, v~)F(n, v} .

Let &i (x, y) and &z (x, y) €= h* (pt) [ [x, 3'] ] be the power series such that

and

/* (6>2 O, y) ) = F («, v-)F(u,v)F (u, v~)F(u,v).

Then we have

Proposition 2. £* (2£) = (1 + &, + @2)
 2, that is

ylA /j generated by the coefficients of the above four power series.

As an example, consider the ring AK^K*(Pt) and AKo<^-KO* (pt).

Let c: KO* ( )—»!£*( ) be the complexification homomorphism, then c(tKO

(f))=^x(?) for any quaternionic vector bundle f. (For the definition

of the Thorn classes in K* ( ) and KO* ( ), see Conner-Floyd [4] §3.)

Therefore, by Lemma 2, we have

(3-3) c(AKO}=AK.

Now the formal group of K* ( ) is given by

F(tc,v) =u-\-v — Guv

where ff is the Bott periodicity element: K* (pt) = Z[(T, tf""1] (cf. [2]).

Hence u-}-u=ffuu, v-\-v=(Jvv, and we have

F(u, v)F(u, v) = (u + v — Guv) (u-i-v —

= uu-{-vv~ (Jhiuvv + (uv + w?;) ,

) = uu
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so that

81(x,y)=2(

and

@2O,y) =

By Proposition 2 we have

Thus yix is generated by 1, 2(72, (T4 and coincides with Im(c: KO* (pt)

— >K* (pt)) in negative dimensions (see [8] 13.93). Since c is injective

for * = 4& for any k, we have the following

Proposition 3. AKo = Hj^ KO~43'(pt).

§4,

Consider now the subring Axsp<^MSp* (pt) and A MU^ MU* (pt) .

Let q>:MSp*( )->MC7*( ) be the forgetful transformation. By definition,

we have ^(^sp(?)) = £##(?) for any quaternionic vector bundle £. Hence

it follows from Lemma 2 that

(4-1)

Recall that MU* (pt) is identified with the Lazard ring L ([1],

[7]). Hereafter we fix a polynomial basis {xj\ .7 = 1, 2, 3,---}, \Xj\=—2j

for MU*(pt)=L, and denote the universal formal group over Z, by

1-* (pt) .

As is well-known, the coefficients atj generate the ground ring MU*(pf).

Let &i and ®2 be the power series defined in the preceding section,

so that

(4 • 2) ®! (uu, vv) = Fff(u, v) Fu(u, v) + FU(U, v) FV(U, v) ,

&2 (UU, VV) = -F^ («, V) F^ (« , W) Fj; («, f?) F^ (« , V) .

Then we have
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0, (x, y) - 2 (* + y) + S /9y*y , ft, e Aft/""-'-" (pf) ,
i+ji?

9t(x, y) = (x -y) 2 + 2 ryxy , ry e MIT"*-'-" (pi)
<+y^3

where fa --=(}„, Ttj^Tji and fa = foi = 0.

Proposition 4.

ft- „+!_,= (--I)n4(ay 2n+i-v + ay-i 27.+2-2J-) H-decomposables,

/or l<,j<^n,

Tj n + 2-j = ( 1) 4 C^2j 2n + l-2j ^2j-l 2n^ 2-2/ ^2^-2 2n + 3-2j ~T ^2^-3 2n + 4-2^)

+ decomposables, /07~ 2^j^7z ,

n n+i = Tn+i i = ( — 1) n4 (a2 2n_! — a2 2n) + decomposables.

For the proof of this proposition, we require a lemma, let R and

JR' be commutative rings with unit, and let jUiR—^R' be a ring homo-

morphism. Let F be a formal group over R and Ff=/j.*F an induced

formal group over JR'. We denote the formal inverse of F (resp. Ff)

by fc. (resp. fcO i.e. F(T,^(T))=0 (resp. F'(T,^(T)) =0). Then,

Lemma 3. The following diagram is commutative:

-where pF (resp. pF.) Z5 a homomorphism given by

(resp. pF, (x) = u • CF, (u) , pF. (y)

Proof. It suffices to show that

Since F /(T,//J |C^(T))=//+(F(T,^(T)))=//J |S(0)=0, we certainly have
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In particular, we have

(4-3) A,»i=»/, /**», = »/

where &l and &2 (resp.®/ and @z'} are the power series of .R[[.r,

(resp. jR'[[.r, y]]) satisfying the equation (4-2) with respect to F (resp.

Proof of Proposition 4. In the above lemma, put R = L = MU* (pf)

and R' = Z®Q-4n(n>0) where Q*-///2, /^Z^o MU~3' (pt) , is the inde-

composable quotient of MU* (pt) and Q~4n^Z is a free abelian group

generated by [x2n]. We make R' into a graded algebra (Adams [1]):

Also let jLt~(f>n: L— >R' be an obvious map i.e.

