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Introduction

In 1967, D. Sullivan [13] introduced a bordism theory based on

manifolds with singularities and successively N. Baas [3], [4] studied

and reformulated the theory so that it has been given a more accessible

ground.

This theory is considered as a natural generalization of usual bordism

theory, and for each given singularity class & = {Ply Pz, • • •} , a sequence of

closed manifolds, one obtains such a theory. Thus there have appeared

various interesting generalized homology theories.

For example, as Baas [4] shows, there exists a tower of homology

theories and natural transformations connecting complex bordism to ordi-

nary singular homology.

One of main problems with these theories has been to show whether

they are multiplicative or not (Baas [6]). And the purpose of the pres-

ent paper is to study this problem.

For convenience sake, we will restrict ourselves to the case of com-

plex bordism theory MU(J^} * ( ) with singularity class & . In this theory

we introduce natural (external) multiplications (§ 3 and § 6)

V.E : MU(^) fl (X, Y) (g)MU(^) & ( V, W)

-*MU(f)a+>(Xx V, Yx V(JXx W)

which are "admissible" in an analogotis sense of Araki-Toda [2], where

E={E1,E2, •••} means a sequence of Morava's manifolds Et one for each
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Pt (§2).

Although these multiplications jy.E depend on E and primarily on

,5 ,̂ all of them are shown to be associative (Theorem 5.25).

As for commutativity we obtain an "obstruction" formula (Theorem

4.12). And for certain favoring cases where the obstructions vanish, JUE be-

come commutative (§ 6). It follows, then, that the dual cohomology theories

MU (*$*) * ( ) are multiplicative and hence the representing spectra MU

G50 become commutative ring spectra. Among them, we can show that,

the "integral" Brown-Peterson spectrum BP for an odd prime p (Brown-

Peterson [7]) is a ring spectrum (Corollary 6.7).

Added after completion of the manuscript of this paper.

In a recent issue of Izvestija Akad. Nauk SSSR, Ser. Mat. 39, No. 5

(1975), 1065-1092, the following paper appeared: O. K. Mironov, "Ex-

istence of multiplicative structures in the theories of cobordism with sin-

gularities" (in Russian).

Although our work has been done independently of his own, there

may be some overlaps in the results.

Mironov dealt with the same objects as ours, but in more than one

category of manifolds, i.e. with SO, U, SU and Sp structure respectively.

He used an inductive construction (on n) for defining multiplications in

the bordism theories Q**n( ) with singularity type Sn— {P^ '", Pn} >

(J2n correspond to our J^n).
On this point his method seems considerably different from ours.

As for commutativity and associativity, he treats only the case n = 1, in

the above paper, with detailed analysis for the mod q theories.

§ Io Baas-Sullivan Bordism Groups

Recall first some notions concerning manifolds with singularities and

the bordism theory based on such manifolds ([4]). Throughout this

paper, by manifolds we mean compact, weakly complex manifolds with

corners (see [8], [9] for manifolds with corners).

Definition 1.1. V is a decomposed manifold of type n, iff there
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exist submanifolds d0V,diV, -~,dnV of codimension zero of the boundary

dV such that

where union means identification along common part of boundary.

Each dtV is again a decomposed manifold by defining

for

for j=i,

and we can continue defining 9fc(9/(9iV)) etc.

Let & \ — {Pi, Pz, • • • , Pn} be a sequence of closed weakly complex man-

ifolds of (real) even dimensions. We call it a singularity class (of

weakly complex manifolds) .

Definition 1.2. A manifold A is called an ^n-manifold, iff

i) to each ordered set o)=(z1, •••4) of integers in {0,1, ••• ,#}, there

associates a decomposed manifold (of type ?i) A(o>) such that

a) AW)=A,

b) there exist isomorphisms (of weakly complex manifolds)

PtxA (i, o)) for
;*;«>):

for i (

where PQ = # and (z, to) denotes the ordered set (z, z'1? • • • , 4) C {0, 1, • • • , n}y

c) A(<T(co)) =e((T)A(a)) for treS.,

here 5W means the permutation group of the set a), and e((7) the sign

of (T, so that —A(to) means the negative of A(co), i.e. the manifold

A(co) with the opposite restructure.

ii) for any (z*, j) C {0,1, ••• ,^} the following diagram commutes

- 9i9^ A (to) - > - P,- X & A ( j, a>) - > -PjXPtX A(z, J,
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where T is the twisting map and all of the maps are isomorphisms.

An J/^-manifold may be denoted by {A (a)), a,(i\ ft))}, or simply by

A, and the dimension of J^-manifold A is defined to be that of the

ambiant manifold

Definition 1.3. An isomorphism (p: A-*B between £f ^-manifolds

{A (ft)), a(i, ft))} and {B(a)), /?(x, a))} is defined by a system of isomor-

phisms of weakly complex manifolds <£>(ft)): A (ft)) — >J3 (ft)) such that the

following diagram commutes

S(ft))

F, x A(i, co) - > PtxB(i, co) .

Let (̂ ", Y) be a pair of topological spaces.

Definition 1.4. A singular J/Vmanifold, (A,/) m (X, Y) is given

by a system of pairs {(A(ft)),/(ft)))} such that

i) A= {A(o)), a(z; a))} is an «j^n-manifold,

ii) /(ft)) : A (ft)) — >X are continuous maps such that the following dia-

grams commute

a) /(co)

/(*',

a (*;«)) pr_

/(O, co)

P{ X A (i, a)) - > A (», co)

b) /(co)
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Definition 1.5. An isomorphism between singular &\-manifolds

(A,/) and (B,g} in (X, Y) is given by an isomorphism cp: A—>B of

J^Vmanifolds such that the following diagrams commute

X

Definition 1.6. A singular ^-manifold (A,/) in (X, Y) bords,

iff there exists a singular J^-manifold (B, g) (we do not require g (0, a))

to factor through Y) such that A(a)) are submanifold of codimeiision zero

of B(<D, 0) and

g (a), 0) | A O) =/(*>) , g («,, 0) (B (a), 0) - A (a)) °) C Y

where A(&))° denotes the interior of A (a)).

