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Pseudoconvex Domains on a Kihler Manifold
with Positive Holomorphic Bisectional Curvature”

By

Osamu SUZUKI*

§ 1. Introduction

Let M be an n-dimensional complex manifold with a real analytic
kihler metric. Throughout this paper, a kihler manifold is assumed to
have a real analytic kihler metric without mentioning it. A relatively
compact domain D in M is called a pseudoconvex(resp. strongly pseudo-
convex) domain if there exist a neighborhood U of p and a pseudoconvex
(resp. strongly pseudoconvex) function ¢ on U satisfying D) U= {p<0}
for each boundary point p=0D. We write simply s-pseudoconvex do-
mains (resp. functions) for strongly pseudoconvex domains(resp. functions).
Note that pseudoconvex domains are not always Stein manifolds.

The purpose of the present paper is to show the following theorem:

Main Theorem. If M admits a kihler metric with positive holo-
morphic bisectional curvature (see, Definition(2-7)), then pseudocon-

vex domains are always holomorphically convex.

For the definition of holomorphic bisectional curvature and its basic
properties, see S. I. Goldberg and S. Kobayashi [2].

Since the holomorphic bisectional curvature of the Fubini-Study met-
ric of the complex projective space P" is positive and P" admits no ex-
ceptional sets in the sense of H. Grauert [5], we find that pseudoconvex

domains in P" are always Stein manifolds, which implies the result of
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R. Fuyjita [1] and A. Takeuchi [8].

We shall prove our Main Theorem by using the variations of arc
lengths which are well known in Riemannian Geometry (see, Lemma (2, 3)
in §2) and by using a nice property of real analytic kidhler metrics which
is essentially due to A. Takeuchi (see, Lemma(2,10) in §2).

For a point p€ D, we set

d(p)=infd(p,q) and ¢(#)=—logd(p).

The essential step in the proof of Main Theorem is the following
Lemma (for the proof, see §4):

Key Lemma. Let D be an s-pseudoconvexr domain whose bound-
ary is a real submanifold in M. Suppose that the holomorphic bisec-
tional curvature is bounded below by a positive constant 0. Then there

exists a positive constant 0* such that
W(p)=0/8 for pED;,

where W(p) means the infimum of the eigenvalues of the Hessian of
¢ on Dy and D;={pcD:d(p)<0}.

By this Lemma we prove our Main Theorem in § 5.

The author understands from Professor K. Saito that Professor G.
Elencwajg has announced a similar result at A. M. S. Summer Institute
1975 (Williamstown). The present work was done independently of this.

The author would like to express his hearty thanks to Professors
S. Nakano, H. Komatsu, S. litaka, A. Takeuchi and K. Saito and Mr.
H. Omoto and Mr. T. Sasaki during the preparation of the present paper.

§ 2. Variations of Arc Lengths and Real Analytic
Kihler Metrics

First we consider a Riemannian manifold M. We follow notations
in S. Kobayashi and K. Nomizu [7]. For vectors X, Y we denote their
symetric inner product by ¢ (X, Y). Connections, covariant differentiations
and Riemannian curvature tensor are assumed to be induced from the

inner product ¢ in a canonical manner. To state the theorem of Synge,
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we prepare more notations: Let N and P be two submanifolds in M and
let » and ¢ be two points in N and P respectively. Also suppose that
a geodesic curve 0 between p and ¢ is given. A C”-mapping ¢ from a
rectangle [—e, ] X[, 8] to M is called a variation of 0 between IN
and P, if the following condition is satisfied: For any fixed §€[ —¢, €],
¢(§,2) gives a parametrization of an arc C, between N and P and espe-
cially when £§=0, ¢(0,2) gives a parametrization of 6. We want to
know the values of the first and the second derivatives of arc length
of C; at §=0. By D(§) we denote the arc length C,:

LA
D@ = [l vl

where [[¢(&, #)| is the length of the tangent vector ¢(&,2) of C; at
(&,2). We set

X=¢5x (D)) and Y=¢4(Dy),

where D;=0/0t and D,=0/0§. Let {U} be a local coordinate covering

on some neighborhood of ¢ whose local coordinates are denoted by z,

x% +--, ™. Suppose that Y is expressed as

y=317"% oy on U.
i=1

ozt

We define 7, Y (=1,2) by

. LS OYE 0 0 yp sy O
(2 1) VDIY—AEL ot ax" ¢,+i,§=1 ot Y]-'tj ¢al'k ¢’7

_3n 0
(2-2) 171,,Y—’§1 & ot LiF=1 pE

where I'f; is defined by

V(ﬁ/azi) (#;) ZZ rfj 0

ox*

Now Synge’s formula is stated as follows:

Lemma (2:3). (The first and the second wvariations of arc
lengths) Suppose that |j(0,2)|=1 for each t. Then we obtain

@ DO)=9XY)¢(0,0)]z,
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8 ~
@ D= [9057.75 D) 40,04

- [ ®@, )X, ¥) 00, 0d+9075,Y, )60, 12,

where Y=Y—¢(Y, X)X

For the proof of this Lemma, see D. Gromoll, W. Klingenberg and
W. Meyer [6, Satz, p. 122].

