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Remarks on the Coefficient Ring
of Quaternionic Oriented Cohomology Theories

By

Kazuhisa SHIMAKAWA*

§ 1. Introduction

Let A* be a complex (or real) oriented cohomology theory. It has
recently been observed that the “formal group” of A* plays a very impor-
tant role in such a theory. Above all, D. Quillen [6] showed that the
formal group Fy of the complex cobordism theory MU™ () is isomorphic
to the Lazard universal formal group, and its coefficients generate the
ground ring MU* (pt).

Unfortunately, in the case of quaternionic oriented cohomology theory
(see § 2), there exists no such formal group, since the tensor product
of quaternionic line bundles does not yield a quaternionic bundle.
This situation makes it difficult, for example, to produce enough generators
of MSp*(pt).

However there are some substitutes for the formal group. In par-
ticular, using the total Pontrjagin class of a certain quaternionic vector
bundle 2¢ (see § 3), N. Ja. Gozman [5] defined a subring 4 of MU* (pt)
which is contained in the image of the forgetful homomorphism ¢: MSp*
() >MU* (p2).

In this paper, we will generalize his approach to arbitrary quater-
nionic oriented cohomology theory A*, and define a subring A, of A* (pt)
which is generated by the coefficients of certain power series. Then it

will be shown that
Proposition 3. Axo=Y ;20 KO (pt),

and especially,
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Theorem. (a) A usp contains an element z, € MSp™"(pt) = 25?F for
each n=1, which is represented by an Sp manifold M, whose Chern

number s,,(M,) is equal to
164y, if n+1=2" for some f>1,
8. otherwise

where Ly, =p if 2n+1=p° for some prime p and ¢=1, and lp=1

otherwise.

(0)  Auss@Z[3]=MSp* (p6) @Z[4] =Z[$1[z1, 72, 5 20 -]

The author would like to express his gratitude to Prof. N. Shimada
and Mr. A. Kono for their kind advices in preparing the article.

§ 2. Notations and Preliminaries

Let 2* be a multiplicative cohomology theory defined on the category
of CW (or finite CW) pairs, and let A* be the corresponding reduced

theory. We always assume that 2* satisfies the additivity axiom.

Definition 1. We say that h* is quaternionic oriented if each
quaternionic wvector bundle & has a Thom class (&) €h™(M(£))
=h"(M(§),00) (n=dimy€) such that

(a) mnatural for bundle maps,

(1) ta(EXT) =t (§) Ata (1) ER* (M(E) AM()),

(¢) t(ptxX H™) =¢"1€h™(S™)

where 0" denotes the 4n-fold suspension.

The symplectic cobordism theory MSp*( ) is quaternionic oriented.
We define #ys,(§) as follows: let

F: X—>BSp(n), n=dimyé
be the classifying map of &, then f induces a map
F: M(&) —>MSp(n)

which defines the desired class Zys,(§) =[f] EMAS'p”‘ (M(£)). Itis easily
observed that this Zys,(§) satisfies the three conditions of Definition 1.
If there exists a multiplicative natural transformation y#:MSp*( ) —>h*,

then A* is also quaternionic oriented by defining #,(§) =4 (fxs5,(§)). Con-
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versely we have

Proposition 1. (Unriversality of sympletic cobordism) Let h*
be any quaternionic oriented cohomology theory defined on the cate-
gory of finite CW pairs. Then there exists a unique multiplicative
natural transformation U, : Z\ZS'p*( Y —h* such that

Un (tusp(§)) =, (€).

Proof. (Compare [4] Theorem 5.1.) Let xEZ\ZSp”(X), and let f:
S*-"X—>MSp (k) be the map representing x so that =[] =0""*f* (¢,
(7)) where 7 is the universal bundle over BSp(k). Put

m(X) ="+ (6 () €R™(X).

This defines a unique natural transformation ﬂ,,:Z\ZS’p*( ) —A* such that

Un (Exsp(8)) =2, (&) for any .y, is also multiplicative by the property
(b) of Thom classes.

Remark. This universality is actually true for any quaternionic ori-
ented 2* defined on the category of arbitrary CW pairs, provided that
h* is additive.