In particular, we define the "boundary" (90A, 90/) = (A(0),/(0))

of a singular ^n-manifold (A,/) in (X, Y) by

(1 - 7) (90 A) (o>) = A (a), 0) , (00/) (fl>) =/(fl), 0) .

Then (90A, 90/) becomes a singular J/Vmanifold in Y=(Y, 0).

If 90A = 0, A is called a closed J^Vmanifold.

Now for the formation and basic properties of the Baas-Sullivan bor-

dism groups MC7(^n) # (X, Y) we refer to [4] . We cite here the follow-

ing facts which will be needed below.

First of all, we have

Proposition 1.8 (Theorem 3.3 in [4]). The functor

( ) forms a generalized homology theory.

The group MC7(J^n) * (X9 Y) is considered as a (two-sided) MU* (pt) -

module in a canonical way, that is, in forming the usual product of a

closed manifold and an ^n-manifold.

For the next proposition, let ^»(i)i={Pi, --,Pi, -',Pn} be the subse-

quence of J?^ obtained by deleting the z-th singularity manifold P*. For

z"€E {1, 2, ••-,«}, define a homomorphism of degree pt (^
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(1-9) A : MU(ST£3 * (X, *) -»Mtf (.ra) * (X, Y)

induced from the above multiplication by the element [P€] of

where [A,/] denotes the bordism class of (A,/). Further, let

(1 - 10) r* = Aftf (.ra ) * (X, Y) ̂ MU(^n) * (X, Y)

be defined by regarding J^lVmanifold A naturally as an J^-manifold

A with diA = <I).

Finally the Bockstein operator of degree —pi — I

(1-11) dt: MC7(^n) * (X, Y) -> JW17(^») * (X, Y)

is defined by

Then we have Bockstein exact sequence.

Proposition 1.12 (Theorem 3.2 in [4])a TTie sequence

A ri
(X, Y) - >MU(f£J * (X, Y) - »MU(S?n) * (X, Y)

) * (X, Y) - > • • •

£5 exact.

For the coefficient group, we have

Proposition 1.13 (Theorem 4.1 in [4]). If the sequence {[Pi], •••,

[Pw]} of the bordism classes [P<], Pi^^n9 constitutes a regular se-

quence in MU*(pt), ive have an isomorphism

A, -, [PJ)

as an MU* (pt) -module, where the right hand side means the quotient

algebra of MU*(pt) by the ideal generated by [Pi], • • • , [Pn].

Notations. The above homomorphisms /?j, ^ and 81 will be some-
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times denoted by @pt, ?P. and dp. respectively, and the notations (J^...^

= ff,A-ft* 8il...ikA = A(i1"-ik)=A(Pil'"Pik) will be also used.

Remark. If singularity manifolds Ql9 • • • , Qn are bordant to Pl9 • • • , Pn

respectively, then the corresponding groups MU(Ql9 • • • , Qn)*( ) and MI7

(Pj, • • • , Pn)*( ) are isomorphic.

§ 2. Some Geometric Constructions and Basic Lemmas

Recall first a geometric technique due to Morava (cf. Johnson- Wilson

[10], Appendix).

Let P be a closed, weakly complex manifold of dimension p. Put

where / denotes the unit interval [0,1]. This manifold £(0) is to be

given the canonical weakly complex structure induced from that of PxP.

Define

(2-1) 6^5(0) =9E(0) - - (OXPXP)U(1XPXP) ,

E(10) = - (OXP)U(1XP) , £(l;0):91E(0)^P

where e(l;0) denotes the twisting isomorphism defined by

(tf,0,/0 for i = 0
(2-1)' e ( l ;0 ) ( i , /> ,</ ) =

QM,2) for i = l.

Here we have used the convention 9J=( — 0) U (!)•

Then £(0) is a closed {P} -manifold of dimension 2^ + 1. Since MU

(P}*(pt)^MU*(pf)/(\_P~]') (Proposition 1.11) and the odd dimension part

of this group is zero, we can choose a {P} -manifold E with dQE = E(fy.

We will call such a manifold E Morava's manifold for P and

sometimes denote it by EP.

Lemma 2.2. Let E and E' be Morava's manifolds for a fixed

P. Then E and Er determine a closed {P} -manifold b(E, E'} =E\Jid

(-£') representing an element £(£,£') of Ml7(P)2p+2 (/>*). Con-

versely, for any element /? of MU(P)2p+2(pt) and any choice of Mora-

va's manifold E for P, there exists another E' such that 0(E, E') =/?.
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Proof. By E\Jid( — E') we mean the manifold obtained from E\J

( — £') by identifying the part £(0) with the corresponding part Ef (0) .

The first half of the lemma is obvious. For the second half, we note

that /? ( E, E) = 0. For a given $, choose a closed manifold B, of which

image in MU* (pt) / ( [P] ) gives 0. Take JE(J (-B) as £', then we

have #(£,£')=/?•

Now we will introduce several lemmas which are needful for our

purpose.

These lemmas aim to analyse the groups Af[/(J^n) * (X, Y), especially

for the case of singularity class <9*n having duplicated members.

Let ^n
= {Piy •"> Pn} be a sequence of closed manifolds as before,

and suppose Pi = Pj = P for some pair (i,j), 1^"<J2SX Let c^»(l)i={P1,

• • • , PI, "• Pn} be the subsequence <5?n — {P^} .