In what follows we restrict ourselves to kidhler manifolds. Let M
be a kidhler manifold whose metric is denoted by

(2-4) ds*=23] g.zdz®-dz* .

As stated in Introduction, we assume that ¢,z (o, §=1, 2, -+, #) are real
analytic functions. In a canonical manner, M may be considered as a

Riemannian manifold by the following metric:

ga,;=g< 0 0 )

9z% 9z°/"
By definition, we see that
9os=025=0, Gap=0ae and Goz=0z..
When we say connections or Riemannian curvature tensors, we mean
ones which are induced from the above metric by the canonical way.
By J we denote the complex structure of M.
We set
=z —1y%, F=2—+—1y"

and

S HE T )

J(.2) =ai“ and J(aiya) -7

In terms of holomorphic coordinates 2!, 2?% -+, 2", connections and some

We infer that

of Riemannian curvature tensors can be expressed as follows (see, S.

Kobayashi and K. Nomizu [7,1I,P. 157]):
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(2 . 5) i .73 ageﬂ

gaﬁ sr agae . agﬁr
rle 0z 6z’

where |g*f| denotes the inverse matrix of |g,z|. We see that

(2 : 6) Kaﬁﬁ = KTFaﬁ =- Ka/?Fr = Kﬁaﬁ s Kaﬁrb‘ = Kaﬁ?ﬁ .

Definition (2:7). (1) The metric (2-4) is said to have positive
holomorphic bisectional (resp. positive sectional) curvature if there exists
a positive constant o for every point p in M such that the following

inequality holds for every pair of vectors X, Y&T,(M):
(2-8) JREY, XX, Y) +9(R(Z, X)X, Z)
209X, X)-9(Y, Y) —9(X, )} +{9(X, X) -9(Z, Z) —g(Z, X)*} ],
where Z=J(Y),
(resp. g(R(Y, X)X, Y) =0{9(X, X) -¢(Y,Y) —¢(X, ¥)*}).

We prepare two lemmas on real analytic kihler metrics. The first
lemma is a slight generalization of Lemma 2 in A. Takeuchi [9, p. 333].
By using this lemma we prove the second lemma, which will be used in

the proof of Key Lemma.

Lemma (2:9). For any point p€ M and for any positive con-
stant C, with C,>1, there exist a neighborhood V(p) and a positive
constant 0% such that for any point q=V(p) and for any geodesic
0 through q, there exists a system of local coordinates 2*, 2%, -+, 2" on
B;:(q), where B,(q) ={peM:d(p, q) <0} and Bn(q) denotes the clo-
sure of By(q), satisfying the following conditions:

(D 0 is expressed as follows: Im 2'=0, 2?=2'=...=2"=0,
(2)  20u5=0ap+ 2 2Kopa (0)2'2 +--0on By(a),

(3 2¢9;,1=1 on 0,

(4 [20.41<Co and |4g°*|<C, on Bp(a),

where || f| is defined as follows: For a real analytic function f with
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F= 2 @iiytns i dn @) @) (@Y

we define

1 l=20 15,05, ()7 (202 (7))

The proof is almost the same as that of Lemma 2 in A. Takeuchi [9].

By this Lemma, we prove the following Lemma:

Lemma (2:10). (i) For any point p and for any positive con-
stant C, with C,>1, there exist positive numbers 0, 0, and a neigh-
borhood V(p) such that for any point q< V (p) and for any geodesic 0
through q, there exist a local coordinate neighborhood U(p) and a

1

system of local coordinates 2, 2%, -+, 2" on U(q) with following prop-

erties:

(0)  Bi(q) CUsn(z:9) C U, (2: @) cU(a),

where U, (z:q) ={(2, 2, -+, 2"): |2'| <0, |2*| <0, -+, |2"| <7},
1) 0 is expressed as Im 2'=0,2?=2*=...=2"=0(,

@ 20 =0us+ 3 2Kazs ()2 + -+ on Ty (2: ),

(3) 29,;=1 on 0,

@) 120.51<Co and |4g¥|<C, on Us,(2: q).