Now let 7, be the canonical line bundle over HP". Recall that
M(y,) =HP"'. Let i,: HP"—>(HP""!, 00) be the inclusion and let o,
=1,*4,(7,) €h*(HP"™). Then, using the commutative diagram:

0 —> MSp* (S — MSp* (HP™*") —> MSp* (HP™) —> 0

lﬂn lﬂn lﬂh

v —— RF(S®TY s RX(HP™) —> R*(HPY) — -

associated with the cofibration HP"—>HP"*'—S""* and by the similar
argument to that of [4] (8-1), we have inductively that:

(2-D (@) A*(HP") =h*(p2) [0.]/ (0",
(b) z'n*pn«H =0n for 1§n .

Hence we can apply the Leray-Hirsch theorem to A* and obtain the
uniquely determined (total) Pontrjagin class (cf. [4], [8]):

PO =14p(E) + - +p.(8), p"(&)eh!(X)
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for 1< j<n=dimy¢, such that

PL PA*E) =f* (" (&)
PII. P(EDE) =p" (&) -p" (&)
PIIL. (1) =140,

From the uniqueness, it follows that if x:A*—h* is a multiplicative
natural transformation of cohomology theories such that x(2,(§)) =#(§)
for any &, then

(2-2) L(pE(8)) =p"(6).

Now assume that A* is complex oriented, that is, each complex vector
bundle § has a Thom class 9,(&) which satisfies the conditions similar
to those of Definition 1. Then A* is also quaternionic oriented, simply
by defining #,(&) =9,(€§) for any quaternionic vector bundle & In this
case, h* has two kinds of characteristic classes i.e. the Pontrjagin class
p"(&) and the Chern class ¢"(§) which is (CI) natural, (CII) multipli-
cative, and (CIII) c*(&,) =1+7,%(4,(E)) where &, is the canonical
complex line bundle over CP" and j,: CP"< (CP"*!, 00).

Lemma 1. Let £ be an n-dimensional quaternionic vector bundle
over X. Then

Pnh (5) :C‘?‘n (6) = Z* (gh (5) ) ’

where i: X— (M(£),0) is the natural inclusion.

Proof. Let 7. be the canonical quaternionic line bundle over HP*
=BSp(1) and let ¢,: HP"—->HP> be the inclusion. By (2-1) 2*(HP~)
=1lim°h* (HP™) =h* (pt) [[0.]] where g.. is the unique element such that

e

s,.*pi, =0,. Then obviously we have
Plh (ﬂm) = cooc = ioo* (th (7700) )

where i.: BSp(1) —>(MSp(1), o). Therefore p"(7) =7*(ta(m)), i: X
—(M(7), o) for any Sp(1) bundle 7 over X.- By the splitting principle
and the property PII, we then have
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for any Sp(#)-bundle £ Similarly we have

e (§) =i* (L (), i X—>(M(£), o0)
for any U(m)-bundle &’.

§ 3. Coustruction of 4,

From now on let A* be a quaternionic oriented cohomology theory.

Consider the complex bundle
£=1Qcn

over HP* X HP” where 7 and 7’ are the canonical quaternionic line bun-
dles in the first and second factors. Then { is a self-conjugate complex
vector bundle, and hence 2{=C@E is naturally a 4-dimensional quaterni-
onic bundle, where & is the complex conjugate of &.

Let p"(20) =240 p,*(28) be the total Pontrjagin class of 2Z. Since
h* (HP> X HP>) = h* (pt) [[x1, v»]] where x,=p,"(9) and y,=p" (")
(compare the proof of Lemma 1), we may consider p;/*(2{), 1</;<4, as

a formal power series with coefficients in A*(p¢) (in fact, in A**(pf)).

Definition 2. A,Ch*™(pt) is the subring generated by the coeffi-
cients of the power series p;/*(28), 1<j<A4.

If hA* is another quaternionic oriented cohomology theory and u:A*

—h*

is a multiplicative natural transformation such that x(%,(£)) = #(§)
for any quaternionic bundle &, then u(»%(20))=p/(2¢) from (2-2).

Hence,

Lemma 2. A,=u(d,) CIm&*(pt) S5h*(pt)).  In particular, A,
c Im (MSp* (;bt)ﬂ)h* (pt)) where y, is the natural transformation of
Proposition 1.