Utilizing Morava's manifold E for P, we shall define a homomor-

phism of degree p-\-\

(2 - 3) % - 4 : MC/C^) * (X, Y ) ->A/C7(^n) * (X, Y)

as follows. Given a singular J^lVmanifold (5, 0) in (X, Y) , and put

(2-3)' sij(B)=IxPxBU ExB(j)
JQ

with identification of isomorphic parts of boundaries:

IxPxPjXB(j) — > IxPxPxB(j),

here it should be noticed that we will make a convenience of labelling

parts of dB as if B were an J/^n-manifold with 9^23 — 0. Thus 9y, 5(j)

mean 9P/, B(Pj) respectively (See§l). Then Sij(B') is regarded as an

,5^-manifold by defining

(2-4) -OxPxB for

IxPxB U diExB^ for
yn

-IxPxdkB U ExdkB(j) for



MULTIPLICATIONS IN THE COMPLEX BORDISM THEORY 267

— IxPxB((d)(jExB(o),j} for o)^i,j

- e (<r) (0 x B (00 ) for a (0) - (0', £)

£(r)( lx5(o) /OU(-l) | M" i^(l)x5(co / /
J j )

I a/'1= length of *>",

Inspection shows this is well-defined. .

The following lemma follows directly from (2-4).

Proposition 2.5. Let &n and ^n-i &e as above, and suppose

Pi = PJ = P for some j, />z. Put p = dimP. Then the Bockstein long

exact sequence (Proposition 1.12) breaks in split exact sequences

0 - *MU(?&} , (X, Y) -MC/C^,) , (X, r)

St
^MU(^n»\ ) ,_„_, (X, Y) - >0

*f,

such that SiSij = — id.

This means, in particular, that the homomorphism & in Proposition

1.12 vanishes for the present case. But, this implies, in turn,

Corollary 2.6 (2-4 in [10]). For any singularity class &*n= {Pi,

• • • , Pn}, the group MU(^n)*(X, Y) is a module over the quotient ring

MU*(pt)/([P1'], • • • , [Pn]). The module structure is induced from the

usual action of MU*(pt) (cf. Proposition 1.13).

Proposition 2.7. Under the same assumption as in Proposition

2.5, zve have

= TiSj for j=J=j, Sirfk^lVij fo
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— id for k = i

(#)* for k=j

, - s f j d k for

'where

(2 • 8) (v) * :MU(^n^ * (X) -

means the isomorphism induced by the transposition (ij) on the labels,

and hence, by the exchange of P3 for Pt, dj for dt and etc. (cf. (2-12))

Proof. The equalities are directly seen from (2 • 4), except for the

case k=j in ii). For this case, we observe from (2-4)

SjSiJ(B) = *„(£) (j) =1 x B U £(1) XB(J).

It will be sufficient to prove that (ij)*B~Stj(B) (j) as

First note that 9JE(1) = (0 XP) U ~ (1 XP), hence E(l) is a {Pi-

manifold of odd dimension in virtue of the assumption dim Pleven (§ 1).

Let Jj be a copy of the unit interval [0,1]. Consider £(1) U £ x P

with identification 9E(1) = — 9 (Ij X P) (cf. (2 • 1) ) . Then this is a closed

manifold representing an element of MUodd (pi) = 0. Therefore there ex-

ists a manifold L such that dL = E(I) U £ XP.

Construct

V=[0,e]txB\J-LxB(j)

with identification of isomorphic parts of boundaries:

[0, e]2x£ -LxB(j)
U U

[0, £]2xPx

where we assume 0<^£<C1 — £•

Put

9*V=-([0,e],x9*SUI.x9*B(j)) for
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where Jj_ means disjoint union.

We would like to omit to give the explicit forms of V(a)).

Thus V is an J/^J-manifold and

which was to be shown.

For the next proposition, we insert a small construction and a lemma.

Chose a Morava's manifold E = EP for a closed manifold P.

Define

<p: 1= [0, !]-»/, by

(2-9) T:PXP-»PXP, by

Then we have an isomorphism

(2-9)' <?XT:E(0)- /XPXP

and we construct a closed {P} -manifold

(2-10) a(E)=E U E
<pxT

from two copies of E, identifying the parts J£(0)'s by the isomorphism

(2-9)'.

The following lemma follows easily.

Lemma 2.11. Let E and E' be Morava's manifolds for the same

P. Then, *we have

a(E) -a(E') =20(JE, £'), a(E) = [>

in MU(P}*(pt). (See Lemma 2.2 for the definition of @(E, JE')-)

Let now J^n be as before and assume Pi = Pj = P, i<^j, for some

i, j in {1, 2, • • - , TZ}. Let 6=(ij) be the transposition. This induces a

canonical isomorphism

(2-12) (a)*
where (7(J?^n) = {Pl5 •••PJ----P£-"Pn}. Explicitly, for a singular J^-manifold

(A,/) it gives
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and /*(o>) =/(ff(<a)) etc.

Composing this isomorphism (if)* with the trivial identification.

(2-12)' c:MU(ffW)t( ^Mt/CJ^C )

induced from the obvious identification tfCJ?^) — ̂ n* we have an involution

(2-12)" fr* = (#)*=*> (£) *:MW.),( )-Mt7C5O*( ).

Then the following proposition is one of key lemmas in our method.

Proposition 2.13. Under the above assumption on SP^ ive have

for k = i

0 **0(7)*==Uy)*ai /^ k=j

ii) (#)*-! = ̂ 5, (1 - (#) *) + a (£,-) X

on MU(£e'n)x( ). More explicitly, ii) means

for a singular ^n-manifold (A,/), 'where the last term means the

singular &n-manifold defined by

a (Ej) x A (ij) > dia (JE) X A (fj) (cartesian product)

(E)xdkA(ij) for

In this proposition the assertion i) is easily verified from the defini-

tions of the terms involved there. (See (1-11), (2-8) and (2-12)".)

For the proof of the assertion ii), we have to prepare some lemmas.

