Cohomological Dimension of Homogeneous Spaces of Complex Lie Groups Iⁿ

By

Shigeru TAKEUCHI*

In [4] we obtained a formula which represents the completeness of complex Lie groups, and in [3] we generalized it to some types of homogeneous spaces of complex Lie groups. The purpose of the present short note is to give a proof of the generalized formula without the assumption in [3].

Throughout we denote (complex) Lie groups by Roman capital letters and their Lie algebras by the corresponding German small letters respectively. Let (G, H) be a pair of a connected complex Lie group G and a connected closed complex subgroup H of G. Let (K, L) be a pair of maximal compact subgroups K and L of G and H respectively. We consider only such K that contains L. We denote the canonical surjection from \mathfrak{g} onto the quotient complex vector space $\mathfrak{g}/\mathfrak{h}$ by π . Denoting the complex dimension of any complex object X by $\delta(X)$, we can give the following indices of a G-homogeneous complex manifold G/H:

$$\alpha(G/H) = \max_{\mathfrak{t}} \{ \delta(G/H) - \delta(\pi(\mathfrak{t})^{\mathfrak{e}}) \}$$

$$\beta(G/H) = \max_{\mathfrak{t}} \delta(\pi(\mathfrak{t}) \cap \sqrt{-1}\pi(\mathfrak{t}))$$

$$\gamma(G/H) = \dim_{\mathfrak{k}}(K/L) \quad (=\text{topological dimension of } K/L)$$

where $\pi(\mathfrak{f})^c = \pi(\mathfrak{f}) + \sqrt{-1}\pi(\mathfrak{f})$.

We define the cohomological dimension of a complex space X (denoted by cd (X)) as follows:

 $cd(X) := \min\{n | H^{q}(X, F) = 0, \forall coherent analytic sheaf F over X\}$

Communicated by S. Nakano, December 25, 1975.

^{*} Gifu University, Gifu.

¹⁾ This work was done while the author was staying at RIMS, Kyoto University as a research fellow.

and $\forall q > n$ }

We define the completeness of a complex space X (denoted by c(X)) as follows:

 $c(X) := \min\{q | X \text{ is } (q+1) \text{ -complete in the sense of } [1].\}$

Theorem. If $\alpha(H) = 0$ we have the following equalities: $cd(G/H) = c(G/H) = \beta(G/H).$

Proof. Without loss of generality we can assume $\alpha(G) = 0$. In fact, we have the following fibering (which is not necessarily principal):

$$K^{c}/H \rightarrow G/H \rightarrow G/K^{c}$$
,

where K^e is the complex Lie subgroup of G which corresponds to the Lie algebra $\mathfrak{t}^{\mathfrak{c}}:=\mathfrak{k}+\sqrt{-1}\mathfrak{k}$. This fibering is determined up to the choice of K since $L^c = H$ is given from the beginning. By [2], G/K^c is (biholomorphic with) a complex affine space $C^{\alpha(G)}$ of dimension $\alpha(G)$. It follows from the "Oka's principle" that this fibering is complex analytically trivial, i.e. G/H is (complex analytically homeomorphic with) the direct product of the base space G/K^c ($\cong C^{\alpha(G)}$) and the fibre K^c/H . Since G/K^{e} is affine, $cd(G/H) = cd(G/K^{e} \times K^{e}/H) = cd(K^{e}/H)$, and $c(G/H) = c(G/K^{c} \times K^{c}/H) = c(K^{c}/H)$. As for the index β , we have easily $\beta(G/H) = \beta(K^c/H)$. Thus we have only to prove $cd(K^c/H) = c(K^c/H)$ $=\beta(K^{c}/H)$. Now we assume $\alpha(G)=0$. Let Z be the connected center of G. Then it is easy to verify $\alpha(Z) = 0$. The complex subgroup generated by Z and H is not necessarily closed in G. Let ZH be the smallest closed complex subgroup of G containing $ZH := \{ab | a \in Z, b \in H\}$. ZH does exist, since the intersection of all closed complex Lie subgroups of G which contain ZH is closed in G and the intersection of all the corresponding Lie algebras is a complex Lie subalgebra of \mathfrak{g} . Let N be the normalizer of H in G. Then N is a closed complex Lie subgroup of G. Since ZH is contained in N, so is ZH, which implies H is invariant in ZH. Thus we obtain the following principal fibering:

$\overline{ZH}/H \rightarrow G/H \rightarrow G/\overline{ZH}$.

Now we shall show $\alpha(ZH) = 0$. Let K_1 be the maximal compact subgroup of Z and K_2 be a maximal compact subgroup of \overline{ZH} which contains

256

the compact subgroup K_1L generated by K_1 and L. Then $\mathfrak{f}_2^c = \mathfrak{f}_2 + \sqrt{-1}\mathfrak{f}_2$ $\supset (\mathfrak{f}_1^c + \mathfrak{l}^c) = \mathfrak{g} + \mathfrak{h}$. Hence K_2^c contains ZH. On the other hand K_2^c is closed in \overline{ZH} by [2]. From the smallestness condition of \overline{ZH} it follows that $\overline{ZH} = K_2^c$, i.e. $\alpha(\overline{ZH}) = 0$. As

$$G/\overline{ZH} \approx \frac{G/Z}{\overline{ZH}/Z}$$
 (complex analytically homeomorphic)

and G/Z is a Stein group, we can conclude that G/\overline{ZH} is also Stein by using the criterion $\alpha(\overline{ZH}/Z) = 0$ (which follows directly from $\alpha(\overline{ZH})$ =0) in [3]. Now applying Theorem 35 in [4] to the second fibering we obtain $c(G/H) \leq \beta(\overline{ZH}/H)$. As $\beta(\overline{ZH}/H) \leq \beta(G/H)$ is evident, we have $c(G/H) \leq \beta(G/H)$. From the vanishing theorem of cohomology groups in [1] it follows directly that $cd(G/H) \leq c(G/H)$. On the other hand we have $\beta(G/H) \leq cd(G/H)$. For letting $\delta = \delta(G/H)$ and $\beta = \beta(G/H)$ etc., we have $\beta + \delta = \alpha + \gamma = \gamma$ since $\alpha(G/H) = 0$. G/H is homotopy equivalent to the γ -dimensional (orientable) compact topological manifold K/L. Hence $H^{r}(G/H, C) = C \neq 0$. This implies $\beta(G/H)$ $\leq cd(G/H)$ according to [5].

Remark. The indices α and β are well defined only for a fixed representation G/H of some homogeneous space X. The author doesn't know whether they are defined for X independent of the choice of the pair (G, H).

References

- Andreotti, A., and Grauert, H., Théorèmes de finitude pour la cohomologie des espaces complexes," Bull. Soc. Math. France, 90 (1962), 139-259.
- [2] Matsushima, Y., Espaces homogènes de Stein des groupes de Lie complexes, Nagoya Math. J., 16 (1960), 205-218.
- [3] Takeuchi, S., On some types of complex homogeneous spaces, Sci. Rep. Fac. Ed. Gifu Univ., 5-3 (1974), 190-194.
- [4] —, On completeness of holomorphic principal bundles, Nagoya Math. J., 56 (1975), 121–138.
- [5] Vesentini, E., On Levi convexity of complex manifolds and cohomology vanishing theorem, *Tata Institute Lecture Note*, Bombay, 1967.