(ii) For any relatively compact domain D in M and for any
positive constant C, with C,>1, there exist positive constants 0, 0,
0,2, -+, 0™ such that for any point p=D and for any geodesic @
through p, there exist 0, and a local coordinate neighborhood Us
(z:q) satisfying (0)~(4) in (i) with respect to a certain system of

n

local coordinates 2, 2%, -+, 2"
Proof of (i). We choose a system of local coordinates w,, w,,

-, w, at p and by ¢,; we denote the metric tensor with respect to

these local coordinates. By A. Takeuchi [7, p.329] we can find a

neighborhood V(») and a system of real analytic functions 4,(w) (7,0

=1,2,:--,n) on V(p) such that

;gaﬁlarmzars on V(p).

3 1
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Take an arbitrary point g in V(p). We set w;(q) =¢; for 1=1,2, -+, n.

We define a system of local coordinates 2./, 2,’, -:-, z,” by
= ’
wd——Cazszl ]\,1525 f01‘ a:l’ 2’...’ n.

Now setting

w
o’ (@) rig o, 7i 7% _ .
Up=2,+2 2. foi i) 2 ez (@=1,2, -, 7),

£=2 iy +igttin=k

we can determine {8{, ...} uniquely so that they satisfy the condition
(2). Moreover, after A. Takeuchi, we may assume that u,, u,, ---, %, give
local coordinates on By (q) (see, Lemma 1 in A. Takeuchi [9]).

Now we choose a constant 0, so that U;,.(#: ¢) CBy(g). We denote
the supremum of such &, by 8,"(q). Then letting 0,” = infoe, 00" (@), we
see that 0,”>0. Next we choose an arbitrary geodesic ¢ through gq.
We choose a unitary matrix |a;,;] and a system of local coordinates #,”,

u, e, u, with

u,-' =

M-

4 &, jU; (i=1)2s"'sn)

7

[
i

such that the tangent vector of ¢ at #,” =0, u,”’ =0, -+, #,” =0 is normalized

as follows:

%(0):1 and L;”; ) =0 (=2, n),

where s denotes the length of 6. We infer that Uj.m»(#': q) cB;.(q9)
Owing to the real analyticity of the metric tensor, ¢ can be expressed

as
u; =kZ; a;,s* (=1,2,---,n).
Replacing s by 2!=s++ —1¢ in #’ and using the implicit function theo-
rem, we obtain
(2-11) 2 =g w’).
Set
2=pw"), 2=u’, -, 2"=u,.

Then we get again a new system of local coordinates on By (q) satisfying
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(1)~ (3) (see, section 5 in A. Takeuchi [9]). With referrence to the
univalency of (2:11) and du,’/dz'(0) =1, we see that U;, (z: q) CBs(q),
where 0,=0,"/4n. Then there exists a constant ¢ such that Bs(q) C U,
(z:q). We denote the supremum of such § by 0(¢). Then we see that
0=infyc, ;0 (q) is positive. So we see that 27, 2% ---, 2" satisfy (0)~(3).
Finally making V(p) smaller, we can staisfy (0)~(4). This completes
the proof.

Proof of (ii). For each p€D we choose V(p) and 0(p), 0, (») by
using (i). We can cover D by {V(p)} (i=1,2, -, N). Letting 0,?
=0,($;) (=1,2,--, N) and 0 =min §(p;), we see that 0, 0,, 0,?, -, 6™
satisfy the condition in (ii).

In terms of the real coordinates x', 3!, :--, ", ", we denote connection

coefficient I'%; by

V asaz <8§:’> =}é ri f% +§1 rﬁka—i; ,

Vorazy <0§”> =,§n1 ”’.wi% +é F?,:’ijaiyk ,

V oraue <6§:’> =z¢2:1 rﬁu,j% +k2:1 rﬁiﬁjaiy,, )
) <aay’> =é Fﬁ+i,n+1£7+é rﬁif,nwé%; .

Because the connection is induced by the metric, we see that I'% =I5,
for 7,7, k=1,2, .-, 2n. Also we have

P o/0s) <0iyf> =J <V (/920 <ai,>>

and

V asoxty <aij> =V os0z) <%>, V o700 <8iyj> = VWM‘(%)'

By these relations, we obtain

& —k P _ ntk k _ &
Finej=—T7%35 Tawgne;=—T2lisp Tapine;= —Ii;

(2-12)

+k __ 1% +k Tk n+k . __ Tntk
r:{"+i"ri,i’ rz+i.n+1_rn+i.j9 n+i,n+j5 ri,j .

Recall that ¢ is a geodesicc. Then with reference to (1) in (i),
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Lemma (2:10), we see that

(2-13) I'ii=0 and I'{,;;=0 on ¢ (j=1,2, -+, 2n),
and that

0 0\ _ 0 0)\_
(2-14) g<5;,5?>—1 and g(@,w_)_o on .

