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Asymptotic Behavior at Infinity for Green's
Functions of First Order Systems with

Characteristics of Nonunlform Multiplicity^

By

Mutsuhide MATSUMURA*

§ lo Introduction

Consider a first order hyperbolic system of partial differential equa-

tions with constant coefficients

(1-1) l - - -

where I is the unit matrix of order N, the Aj are complex NxN con-

stant matrices, and u (l, x) ,f(t, x) are functions whose values are Nxl

(column) matrices with complex entries. The hyper bolicily means that

the /V roots of the associated characteristic equation in r:

(1-2) />(r , f )=det( r / -A(£))=0, A (^ = £ ?,A,,
j=i

are all real for any f in the real dual $n of the real ^-dimensional

Euclidean space Rn.

Our purpose is to study the asymptotic behavior at infinity of Green's

function G(.r;A) of the stationary (or steady-state wave propagation)

problem2) corresponding to (1 • 1)

(1-3) (^4 l£iAj-^—]iI)v(jc;V=-<J(x), Jcz=Hi\

where A is a complex parameter. The Green's function G(j ; ;A)
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1) The essential part of this paper announced in Matsurnura [15] and L^6].
2) For more details concerning the steady-state wave propagation problem, see Schulen-

berger and Wilcox [19], Vainberg [23] and Wilcox [25].
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non real A is defined as the inverse Fourier transform of

(1-4) G Or; A) = (27T) ~" f (A (?) - U) ^ exp {*<*, ?>} <#
Js*

in the sense of distributions. Here (x, £ )> denotes the inner product

n- We shall show the existence of outgoing and incoming

Green's functions G(.r; tf±20) of the problem (1-3) for real ^ = tf=^0

and give asymptotic formulas for x\-*oo of G(x\ <7±z"e) , £>Q under
71

suitable conditions on the operator A= — z Xj ̂  jd/dxj. Note that
y=i

G(.r; (Tdiz'e) is a fundamental solution of the differential operator

A-

(1-5) (A

and that G(x ;^) is the kernel of the resolvent or Green's operator

(A- II)-1 in Z/CR71)^ when I is non real Here 8 (x) is the Dirac

(J-distribution and A is the closed linear operator in L2 (K.n) with domain

D(A) = {u\v,Av^U(W)}, defined by A.

The asymptotic behavior of solutions or fundamental solutions of

partial differential equations with constant coefficients has been studied

by Grusin [5], Littman [II], Vainberg [23] and others. For first order

systems, it is investigated by Wilcox [25] ? Matsumura [IS] -[16] and

Schulenberger and Wilcox [19].

Let tT° be an arbitrarily fixed non zero real number and d a positive

number such that the interval [<T° — d, (T° + (J] does not contain zero. We

put J ± = { A = < r ± f s ; |<T-<T° |<f f , 0<e<£°}. In the previous paper [14],

the author gave, under the following conditions, an asymptotic estimate

for \x -^oo of the Green's function G(x\$ which is uniformly valid

when /I runs over the region A±.

(i) The N roots A/ c ( f ) of / > ( r , f ) : =0 in r are real and have con-

stant multiplicity for all ^eS"\{0}: i.e.,

(1-6) # ( r , f ) = (r-^i(f)) f l l-(r-Aw(?)) a- , ai+ ••• + «» = #

where we label the roots A / c ( f ) in decreasing order:

3) L2(Rn) denoteb the Hilbert bpace of C^-valued square integrable functions on Rn with
norm
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(1-7) Ai(O>;i2 (f)>" •>*»(£) for all real

(ii) A root /U(?) vanishes for some real g=£Q if and only if it

vanishes identically.
n

(iii) The matrix A(g)='£gjAj is semi-simple or diagonalizable
j=-i

for any £ ej?7'.

From i) and ii) it follows that the normal or slowness surface

S= {s;p(l,s) =0} consists of [m/2]4) disjoint sheets Sk = {s; lk (5) =1} ,

& = 1, • • • , [w/2] which are C00 closed hypersurfaces in Sn. Then we assume

(iv) For every k(l<k<\_m/2]} , the Gaussian curvature Kk(s)

of 5^ at each point s is different from zero.

We shall present in § 2 a simple criterion due to C. H. Wilcox for

a homogeneous hyperbolic polynomial />(r, f) to satisfy the conditions

i) and ii) . The condition iii) can be removed. We shall give in § 8

a corresponding result for the case when the condition iii) is not assumed.

The main purpose of this paper is to study the asymptotic behavior

at infinity of the Green's functions for a class of first order systems

with self-intersections of the normal surface, more precisely for the first

order systems satisfying the following conditions:

1° ^(r, £) is a product of strictly hyperbolic polynomials:

(1-8)

(1-9) A(r,«

where we label the roots U/(?)}i<£*^rat in decreasing order:

(1-10) Ai' («>•••>;&,(£) for ce£"\{0}.

Moreover the multiplicity of the roots in r of the equation /?(r, f) ^0 is,

except A — 0, at most double for every ^eS"\{0}.

2° A root /U*(?) vanishes for some f^O if and only if it vanishes

identically.

3° Let Sk
l denote the hypersurface {s; Hk

l (s) =1} for !</<r,

!<*<6i=[W2]. Then

(1 - 11) grad A/ (5) =£grad ^ (5) for any 6- e= S/ R 5*1,

4) For a non-negative real number /, [/] denotes the greatest integer not exceeding /.
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4° For every / and k, !</<r5 \<k<b^ the Gaussian curvature

Kk
l (s) of Sk

l never vanishes anywhere in Sk
L.

To simplify statements in Theorem 8. 3 which is a main purpose

of this paper, we assume the following.

5° If S/r\Sk
l=£0, I<i<l<r, l<j<bh I<k<bl9 the matrix A (s)

is not diagonalizable for every

Remark I. The geometric assumption that if S/ and Sk
l intersect,

their tangent hyperplanes do not coincide at any point of S/ fl Sk
l im-

plies the condition 3°.

Remark 2* When we do not assume the condition 5°, we must

classify the possible cases.

The present work was suggested by Duff [I]. Note that there is a

work [12] by Ludwig and Granoff on the propagation of singularities

for first order hyperbolic systems with characteristics of nonuniform

multiplicity. However, the contents and the treatment are quite different

from ours. We shall indicate the plan of this paper by giving below

the table of contents. Finally, the author should like to thank S.

Wakabayashi for his contribution to this paper. The proof of Theorem

7. 1 on the Gaussian curvature is due to him.

Contents

§ 1. Introduction

§ 2. Hyperbolic operators* and systems

§ 3. Spectral representations of matrices

§ 4. Method of stationary phase

§ 5. Asymptotic behavior at infinity of the Fourier transform of a measure concentrated

on a hypersurface

§ 6. Basic formulas I
§ 7. Basic formulas II

§ 8. Formulas for the asymptotic behavior of Green's functions at infinity

§ 2o Hyperbolic Oper^toro Systems

In this section we recall some definitions and relations on the

hyperbolicity in order to clarify the situation for the conditions which
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we have imposed on the system (1 • 1).

Given a linear differential operator P(Dt,Dx)= T] ak>aDfDx
a of

order m in (#+1) variables (£, x) eHn+1 with constant coefficients, the

corresponding polynomial P(r, <?) obtained replacing A = — id/dt, Dx

= ( — id/dxi, • • • , —id/d^n) by the variables r, £ is called its characteristic

polynomial. The principal part of P(Dh Dx) is defined as the homo-

geneous part of order m in (A, Ac) and denoted by Pn(Dt9D^).