Now assume that A* is complex oriented, and let F be a formal

group of A*, so that
" (§Qem) =F(c"(£),¢." (1))

for any complex line bundles & and 7. Then the formal power series

p(28) are related to F as follows (see Gozman [5]). Let
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f:CP*xXCP*—>HP> x HP*
be the standard inclusion. Then we have

FH=(6QF) Rc (¢'DE")

where & and &’ are canonical complex line bundles over the first and
second factors of CP*XCP~*. Put &= ReE)PDERE’) and &,
=((Rcf ) DEQcE’) so that

(3'1) f*C:Q@Cz-

Note that ; and £, are quaternionic line bundles. Also f induces the

homomorphism:

*

h* (HP=x HP*) —> h*(*CPx CP~)

| |

r* (pt) [[z, 11 —> h*(p1) [[u, v]]
where z=p"(7), y=p"(@') €r*(HP*) and u=c*(§), v=c"(&') R’
(CP*). Since
F*(x) =p"(§DE) =c," (§DE) (by Lemma 1)
=c"(§) -¢,"(§)
=uu where F(u,z)=0
and
f*(y) =vo where F(v,v) =0,
it follows that
(3-2) f* is an isomorphism onto the subalgeora
h*(pt) [[um, vo]].
Now we have
(" 20) =" 2(GDL) (by (3-1))
=1 +2"(&DE) +2" (LDE))*.
Here
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Plh (CI@CZ) :C'zh (CI) + Czh (CZ> (by Lemma 1)
=c"(EQRcf) e EReE") +c." (EQe N e (EReE”)
=F(u,v)F@,v) + F(u,v) F (@, v)

and

2" (LDL) =c" (C e ()
=F(u,v)F@,v)F(u,2)F(@,v).
Let 0,(x,y) and @,(x,y) €h*(®t)[[x, y]] be the power series such that
20, (x,5)) =6, (uu, vo) =F(u,v)F(%,9) +F(u,0) F (%, v)
and
f*(0,(x,9)) =F(u,v) F(&,0) F(u,v) F(z,v).

Then we have

Proposition 2. p"(20) =(1+60,+86,)*, that is
b 20) =20, b @0 = 67°+20,,
Psh (ZC) =26,0, s Pﬂ.h (ZC) :@22 .

Thus A, is generated by the coefficients of the above four power series.

As an example, consider the ring AxC K*(pt) and Az C KO*(pt).
Let ¢: KO*( ) —>K*( ) be the complexification homomorphism, then ¢ (Zxo
(&)) =tx(&) for any quaternionic vector bundle & (For the definition
of the Thom classes in K*( ) and KO*( ), see Conner-Floyd [4] §3.)

Therefore, by Lemma 2, we have
(3-3) c(Axo) =Ax.
Now the formal group of K*( ) is given by

F(u,v) =u+v—0uv
where 0 is the Bott periodicity element: K*(pz) =Z[c,07'] (cf. [2]).
Hence u+#=0uz, v+7=0v7, and we have

F(u,v)F(z,v) =(u+v—0ouv) (H+7—0uv)
=u#l +vo — O uuvo + (uo +uv),

F(u,9)F (@, v) =uit +v0 — 0'umvo + (uv +%70),
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so that

6,(x,y) =2(x+y) —0’xy
and

0,(z,y) =(x—y)*.
By Proposition 2 we have
#"(20) =4(z+y) —20°zy,
2:"(20) =62"+4xy +6y' — 40* (z'y +zy*) + 'z,
25" (20) =4(2* —22%y —2xy* +3°) —20° (zy — 22°y* + xy"),
25(20) = (x—v)*.
Thus A is generated by 1, 202, ¢* and coincides with Im(c: KO* (p2)

—K*(pt)) in negative dimensions (see [8] 13.93). Since ¢ is injective

for x =4k for any k, we have the following

Proposition 3. Axo= 2= KO (pt).

§4'. IMSp and IMU

Consider now the subring A us, C MSp*(pt) and AyyC MU*(pt).
Let ¢:MSp*( ) —>MU*( ) be the forgetful transformation. By definition,
we have @ (£x5,(§)) =txy(€) for any quaternionic vector bundle §&. Hence
it follows from Lemma 2 that
(4-1) ¢ (A usp) = Ao Im (MSp* (p2) > MU* (p1)).

Recall that MU*(pz) is identified with the Lazard ring L ([1],
[71). Hereafter we fix a polynomial basis {z;;7=1,2, 3,--}, |z = —2j
for MU*(pt) =L, and denote the universal formal group over L by

Fy(u, 'U) =u+v+2 ai,ui"uj » aijEMl]z(l_i_j) (pt).