We prepare two propositions which will be used in the proof of
Key Lemma (see, §4):

Proposition (2:15). Let D be a relatively compact domain and
let C, be a positive constant with C,>1. Suppose that for a point
peD, a geodesic ¢ through p is given. We choose local coordinates
as in (i), Lemma (2-10). Moreover, suppose that ¢: R—M is a
mapping defined by z'=t,2*=0, ---,2"=0. Then we have

o) g<aif - 0 )e=04s+2Re Kyur(0) -£+0(8),
) g<aaf’a 2 Yop=21Im Kyu(0) -+ 0 (&),
3 I'fjop=2Re K1, (0) -2 +0(2),

]"g'j,"ogﬁ =2Im Kﬁﬁj 0) -+ o (tz) ’
(4) by (2-13)
Re K;1::(0) =0 and Im Kj;:(0) =0

These follow from

(e 5) = Vo 520 9 )

)= Pl 2) - )

Il

Il

and

V(a/azi)<ai> Z el'¥— 0 -LZIm]”" 0

k=1 ‘ox* oyt

The terms O(#*) and O(#*) can be estimated in the following



200 OSAMU SUZUKI

Proposition (2:16). Let ¢ be the mapping given in Proposition
(2-15) and let Oy=min;_y .. 5 0,”. Then we have
(1) Suppose that g(0/0z,0/0x") cp=¢™-G(t), where G(t) is a real

analytic function. Then we obtain
IG(®)|L2C0,™™ for t with ¢(t) € B;(D),
(2) Suppose that g(0/0x',0/0y?) cp=1t"-G’'(¢), where G'(t) is a real
analytic function. Then we obtain
|G’ (2)| Z2C0,™™ for t with ¢(¢) € B;(®),
(8) Suppose that 0/0t(gd/0x',0/0y) cp=2t™-G"(t), where G"(t) is

a real analytic function. Then we obtain

|G” ()| <C(m)Coby™ ™" for t with ¢(t) € B,(p),
(4) Suppose that I't ;0¢0=t"-G"(t), where G"(t) is a real analytic
Sfunction. Then we obtain

[G" (£)| ZnC(m) Cy?0,~ ™" for t with ¢(¢) €B,(2),

where C(m) =4™*%.3=™1,

Let
2005 = 23 Gyt 3odn @0 (@
Then owing to (4) in Lemma (2-10), we find
[@spgn (@) @V SCo| (/0020 (27/0:9)"| on Uy, (2: 8).

By using (0) in (ii) in Lemma (2-10) and the definition of 0,, we obtain

the above estimates.

§ 3. Some Propositions Concerning Pseudoconvexity

In this section we summarize some propositions concerning pseudo-
convex functions and pseudoconvex domains. Let 2%, 2% ---, 2" be a system
of local coordinates on some neighborhood of p and let L be a complex
line through p which is parametrized as

n

L:2'=al,2"=a,d, -, 2"=a,l,

where |ay |+ | @)+ - + |aa|>=1.
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A function ¢ is called a pseudoconvex function on D, if for any

point p& D and for any complex line L,
1 (= . .
s <L J 0(ré")d0 where 1=re”.
21 Jo
In what follows we write
1 2T <0
o @ = [To e an.
2r Jo
When ¢ is a function of C’-class, we find that
4¢(0) =4 lim Urp (@) —0(0)
70 7"2 ’
where

%

do=4 — .
LR YTy

Hence if ¢ is a pseudoconvex function of C’-class, we see that 4p=>0
holds everywhere. More generally a necessary and sufficient condition
that ¢ is a pseudoconvex (resp. s-pseudoconvex) function is that
(3-1) W (p(£)) =4 inf lim inf #r2@) —¢(0)
L r—0 7
is non-negative (resp. positive) at every point p in D.
The following theorem is well known (for example, see H. Grauert

[41):

Theorem (3:2). If D is a relatively compact s-pseudoconvex

domain, then D is holomorphically convex.

Let D be an s-pseudoconvex domain whose boundary is a real sub-
manifold in M. Take a point p& D near the boundary. Then we may
assume that there exist a boundary point ¢ and a geodesic 0 between p
and ¢ which attains d(®) =d(p,q). So there exist a local coordinate
neighborhood Uj;, of p and a system of local coordinates 2, 2% -+, 2" which
satisfies (0) ~(4) in (i) in Lemma (2-10).

Then we can prove the following Proposition, which will be used
in § 4. For the proof, see A. Takeuchi [9, Lemma 3, p. 338]:
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Proposition (3:3). There exist a holomorphic function §(2°, 2°,-+-,
2™ on U and a divisor S through q,
S:{z'=3(=% 2% -+, 2™}
such that

SND=¢ and SN0D={q}.

