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Extension of Solutions of Systems
of Linear Differential Equations

By

Takahiro KAWAI1}

The purpose of this paper is to prove some theorems on the exten-

sibility of hyperfunction solutions and real analytic solutions of systems

of linear differential equations with real analytic coefficients.

It is Ehrenpreis [2] that revealed the intimate relations between the

algebraic character of "overdetermined" systems of linear differential

equations and Hartogs' theorem on the removable singularity of holo-

morphic functions of several complex variables. In fact, the essential

part of his results can be summarized as follows: if a (generalized) func-

tion satisfies an "overdetermined" system of linear differential equations

with constant coefficients outside a compact set in Rn, then it must be

extended uniquely all over Rn as a solution of the same system. Note

that the notion of "overdetermined" system is purely algebraic and that

the Cauchy-Riemann equation, which holomorphic functions of n complex

variables satisfy, is overdetermined if (and only if) nl>2. Thus Ehren-

preis [2] has shown that the Hartogs' phenomenon, one of the most

interesting features in the theory of holomorphic functions of several

complex variables, can be most neatly explained by the general theory of

overdetermined systems of linear differential equations. See also Ehren-

preis [3], Palamodov [1], Malgrange [1], Komatsu [1], Kaneko [1],

Kawai [3], Bedford-Kawai [1] and references cited there for the further

development of the study on the removable singularities of solutions of

systems of linear differential equations with constant coefficients. How-

ever, the applicability of the methods of these works is strictly confined
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to the case of the differential equations with constant coefficients. In

fact, the results quoted above are more or less dependent on the "Fun-

damental Principle" of Ehrenpreis [1] for solutions of systems of linear

differential equations with constant coefficients and it is impossible to gen-

eralize "Fundamental Principle" to the general case of differential equa-

tions with variable coefficients as it stands, because of the celebrated

counterexample of Lewy [1] against the solvability of linear differential

equations. At the same time, in view of the importance of Hartogs'

theorem, it is highly desirable to generalize the result of Ehrenpreis [2]

to systems of linear differential equations with variable coefficients, i.e.

to find out some methods which are independent from "Fundamental Prin-

ciple" and can be used to investigate the extensibility of solutions of

linear differential equations, if possible. The present writer would like

to sincerely thank Professor Ehrenpreis for having raised privately the

question whether the generalization of this sort is possible or not. At

first sight, such a generalization might seem to require many complicated

assumptions in view of the phenomenon given by Theorem 2 below, which

nullifies the hope of straight forward extension of the results obtained for

systems of linear differential equations with constant coefficients. (Cf.

Kaneko [1]). However, the recent development in the general theory

of systems of (pseudo-) differential equations has enabled us to achieve

such a generalization in a desirable and satisfactory manner in the sense

that a sufficient condition for the extensibility of hyperfunction solutions

is formulated in a purely algebraic manner along the same line as in the

case of differential equations with constant coefficients (Theorem 1) and

that the results for the extensibility of real analytic solutions are given

in terms of algebraic conditions supplemented by natural contact geometric

conditions on the characteristic variety of the system involved (Theorems

3, 4 and 5). Throughout this paper, it is always assumed that the differ-

ential equations involved are linear and with real analytic coefficients and

defined on an real analytic manifold. In the course of the proof, we

essentially use the theory of boundary value problems for (elliptic) sys-

tems of linear differential equations developed by Kashiwara-Kawai [1],

[2], [3] and Sato-Kawai-Kashiwara [1] Chapter II and the structure

theorem for systems of pseudo-differential equations obtained by Sato-
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Kawai-Kashiwara [1] Chapter III. We use the same notations as in

Sato-Kawai-Kashiwara [1] unless otherwise stated. A part of the results

in this paper has been announced in Kawai [2].

Firstly we discuss the extensibility of hyperfunction solutions of a

system 3A of linear differential equations. Clearly Theorem 1 below gen-

eralizes a result of Ehrenpreis [3], where Jut is assumed to be with

constant coefficients and N is assumed to be a linear variety in Rn. (See

p. 346 of Ehrenpreis [3].)