Lemma 2.14. Under the same situation as in Proposition 2.13, ive

have
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zuhere the right hand side means the J?\-manifold defined by

9* ^-Ixdk(dtA{JdfA) for

Proof. First replace A with A' = A (J [0, s] X dA, so that A' has

a collared neighborhood of boundary and itself is isomorphic to A. Con-

struct IX A' as an J?Vmanifold :

3, e] x90A) \J-IxexdoA\JI

x (AU[0,e] x d l > A ) } { J - I x e x ( d { A \ J d i A )

-Ox [0 , e ]x9 f AUlx [0, e]x9,A
/-"

ZxA'

"" ' -Ox[0, e]

-0 x [0, e] x9*AU -/x e x9*AU1 x [0, s] xd*A,

for

Then, by inspection we see that ( — A) U (y) *A(J ( — /X (dtA\J

9yA)) bords IX A' (See Definition 1.6).

Lemma 2.15. Under the same assumption as above, -we have

IX (0 fAUM)~*«(<A(0) +s'(A(J»

where

(2-16) j ' (AG/))=/xPxA(/) U
di(vxV9

is defined by identification

it is considered as an ^n-manifold:
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dt IxPxA(j)

9* -IX PX d,A (J) \jExd*A (ji) for

Proof. Since the detailed proof is considerably tedious, we will only

outline the proof. Let /2 and I2 be copies of the unit interval [0,1],

and let E' and E" be copies of Morava's manifold EP.

Construct a "manifold"

W=I1xI2x (9iA\J9,A) U£x (E' U E"} x

with identification:

li x I, x9^9 fA - 03 x £'(0) x

(2-18)

lx x J2 x Px Px A (ji) =03 x Jx Px Px A (ji)

Exactly speaking, this could not be called a manifold. In order to

obtain a genuine manifold, we need a certain "thickening" process in the

above attachment (2-18).

02 I, 1,

08 Is 13

Jj x J2 x (9,A U d*A) I3 x (E? U £*) x A (y)

Figure 1
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But, for simplicity's sake, we shall content with the pseudo-manifold W.

Now W is considered as an <5^n-"manifold" as follows:

6>o W= £ X I2 X 6>0 (9iA U djA) U - Oi X I2 X (diA (J 9, A)

U (liX I2X9,AU -03x£'x

^= £ x 02 X 9| A U - Ii X 12 X dj A

dkW=I1Xl2Xdk(diA(JdjA) for

And there are isomorphisms:

a)

b) 5/

c) tf(£y)xA(z/)^l3X(£' U ^

In fact, the involved identifications will be seen in the following

commutative diagram

sf,(A(f)): /xJPxA( i ) U E'x

| 9^ a f 9o

-IxPxPxA(ji) - - £'(0)xA(.;0

(2-19) x^^x 1 ^ x l x l
-IxPxPxA(ij) - - £ / x(0)xAOV)

di

U E

Then Lemma 2.15 follows easily.

Lemma 2.20. In the above lemma, ive have an isomorphism

5'(AC7))~-5f,(A*(z))

where A* = (ij) *A.

Proof. Define the following map between s'( A (.;')) and — sfj(A*

(0) (cf. (2-4), (2-16), (2-17)):
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di cp x 1 x 1
/(AO1)) :IxPx A(j) < -- IxPxPx A(ij) - >E(0) x

\ <p X 1 ~ I <p X 1 X 1 \id lid

- 4(A*(z)) : - 1 x P x A*(*)<-/ xPxPx A*(jy)-» - £(0) x A*(ji)-> -Ex A*(ji)

This map gives the isomorphism in the lemma.

Proof of Proposition 2.13, ii). Lemma 2.14, 2.15 and 2.20 give

the desired proof.

§3. Multiplication in

Let ^n= {-Pi, -",-Pn} and <E[m= {Qi, •~,Qm} be singularity classes as

defined in § 1. Recall that all Pf and Qj are closed, weakly complex

manifolds of even dimensions.

Let (A,/) be a singular ,5^-manifold in (X, Y), and (B,g) a sin-

gular ETm-manifold in (V, W) . Put a = dim A and & = dimjB. Denote

by &» + %*= {Pi, "',Pn,Qi, •", Qm} the sequence obtained by juxtaposing

^n and ETm in their proper orders (cf. [3]).

Definition 3.1. The cross product (A,/) X (B, g) is defined as the

singular (^n + ETm) -manifold (AxJS, /Xff) in (XX F, Yx FU^X W),

which is given by the following data:

i) 9i (A x 5) -

for f =

9£A x B for

( - 1) "A X di-nB for n + l<i<n + m ,

ii)

and

)") U (-1)^(0)') xJBCa)", 0))

for a/c{l, .»,»}, ^ = 0',, • • • , j,)c

iii) (/Xg) (a)7, a)'') =/(a)7)
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and

>', 0) X g (ft)") on A (ft)', 0) X B fa")
(/xg)(ft/5ft)",0) =

[/(ft/) x g (a)7', 0) on A fa") x 5 (0", 0)

for a)', a)", ft)" as above.

Remark. We may also take {Pl9 Ql9 P2, Q2, • • • , Pfc, Qfc, •••} as J/V

In this case, the above definition 3.1 should receive a change of labelling

in diy di etc.

The cross product induces a bilinear map

(3-2) X : MU^J a (X, Y) X Mt/(2'm) 6 ( V, W)

[A,/] x [5, g] - [(A,/) X (5, g)]

or a linear map

(3 • 2)' X : MU(^n)a(X, Y) (gMC/CETJ»(V, W)

which are natural and compatible with the multiplication by elements of

Moreover the cross product is apparently associative:

(3-3) {(A,/) X (B, g)} X (C, K) = (A,/) x {(B, g) X (C, h}}.

Hereafter, we consider the case of ETm=^/l.

For convenience, denote by J?V = {P/, • • • , P/} a copy of ̂ ^ so that

i=Pi for z = l,2, • • - , 7 7 .

Then we have endomorphisms

(3-4) nS

defined by

(3 • 4) '

where 1 means the identity map and Ei = EP. means a Morava's manifold

for P{. (See §2).