Definition 2e I, TAc opera lor P(Dt9 A-) is said to be hyperbolic if

jPTO(l, 0) =am}Q=j£=Q a/id -P(r, <?) =7^0 zvhen ^^Sn and 1m r is less than sonic

fixed number. A system of differential operators P(Dt9 -A) — (Pjk(Dt9

A?)) j,&=.!,...,AT £s jfl/W /o £c hyperbolic if det.P(A, A&) ^"5 hyperbolic,

If P(A, A) is hyperbolic, it follows that P(r, £) ̂ 0 when ^eS"1

and 11m r| is greater than some fixed number >0. Thus the zeros of P(r, f)

in r when g runs over Sn all lie in a strip {r; |Im r ^350<C+°°} of

the complex r-plane. From this we can easily see that a homogeneous

operator P(DhDx) is hyperbolic if and only if P(l,0)^0 and the

equation P(r, f ) = 0 in r has only real roots when feSn (i.e. s0 = 0).

HP(Dt,Dx) is hyperbolic, it follows that the principal part POT(A, Ac)

is also hyperbolic. But the converse is not always true. The problem

of characterizing the lower order terms one may add to a homogeneous

hyperbolic polynomial or matrix without loss of the hyperbolicity is

solved by Svenssons [22] for the single operators and Yolevic systems

with constant coefficients. On the other hand, Kasahara and Yamaguti

[8] introduced the notion of strong hyperbolicity and gave an algebraic

characterization of strong hyperbolicity for the Kowalevsky systems

with constant coefficients. (See also Yamaguti and Kasahara [26],

Strang [21] and Svensson [22].)

Definition 2.2. A differencial operator P(Dt,Dx) =Pm(Dt,Dx)

+ Q (A, Dx} is said to be strongly hyperbolic if Pm (A, A*) + Q' (A, AO

is hyperbolic for any choice of the lower order operator Q'(A, AO-
71

A first order system IDt— Y^AjDx A-B is called strongly hyperbolic if
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n

IDt— 2J AjDXj. 4- B' is hyperbolic for any choice of the matrix B' '.S)

A differential operator P(Dt9Dx) is strongly hyperbolic if and only

if the roots of the equation PT O(r ,f) =0 in r are all real and distinct

for every f e Sn\ {0} . A differential operator P(DtyDx) having this prop-
71

erty is called strictly hyperbolic. A first order system L = IDt —
.7=1

-j-S is said to be strictly hyperbolic if the roots of det (r/ — A(£)) =0

in r are all real and distinct for every £ eJE
77\{0}.6) Thus strong hyper-

bolicity is equivalent to strict hyperbolicity for a single differential

operator P(DhDx). But this is not true for systems. A first order
7J

system L — EDt—^AjDxA-B is called symmetric if £, A^, j=l, • • - , ; /
.7=1

are Hermitian and if £ is positive definite. A first order symmetric

hyperbolic system is always strongly hyperbolic but not necessarily strict.

The following characterization of strongly hyperbolic first order systems

is due to Yamaguti and Kasahara [26] .

A first order system L = IDt— V] AjDx. + B is strongly hyperbolic
.7=1

n

if and only if the following conditions on the matrix A (f ) — X! £jAj
j=i

are satisfied.

(a) All characteristic roots of A(£) are real for any f ^Q= {£ ; |f ]

(b) A(£) is uniformly diagonalizable on @9 that is, there exists a

diagonalizor W(f) of A(?) such that 2V(?) A(£)N($) ~l is a diagonal

matrix, the row vectors of -Af(f) are of length 1 and |det -ZV(f) |>C,

where C is a positive constant independent of f efi.

Our assumptions i) and iii) on the first order system L = IDt
n

— ̂ 2AjDx. mean that L is a strongly hyperbolic operator of constant
.7=1

multiplicity. Now we present a criterion due to C. H. Wilcox for a

hyperbolic polynomial to be of constant multiplicity and satisfy the con-

dition ii) .

Let ^(r, £) be a homogeneous hyperbolic polynomial of order Na

Then *z(r,£) has a factorization

5), 6) The notion of strong and strict hyperbolicity can be denned analogously for higher
order Kowalevsky or Volevic systems. However we restrict, for simplicity, ourselves
to the first order systems to be treated later on.
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where the factors « ^ ( r , f ) are distinct homogeneous polynomial in (r ,£),

irreducible over the real number field. Since we can assume a (1,0) =1,

the factors <r^- ( r , f ) are unique apart from their order by requiring

«y( l ,0 )=l . Let

) = 0i(r ,?)"-0r(r , f)

denote the corresponding polynomial with simple irreducible factors.

Theorem 2.3. (Wilcox [24]) A necessary and sufficient con-

dition in order that the N roots of the equation a(r, £) —0 have con-

stant multiplicity for all £e j?7l\{0} and satisfy the condition ii) is that

the normal or slowness surface S= {s— (51, • • • , 5rt) ; #(1, s) =0} is bounded

and <s, grad &(1, s))>-7^0 -when

A first order symmetric hyperbolic system whose characteristic

polynomial det (r/— A(f ) ) has this property is named uniformly propa-

gative by C. H. Wilcox. A proof of sufficiency of the theorem is given

in § 4 of Wilcox [24] , The necessity easily follows the following

fact7) proved by Matsuura [17].

Let a ( r , f ) be a homogeneous hyperbolic polynomial of constant

multiplicity, that is, in the factorization of a(r, f) into linear factors in

r :a ( r ,0 = ( r -Mf) ) a i " - ( r -A«( f ) ) B « , cfc+ ••• + a, = N9 the roots *,(?)

are all real and distinct for every f ej?w\{0}. Then we have

We conclude this section with two examples of hyperbolic systems

of first order.

Example 1. Consider the following hyperbolic matrix.

-i -ft 0 t / r-f! & 0

-f. 0 -& =1 ff% r f

0 0 0 / \ 0 O r

The characteristic polynomial is of the form.

7) See also Kitahara, Asymptotic wave functions and energy distributions for symmetric
hyperbolic systems of first order (Appendix), to appear.
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p(r,^=det(tI-A(^=T(r2-^-^.

The matrix A(f) is diagonalizable for any £ with |£| = 1, but not uni-

formly diagonalizable, so the corresponding hyperbolic system is not

strongly hyperbolic (see Kasahara and Yamaguti [8] and Svensson [22]).

This example is due to Petrowsky.

Example 2« Consider the following hyperbolic matrix.

0

0

0 0

0 0

The characteristic polynomial is of the form.

P (r, S) = (r2 - ?>2 - 4?2
2) (r2 - 4?f - f 2

2).

It is clear that the system satisfies the conditions 1°, 2°, 3° and 4°. It

also satisfies the condition 5°. Since we have

2ci 0

/>(r, f) is the minimal polynomial of A(f) for £ with fi^O. For

^i = l/± 75 and $2 = l/± V5, we have />(r, f) = (r2 —I ) 2 . Therefore the

matrix A (f) is not diagonalizable for such £.