Theorem I. Let N be a submanifold of a real analytic manifold

M of codimension dl>2. Assume that N is non-characteristic *with

respect to a system JH of linear differential equations "with real ana-

lytic coefficients defined on M. Then, for any hyperfunction solution

u(x) of JA defined on M—N, -we can find a unique hyperfunction solu-

tion u(x) of ^fA defined on M. so that u(x) coincides 'with u(x) on

M-N.

Remark. Note that the formulation of the non-characteristic property

is given in a purely algebraic manner in Sato-Kawai-Kashiwara [1] Chap-

ter II Definition 3.5.4. In our formulation above, the "overdetermiiied"

character of system JA is expressed in terms of the non-characteristic

property of higher codimensional submanifold N with respect to JA. In

fact, Theorem 3.5.6 of Sato-Kawai-Kashiwara [1] Chapter II implies that

&xi$M(<3A, 9?if) = 0 if a submanifold N with codimension <£>2 of M

is non-characteristic with respect to <JA, because of the trivial fact that

Sxt^N(JANy 2V) =0. Here SM (3?N, respectively) denotes the sheaf

of pseudo-differential operators defined on (a complexification of) pure

imaginary cotangential sphere bundle V — l*S*Af(-\/ —15*A^, respectively)

and 3VIN denotes the system induced from JA onto N. See Definition

3.5.4. of Sato-Kawai-Kashiwara [1] Chapter II for the precise definition

of the notion of the induced system. Note that the induced system 3/lN

is a system of linear differential equations in our case since 3/1 is so.

Proof of Theorem 1. First consider long exact sequence (1) of
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relative cohomology groups associated with <3tt

(1) 0-^Ext/(M; M, Sx) ->Ext°(M;

->Ext°(Af- N; Jk, SM}

Here SJM denotes sheaf of hyperfunctions on M.

Now recall that saying that u(x) is a hyperfunction solution of

system JA defined on M—N(M, respectively) is equivalent to saying that

u(x) is an element in Ext°(M-JV; Jit, Sx) (Ext°(M; Jtt, &x)9 respec-

tively). Therefore, in view of (1), the vanishing of Extj/(Af; <_5K, £B^)

means the extensibility of solution u(x) across N and the vanishing of

Exty°(7kf; c3K, ^JT) means the uniqueness of the extension. Thus it suf-

fices to show that Ext^0(M;^,^Jr)=Exty
1(A'';^,^jr)=0. On the

other hand, Corollary 3.5.8 of Sato-Kawai-Kashiwara [1] Chapter II

implies that

(2) Ext>'-d (AT; M^ @N} ZjExt/ (M; ^,

holds for every J, since A^ is non-characteristic with respect to c_5K and

since N is of codimension ^ in M. Here O)N/M — &N'(ZM)' (We refer

the reader to Kashiwara-Kawai [3] pp. 4^5 for the detailed proof of

the above quoted corollary of Sato-Kawai-Kashiwara [1].) Since

Extfc(jV; 3HN, SN) vanishes for &<0 by the definition, (2) implies that

Extj/(Af; 3A, .23 j/) vanishes for j<^d. Since <£>2 by the assumption, this

implies that Ext/(M; JM, $M) =Exty\M', M, $M) =0. This completes

the proof of the theorem.

Remark 1. It is obvious from the way of the proof given above

that any cohomology class in Ex1/(2\/f— N; M, .2^/)can be uniquely ex-

tended to a cohomology class in Ext/(M; <_5K, ^BM) if j<^d— 1.

Remark 2. The proof of isomorphism (2) relies essentially on the

division theorem of Weierstrass type for (pseudo-) differential operators.

(See the proof of Theorem 3.5.6 of Sato-Kawai-Kashiwara [1] Chapter

II.) One could bypass the use of the division theorem and prove Theo

rem 1 directly by the Serre duality and the existence theorem of Cauchy-
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Kowalevsky. (Cf. Komatsu-Kawai [1]) However, the author believes that

the proof employed here is the most straightforward one of the sort.