As is well-known, the coefficients ;; generate the ground ring MU* (pt).
Let ®, and @, be the power series defined in the preceding section,

so that
(4-2) 0, (uz, vo) = Fy(u,v) Fy(%,0) +Fy(%,9) Fu(%, ),
@z(uﬁ, 'U—‘U—> =FU(u, U) FU(ﬁ, 5) Fy(u, ﬁ) FU(ZT, ‘U) .

Then we have
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0.(z,y) =2(x+y) + Zj]ﬁﬁuxiyj, By € MU (p2),
it
0,(x,y) = (x—y)*+ ,+Z,23Tuxiy’ s T EMUCT (pr)
1+

where ;=B 755 =75 and Bo;=7,;=0.

Proposition 4.
Bj ni1-3= (—1) "4 (Asj sn+1-25 + Uaj—1 sn+2-2;) + decomposables,
Sfor 1<j<n,
Vi nra—i = (—1)"4( Qs an+1-2) — Uaj—1 2n4 227 — a2 2n+3-27 T Claj—s 2n+4-27)
+decomposables, for 2<5<n,

Tine1=Tn+11= (—1)"4(® 21 — A 22) +decomposables.

For the proof of this proposition, we require a lemma. let R and
R’ be commutative rings with unit, and let #:R—R’ be a ring homo-
morphism. Let F be a formal group over R and F'=x,F an induced

formal group over R’. We denote the formal inverse of F (resp. F’)
by ¢z (resp.¢r) ie. F(T,¢(T)) =0 (resp. F'(T,¢r.(T))=0). Then,

Lemma 3. The following diagram is commutative:

Uy
R[[z,y]] — R'[[=,y]]

Orl OF/ l
Hx

R[[Z{, 7}]] B Rl[[u: 'U:l]
where pp (resp. 0r.) IS a homomorphism given by
or(x) =u-tr(u), 0r(y) =v-tr(v)

(resp. or- (&) =w-tp. (&), 0r (v) =v-¢p. (V).

Proof. It suffices to show that
¢ (T) = protr (T).

Since F' (T, pytr (1)) =ps (F (T, ¢z (T))) =14, (0) =0, we certainly have
' (T) = patr (T).
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In particular, we have
(4-3) ﬂ*@lz@l’ s ﬂ*@zz@z’

where 6, and 0, (resp. ®  and 6,”) are the power series of R[[x,y]]
(resp. R'[[x,¥]]) satisfying the equation (4-2) with respect to F' (resp.
F).

Proof of Proposition 4. In the above lemma, put R=L=MU*(pt)
and R'=Z@®Q *"(n>0) where Q*=1I/I*, I=3",., MU (pt), is the inde-
composable quotient of MU*(pt) and Q “"~Z is a free abelian group
generated by [x,,]. We make R’ into a graded algebra (Adams [1]):

R =0,
R’=0, J#0, —4n.

Also let #=¢,: L>R’ be an obvious map i.e.
Gu(L30) =[X2n], &o(x;) =0 for j=£2n.

Then F’(u,v) =¢uFy(u,v) =u+v+Y i, joons Aol
ai;=dn(ay) € Q7"(L),

and we have only to prove that,

(4:4) ) Gu(Byne1-g) =B w15 =405 smr1-27 Wyt zmra-21) »

b) (T nie—g) =75 ni2y =400 —05-0)

where

0;' =Clj sns1-op— gy omea—gy  for 1<j<m,
and

00’ =07.,=0.
Since ¢z (T) =—T, we have #=¢p. () = —u and 7= —w.
Hence

F'(u,0)F' (@,9)=— (u+v+ Y afuv’)?

i+j=2n+1

=—(u+v)’— Y 2aLuv(u+tv),

i+j=gn+1
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F'(u,0)F'(@,v)=—@—v+ 2 ayu(—v))

i+ji=2n+1

= —(u—v)'=— 3 2alu(—v) (u-v),

so that

F' (u,v) F'(@,9) + F' (u,9) F’' (7, v)
=2 +7%) — :;1 A(Cy 19y + oy smsa—zg) WO
Therefore we have
6, (2,3) =2(x+5) + (=1)"™ 33 smosy + @yos smos-a) 1577
Similarly we have
8, (x,9) = (z—y)"+( —1)"42(5/ AR A

This proves (4-4), and the proposition follows.

Now we obtain

Proposition 5. /TMS,, contains an element z,< MSp™" (pt) such that
16x,,+ decomposables, if n+1=27, /=1

(D(Zn) =
8x,, + decomposables, otherwise

where ¢:MSp* (pt) >MU* (pt) is the forgetful homomolphism and z,,
Zgyt 3 Xy o+ 1S a polynomial basis for MU* (pt).