§ 3* Spectral Representations of Matrices

In this section we shall make no distinction between a linear operator

on the AT-dimensional complex number space CN and the corresponding

representation matrix in the canonical base, since we shall not change

the base. Let p(r9 f) be the characteristic polynomial det (r/~ A(f))
n

of a matrix A(£) = ^ g j A j , where the Aj are complex NxN constant
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matrices and g^Sn. Suppose that the N eigenvalues As-(f ) of

are real and have constant multiplicity for all real s^Sn\{ty, in other

words, />(r, f) is a hyperbolic polynomial of constant multiplicity:

(3-1)

where the eigenvalues ,1* (?) are enumerated in decreasing order:

(3-2) M?)>M?)>"->^(?) for every ?eS"\{0}.

Since /l/c(?) satisfies

(9/9r) «*-'/> ( M f ) , f ) = 0 and (9/9r) t tV>U*(f), f)^0 for

it follows from the implicit function theorem that 7u- (?) is an analytic

function of ? in j?" e {0} . Further with the enumeration (3-2), the

eigenvalues /U(?) are positively homogeneous of degree one and satisfy

(3-3) M-?) = -/U-A;+i(?) and or* = «„,_*-!, A = 1, • • - , « / .

These follow from (3-2) and the relation:

for any non zero real <?.

Under the further assumption that 7u- (?) vanishes for some real

if and only if it vanishes identically, i.e.,

(3-4) A,(?)^0 or A*( f )¥=0 for any

we have the following relations. When m~2b is even,

(3-5) Ai( f )>

When ?7i = 2b-^-l (b=\_i)i/2~\) is odd,

= -/U ( -? )>• • •>A™ (?) = -Ai(~?) for ?f

Now let us consider the operator Pfc(?) in C^ defined by

(3 • 7) P, (?) = -^r Jr (0 C^~ ̂  Cf ) ) "J^

1 / Sj^-'f Jc
^ /
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where Fk (£) is a positively oriented contour enclosing the point

but excluding the other points of the spectrum of A(f), and 'cof (zl—

is the transpose of the cofactor matrix of (zl— A( f ) ) . Then the P fc(f)

are analytic functions of £ in Sn\{0} and positively homogeneous of

degree zero. Moreover they have the following properties.

(3-8) P;(?)/\(?)=<W-(?),

(3-9) A(? )+-"+P m ( ? )= / for £=£0,

(3-10) A(f).P,(?)=A.(?)A(?),

(3-11) P»(~£)=.P»-»ri (£) .

We shall denote by Mk (£) the range of Pfc (f ) . Then it follows from

(3-8) and (3-9) that the vector space CN can be decomposed into the

direct sum of the subspaces MI (f ) , • • • , Mm (?) and the operator Pk (?)

is the projection on Mk(g) along the subspace MjC?)©---©^/,..!^)

©M fc+1(?)©---©M ra(f). The subspace M/f(?) consists of all vectors

C in CF which satisfy the equation:

(3-12)

and we have

(3-13) dim Mfr (£)=«*-

The subspace A/fc (f ) is called the root subspace or generalized eigen-

space of the operator A (f ) corresponding to the eigenvalue /[A. (f ) . We

now set

(3-14) Q*(f) = (^(f) -A*(f) / )Pt( f ) , k = l,-,m.

Then it is easy to see that the Q4(f) have the following properties.

(3 • 15) Pf (f ) Qk (f ) - 5,,Q, (f ) P, (?) ,

(3-16)

(3-17)

(3-18)

From (3-9) and (3 -14), we obtain the spectral representation of

(3 • 19) A (£ ) = f] ^ (?) Pt (?) + Q, (?) .^J
k = l
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Let tj)(z) be a holomorphic function in a domain of C which contains

all the eigenvalues /U (?) of A(f) . Then the spectral representation of

the function 0(A(£)) of A(f) is given in the form

(3 • 20) 0 (A (S ) ) = ] ]p (Q, (f ) ) ipt (f ) ,
fc = 1 7 = 0 j\

Tn particular we have for 0(z) - l/(z —

(3 - 21) a

If A(g) is diagonalizable or semi-simple for any g&E71, we have

(3-22)

(3-23)
fc~1 A& (f) ~ A

We shall derive a representation for the resolvent (A (f ) — A/) ~] of

the matrix A($) whose characteristic polynomial />(r, £) satisfies the

conditions 1°, 2° and 3° in § 1. For this purpose we first consider the

case when the roots of ^ ( t 3 f ) ~ 0 are all distinct for every f FE J3f7i \ {0} .

Define a function «(r, A, f) by

(3-24) f / ( r , A , £ ) = — 1 -rr-1—
(r - A) 2?rz

r
Ji(

where 7 (f) is a positively oriented contour enclosing the points

and &k (f) but excluding the other points of the spectrum of A (f) . Then

we have from (3-24)

(3-25)

(3-26) «(;.

and ,
Afc (?) ~ A

where j indicates that (r — /l /(^)) is omitted. Therefore
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(3-27)

Now, we know that

(3.28) «a,(f)

9r

To simplify formulae, we introduce the notation

(3-29) ^*(f,0)=^ (£)+(! -#)**(?

(3 • 30) P]k (f , ̂ ) •> = -1_ f (*-
2?rz J.(f)

(3-31) Rik(et$-)=-±-. f
2w Jr(

. (* - ^

= A. j 'eof(r/-A(f))

Then we obtain the representation:

(3.32) CACfl -«)-- {_'{- ^ — rP,.tf.«
U y * ( f , * ) - A ) S

1

where Pyjfc(£, #) and RJk(^d) are C°° functions in (JT\{0} ) x [0, 1]

and positively homogeneous of degree 1 and 0 in £ respectively.

We consider the case when in an open subset U of j?n\{0}, A/(£)

and A* (£) may coincide for some f but the other eigenvalues are all

simple for any f e C7. Then the above representation (3 • 32) remains

valid in this open set U. Let us now establish a general formula for
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satisfying the conditions 1°, 2° and 3° in § 1. To simplify the

description, we change some notations. Taking account of the relations

corresponding to (3-5) and (3-6) for the roots of />i(r, ?)=0 in t% we

reenumerate the roots of />(r, f) -0 in r in the following way,

(3-33) />( r ,£ ) = ( r - ;U t f ) ) 0 fl (r -

where A 0(f)^0, Mf)>0 and ;U (f ) <0 for £e£"\{0}, A = 1,2,-, 6

and ^ ( - f )= ._ ;u t ( f ) , * = ! , - . - ,* .

Thus the A*' (f) , / — I , • • • , ? % & = 1, • • • , &*= [raz/2] are in a suitable

way reeimmerated as Ai( f ) , • • • , /is (?) , £ = &H ----- h& r . We also denote

by S,t the sheet {5; A/, CO = 1} , 1^£<£ of the normal surface of />(r, ?) .

Form the assumptions 1° and 3° in § 15 it follows that every Sj(~]Sk

(j<^k) is an empty set or an (11 — 2) -dimensional smooth submanifold of

Sj (Sk) . In fact, suppose that s° e Sj f| 5fc, i.e., Ay (5°) - A,, (5°) - 1. From

the condition 3° we may assume without loss of generality that dhj(s°)/d£n

=f=dkk (s°) /d$n. By the implicit function theorem there exists a C°°

function sn =f(s') defined in a neighborhood of 5°' such thai Aj(s\f(s'))

= ̂ (/,/(O) and jrn°-/CO. Consider the equation Ay (/,/(/)) =1.