Secondly we discuss the extensibility of real analytic solutions of a

system 3A. of linear differential equations. One interesting phenomenon

in this case is the following:

It may happen that a hyperfunction solution of a system of linear

differential equations can be uniquely extended across a submanifold N

as a hyperfunction solution but that a real analytic solution of the same

system cannot be extended across AT as a real analytic solutions. (The-

orem 2.)

It is worth while emphasizing that such a phenomenon can never

be observed in the case of systems of linear differential equations with

constant coefficients. See the remark after Theorem 2.

We also give some affirmative results for systems with variable co-

efficients. (Theorems 3 and 4 below.)

Theorem 2. Assume that a submanifold N of M and a system

3A of linear differential equations defined on M satisfy conditions

given in Theorem 1. Assume that there exists a point XQ in N and

a non-zero cotangent vector ??0 at XQ such that the generalized Levi

form associated with the characteristic variety V of <3tt is non-degen-

erate and has signature (r, 0) at (XQ, V — 1%) e V — 15* Af. Here r

denotes the codimensionality of V in a complexification of V —15*A/.

Assume that 3A is regular in the sense that <£xtj(3tt, S)M) =0 for

j=£=r. Here 3)M denotes sheaf of linear differential operators defined

on M. Assume further that codim N=r. Then there exist a neigh-

borhood U of XQ and a real analytic solution u(x) of 3A, defined on

U—{XQ} such that we can never find a real analytic solution u(x)

of 3tt defined on U 'which coincides with u(x) on U—{xQ}, though

u(x) can be extended as a hyperfunction solution ofjtt defined on U.

Proof. Remark in p. 417 of Sato-Kawai-Kashiwara [1] claims that

JMN is a locally projective left S)^-Module. Since Theorem 2.3.4 of

Kashiwara [1] asserts that lim Ext^C/i; M, c_^?j/) is isomorphic to
i
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lim Ext^C/i fl^V; <3ttN, <JI>N) for a fundamental system of neighborhoods
z

{^}z°°=i of XQ in M, this implies that lim Ext^L^; JH^Jl^) vanishes. Here
i

JIM denotes sheaf of real analytic functions defined on M. On the other

hand we have the following long exact sequence of relative cohomology

groups :

(3) 0-»Hm Ex4.}(tfi; ^5 Jin) ->Hm Ext°(^; JK, J^)
z z

-»• lim Ext° ( U, - {x0} ; SA , JL ,) ->lim ExtJ,.} ( C7, ; JK , JU)

Hence it suffices to show that lim Ext^o}(L^; <_3K,o#^)=^=0. In fact,
z

the fact that lim Ext^o} (Ui ; 3&^ <JJw) ^Q combined with the vanishing of
i

Jim Ext^C/j; c3f , cJZjjf) implies that there exists a real analytic solution of
z

<_5K defined on Uto — {XQ} for some 10 which can never be a restriction of

a real analytic solution of JA defined in a neighborhood of XQ.

On the other hand, under the assumptions of Theorem 1,

lim Extko}(E7i; cSK, JLX) never vanishes if lim Ext°{;Co}(C7z; c5K, <Bx/Jlx)¥=0,
i i >

because the following long exact sequence of relative cohomology groups

exists.

(4) 0^ Hm Ext?,., (C7, ; ̂ , JZ ») -> Urn Ext?,,} (tf, ; ̂ K, ^)
Z Z

-> lim Ext°{,.} (C7, ; JA, ®M/JL^ ^_lim Ex4o} (C7, ; JH, Jlj

In fact, under the assumptions of Theorem 1, it is clear that

Ext;,0>(J7t; 3A, &N) =0. Hence the vanishing of Jim Extjro> ( C7Z ; JA.JL^
i

implies that of lim Ext^^^; JK, SM/J^M)- Further, it is easy to see that
i

Ext^o}(L/"z; JH, <Jlsf) is isomorphic to Ext^o}(L^; <3tt, SM/^N} in our case,

though we need not use this precise statement at this stage. As a matter

of fact, the way of the proof of Theorem 1 shows that Extx°(Af; Jtt, £BM}

= Extjr
1(M; Jft, SM) =0 for any closed set K in M

Therefore it suffices to show that lim Ext^o}(t^; JK, 3}N/JkM} ¥=$•
T*

To prove this fact, we resort to the fundamental structure theorem for
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overdetermined systems of pseudo-differential equations. In fact, Corol-

lary 2. 4. 3 of Sato-Kawai-Kashiwara [1] Chapter III shows that

Ext<(XOi,/^o)}(V^^S*^i;SV (X) c5K, ^ir)=^=0 under the assumptions of the
n-*-S)K .