Now we consider a general pseudoconvex domain D. Let p, be a
boundary point and let U(p,) be a Stein neighborhood. Then D\ U(p,)
is also a Stein manifold. Hence there exists a sequence of domains in
DNOU(py), 45, j=1, 2, ---) with the following property: (1) 4;€d;s1, UF-14;
=U(p) ND and (2) 4; is an s-pseudoconvex domain whose boundary is
a real submanifold in DN U(p,).

We infer the following Proposition:

Proposition (3+4). For any point p,c0D and for any neighborhood
U(py) there exists a relatively compact neighborhood V(#,) in U ()
satisfying

dip)= inf d(p,q) for p&V(py).

9E(@DNU (po))

For the proof, see H. Grauert [3, Hilfsatz 9, p. 69].
Take an arbitrary point p in V(p,). Then there exists an integer
i, such that pe4; for i=7,. We set

(3:5) di(p) = inf d(p,q) and ¢;(p) = —log di(p) for pE4;.

qEo4;
Then we see that
d;(p) <d;+1(p) and d;(p) >d(p) (j—o0),

and that

@i (P) >@i(P) and ¢;(P) »p(®) (j—00).

We note that if ¢; is a pseudoconvex function (resp. W(¢;) =c>0) for

i=>1,, then ¢ is also a pseudoconvex function (resp. W(¢)=c).

§4. Proof of Key Lemma

We shall prove our Key Lemma stated in Introduction. Let D be
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an s-pseudoconvex domain whose boundary is a real submanifold in M. Take
a positive constant C, with C,>1. By (ii) in Lemma (2:10), we can
find positive constants @, 0,”, 0@, ++-, 0. As in Proposition (2-16), we
define 0, Choosing ¢’ (0’<(0) very small, we may assume that the
following condition is satisfied: For any point p& Dy, there exist
a point g€0D and a geodesic 0 between p and ¢ satisfying d(p)
=d(p,q).

Now we take a point p in D;. Then we can find ¢ and ¢ as above.
By (ii) in Lemma (2-10), we choose a system of local coordinates 2', 2%+,
2". Letting d(p) =I, we see that [<{0. To get the estimate W(g) on
D;., we construct another simple variation of ¢. Let N be a complex

line through p and its holomorphic parametrization is given as follows:
(4-1) N:2'=a,d, 22=a,k, -, 2"=a,k,
where la) >+ |asi®+ - +aa|*=1.
We write A=&++/—17.

Choose a divisor S: {'=8(2% 2% -+-, 2")} through ¢ as in Proposition
(3-3). By the choice of the coordinates, we find 2'(g) =I and

4-2) [=Rep(0,0,--,0) and 0=Im (0,0, ---, 0).

Consider a holomorphic variation ¢y of ¢ between N and S, ¢:D
X [0,I]>M as follows, where D is a small disk:

2= (1 — %)all -+ —;"8(421, 431’ Tty d,.l)
4-3)

2=a,l
2" =a, 1,
where we say a holomorphic variation ¢ of ¢ if ¢ is a holomorphic

mapping for every fixed £. Then the real representation of ¢(§, 7, £) is

given as follows:

.2:1: (1—L>Re(a1, l) +.£_ Re B(azl, asi’ "‘,anl),
l l
(-2 .
9 )Y —(1 Z)Im(alzl) +2 ImB(at, aid, -, @),

x*=Re(a;})
(#=2,3,--,n).

y'=Im(a;1)
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First we show
(4-5) 1$.0,0, £ =1

In fact, by (4-2) and (4-4) we see that (0,0, ) =8/0x"¢(0,0,t).
And by (2-13), we prove the assertion.

Next we set
X=0¢x (D)), Y=¢x(D:) and Z=, (Ds),
where D,=0/0t, D,=0/06 and D,=0/07. Then X,Y and Z can be

expressed as follows:

(4-6) X= {—_Re (@) T_ Re 3}_3_

ox!

+ {—7Im(ax/1) +71m 8}56‘—~

-7 Y={(1—-3—>Rea1+—§—01;26}il+{<1—Z>Ima1
+%%@}W+§2Rea15—+21ma,a{i
Z= (1—_’2_ (—Imal)+%a§;5}%+{<1—§>Real
+_§-a_lar%§}%+i2;(—lma,) ai-i-;lReaiF

Because ¢ is a holomorphic variation, we find that
(4-8) Z=J(Y).
Now we set
D@m= (0@ n0lde and ¥(&n)=—log D*(&).
We shall calulate
4 (0, 0) = <%+a—z)( ,0).