Then

L x ON _ 9 A A- /ox

k_(s°)__^L_(/>)

For otherwise we have grad A; (5°) ~ grad A/, (^°) • Thus *Sryn*SA. is a

submanifold of Sk (and *Sy).

Set

(3-34) ^n={s/\s\\s^S^S,}(^Q^{s\ 5|=1}, J<*.

Take open subsets V^j. and Vjk of J2 such that o)JkdVj-kClVjk. Let

be a C1""3 function on fl such that w/k (^) = 1 in T7
7-fc and supp wjkd VJk.

We denote by the same letter the C°" function extended to the space
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JT\{0} by homogeneity of degree 0: wjk(£) = ivjk($/\f |) . Note that

we can choose Vjk and Vjk as small as desired.

Making use of the functions wik for (j9 K) such that j<^k and

SJ.(~]Sk=^=09 we obtain the following representation which is valid for

.A(f) whose characteristic polynomial />(r, £) satisfies the conditions 1°,

2° and 3° in § 1.

(3.35) (A(f) -A/)-1^ E* f f
>.* LJo

{

Here the sum 21* is taken over all pairs (j9 k) such that

or -l>j>*>-*, and 5,^, n^ | f c l¥=0. On the other hand the sum Z**

is taken over all k such that l<\k\<b and S l k l f ] S j = 0 for any j=£\k\

We defined w_,.,_fc by «;_,,_*(£) =«;/*(-?) , 1<J, *<6.

Note that if A (f °) is diagonalizable for some c° e »Sy fl ^fc? we have

(3-36)

40 Method of Stationary Phase

In this section we first present some basic facts concerning the

method of stationary phase.

Let G be a bounded domain in the real m-dimensional Euclidean

space Em
9 and let h be a real valued C°° function on G. A point a^G

is called a critical or stationary point of h if grad h (a) = (dh (a) /9f i,

• • • , 9A(<z)/9fro) =0. A critical point a is called non-degenerate if and

only if the Hessian Hess h (a) =det(d*h(a)/d? jd$k) of h at a is different

from zero. The inverse function theorem implies that a non-degenerate

critical point is isolated, for Hess/z(£) is the Jacobian D(ij)/D(g) of

the map: f H» 77 = grad A(f) . We shall denote by H(a) the Hessian

matrix (dzh (a) /9f jd$ fc) of A at a and by sgnJJ(a) its signature, i.e.

the number of positive eigenvalues of H(a) minus the number of nega-

tive ones.
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Now we consider the integral

(4-1) / (0 = f g (?) exp {it h (?) } d£ ,
JG

where 0eC0
ro(G). We are interested in the asymptotic behavior at

j/|-»oo of /CO • If ^ nas no critical points on supp g, the exponential

oscillates rapidly for large \t\ and the positive and negative swings in

value will tend to cancel out in the integration. In fact we can show

by integration by parts that f ( f ) approaches zero as \l\—>oo faster than

any negative power of \l\. Thus the principal contribution Lo the asymp-

totic behavior of /CO f°r lar£e t should arise from the immediate

neighborhoods of the critical points of h (£) .

Theorem 4* 1. 1° If h has no critical points on supp g, the?i -we

have

(4-2) /(0=0(|*|—) as \l\-*oo.

2° Let h have critical points on supp g and assume that these

points are all non-degenerate. Since non-degenerate critical points are

isolated, h has only finitely many such points a(1\--^a(r} on supp {/.

Then we have

(4 • 31 f(t\ = (2^ m/2 Y1 exP ffi h (a(Z)) + (*ft/4) sgn H(a(l^ sgn t} , , _m/2
N X » / \ / \ ' ' 1 / ^L j iTT 7 / ' / ' / ^ \ 1 / 9 ''=] I Hess /?(fl ( i !-

and

(4-4) |^(

where £ = cpl(7/) is a C°° change of variables in a neighborhood of a(

with f] in a neighborhood of 0 in Sm such that

(4-5) * ( I )=V(0),

(4 • 6) h (<pl (7) ) = A
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Here

l'a a! I 2 ? /

vanishes for odd \a\, and is independent of \t\ a?id g.

The method of stationary phase for multiple integrals has been in-

vestigated by many authors. For the sake of completeness we give a

proof of this theorem (see e.g. Fedoriuk [2], Hormander [7, 3.2]).

Proof, 1° For the differential operator

(4-8) M=z-'£]J^--^

we have

(4 • 9) exp {it h (£ ) } = r 'M[exp {it h (f ) } ] .

Using repeatedly this relation, we find

f g (f ) exp {£ /i (f ) } rff = r1 f (M[fif (f ) ] exp {fc A
JG JG

where 8Af is the transposed operator of M. This means (4-2).

2° By use of a C00 partition of unity we see that it suffices to

consider the case when h has only one non-degenerate critical point a

and when the support is contained in a sufficiently small neighborhood

of a. We can write

(4 • 10) h (?) - h (a) = alk (?) (£, - a,

where

(4-11) Hf

Note that the <xjk($) are C°° functions and that the matrix H$ is sym-
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metric, i.e. 1H^ — H^ and

Here and in sequel, for a matrix H, 1H denotes its transposed matrix.

If we set

we have

(4-15) HSK^ — LK^H^ and HSES — LESH^,

Define Ks
l/2 for f near a by

(4-16) AY'2- Z>n£A
7J--Q

where the cn are the coefficients in the expansion (1 + p)1/2 = £] cnpn-

Then it follows from (4-15) and (4-16) that

f A 1TN JU V 1/2 f- V I/? I_F ~-nA 7/" '/?- f V2 lcr
^<t • i / j Ai^is^^' ^= J-\g' JL±£ ana. iv^' A.I: ' — iv^..

Substituting % — a = K%/zy in (4-10) and making use of (4-17), (4-12)

and (4-13), we find

(4-18) A( f ) -A(a )= l
£j

On the other hand we have

Consequently, there exists the inverse function ^ — (p(j]) of 7/—(K^/z) "'

X (? — <2) which is defined in a neighborhood of 0 in 3m and ^(0) — ̂ ,

D((p)/D(y)\q=0=l. Making the change of variables % = $($) in (4-1),

we have

(4 • 19) /(O = exp {# A (a) } f g, (ry) exp )-^-
JG 12

where Qi(7/') = g((p(^)D((p)/D(7i)^CQ
00(Eni'). Let us regard the integral in

(4-19) as the result of applying the temperate distribution exp{it(H(a)y9
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7/y/2} to the test function glt Then we obtain by the Fourier's inver-

sion formula

(4 • 20) /(O exp {-ith (a} } = (exp \*L <H (a) v, V>1, ft
\ v Z / ^

where Qi = ̂ Qi. From the well known Fresnel integral

(4 - 21) f+°°exp { ± zp2} ̂ p - f—) V2 (1 ± 0 - 7T1/2 exp I ± -
I — \ 9 / I

we find

where ^ is a non-zero real and r denotes the real dual variable of p.