Lemma 3.5. Let &£$ = {Pl9 • • - , Pt, • • - , P,-, • • - , PJ ^ ^/z^
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subsequence of 5fn which is obtained from ^n by deleting its two

members Pt and Ph i^=j. Then we have

as homomorphisms:

Proof. Take an (̂ 1? +^/ ) -manifold C. It will be sufficient to

show that Sptpt,Spjpj, C is isomorphic to — sPjPj,sPiPi, C as an (J^n

manifold.

By (2-3)', we see

(3-6) Spi

and, on the other hand, exchanging the order of pastings we have

(3-7) SpjPj,sPtPi,C=I2xPjX (^XP.XCU^XCCP/))

U E, X ( - 7, X Pt X C(P/) U E{ X C(P/P/) )

U {/2 x P, x Et x C(P/) U E} x Et x C(P/P/) } .

Comparing this expression with (3-6), we have an isomorphism

(3-8) 0: Sp.pt'Spjpj'C^ — sPjPj'SpiPi,C

which is induced by the twisting maps:

(/1xP<)x(/.xP f)->(/.xPy)x/1xP< ,

and

on the four pairs of corresponding parts in (3-6) and (3-7).

Proposition 3.9o The endomorphisms n& in (3-4) satisfy

12 7Ti2* jOr l^r^J

12 j or i =j ,
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that is, Tcfy, i = 1, 2, • • • , n, are mutually commutable idempotent endomor-

phisms of the group MC7(^n + ̂ V)*( )•

Proposition 3.10. We have

for i=^=j

for i=j,

HYI i or i=f=j
••N *rfPi
"•) Tt\1 QSpiP-f —

[0 for i=j9

and

iii) Im TT^* = Ker 8P. — Im fPi .

Proposition 3.11. Let r* MU(&n') * ( ) -*MU(3*n + ̂ /) * ( )

be the canonical monomorphism defined by the composition T = Tpl'"Tpn

of the monomorphisms YP. (See Proposition 2.5). Then twe have a

direct sum decomposition of the group MU(l$^n-
srl$^n

/) *( ):

where sPiPi, : MU(^»\ + ̂ /) * ( )

Moreover, -we have

ii) Im 7 = 11117 ,̂ Ker KE = X] Im SP.P., , 7rJB = 7rS1-"7rSn ,

ivhere E={Ely •--,£„} £5 £/*e system of Morava's manifolds Et.

Proof of the above three propositions. Propositions 3.9 and 3.10

follow from Lemma 3.5, Propositions 2.5 and 2.7 by easy calculations.

As for Proposition 3.11, the first half i) is obtained by iterated uses

of Propositions 2.5 and 2.7, i). To prove the second half, we first note that

i Tpflu' for i^j
nvtrp,= \

(rPj for i=j.

Using this and Proposition 3.10, ii), iii), we conclude KE \ Im 7* = id, and

n

Ker nE = 2 ^m 5 ?P' •
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Thus we have proved the assertion ii).

Now, we have come to introduce multiplications in the bordism theory

Let (A,/) and (B,g) be representatives of elements of

(X,Y) and MC7(^/)&(y, W) respectively. Let (AxS,/Xff) be the

cross product of (A,/) and (B,g), which represents an element of MU

+J?YWXx v, Yx V(jxx W).
Let

and

be as in Proposition 3.11.

Then, by Proposition 3.11, ii), there is a singular J/V-manifold

(A-EB,f-Eg) in (XX F, Yx FU-^X W) such that

(3-12)

or

where £= {jE1? • • • , jEn} is the system of Morava's manifolds Et for Pt

^vhich were used in defining TCiJ1 (See (3- 4)').

The bordism class [A- EB,f- Eg~\ depends on the choices of the system

E of Morava's manifolds, but, for a fixed E, it is uniquely determined

from the given bordism classes [A,/*] and \_B, g~\.

Thus we have defined a bilinear map

(3 • 13) ULE : MU(^n) a (X, Y) X Mt/(J?V) » ( V, W)

-+MUW)^(Xy. V, Yx V(JXx W)

or a linear map

(3-13)' fij,: MU(^n}a(X, Y)(8)MC7(^n)6(F, W)

-*MU(^Ja+b(Xx V, Yx V'(JXX W)

by putting

»x(.\.A,f}, IB, g]) = \_A-EB,f-Eg-].



MULTIPLICATIONS IN THE COMPLEX BORDISM THEORY 279

Theorem 3.14. Let ,5^n={Pl, ~-,Pn} be a singularity class.

Then, for any choice of system E—{E1, • • • , E1}] of Morava's mani-

folds Ei one for each Piy there exists a natural multiplication /JLE in

the bordism theory MU(3*n}*( ):

V, Yx V(jXx W}

-which has the bilateral unit 1 e A/E7(^n) 0 (/>£), the canonical image of

the unit element of the ring MU* (pt) . Further the multiplication

jLlE is admissible in the folio-wing sense (cf. Araki-Toda [2] ) ;

i) }J.E is compatible with the usual multiplication by elements of

ii) For the boundary homomorphism 90, we have

where

(Yx V, Yx W)

'•I
(Yx V\jXx W, 0) > (Fx yy^x W, Yx W}

- t
•H

(Xx W, Yx Ty)

are the natural inclusion maps.

iii) For the Bockstein operator Si9 we have

Ytdiy), for z = l, •••«,

that is, the operations YtSt are derivations.

iv) For x9y^MU(^L\)^( ), we have

where E™ = {El9 -J^.-EJ =E- {E{},

v) If one of x, y, z is the image of an element of MU* (pt) , then

fj>E ( 0(8)30 <8)«) ) =

Proof. /^JE?(!(X)^:) =x follows directly from the definition of /JLE. To

calculate ^O(X)1)5 take a representative (A,/) of an element x of
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a (X, Y) . Note that

) XI) = (A,f) + swd<(A9f) = ( A 9 f )

ff, n

Since Ki2ff*j' = ff*j'7i:i2 for i=^=j, we have

where a;' denotes a copy of ^ in MU(,yn')a(X, Y) identified with MU

C5^»)«(X, Y). It follows that

/te(:r(g)l) = r-1-7TB(:r Xl) = *' .