theorem. Here &% denotes sheaf of microfunctions defined on v—IS*M

and n denotes the canonical projection from v7 — IS* .M onto M. Since TC*&M

is isomorphic to SM/<JIM, this implies that lim Ext°go} (Ui; 3tt, £BM/<JLM)
i *

=7^0. This completes the proof of the theorem.

Remark. If <_5K is a system of linear differential equations with con-

stant coefficients, Ext^o}(Af; 3tt, QM/^M) — 0 holds under the assumption

that <_5ff is a determined system. (Kawai [1] Theorem 5.2.1) This fact

clearly implies that Ext^. (Tkf; eSK, <JLw) must necessarily vanish under

the assumptions of Theorem 1. This is the reason why the phenomenon

observed in Theorem 2 has never been found for systems of linear dif-

ferential equations with constant coefficients.

In order to prove affirmative results for the extensibility of real

analytic solutions, we recall the notion of virtual bicharacteristic manifold

of a system <3tt of pseudo-differential equations which satisfies following

conditions (5)~(7). There V denotes the characteristic variety of 3A,

considered in a complexification of v7 — ~LS*M and V denotes the variety

complex conjugate to V.

(5) V is non-singular and TX*(V) fl ?V (V) =Tx>(Vr{ V ) holds for any

x* = (x, J^ly) in

(6) Vfl V is regular in the sense of Definition 3.3.1 of Sato-Kawai-Kashi-

wara [1] Chapter II, i.e. a)\vnv never vanishes on VC\V, where a)

denotes the fundamental 1-form of V — 15* M".

(7) The generalized Levi form V is of constant signature (p, q) in

a neighborhood of any point (XQ, v7 — 1%) ^ Vf] v7 — 15*M.

It is known that under assumptions (5) ̂  (7) we can find complex mani-

fold V}(y = l, 2, 3) which satisfy the following:

(8) v=v,nv,nv,
(9) Vi is a complexification of a real involutory manifold.

(10) V2 and V2 intersect transversally at any point of V2r\^/

(11) y2nV^lS*Mis involutory and regular in V — IS* A/.
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(12) The generalized Levi form of Ys is of signature (p, q) and

codim Vs —p -f q .

(See p. 523 of Sato-Kawai-Kashiwara [1].)

Now we give the definition of virtual bicharacteristic manifold of <3li.

(Cf. Definition 2.2.7 of Sato-Kawai-Kashiwara [1] Chapter III.)

Definition. The virtual bicharacteristic manifold A<XQ> v^i^ of 3A

through (.r0, V — I?y0) e Ffl V/ — 15* M is the real ((codim FiH-^codim V"2)

-dimensional) bicharacteristic manifold through (x0, v
7 — 1^0) of real in-

volutory manifold Vl fl V2 fl v
/:rl-Sf*M

A theorem which makes a counterpart to Theorem 2 is now given.

Theorem 3. Le£ 3tt be a system of linear differential equations

defined on M. Let N be a submanifold of M of codimension d>2.

Assume that N is non- char act eristic 'with respect to 3A. Assume that

3A is a regular system -which satisfies conditions (5) ~ (7) for any

point in (XQ, V — 1^0).
2) Assume that JH satisfies either one of the

following t'wo conditions (13) and (14):

(13) q^l

(14) For any point (x, ^ — \f]) in Vfl V — 15*MxAr there exists a

virtual bicharacteristic manifold A{Xt v/zif) of 3tt 'which passes

through (x, V — 1^) and contains a point (x, V — 1^

Then, under these assumptions, for any real analytic solution u(x)

of 3tt defined of M—N, 'we can find a unique real analytic solution

u(x) of Jtt defined on M so that u(x) coincides with u(x) on M—N.