Proof. Since Ayy is generated by the cofficients of the power series
20,, 0.°+20,, 20,-0, and 6, it follows from Proposition 4 (or rather,
(4-4)) that ¢,(Any) CZ+Q™*" is generated by

. _ ’ ’
28] nt1—j —8(a2j ane1—2j + Oaj_y 2n+2—-2j)

and
I . . ’ ’
21 27 p4e—r=38 (a2j anr1-25 — (2j—1 2n+2—2f) .
r=
Now we use the fact that

’ 1 /2n-+1
Xjomsri—j= 2 ( 7lj ) [xZn]
2n
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where 1,,=p if 2n+1=p" for some prime p, and A, =1 otherwise ([1],

§ 7). The greatest common divisor of the numbers

(2n+1>+<2n+1>:<2n+2>
27 2j—1 27
and
<2n+1>_<2n+1>=<2n+2>_2<2n+1>
2 21 2 2j—1
for 1<j<<nm is 2Ay, if 22+2=2"*', f>1, and A,, otherwise. Hence ¢,
(A wv) is generated by

16[xy,] if n+1=2", 8[x,,] otherwise.

This completes the proof of Proposition 5.

Now we identify MSp* (pt) with £5?, the bordism ring of Sp mani-

folds. Then we have

Theorem. (a) A usp contains the bordism class z,=[M,] of a 4n-

dimensional Sp manifold M, whose Chern number s,,(M,) is equal to
164, if n+1=2" for some f=1,
825, otherwise

where ly=p if 2n+1=p° for some prime p and ¢=1, and Ayn=1

otherwise.

(b) Aus;QZL 5] =MSp* (p£) QZ[4]1=Z[3]1[ 21, Zo» **» Zu» **1-

Proof. (a) follows immediately from Proposition 5, since the Chern
number of a manifold representing x,,& MU *"(pt) =27 is precisely Ay,

and
Son(MX M) =0

for any U manifolds M and M’ of positive dimensions. Also (b) is now

obvious, for the elements ¢(2;) for j=1, 2, -+ form a polynomial basis for

Im (MSp* (p2) RZ[§] > MU* (p£) R Z[4]).
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Remark. (1) (Compare [3].) Let AC MU*(pt) =2y be the subr-
ing generated by the coefficients of @; and ®,. Buhstaber-Novikov [3]
studied this ring. They showed that A is contained in (the image of)
Hom, ,(U* (MSp);2y) and that

(*) Hom, y (U*(MSp); 20) ®Z[$] = AQZ[ §]

(Theorem 2.22 of [3]), using the Chern-Dold character. Note that A
is not contained in the image of MSp™*(pt) >MU* (pt) (see Gozman [5]
Corollary 1).

Does A contain the image of MSp* (pt) 2> MU* (pt)?

(2) (Compare [5].) Let MSC*( ) be the self-conjugate cobordism
and let ¢:MSC*( ) —>MU*( ) be the natural transformation. Using the
Euler class of the self-conjugate bundle £=7®¢7’, Gozman showed that
Im (MSC*(pt) 2 MU* (#t)) contains the subring generated by the coeffi-
cients of 26,, #,°> and @, ([5] Proposition 2, Corollary 4). Thus by the

calculation similar to that of the proof of Theorem (a). We have

Assertion. The image of ¢ contains the elements
8x,, +decomposables, if n+1=2/ f>1,

4zx,, +decomposables, otherwise.

(3) The ring structure of MSp* (pt)/Tors as well as MSp* (pt)
is of course unknown, and it is very interesting to study the divisibility
relations between elements of Ayy=¢(Axs,). For this purpose, we can
use the various formal groups by Lemma 3. For example, (a) using the

formal group
hyeFy(u,v) =exp(log u+log v)
over H(MU)=n,(H N\ MU) where h: 1 (MU)—H,(MU) is the Hure-

wicz homomorphism, and the corresponding @, and @, we get the ring
}IVH,\MU“\/’/TMU, and (b) using the formal group Fg of MSO*(), we get
A MSO%/TMU-

The latter has an advantage that the formal inverse of Fg is given by

to(T)=—-T ie. Fo(T,—T)=0 (see [2])
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so that #z = —#® and vT= —v*; hence the computation of @, and 6, be-

comes easier.
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