From this we conclude that

(4-23) £?-' [exp {A<H (a) 7,

= (27T) ~m Jexp J-|-<H(fl) V, ?> - /<x,

\detH (a) 1
_

^

4

Substituting (4-23) in (4-20) we obtain

(4-24) /(O = ^"J gypfo A(,/) +-^i
| Hess A (a) |1/2 1 4

/Tl /• -j

& (x) exp | - -L-(H(a) ~lx, x)\dx.
JRm ( 2t )

9) EJ and Ef"1 denote respectively the Fourier transformation and the inverse Fourier
transformation in the space of temperate distributions.
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Let us apply to the function <p(x)=exp\—— (H(a) ~~l x^ x)\ the
{ £ }

Taylor's formula:

where

and

Since exp{-z<H(a)-X x>/2^ =exp{-z sgn

we obtain

(4-25) f
I JR'"- 2t

- 2 CJ*|-ia"2 f
|a<|<2# JR™

Therefore

r / xv, \
i (x) dx

Now

/ ~ \ / I «,! \ |o.|
d) | a | for

(4-26) I] f
\a\=2N JR™

<C2VA,m 2 sup | ̂ g,^) | f - dx -
\r\?s.lN+m + i x JRm( l+ |x | ) +

f
1 J3

I]

From (4-24), (4-25), (4-26) and the relation

\xag, (x) dx = (2ri)m (DagJ (0),

we conclude that
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exp {it h (a) + — sgn H(a) sgn t}

- m/2/(O - (2;r)} ^ }

for *|>1. Q.E.D.

The following theorem we will use in § 7 is concerned with the

asymptotic behavior at infinity for a one-dimensional integral with a phase

function of which a non-degenerate critical point is an end point of the

integral.

Theorem 40 2* Let h (f ) be a real-valued C^ function defined in

[0, oo) and geC0°°[0? oo). Suppose that h' (0) =0, h'ffi^Q for f>0

Then -we have

(4-27) /(*)= f
Jo

£y=o

and

(4-28) l^(

(4-29)

for j=2k even, k = Q , ~ L , 2 , • • • ,

and

(4-30) C , = ^ -

for j=2k+\ odd, A = 0, 1,2,

Proof. Since A x ( f )^0 for £>0, it suffices to consider the case

where the support of g lies in a sufficiently small right neighborhood

of 0. Let ];=(p(yf) be the substitution of variable such that A(^(^)) — A(0)

= Ax/(0)^2/2, which was defined in the proof of Theorem 4.1. Here
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TJ = (2a (f ) /k" (0) ) v=f and a (f ) - f (1 - p) A"(f pXp. Put ^(g) -
Jo

:<D(<p) /D(y) . Choose an even function 0eC|T (— oo? oo) so that 0 =

near supp glm Then we have

/(O - exp {ft A (0) } f"0 Of) gi (77) exp {ft A" (0) if/2} d-q .
Jo

Substituting the Taylor formula for g^-.

in the above integral, we get

(4 - 31) /(O exp { - ft /i (0) } = (7 (0) T0 0?) exp {ft A" (0)
Jo

r^
W (7) exp {/f h" (0) ?'/2} ^ry

Joj

ygi,^ W ^ (r/) exp {ft A^ (0) f/2} d-q

^/0(0 + E^iu'HO)/,(0/j!+AW3 respectively.
j=i

First consider /0 (0 . Since 0(^) is an even function,

-™ 0 (T?) exp {/< A* (0) y;V2} ̂  .
^

Let us apply 2° of Theorem 4.1 for m = l to this integral. Since

0C/)(0) -0 for j>l, we have

(4 - 32) /0 (0 = - x7 _1/8v y ^°w 1

as

Next consider /i (0 . Using the relation:

(4 - 33) 7i exp {ft 7i" (0) f/2} = -—77^ -- (exp {ft A" (0) ?
2

z£ A (0) ^

and integrating by parts, we get
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Since 0' (77) eCS°(0, oo), the second term of the right hand side decreases

faster than any negative power of t as t—»oo. Repeating the same argu-

ment we obtain for £ = 0,1, 2 , - • •

(4 • 34) /u+1 (0 = f °>+V (?) exp {it h" (0) f/2} dy
Jo

- (i/h* (0)) *-• [2kk I rk~l + O Or ~) as t-> oo.

On the other hand, consider f2 (^). Integrating by parts, we find

(0) Jo

as £->oo.

In view of (4 • 32), we have

-3/2+O(£—) as ^oo.

Proceeding inductively, we deduce

(4 • 35) f2k (0 = f A) V2 f — L_ ) * - C? - exp {ZTT sgn A/x (0) /4}\ 2 / V A ^ C O / A ^ c o 1 ; /

) as ^->oo, * = 0 ,1 ,2 , . - - .

By successive integrations by parts, we also find that

(4-36) /*(0=O(*~(*+1)/2) as t->oo,

From (4-31), (4-34), (4-35) and (4-36), we conclude (4-27), (4-28),

(4-29) and (4-30). Q.E.D.

§ S0 Asymptotic Behavior at Infinity of the

Fourier Transform of a Measure

Concertrated on a Hypersurface

The method of stationary phase is applied to the investigation of

the asymptotic behavior at infinity of the Fourier transforms of measures

with smooth density concentrated on smooth hypersurfaces. In doing

this, we must recall some basic notions and theorems on hypersurfaces

in differential geometry.
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By a C°° hypersurface S in Sn we mean an (n — 1) -dimensional C^

manifold without boundary embedded in Sn. We shall denote by s the

moving point on S. We can assign a unit normal n(s) to each point

in a coordinate neighborhood of a point on S in a such a way that ix (5)

is a C^ vector field. But this can be done globally on S if and only

if S is orienlable. Let n (s) be a C°° unit normal vector field on S. Then

the if (5) defines a C" map of S into the unit (n — 1) -sphere 5 and this

map is called the spherical or Gauss map. Our present study is local

so we fix a C"° unit normal vector field on a neighborhood 5* of a point

on S in question. For any s in 5* and any vector v in the tangent

space TA$5, define the linear map Z/s: TSS->TSS in the following way.

Pick any curve s = s(t) through 5 so that ds(t)/dt\t=0 = v. We follow

the normal n = n(s(t)) as 5 traverses the curve. Then d n ( s ( f ) ) / d t \ t = Q

^TSS and this vector is independent of the choice of the curve s = s ( t )

so long as it has the prescribed tangent v at £ —0, so we define Lsv

= dn (s(t))/dt\t=0. This linear map Ls in the tangent space TSS is called

the Weingarten map. It is easy to see that Ls is self-adjoint with re-

spect to the inner product in TSS induced naturally from jjn so the

representation matrix of Ls with respect to an orthogonal base of TSS

is symmetric. For each integer £>1, (Lg
k~1v,wy, v,zv^TSs is called

the &-th fundamental form on S. The algebraic invariants of the linear

map Ls at each point define the embedded geometric invariants of S at

each point. Thus the determinant of Ls is the Gaussian or total curvature

K(s) of S at s, the trace of Ls/(n — 1) is the mean curvature. Since

Ls is self-adjoint, its eigenvalues are all real and they are called princi-

pal curvatures at s. If they are all distinct, then the corresponding

eigenvectors of unit length are determined up to a sign and they are

called the principal directions at s. We have defined making use of

n (s) and Ls the Gaussian curvature of the hypersurface at each point.

However, if n is odd, the Gaussian curvature depends only on the metric

in the tangent space TSS, that is, only on the Riemannian metric on S

induced from Sn (Gauss' theorema egregium). Thus the Gaussian

curvature is, if n is odd, an intrinsic invariant that is independent of

the embedding (i.e., of n(s) and Ls). But this is false for any even n.