Proof. In view of the following long exact sequence (3'), it suffices

to show that Ext^M; JH, JLM} =0 holds.

(3') 0->Ext/(M; Jtt, JIM) ->Ext°(M; Jit, JL^

Z) (p, q} may be dependent on the connected component of Ff) V — 1S*M.
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Further, the following exact sequence (4') combined with Theorem 1

implies that Ext/(M; Jit, JLM) is isomorphic to Ext/(M; M, & M/ ^% tr) .

(4') 0-*Ext/(M; JK, JW

Thus the problem has been reduced to the proof of the vanishing

of ExtAM;^,^/JU.

First consider the case where (13) is satisfied. Assumption (13)

implies that any hyperfunction solution u(x) of Jtt is real analytic because

of Corollary 2.4.2 of Sato-Kawai-Kashiwara [1] Chapter III. Thus (13)

trivially implies Ext/(M; JH, &x/Jlx) = 0.

Nextly assume that (14) holds. Since singularity of hyperfunction

solutions of 3A, propagates along virtual bicharacteristics in the sense of

Sato-Kawai-Kashiwara [1] Chapter III Corollary 2.4.2, there is no hyper-

function solution of Jtt which is singular only along N. This means

that Extw°(M; JA, SM/JLX} =0.

This completes the proof of the theorem.

Remark 1. As is clear from the way of the argument above, reg-

ularity condition on the characteristic variety V of <3& can be weakened.

For example, if the generalized Levi form of V has at least one negative

eigenvalues, then the conclusion of the theorem holds without any reg-

ularity conditions on V or JH. This result follows from Theorem 2. 3. 10

of Sato-Kawai-Kashiwara [1] Chapter III. In Theorem 3 we assumed

the regularity of V so that we can make use of the notion of virtual

bicharacteristic manifold. It seems to the author that the use of virtual

bicharacteristic manifolds at this stage has its own interest related to the

remark after Theorem 2, since condition (13) is never satisfied by a system

with constant coefficients.

Remark 2. It is obvious from the way of the proof that any coho-

mology class in Ext^ '( M — N\ <^M,<JIM) can be uniquely extended to a coho-

mology class in ExtJ(Af; <3W,9 <JL*r) under the assumption of the regularity
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of c5K and the same assumption on N as in Theorem 3,

either

if j<jnm(d—I,q)

or

if j<^d—1 and condition (14) is satisfied.

Theorem 4, Let X be a system of linear differential equations

defined on a real analytic manifold L. Let Z be a closed subset of

L. Let cp(pc) be a real valued real analytic function defined on L

such that gradx<p(x) never vanishes if $?(:r)l>0. Assume that hyper-

surface St = {x^L\(p(x)=t} is non-characteristic with respect to X

for any £^>0. Assume that Stf}Z is compact for any t and that

Stf)Z is void for £<0. Assume that system £t of linear differential

equations induced from j£ to St satisfies conditions (5) ~ (7) "when

we consider St as M and £t as 3&. Assume that «£t satisfies either

one of the following two conditions:

(13') «^1.

(14') For any point (xf , V^Ii?') in Vt f! J^-1S* (5,) X (St f| Z) there
St

exists a virtual bicharacteristic manifold A^*, v^o of _£*t which

passes through (xr , V — 1??') and contains a point (xr , V — 1 '̂)

with x1 e St — (St H Z) . Here Vt denotes the characteristic

variety of Xt>

Then any real analytic solution u(x) of JH defined on L — Z can be

extended over L as a real analytic solution of JC.