0n (^2n) = [>2n] , <^n (^/) = 0 for j

Then F' (u, v) =(f>n*Fu(u, v) =

and we have only to prove that,

(4-4) a) 0n(&n+l-/) =/?y n-rl-/ =

b) 0n(r,-n+2-y) =7y n H t - y =

where

(J7-
/ = a2i/ zn+l -2j — O^j-i 2n + 2-2j

and

Since Cf,(T) = — T, we have u = fa (u) = — u and w

Hence
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F'(u,v)F'(u,v} = -(u-v-^ X! aJX(-iO')1

i+ .7=2n+l

= -(u-vY- XI 2«IX(-tO'(«-iO,i+y=2»+i

so that

F' («, t») F' (u, tO + F' («, B) F' (B, w)

Therefore we have

2n+1_2,

Similarly we have

©/(x,y) = (x-y)2+(-l)re4^ i

This proves (4-4), and the proposition follows.

Now we obtain

Proposition 5. AMSP contains an element zn^MSp~4n(pt) such that

|

16x27l+decomposables, if njr1. = 2f, />!

8x2n + decomposables, other-wise

-where (p:MSp* (ft) -~>MU*(pt) is the forgetful homomolphism and xl9

•^2,''',xn,••• is a polynomial basis for MU*(pt).

Proof. Since AMU is generated by the cofficients of the power series

20l9 @1
2 + 2®2, 2®1-®2 and <92

2, it follows from Proposition 4 (or rather,

(4-4)) that ^n^Anu) CZ + Q"4" is generated by

and

2-j
r=l

Now we use the fact that

r n + Z-r =8(CK2j- 2n^l-2j ^2j-l Zn + Z-Zj) •

1 / 2 w - f l



252 KAZUHISA SHIMAKAWA

where kzn=p if 2n-\-1=pf for some prime p, and lZn — ̂  otherwise ([1],

§ 7). The greatest common divisor of the numbers

\ 2j I \2j-ll \ 2j I

and

(2n+l
\ 2j I \ 2j-ll \ 2j

for l<^j<*n is 2/l2n if 2n + 2 = 2f+\ jQ>l, and lzn otherwise. Hence <f)n

(^^ffj) is generated by

27l] if ^ + 1=2/, 8[^2n] otherwise.

This completes the proof of Proposition 5.

Now we identify MSp* (pt) with ,0JP, the bordism ring of Sp mani-

folds. Then we have

Theorem, (a) AMSP contains the bordism class zn=\_M^\ of a 4n-

dimensional Sp manifold Mn -whose Chern number sZn(M^) is equal to

16/U if n-\-l=2f for some />! ,

8/l2n other-wise

-where kZn—P if 2n + l=pg for some prime p and ^^1, and /i2n =

otherwise.

Proof, (a) follows immediately from Proposition 5, since the Chern

number of a manifold representing xzn^ MU~An(pt) = Q^n is precisely A2n,

and

for any U manifolds M and M' of positive dimensions. Also (b) is now

obvious, for the elements #?(£/) for j = l, 2, ••• form a polynomial basis for
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Remark. (1) (Compare [3].) Let AdMU*(pt) =Qn be the subr-

ing generated by the coefficients of &i and @2. Buhstaber-Novikov [3]

studied this ring. They showed that A is contained in (the image of)

Horn AU(U* (MSp) \Qu) and that

(Theorem 2.22 of [3]), using the Chern-Doid character. Note that A

is not contained in the image of MSp* (pt) -*MU* (pt) (see Gozman [5]

Corollary 1).

Does A contain the image of MSp* (pt)^>MU* (pt)t

(2) (Compare [5].) Let MSC* ( ) be the self-conjugate cobordism

and let $:MSC* ( )— »Mt7*( ) be the natural transformation. Using the

Euler class of the self-conjugate bundle C~ "^(X)^', Gozman showed that

lm(MSC*(pt)-^MU*(pt)) contains the subring generated by the coeffi-

cients of 2®!, ®!2 and &z ([5] Proposition 2, Corollary 4). Thus by the

calculation similar to that of the proof of Theorem (a) . We have

Assertion. The image of $ contains the elements

Sx2n -fdecomposables, if # + 1 = 2f, /2£l,

4x2n + decomposables, otherwise.

(3) The ring structure of MSp* (pt) /Tors as well as MSp* (ft)

is of course unknown, and it is very interesting to study the divisibility

relations between elements of AMU = ^(AMSP)- F°r this purpose, we can

use the various formal groups by Lemma 3. For example, (a) using the

formal group

h*Fu(u, v) = exp (log u + log v)

over H*(MU} = rc*(H/\MU} where hin*(MU)-+H*(MUr) is the Hure-

wicz homomorphism, and the corresponding &1 and &2, we get the ring

AH/\MU^AMU, and (b) using the formal group Fso of MSO* ( ), we get

A MSO^AMU-

The latter has an advantage that the formal inverse of Fso is given by

CSO (T)=-T i.e. Fso (T, - T) = 0 (see [2] )
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so that uu = — if and vv = — v2; hence the computation of &l and &z be-

comes easier.
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