Similar argument applies to the case when the unit 1 is replaced by

any element \_M} of MU* (pt) . The assertions i) , ii) , iv) and v) follows

then easily and we will omit their proofs. For the proof of iii), we

deduce the following equations:

and

where 7T^(*):=7rr2"'7ri2-"7rj2 is the composition of n{2, j=^=t> Using Proposi-

tion 2.13 and the fact that ffft, = id on MC7(^n
ci*2

/)) # ( ), and comparing

the right hand sides of the above equations, we have

^W*') =o .

This proves the assertion iii) and the proof of the theorem is completed.

§ 4. Commutativlty

Let J^V be a copy of a singularity class J?^n. Recall that in
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) * ( ) we have the involutions

and also we have the isomorphisms

These are related in the following forms

(4-3) fft*=c°fft*

where t is the obvious identification MU(^n + ̂ n'^( ')=MU(di(.5
lf'v.

Y))*( )• (See(2-12)-(2-12)".)

In order to check commutativity for the product x • Ey, x GE

, we consider the following diagram

(4-4)

x TI°KF
} a + b ( X x Y)

where t(x®y) = (-l}aby(g)x and T:YxX-*XxY is the twisting map.

(See 3.11 for 7*, UEJ)

Lemma 4.5. The squares i), ii) and iii) in (4-4) are all com-

mutative.

Proof. The commutativities of ii) and iii) are trivial.

In order to prove the commutativity of i), take representatives (A,/)

and (B,g) of x^MU(J^n)a(X) and y^MU(^n')b(Y) respectively.

Then we can define an isomorphism between (J^/ +^») -manifolds

in XX Y:



282 NOBUO SHIMADA AND NOBUAKI YAGITA

r'
ff*(AxB) - » (-l)

/

/» x/
(4'6) /xA YXX

XxY

where ff* = tfn*° •••off_1* and r' is induced from the exchange of factors of

the original cartesian product AxB.

This means the commutativity of the diagram i) in (4 • 4) .

From Lemma 4.5, it follows

(4.7) (-i)tt6T*(y^) = (-i)fl*r*(r/)"1°

On the other hand, we can compute in the following form. By

Prop. 2.13 ii), we have

or simply writing,

(4-8) Oi*(xXy)=xXy + a(£/) x8w(xXy) (mod Im

for z = l, • • • , n .

In virtue of the commutativities

(4-9) GfspjPs^SpjpjGi* for i=£j ,

we deduce, from (4-8), inductively

(4 - 10) <

Zl a (£i^) x - - - x a (£v) x fi*,*/*.*^...^!^ (^ x y)
<«<i*^»

n

(mod XI Im ^PiPiO

or by using 3.11, ii),

(4-11) <f* (x X y) ^x X y
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71

+• U £* Zl ^-i*^x (a(E t l) x-'-xa(Etl) x<y«r..<^v)'

(mod Ker;

where £ f c — ( — l)a^(a i>-r- + ca fc-n>^

Appljnng T~IO^E lo tne both sides of (4-11) and comparing (4-7),

we have

Theorem 4.12. For any singularity class J?^n of 'weakly complex

manifolds, the exterior multiplication /%Cr(X);y) —x-Ey in A

( ) satisfies

€r..ifcx • ^ (a (£«,) x • • • x a (Eik) x S^.

§ 5. Associativity

We shall first deal with the case n = l, <&\= {P} . For convenience,

put P = P'=P" and consider the group Mt7(P, P', P")*( ).

The following idempotent endomorphisms

TTiz = 7T = 1 4- Sppsdp, 7r23 — 1

of MU(P,P',P")*( ) are similarly defined as in (3-4).

Lemma 5.1. Let r: MU(P») *( ) -+AfU(P, P', P")* ( ) &* ̂ ^ ^~

nonical monomorphism defined by the composition T~TpQTp'- Then -we

have a direct sum decomposition

i) MLT(P, P7, P") * ( ) =Im

ii) Im r = Ker & fl Ker d2 ( = Ker SP p, Ker op,) .

Proof. This is an easy consequence of Proposition 2.5.

Lemma 5.2.
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Im 7- D Im 7T237T12 , Im 7- D Im 7T137T23 .

Proof. A direct calculations plus Lemma 5.1, ii) prove the lemma.

Proposition 5.3.

We will postpone the proof of this proposition.

Now let [A,/], [B,g] and [C, A] be elements of MU(P)*(X),

MU(P')*(Y) and MI7(P")*(Z) respectively. We have products

n

and

[ A- jC

For simplicity, we will omit the mappings in the bordism classes

and only deal with manifolds.

In MC7(P,P',P'')*(XXYXZ), we have

(5-4) r[[A-*B] -EC] =rpTp>t(A*EB) -EC] =Tp^l(A-EB) xC]

SB) xC]=7r i i[7r l i(AxJ3) xC] -7T237T1

= 7T13 [ A X 7T23 ( B X C) ] = 7T137T23 [ A X B X C] .

Then, by Proposition 5.3, we obtain

Theorem 5.5. The exterior multiplication jUE in MU(P)*( ) is

associative:

The next lemma plays a key role in the proof of Prop. 5.3.

Lemma 5.6, For [C, A] €EMt/(P") *( ),

[C, A] - 7T13 (a (E3) X (13) * [C,
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in MU(P, P', P")*( )• Here -we are considering in the situation-.

= {P,P',P"} with P = P' = P», [C,/>]eEMt/(^12>)*( ). (See%2.)

Proof. Construct a {P"} -manifold

(5-7) W=susnC\
<!>

with identifications shown in the following diagram:

(5-8)

523C <>23C) (3)

£2xC(3)) U EiX (l,xCU£i(l) xC(3))
\ 989o 9» 9o

\ 92

L ^xPxO^PxCU^iXOjxP xC(3)

^ |0

U £ixC(3)) U

513C (5,,C) (3)

where El9 E2 are copies of the Morava manifold E for P. The following

lemma follows easily.