For this we first calculate 9*¥/9¢?(0,0) by using
1 (aD* 1 (¢°D*
P00 =7 () 0.0 -7 (25 0.0,
Referring to (4:5), we can compute 0.D*/9£(0,0) by Lemma (2-3) and
we obtain
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0,0 Y, X)o¢(0,0,2).
a5( ) =9(Y, X)°¢(0,0,2)]

Putting X and Y into ¢(X,Y) by (4-6) and (4-7) and using (2-14),

we get

—_(1_ 0Rep
7(X,Y)o4(0,0,2) (1 7)Rea+7 =20

n

Z] eaig< 9

Py .z:1> o¢p(0,0,2)

+ZIma,¢g<aa xl>o</)(0,0,t).

i=2

By (1), (2) in Proposition (2-15) and (2:6), we see that

g<aa€,_) $(0,0,2) =2Re Ku(0) -£2+0 () (i=2,3,,7),

I ot 5) 90,00 = ~2Im Ken(0) £+ 0() (=2,3, ).

Moreover, by (4) in the same Proposition, we find K;;;:(0) =0. There-

fore we get

g(aaf,a 0)04(0,0,6)=¢*G, and g(

1) ¢ (Oa 0’ t) =t3'Gn+i
.2:

Hence by (1), (2) in Proposition (2-16), we have
1G] =2C0,™° and |G, <2C0,"° (1=2,3, -+, n).

So we obtain
) oD* _(0Ref _ oy, B
(4-9) .0 _< ~80,0) ~Re al>+M -2,

where
MO D) =4(n—1)Cods".
Also #*D*/9¢%(0,0) can be computed by (ii) in Lemma (2-3) as
follows:

OD

@10 T0,00= {005,775 —g R, X)X, ¥)}24:(0,0, )t
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+g(VD2Y7 X) °¢(O, 0, t)l(l) .

The first term in the left side can be computed as follows: From (2-1)

we infer that
(75,)0¢4(0,0,8) =P, {Yo(0,0, 2)}.

By using Xo¢p(0,0, £) =0/0x'2¢/(0, 0, £), we see that

Po40,0,0) =~ (Y1 Re g (2, 2)040,0,)

:29(0,0,2)

+iZ;Ima,- <aal, > oh (0, t)}

0
o)(0, 0, ¢
ayl ¢( s ’ )

+iRe a; 0 °¢(0,0,¢) +iIm a; 9 0¢y(0,0,2).
iz oxt i=2 dy*

Also by (4-4) and (2-14), we have
O (249 (0,0,)) =6,; and L (3%04(0,0,#)) =0
at i} at ’ ’
(i=1’2y"')n),

F{,1°¢(0, O’ t) =rlj,n+l°¢(0’ O) t) =0 (-7:1, 2; Ty 2”)
Hence defining U? and V* (:=1,2, ---,n) by

0.9)4(0,0,8) =3 U9 04(0,0,8) + 32 V-2 24(0,0,2),
i=1 ox i=1 0y*

we obtain

o= girenrd o )00

. 0o 0 }
2 )0¢(0,0,¢
~mimey, {g<a v 03:) $(0:0,2)
+ g Re a;I'} :2¢(0, 0, 2) +;"2 Im a1 4409 (0, 0, 2)

=1;22 Re atrf_io ¢(O, O, t) -+ 22 Im ai]"f,,_,,iogb (O, O, t)
= i=

(k=2, 3’ .'.’n)’
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VI={_%1mal+%“a‘§5}+iz:;Reai 15%04(0, 0, 2)

T 22 Il’l’l airijﬁi—io(b(oy O’ t) >

VF=31Re al1i*¢(0,0,2) + X Im al Tit109.0,0,2)
(k=2,3,---,n).
By (3) in Proposition (2-15) and (2-12), we see that
I'ti%¢(0,0,2) =2 Im Kqp; (0) -2+ O (&),
154:00(0,0,2) =2Re K1 (0) -2+ 0 (2%).
Moreover, by (4) in Proposition (2-16) and (2-6), we see that Kiy;(0)

=(0. Hence we obtain

Vis {—i Imal+la__1m3} + V@,
l [ 0¢

Vi=V,®.t (1=2,3,--,n),
Ui=U®.t (i=1,2, -, 1),

where V;®, V;* and U, are real analytic functions of . By (3), (4)
in Proposition (2-16), we see that

V,® <2r(n—1)C(2)Cy0,*,
[Vi®=2n(n—1)CA) G0, " (i=2,3, -, n),
|UP|<{2n(n—1)C(1) C+2(n—1)C(Q) Ci} 6,2,
U1 <2n(n—1)CA)CF 6,7 (i=2,3, -+, 7).

In the same manner as in A. Takeuchi [9, p. 343], we have
08 0.0,.-,0) = —29::(q) for i=2, 3, n.
0z

Therefore, by (4) in (ii), Lemma (2-10), we obtain

(4-11) %&1%) ~Ima |1+ (- 1Gi,

[OReB ) _Im g,
08 |

<1+ (»-1)C,.
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Hence we obtain
f 005,,75,9)0(0,0,0) de = <a Im 8 0y _Im a,> LHQ) L,

where |H(D)|<M® and M® is a constant which depends only on C,
and 0.