Note that the principal curvatures change their sign whether ?i is odd
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or even if we replace n (5) by — n (s) . Here we give the formula for

the Gaussian curvature K(s) at each point s of a C°° hypersurface

defined by an equation sn = h(s') where s' denotes (s^ - • 9 sn-i) . We

choose the C°° unit normal vector field 11(5) such that (n(s), (0, • • • , 0, !))>

>03 that is,

(5-1)

Then the Gaussian curvature J£(V) with respect to n(s) is given in

the form

(5-2) #(*)=-
{l+lgradA(/) |Vn

Hence we have /C(V) = ( — I)71 ^essAfc') if s' is a critical point of

h(s'). Let A i , - " j A n - i be the eigenvalues of the Hessian matrix

(92A (s') /dsjdsk) . Then the principal curvatures in the normal direction

n(s) are — Ai, • • - , — An-i.

Both the Gaussian curvature and the Weingarten operator are closely

related to the convexity of a hypersurface. A hypersurface S in Sn is

said to be convex at a point s^S if the hyperplane Ms of S71 tangent

to S at 5 does not separate a neighborhood of s in S into two parts.

Moreover, if 5 is the only point of a neighborhood which lies on M^

then S is said to be strictly convex at s. If, for every s e S, ^Ks does not

separate S into two parts, then S is said to be convex. If, for every

seS, 5 is the only point of S which lies on Ms, S is said to be strictly

convex. A convex hypersurface is always orientable. Convexity of a

C°° hypersurface S can be expressed in terms of a defmiteness condition

on the Weingarten operator Ls. A C°° hypersurface S in En is strictly

convex at a point s if Ls is definite, i.e. if the second fundamental form

(Lsv, vy is either positive or negative definite. The converse is not

true. Ls may be semi-definite and therefore the Gaussian curvature K(s)

may vanish. A C°° hypersurface S is convex at a point s if and only

if Ls is semi-definite.

Now we recall the following theorems concerning global property.
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Theorem D.G. I. For a C03 closed hyper surf ace in Sn O>2),

namely a connected and compact (n — •*£)-dimensional C° manifold with-

out boundary embedded in 3n, the folio-wing conditions are equivalent.

(1) The Gaussian curvature K(s) of S never vanishes on S.

(2) The Weingarten operator Ls is definite for every s&S, that

is, the second fundamental form (Lgv, v) is definite everywhere on S.

(3) S is orient able and the spherical map S->$ is a Cro diifeomor-

phlsm,

Theorem D8G» II (Hadamard). Any one of the conditions above

implies that S is strictly convex.

Remark. If we mean by a hypersurface in E" an (;? — 1) -dimen-

sional manifold with an immersion, the above theorems are true only

for 77>3.

For proofs of these theorems and more details concerning curvatures

of hypersurfaces, one may consult, for example Flanders [3], Hicks [6],

Kobayashi and Nomizu [9] or Sternberg [20].

Under these preparations, we proceed to the following theorem

which is our main purpose in this section. This theorem which de-

scribes the asymptotic behavior at infinity of the Fourier transforms of

the measures with C"0 density concertrated on C°° hypersurfaces in Sn,

has been investigated by many authors, e.g. Fedoriuk [2], Grusin [5],

Liltman [10], Vainberg [23] and others (see also Matsumura [13],

[14], [15]).

Theorem 5. 1. LeL S be a C" hypersurface in E1', ft a C" function

defined on S ivith compact support and define

(5 - 3) I(x) = f /JL (5) exp {?<X s» dS, x e W ,
Js

where dS is the surface element on S. Assume that the Gaussian

curvature K(s) of S does not vanish on supp /t. Then ihe set of points

on supp /JL at which the normal to S is parallel to 6 is finite in number

for each unit vector 0eJ2.10) We denote these points by sl (0), • • • ? s r ( 0 ) .

10) 6 and J2 denote respectively a unii vector and the unit sphere in B™ and in It71.



342 MUTSUHIDE MATSUMURA

Taking 0 as the positive direction at sl (0) , denote by pi+ (0) and pi~ (ff)

the number of positive and negative principal curvatures at sl (ff) re-

spectively. Then the asymptotic behavior of I(x) for x ->oo along

the ray x=\x\0> is give?i by

(5 • 4) /Or) = (2,0 <"-"/2 __ e xp z| x\

-where for each multi-index y

(5-5) (9/9^)^(^)

uniformly for 0 e J2,

Proof. We first remark that the measure ?;z/t with C°° density

concentrated on 5 is defined by

fl,V>= \Js

It is obvious that supp mflClS. Since the Fourier transform of mlt is

defined by

we have

<ff^, 0> = f /i (5) { f 0 (x) exp { - /<>,
Js ( JR«

-f { f /j(5)exp{-z<^^>}
J«n i Js

Thus I( — x) is the Fourier transform of m^. Let us return to the study

of the asymptotic behavior of I(x) as |.r|— »oo. First we will study the

case when x is (0, • • - , 0, xn) and write simply I(xn) instead of 7(0, • • • ,

0, xn) . We show that the major contribution to 7(.r71) as l ^ ] — >oo

arises from the immediate vicinity of the points at which the normal

to the surface 5 is parallel to the vector (0, • • - , 0 , 1). For this let us

take a finite number of sufficiently small patchs {Uj} for the C°° manifold

S which cover supp p. and a C°° partition of unity {ap3} subordinate to
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this covering such that ^<pj(s) =1 on supp /*. Decompose

(5 • 6) I(xv) = X! Us 00 exP fan**} dS^ XI ̂  GO , respectively,
i JUj j

where /IJ = <PJ/JL. We consider a patch U3- which does not contain any

point such that the normal to S at this point is parallel to the vector

(0, • • • , 0 , 1 ) . Since Uj is a part of a C" hypersurface, U7- may be re-

presented by the equations sk = sk (ffly • • • , <T n _i) , & = 1, • • - , ? ? where the SA.

are C°° functions defined on some open set in ff' = (fflf • • • , ffn-i) -space.

Then our above assumption on U 3- implies that there exists at least a

tangent vector which is not orthogonal to the vector (0, • • • , 0 , 1). Thus

we have dsn (0*0 /dffi=^0 for some i. By changing from integration over

Uj to integration with respect to 0"j, • • • , (T r t_1 ? we have

7, CrB) = /o (5 (O ) to (O exp {fxn5 (

where

(^ means "omit"). Since grad sn (0*0 ̂ 0 on supp // 7- (5 (d"0 ) » we have
a' a'

by 1° in Theorem 4. 1 that

(5-7) T,(J:/I) =O(\xn -"") as |J:B ->CXD.