Proof. Define Qt by {x^L; cp(x) <^t}9 and define t0 by sup {t; there

exists a real analytic solution u(x) of JC which is defined on Qt and

coincides with u(x) in L — Z}. It suffices to show that £0 = oo. Assume

that it were not the case. Then it is clear that u(x) is defined on @to

and satisfies J? there. Since Sto is non-characteristic with respect to _£,

Corollary 3.5.8 of Sato-Kawai-Kashiwara [1] Chapter II implies the ex-

istence of the following isomorphism:

(2') Ext° (5, ; _£„ ̂ .,) 2;Ex4 (L; X,

In view of the long exact sequence
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any hyperfunction solution of JC defined on L — StQ defines a cohomology

class in Ext^. (Z/; _£*, &L), hence, applied by £~1, it defines a cohomology
» 0

class in Ext°(Sj0; _£{ffl, .®S{ ). Now define U(x) by w(.r) on J2fo and by

0 on {x&L; (p(x}^>tQ}. Clearly u(x) is a real analytic solution of JH

defined on L — Sto. Therefore l~l8(ji(x)} defines a hyperfunction solution

v(xr) of _£to defined on Sto. This is nothing but the boundary value

of u(x) . It is then obvious that v(x') is real analytic near x0' E:Sto if

u(x) is real analytic in a neighborhood of x0' in L. Therefore v(x')

is a hyperfunction solution of J^to which is real analytic in Sto— (Stor\Z).

Then, by the same argument used in the proof of Theorem 3, we conclude

that v(x'} is real analytic on Sto. Thus the boundary value of u(x)

on Sto is seen to be real analytic. Then by applying the Cauchy-Kowa-

levsky theorem for systems of linear differential equations, we can find

a real analytic solution u(x) of JH defined in a neighborhood of Sto so

that it coincides with u(x) on Gto. See Kashiwara [1] Theorem 2. 3. 1,

for example, as for the Cauchy-Kowalevsky theorem for systems. Since

Sto fl Z is compact by the assumption, the existence of U (x) implies that

u(x) can be extended to Sto+£ for some £>0 as a real analytic solution

of JL. This contradicts the definition of t0. Therefore t0 should be in-

finite.

This completes the proof of the theorem.

Remark. If we additionally assume that JH is an elliptic system, we

can obtain the same result even when we replace the induced system

jCt by its direct summand (_£{)- as follow :3)

Denote by Lc((St^)c
9 respectively) a complexification of L(St, respec-

tively) . Define (Gt) _ by { (*, C) e 5|tL
c ; « e St, Re C = - grad2^ (2) } .

Here S*tL
c denotes the conormal bundle supported by St. Denote by

8) As is clear from the definition below, system (-£«)- is not necessarily a system of
linear differential equations, but, in general, a system of pseudo-differential equations.
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p the canonical projection from S^tL
c — SfSt^cLc to Sst(St)

c. Then ellip-

ticity of 3A. enables us to define £P(Sf)c- Module ( J?0 - by p* (£P(St)CULC

(X)c5H|(Gf)_). See Sato-Kawai-Kashiwara [1] Chapter II Definition 1. 3. 1 for

the definition of ^P^cu^e

In this case, we can use following isomorphism (15) instead of (2/) :

(15)

Isomorphism (15) immediately follows from Theorem 1 of Kashiwara-

Kawai [1]. Further we use following long exact sequence (16) instead

of (!')

(16) 0-»ExtS,(i(£.; -C, ®

-»Ext'(&., JC, ^-

Then the rest of the argument in the proof of Theorem 4 goes well

without any essential changes. Thus we have the following theorem.

Theorem 5. Let X , L, Z and (p(x) be the same as in Theorem

4. Assume further that £ is an elliptic system of linear differential

equations. Assume that (J?£)- satisfies conditions (5), (6), (7) and

either (13X) or (14'). Then any (hyp erf unction) solution u(x) of

J? defined on L — Z can be extended over L as a (hyp erf unction)

solution of JC.

Remark. When J? is a single linear differential equation, Kaneko

[2] has recently given interesting results on the extension of real analy-

tic solutions and hyperfunction solutions from the view point of singularity

spectrum of boundary values of solutions. In view of Theorem 5 it would

be an interesting problem to extend his results to overdetermined systems

which are not necessarily elliptic. As a matter of fact, the essential

point in the proof of Theorem 5 is the fact that we can easily "micro-

localize" the argument on the boundary of Qt if _£* is elliptic. Presumably

the results of Kashiwara-Kawai [4] would be useful for this purpose.
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