Next we compute the third term in the left side of (4:10). By
(2-2) and (4:7) and by using 8/0&(x'o¢) =Y* and 0/0&(y'o) =Y,

V5, Y can be expressed as follows:

Po¥Y=31V2 0400,0,8) + W2 00,0, ),
=1 gzt =1 oyt

where
2
Vie ; a§;3+ ;j YiY? I 1060, 0, 2)
2
‘=—§— ggf + 2 Y7 I3506(0,0, 2)

2n
7t= 2. Y'YIT'i;04(0,0,2)
i,j=1
(k=2’ 3’ 7”)

W= 3 YY'I13*4(0,0,2)

By I';,10¢/(0,0,0) =0 and I'},4,10¢/(0,0,0) =0 for j=1,2,-:, 2n (see, (3),
(4) in Proposition(2-15) and also (2:6) and (2-12)), we have

g7, X) o (0,0 ¢)|o_0§eﬁ( )+ ZReaiRea,F 106(0,0, 1)

i,j=2

+ Z Re ai Im afrtn-ﬁjo(/)(o; O’ Z)

i, 7=2

+i;21m a;Re a;I.4,;°¢(0,0,10)

+i;21m a;Ima;l 0 500(0,0,0) + H () - 12,

where |H' ()| <M® and M® is a positive constant which depends only

on Cy and 0,. This follows from (1), (2) and (4) in Proposition (2-16)
and (4-11).

Hence we obtain
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8 D* _1(@Imp 0'Re B
asz(’) <8$ >+a$2()

—ﬁmmmXEWt

+ Zn‘,Re aRe a,T%,26.(0,0,D) + ZRe @ Im a,T% 0y 060, 0, 1)

i, §=2

+ Z Ima;Re a;514,;°¢(0,0,0) + 3 ImaIma,; 7 0 509(0,0,0)
i, j=2

4722
+H” (l) I ,

where |H” (I)|<M® and M® is a constant which depends only on C,

and 60.

In the same manner as above, we compute 0°% /97°(0,0) as follows

oY 1 1 OD
5 00 =5a(7) 00 -7, Z 0.0,

where

9 D* _[0Ref CTen s
2% 0,0 =( o +Im @) +J Q) -2

and

D% 0,00 =2

0Imp ? 0Ref
o : <—a77 Re al> +o O

- [v®@z x)%,2)gar
* -ﬁil‘lm a;) (—=Ima)) I,;°6(0,0,1)
+ 32, (~Im a) Re a)) [huiso$ (0,0, 1)

L

+ .;2 (Re (l,;) (_Im ai) r:lf-}-i,fogb(()’ O’ l)

l
i

LT,

' (Re a;) (Re a;) Iviynr 09 (0,0,0)

2

%M=

where [J(D)|<M® and |J (1)|<M® and M®, M® are positive constants
which depend only on C, and d,.
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Therefore by using (4-11) and | (@ Re 3/0%) +Ima,| <(n—1)C,+1

again, we obtain

4% (0,0) =_;;{(%(0, )+ (06%*(0, o)} _%{0515)2* ©,0)

6'D*
or*

=%{(01;;3(0, 0) —Re a1)2+ <01;;B(0’ 0) +Imal>2}

+

©,0}

_%{@—?gﬁ(o, 0) ~Ima) + <%—§(o, 0 _Re alﬂ

__}_{(32?_;3(0, 0) +Q%%§(O, 0)}

{ $1Re aRe a, (% + Thigns) 0,0,

o~

—I—iZ2Re a; Im aj (['ﬁ,m.j—~r:.+i,j) 0¢)(0, 07 l)
vi=

Im a; Re ay (.riwi,j - },n+j) °¢(09 O’ l)

2

+

A

s

+

ML

Im a; Im a; (r};+i,n+j"'r1%,j) °¢(Os 0, Z)}

2 2

+_}_ J;’{Q(R(Y, X)X, Y) +9(R(Z, X)X, Z)}¢(0,0, ) dt

+M(Q) -1,

where |M(D)| <M and M™ is a positive constant which depends only
on C, and §,.

Because 8 is a holomorphic function, we see that

0Rep_0Im§p and 0Rep_ _0Imp
0 o7 97 0¢

Also by (2-12), we have

1 1 1 1 —
ri,]+rn+i,n-rj:O and I, ;= ine; =0,

Hence all the terms except the last two ones cancel out. Thus we

obtain
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Lemma (4+12). There exists a positive constant M which

depends only on C, and 0, such that
4% (0, 0) —-——j‘{g(R(Y X)X, Y)+9REZ, X)X, Z)}o¢(0,0,8)dt
+F)-1,
where |F(1)|<M®.
By (2-8) and (4-8), we have

(4-13) f{g(R(Y,X)XJ)+g<R<Z,Jox,Z>}o¢<o,o,t)dz:
zp[ L‘{g(x, X)g(Y, Y) —g(X, Y)% (0,0, £) dt

+ f{g(x, X)g(Z, Z) —g(X, Z)* o$(0,0, 2) dt].