From this, we see that the main contribution to I(x^) as \xn\— >oo arises

from those terms Ij (xn) such that Uj contains points at which the normal

to S is parallel to (0, - - - , 0 , 1) . Such Uj may be represented by the

equation in the form sn =h(slt • • • , sn_i) where /? is a C" function. In

fact, let 5fc = 5fc((Ti, • • • , (J7!_i) , & = 1, • • - , ; ? be the system of equations that

defines Uj and 5(0) a point in Uj at which the normal to S is parallel

to 6= (0, • • - , 0, 1) . Then the unit normal at s(0) is given in the form

(58) C — ' — fc (5l? '"'
Dfa, -,<;„_,)

where C= { I D f e , -,5t, - t s J / D ( f f t , •••, ff, , . ,) |2}~1/2 and 5(fl)=s(ff' ((?)).
fc=l

Since this normal is, by assumption, parallel to 6= (0, • • - , 0, 1), we have

7)(5i, • • • , 5n_i)/D((T1, • • - , (Jn_i) er'^'o^O. Consequently we can solve, by

the inverse function theorem, as ffk = ffk ($1, • • - , 5 / t_i) where the (Tfc are C3
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functions of s' = (51, • • • , sn-i) . By substituting this in sn = sn (0"i, • • • , fin-i)

we see that Uj is represented by the equation sn = sn($1(s
/), • • • , (T7l_i(5 /))

=A(5 i , - • - , j n _ 1 ) . Further the vector (-dh(s')/dsly • • - , -dh(s')/dsn-.l9

1) |s'=s'(0) is normal to 5 at the point s(0) and therefore parallel to

( 0 , - - - , 0 , 1) by assumption. Thus we have grad h (s' (6)) = 0, that is,
s'

s' (6) is a critical point of the function A(s'). From the assumption

that the Gaussian curvature K(s) of S does not vanish on supp ft., it

follows that the critical point s' (0) is non-degenerate. For we have

Hess h(s' (6)) =^0 according to (5-2). Therefore the points at which

the normal to S is parallel to (0, • • • , ( ) , 1) are isolated. So we may

assume that Uj will contain no more than one such point. If we

denote by Ai, • • • , A 7 , - i the eigenvalues of the Hessian matrix H(s'(6))

= (d2h (s' (6) ) /dsjdsk) , the principal curvatures of S at s (6) with respect

to the unit normal vector field (5-1) are given by — Ai, • • • , — /U-i and
71-1

we have ][] sSn kj=P~ (6) ~p+(0). Let us return to the integral I j ( x n ) .
j=i

By changing from integration over Uj to integration with respect to s',

we have

V, h (s') ) {1 + | grad h (O !2} '/2 exp {«n/7 (/) } ds'.
S'

From the above consideration, it is possible to apply the case 2° of

Theorem 4. 1 to this integral. Thus we get the following asymptotic

formula:

(5 - 9) 7, (*„) = (2;:) c-»/
<(0)) '

as

The general case is easily reduced to this case. In fact, let T be an

orthogonal transformation in S" such that *T0 = '((), • • • , 0, 1). By making

the change of variables s = Ty, we have

,- (x) = f A, (2» exp {/<
J^

^X^)exp{z|
Ju j
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After applying (5-9) to this integral, we perform the inverse transforma-

tion — T~ls. Then we obtain

c|-<-"» +0(|.r|-"1+l"s)
)

as .r|—»oo

along the ray x=\x\6. Further it is easy to see that the order rela-

tion O is uniform with respect to 0eJ2. Summing up, we have

(5-10) IW=±Cl
Z ^ = 1

for ,a:|—» oo, uniformly for Q = x/\x\€zQ where

(5-11) C,(fl) = ( 2 7 r ) ^ v 2 I L _ e x p *L(p- (6) -/.*

Set

Noting that 0 is a function of .r, differentiate the both sides.

(5-12) (d/dx) "q (x) - (d/dx) "I O)

-I] (Ml

Applying the asymptotic formula obtained above to the integral

(d/dxYI(x)= f (w)V*fc)eKp {*'<*, *>}*?£,
J.s

we have

(d/dxYq(x)=O(\x\~(n^) for |x ->oos uniformly for Q = x/\

This completes the proof.

In particular, consider the case when S is a closed C°° hypersurface.

As stated before, if the Gaussian curvature K(s) does not vanish on 5,
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S is strictly convex and the Gauss map is a diffeomorphism of S to Q.

We choose as n(s) the outward unit normal vector field and denote by

s(ff) the inverse map of the Gauss map S^s^n(s) efi. Then, for each

0eJ2, there exist only two points s($) and s( — 0) at which the normal

to S is parallel to Q. The n — 1 principal curvatures of S at s(0) and

at s( — 0) with respect to the direction 0 are all positive and all nega-

tive respectively. In this case we have the following asymptotic formula:

(5 - 13) /(*)=• f fi 0) exp {z<X *>} dS
Js

as |.r|— >oo along the ray ;c=|.r|0, where ?(.r) satisfies (5-5). If S is

the unit sphere J2 of En and ,«(.s)=l, we have the well known formula

(5-14) I(x) = f
Js

as |j:|->oo, where Jj,(^) denotes the Bessel function of order y.

§ 6e Basic Formulas I

Let A (f ) be a real valued function on En satisfying the conditions :

(A. i) A(?) is positively homogeneous of degree 1.

(A. ii) A ( f ) is positive and C°° in S'UO}.

Then the set S= {self1; A(V) =1} forms a C°°, closed and non-singular

surface of dimension n — I which encloses the origin. For we have

gradA(f )^0 for £e=Sn\{0} from the Euler's relation 2?,-9A(f)/9fy
j=i

= A (f ) . From this we see that S is non-singular, namely a C°° manifold

of dimension n — 1. Since the map J33^i-> ?//!(?) e5 is one to one and

bicontinuouSj /S is a closed surface and encloses the origin.
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Making use of the function A ( £ ) > we can introduce new coordinates

(p,s) in the space Sn\{0} such that

(6-1) € = ps, 0<p<-foo, sGS.

Then we have

(6-2) d$ = (p"-V|grad i(s) \)dpdS.

Take a finite covering of S which consists of sufficiently small open

subsets of S9 and a C00 partition of unit}7- ( ® j ( s ) } subordinate to this

covering. If we extend these functions to the space 1T\{0} by positive

homogeneity of degree 0: $*(?) = &i(§/l (?)) , {0£(f)} ™ a C°° partition

of unity in JT\{0}. Then it suffices to show

(6-3) 0,(£)fl£ = e«(s) (p"

Let 5° be a point in supp &t(s) d5. From the assumption i) we may

assume without loss of generality that dA (s) /d£ H=^=Q in a small neigh-

borhood of 5° on 5. By the implicit function theorem, there exists a C^

function sn = h(s')9 s' = (sly • • • , 5,,_i) such that 7t(/, 7z(/))^l and dh(s')/dsj

= -(dl(s)/df J /(dlty/dSJ, j=l, '••,??-!. In a conic neighborhood

of 5° which contains supp®7-(£) , we have

71-1

because T] 5y9/i (s) /d£ j = A (^) = 1 for se 5. Thus we get (6-3) from the
3^1

well known formula

Next we consider two functions A i ( ? ) < A?(^) satisfying the condi-

tions (A. i), (A. ii) and the following.

(A. iii) 5i = {^; Ai (5) = 1} and S2 = {s\ A2 (s) = 1} have non empty

intersection and grad 7^(5) ̂ grad k«(s) for any s^Sif}Sz. We set
£ f

(6-5) A(e ,* )=

(6-6)



348 MUTSUHIDE MATSUMURA

Introducing in the same way the coordinate system (p, s) :

(6-7) g = ps, 0<p<+oo ? jeS(#) for each #e[0, 1],

we have

(6-8) d§ = (p"

Let ff° be an arbitrarily fixed positive number and S a positive

number such that the closed interval [d"° — 4ff, (70H-4(J] does not contain

0. Let 0eC0°°(M1) and satisfy supp 0CI {p; |p-(J0|<45}? 0(p) =1 for

|p-<7°<3<y. Then * (f ) = * (ps) = 0 (p) , 0<p<+oo, 5eS and *,(£)

— %0 (P5) — 0 (p) ? 0<p<C+cx)5 seS(#) define C°° functions with compact

support in ,En\{0} such that %(£)=!, ^(f )=l in a neighborhood of

(7°$ and of ff°S(d) respectively. We consider the following functions.