Lemma 5.9.

where r(W) denotes the {P, P', P"} -manifold W with d1W=d2W=(f>.

Now T(W) is considered as the union of two {P, P"} -manifolds U

and V as follows:

(5 -10) n(W)=u\j v, u= U(E) (8) x c(1), y= y(£) (13) x c(3)
»!»!

where
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(5-11) U(E) = (I1XPXI2XP\JE1X1J U (I2XPXI1XP\JE2X11),
*

with identification indicated in (5-8). Here U(E) is considered as a

closed {P"} -manifold such that

= (1: X P X 72 X -P U P X £, (1) x 12)

U (IsXPx^xPUPx-E^l) xl,),
*

U=U(E)XC can be considered as a {P, P"} -manifold:

d1U=U(E)XdsC

dsU=daU(E) XC .

Similarly we put

(5-12) V(E) = (I1xPxEt)jE1xEt(I» U (

We consider V(E) as a {P, P"} -manifold:

(l1xPxE2UPxE1(l)x£2(l))

and y=F(E)xC(3) is the cross product of V(E) and C(3).

Note that

(5-13)

By (5-10), we have, as {P, P"} -manifolds,

(5-14) ri(W)~U+V.

By simple calculations, we have

\U] =7talU(E)m xCa)] -salU(E)M XC(3)]

= 7rls(13)*[t7(E)a)xC]-5IS[C7(E)(3>xC(3)],

and by using (5-13), we have

But there is a unique element [»(£)] in MU(P")*(pt) such that
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XC(3)] =7T18[y(£)] X [C(3)] = n [>(£)] X

and dimv(E) =3 dimP + 3 is odd, therefore [>(£)] =0 in MU(P"}*(pt).

From the above, we have

(5-15) r.[W] = [C^] + [V]=7ru(13)*[C7(£)a,xC].

Lemma 5.16. There is an isomorphism

U(E)^a(E)=E U E

(See (2-10) for a

Proof. From (5-11) and (5-8), we see

U(E)=E1xlz\j(I1xPxI2xP U
0

The isomorphism in Lemma 5.16 will be visualized in the following figure:

U(E):

Figure 2

Now the proof of Lemma 5.6 follows from Lemma 5.9, (5-15) and

Lemma 5.16.

Proof of Proposition 5.3. We shall prove, in MU(P, P>', P")*( ),

7r237T12 - 7r137r23 = (1 + s28£2) (1 + 512ft) - (1 -I- s^ft) (1 + ^23^2) = 0

or equivalently

(5-17) (*)—512^1-513
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Using Proposition 2.7, we have

(5 • 18) (*) = auft - 5ltft + s2a (12) *ft + siss235l(52 .

As for the first term of (5-18), we first note that

s12=(23)**13(23)*,

and using Proposition 2.13 we have

(5 • 19) s,A = (23) *s13 (23) *ft = *» (23) *ft + s23<?2 (s13 (23) *ft - *A)

+ a (E) „ X <?2ff3sI8 (23) *ft = 5U (23) *ft - s23sI3<J2 (23) *ft

- 52S (12) *ft + a (E) «» X ftft*u (23) *ff, .

Putting (5-19) into (5-18), we have

(5 • 20) (*) = Sl, ( (23) * - 1) ft + 513528ftff2 - 52351352 (23) *ft

+ a(Z)«,,Xft1(13)*(23)*ft.

Using again Proposition 2.13, from (5-20) we have

(5-21) (*) = - (523513 + 513528) (23) *dA + 513 (a ( E) „ X 525sft)

Then, by Lemma 5.6,

(*) - -ffM (13) * («(£) m X (23) *ff,ft) + *„(«(£) „ X ft.ft.ft)

+ a(£)«X(13)*(23)*ftft

- - (13) * (a (E) a) X (23) * <W - Jwft (13) * (a (£) „, X (23)

+ 513 (a (E) (S) X ff Aft) + a (E) (3) x (13) * (23) *ftft

= - 5W (13) * (a (E) a) x 53 (23) *ftft) + 513 (a (E) <3) X ftftft)

= -j,,(a(£)aj)X((13)*(23)*-l)ftftft.

But, (13)*(23)*=zW on Im ftftft, thus we have

(*) =7^12 — 7ris7r28 = 0 ,

and hence we have completed the proof of Proposition 5.3.

We have come to prove the associativity of the external multiplica-

tions

Y)
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for general ri>*\.

Let ^n= {Pl9 •", Pn} be a singularity class as before and let SP^

= {Pl\ •••*P»'}*&S = {Pl", -, P/} be copies of ̂  such that P« = P/

Take up bordism classes

Then we have the cross product (§ 3)

xXyXz in MU(S?n + ̂ n' +^n")a+i>+c(XX Yx Z).

Choose a system E={Ely • • - , En} of Marava's manifolds Et for PI.

Then, we have the endomorphisms

(5 - 22) T& =

in the group MC/C^, .», Pn, P/, »., P/, P/, -., P/)*(^X Yx Z).

Lemma 5.23. For the above endomorphisms 7r}2, nls, 7TJ3j

ii) TTis0 7Ti2 — 7T J3o TTss /Or 1 = 1, • • • , U .

Proof. The first assertion is trivial, and the second assertion and

its proof are essentially the same as those of Proposition 5.3.

Let r:MW»*)*( )^MC7(^+^/+.y;O*( ) be the canonical

monomorphism as before. Then, by Lemma 5.23, we have

(5-24) r((*-j&:v)-j&*) = (ff23o-

= (7r?8°7rr2) ° (TTjc-'oTrS-1) o • • - o (^0^2) (^ X y X *)

= (^3°^) ° (Xii^nzi1) ° • • • ° (^30^3) (a: X y X z)

Thus we have proved

Theorem 5.25. JPor a;?3' singularity class ^n of zveakly complex
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manifolds and for any choice of the system E, the exterior multipli-

cation /iE in MU(,9*n)*( ) is associative.