The integrands in the left side can be estimated as follows: By ¢g(X, X)

=1, we have

{g (X’ X)g (Y, Y) _g(X’ Y)Z} °¢(07 O: t)

={<1——§—>Ima1 76—“;5} -{-Z(Reai)z-i-Z(Ima)z—FH(t) £,

where |H(2)|<M® and M® is a positive constant which depends only

on Cyand 0, In the same manner, we have
X, X)9(Z,2) —9(X,Z)}¢(0,0,12)

:{(1— l)Real—}- ’; f”a‘;ﬁ} +Z(Rea)2+2(lmai)z+H’(t) £

where |H' ()| <M® and M® is a positive constant which depends only
C, and 0,. By

L ot t almﬁ}z -1 .
L{(l 7)Imal—x————— dt___4(lma1) s

R
f {(1 —§> Re a; _;_ Q%} ar>L L®eay,

the right side of (4:13) can be bounded below by the following:
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Y ” 2
vy +H” () -1,

where |H” ()| <M™ and M" is a positive constant which depends only
on C, and 0,.

Finally we obtain
(4-14) 4% (0, 0)2% +H" ()1,

where |H” (I)|<M?* and M#* is a positive constant which depends only
on C, and 0,
By (4:14) we prove our Key Lemma. We choose 0* by the follow-

ing condition:
0* =min (0/8M*, 0).

Take an arbitrary point p& Dj.. Then as we stanted in the beginning of
this section, we can find a point ¢&0D such that d(») =d(p,q) and a
geodesic between p and g, which is denoted by 0. We choose a system
of local coordinates 2%, 2% -, 2" on U, (z:p) asin (i) in Lemma (2-10)
and a divisor S through ¢ as in Proposition (3-3). And for any complex
line N, we construct a holomorphic variation ¢ of ¢ as (4-3). Then

for any point & N, we see that
d(r)<D*(r) and d(p) =D*(p).
By the choice of §%*,
4 (p) =0/8.
In view of ¢(r)=—log d(r) and ¥ (r) = —log D*(r), we have
¢(r) =¥ (r) and ¢ () =¥ (p).
Therefore by (3-5), we have
dg(p) =4¥ (p),
which proves by (3:1) that
W(g(#))=0/8 for pE Dy

This completes the proof.
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§ 5. Proof of Main Theorem

Finally we prove our Main Theorem. Let D be a general pseudo-
convex domain on M and let C, be a positive constant with C,>1. Take
an arbitrary point p€0D and a geodesic through p. Then by (i) in
Lemma (2:10) we can choose neighborhoods, V(») and U, (»). Making
V(p) smaller, we may assume that Proposition (3-4) holds for V(p)
and U, (). By using (i) in Lemma (2:10) again, we choose V(#) and
U,,(p) for every p& D, where we assume that especially when pE0D,
V(p) satisfies the above condition. Then there exist {p;} i=1,2, -, N
such that UY, V(p;) D D. Then setting § =min;_y,5,.., 50" where 0 is chosen
as 0in (i) in Lemma (2-10) at p;, we see that 0, 0,, 0,%, ++-, 0™ satisfy
(ii) in Lemma (2-10), where 6, is chosen as 0§, in (i) at ;. Here we
may assume that there exists a subset {p;};=1,,.., such that every p; is
contained in 8D and J;_;V(#;) D0D. By M™ we denote the positive
constant which is determined by C, and &, in (4-14). We define 0* by

0* =min(0/8M*, 0",

where 0’ is defined by the same condition as in the beginning of § 4.
Making 0* smaller, we may assume that DnC .,V (p;). Choosing a
point p&D;. We assume p= V(p;). As in § 3, we choose a sequence
of domains {4;} of U, (Z:p) ND. Then there exists an integer j, such
that pE€4; for j=j,. As (3-5) we define d;(r) and ¢;(r) for r&d4;,
By the choice of 0%, we see that d;(r) <0* for r&4; N D,. So by Key
Lemma, we find that

W(g;(#))=0/8.

As in the end of § 3, we see that ¢;(p) >¢i:(p) for i=j, and ¢;(p) —
@(p). Therefore we obtain

W(p®))=0/8,
which implies
W(p(®))=0/8 for pE D..

Then By Theorem (3-2), we prove Main Theorem.
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