Corollary 5.26. The dual cohomology theory MU(^n) * ( ) has

also associative multiplications compatible -with the module structure

over MU*(pt).

§ 6. Conclusions

Corresponding to any singularity class ^n— {Ply • • • , Pn} of closed,

weakly complex manifolds and any choice of system E={El, ••-,£„} of

Morava's manifolds Et one for each Piy we have obtained a natural mul-

tiplication

„ ( V, W) ->MC7(^) * (XX V,

which is admissible (Theorem 3.14) and associative (Theorem 5.25).

And, if the obstruction classes a(Et) or their canonical images in

the coefficient group MU(^n) # (pf) happen to vanish, then /JLE is commu-

tative (Theorem 4.12). We can consider such favoring situations cor-

responding to suitable choices of &n and E.

In the below, for convenience, we consider only the case when the

singularity class ^n represents a regular sequence in MU*(pt).

Corollary 6.1. Let ^n^={Ply • • • , Pn} represent a regular sequence

in MU*(pt). Then any multiplication /JLE as above induces a unique

ring structure in the coefficient group MU(5fn}*(pi) which is canoni-

cally isomorphic to the quotient ring MET* (/>£)/( [Pi] , • • • , [-Pn])- (Cf-

Proposition 1.13).

For the next theorem, suppose a:(E«)=0 (mod 2) in

for z" = l, 2, '",n. Then, by Lemmas 2.2 and 2.11, we can choose another

Morava's manifold E/ in place of E* for each i such that a(jB/) =0

in MC7(^n) *(/>*)- Thus we have.

Theorem 6.2. Let ^n represent a regular sequence in MU* (pf) .

Assume that every element of MU (^n} Zp.+2(pf) , pt = &m P<, is divisible
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by 2 for each 1 = 1,2, '-',n.

Then there is an external multiplication /tE in the bordism theory

MU(^n*) * ( ) , -which is admissible, associative and commutative.

Therefore the dual cohomology theory MU(Sf^*( ) is multiplicative

and the representing spectrum MU(<9*n) is a (commutative) ring spec-

trum.

Corollary 6.3. Assume that £?n represent a regular sequence in

MU*(pt) and contain a member, say, P1=Z/2k + ~L, the point set of

odd number of elements. (In this case MU(^n}*( ) is a (Z/2/e-f-l)-

module.)

Then there is an admissible, associative and commutative multi-

plication in MU(&?
n) # ( ) (In such a case -we shall call the homology

theory MU (&'„)#( ) multiplicative), and so is the cohomology theory

( )- ( c f . [ 2 ] , [11]).

So far we assumed ^n is a finite sequence, but this restriction will

be unnecessary and we can generalize, without difficulty, all the above

argument to the case n = oo. In fact, if we take an infinite sequence

J^= {Pi, P2, •••} of closed, weakly complex manifolds as a singularity class,

the corresponding homology theory A/I7(^0*( ) can be defined as the

direct limit lim MU(^n) % ( ) of the sequence

for the sections J^n— {-Pi, • • • , Pn} of ^. Or, we may start, from the

outset, with singular ^-manifolds, just as in the case of singular ^n-

manifolds but for n unrestricted, and proceed as usual to defining bordism

theory (See Baas [4]).

Corollary 6.4 (Corollary 5.1 in [4]). // &={P^P2, • • • } repre-

sents a generating system {x^x*,, • • • } of the polynomial algebra MU*

(pt) =Z[xl,x2, • • • ] * ^•7J = [P??], dimxn = 2??, ihen xve have

MU (#')*( )=H*( ,Z)

where the right hand side is the ordinary singular homology theory.
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If we take ^ = {Pl9 PB, ••-,Pa fc+1 , •••}, [P2*n] =^2*+i, ^0, as a se-

quence representing {xl9 xz, • • - , ^2*+i, •"} in MU*(pi) =Z[.rlvr2, •••], then

the coefficient group MU(^)^(pt) vanishes in dimensions 4/ + 2(£>0)

and is isomorphic to Z\_xz,x±, '-,xzk, •••]. In such a case, we write also

MU(f)*( )=MC7<^,x4, -..,x2fc, . • •>„( ). Since dim a(E2fc+1) = 8& + 4

+ 2 in this case, the images of a(E2k+l) in MU{^}^(pt) are all zero.

So we have

Theorem 6.5. If <$? = {Pl9 P3, • • • , P2fc-i, '"} represents the subse-

quence {xl9x$, '-,x2k+1, "•} of the polynomial basis of MU*(pt) =Z\_xl3

xz-~~\, then the homology theory MU(^) % ( ) = MU(xz, x4, -",xzk, • • •>#

( ) z*5 multiplicative, and so the cohomology theory MU(<5^)*( ).

Similarly we have

Theorem 6.6. T&e cohomology theory MU(xzki\ 1^1<*Z< •••>*( )

z's multiplicative.

Fix an odd prime ^?. Taking j:€ = Mi+1, uvi=viy i^l, the Hazewinkel

generators of MU*(pt) ([16], cf. [15] and [17]), we can deduce, from

[5],

Corollary 6.7. The (integral) Brown-Peterson cohomology the-

ory BP* ( ) =MU(vt\ z"22;l)>* ( ) for an odd prime p is multiplicative and

the spectrum BP is a ring spectrum. (The adjective "integral" means

"not localized at p".) And similarly for BP(vil9 vtt9~*\ ii<^iz <*")*( )

and^ in particular, &<;z)>*( ) —BP(v^( ), the connective extraordinary

K-theory, as 'well K(n)* ( ) = (t;n)~
1^<(;z>*( ), the periodic cohomology

after Morava ([10], [12]).
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