(6-9) Q(

ffefff0-J,ff° + *], e>0,

(6-10) r(

e>0.

Here P(f) and P(£, i9) are positively homogeneous functions of degree

^>0 with respect to £ which are C°° in Sn\{0} and in (IT\{0}) x [0, 1]

respectively. We shall study in this section the existence of the limits

0 (.r ; (7 ± z'O) and the asymptotic behavior of @(xm,ff±i£) as jc|-»oo, and

in the next section those for W (x\ (Titzs) . By shifting in (6-9) to the

polar coordinates with respect to S; (p, 5) , 0<<p<C+o°, se»S, we obtain

(6-11) ® O ; t f ± f e ) - r; Jo

x { f
Us

(7 e [(7° -5, (7° + 5], £>0.

Since 0(p) =1 in jp — t7°|<35s the integrand in the integral with respect

to p can be extended to an analytic function of the complex variable p

in a domain including the interval [(7° — 3d, ff° + 3<J] . Then we can deform
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the path [0, oo) in (6-11) so as to avoid the zeros of p — ( < 7 ± z e ) for

ffe [ff° — d,ff° + 8']9 £>0. More precisely we replace the interval [6°— 28,

<J° + 2$] in the path [0, oo) in (6-11) by a semi-circle of radius 2<J and

center at ff° in the lower half-plane or in the upper half-plane according

to (T+/& or ff — is. Letting e tend to zero, we see that the limits

0 (x; 6 ±i0) exist and they define continuous functions of (x, tf) in

(Rn\{0» x [ff°-S, (704-<T|. In fact, they can be continued analytically

across the real axis into a domain in the other half-pJane.

In order to investigate the asymptotic behavior as \x\ —->oo of

®(x\ tfibz's), we now assume the following:

(A. iv) The Gaussian curvature K(s) of S never vanishes.

Applying the formula (5-13) to the inner integral of (6-11), we find

(6-12)
'{

where

(6-13) J y i i (o; ; ( r±ze)= P- ^
Jo -

Here we know that

(6-14) exp pl d() = ± 2?f - tf_ y exp .
- ) ) ' - h l j \

7=0,1, • • - ,
and

(6-15) f ^ a (p) i (p) exp {ipt} dp = (2n) ~l {*" a (t--c)b (r) dr ,
J-co J— "J
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where Y(£) is the Heaviside function and

rca

(6 • 16) a (f) — a (p) exp {ipt} dp ,
J — co

From (6-13), (6-14), (6-15) and (6-16), we get

f/+i s
(6-17) Jj, ,(x ; ff + «) =-^- I]

X

and

(6-18)

x
if00

S (— r) 5~k<p (r) exp {i (ff — /e) (<X s> — r)} dr,

where ( p ( p ) = p ( n 1)/2+cf0(p). Thus the functions Jy,s(x; (T±fe) are conti-

nuous in R n x J ± respectively and

(6-19) J j i g ( x ; f f ± i e ) = O ( \ x \ J ) for |x|->oo

where J±= {^ = (T i t ze ; \6 — G°\<8, 0<s<e°} and the order relation O

is uniform with respect to (T±z°eeJ ± .

Since 5 is a strictly convex closed hypersurface, we have

(6-20) inf<0,j(0)»0 and sup<0 3 s( -

From these relations it follows that

(6-21) Jj,s(^(x

and

for |:c]—>oo, Q = x/\x\y where the order relation O is uniform with

respect to (0, <7±z"s) ef lx J±. We also have

(6 • 22) Jj^ (x\G + /O) = ^~ (x, s(0)X

/•<*,«(<X L
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for |;c|->oo, (;e[<T0-<J, tf° + 5] and

(6-23) ./,,.(- ,)(*;<T-/0) =

for

( ( ) / d x ) v ( I ) j ( x \ 6 ± . i & ' ) can be handled in the same way. Thus we obtain

(6-24)

f

+ Jo

where

(6-25) / J y , 5 (

«

- as

J" (p-

and the functions I J t V i S ( ± 6 ) (x\ (T±ze) are bounded continuous in

To estimate the last integral in the second member of (6-24), we

give here two lemmas.

Lemma 69 1. 1° Let I— (a, /S) be a bounded open interval in

R= ( — oo? oo ) aw^ /(p) « Holder continuous function of order

<1) defined in I, that is

(6-26) |/|, = sup|/(p)|+ sup
PG/ P, p"e
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Then the integral

(6-27) F((T±£e;/)= f - ^-~^dp
Ji p- (ff±ie)

exists for every tfe J and every g^O and there exist s, for any compact

subinterval Ii of I, a positive constant C#tll such that

(6-28) |F((T±/e;/) <C*tI\f\i for 6^1, and £>0,

-where C$tll depends on & and Ii but not on £>0 and f.

2° Further^ if 0<$<1, the function F (tf ± ze ; /) is Holder con-

tinuous of order $ and there exists a positive constant C^i/1 such that

(6-29) |F(<r±*e;/)-W±/e;/)j<CipI l |<r-<r'ri/U for ff.ff'el,

and e^09 -where Cip/1 depends on $ and 1^ but not on £>0 and f. If

# = 1, (6-29) holds for every #e=(0, 1).

Remark8 The second statement is usually called "lemma of
Privalov" (see Friedrlchs [4]).

Proof. 1° We will only discuss the case ff + ie, for the other case
can be handled in the same way. Define / (x) = 0 outside of /. Then
we have

In for fftEl and

— ie

where N is a suitable positive number and Log z denotes the principal
value of log z. From the Holder continuity in I of f, we see that the
limit

exists for every (Tel and
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(6-30) F((T-f/0;/) =p.v. T l^
J-~ -p~ff

Here the symbol p.v. means the Cauchy principal value. Thus for

we have

in + Log

< r
J-tf P

Choose (?>0 so that /id (a' + 5,/9 —<J) and let

SLlp |/(p)

+ r//
J-^

9 respectively.

Now

On the other hand

\K,\, \K>\<2 sup|/(p) |

Hence (6-28) holds with C,f/1 =

2° Next we proceed to show the second statement. For ff, fff

<j'<cr, we set

(6-31) (T-(J/

Then we have

;/)-F(ff' + is;/) = (ff- f f ' ) f
J

- --^-(.p)-
(p-ff-zs) (p-(T'-ze)

(p — ff — ze) (p — (T — zs)

=26 r
J-»

r
J-6(p_2&-zs) (p-ze)

=2, r /(p+o-/(o rfp+2y(0 r6

J— - 2 * - / e ( - » 6 J

-ie) (p-f 2^-zo)
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Now

O 7 i -*- 7 T *S ~~T~ *" & *2& I — ——7—: r^ap~Log ——:— — in

and

2b dp = in — Log
J-> fo-ieU0 + 2i-is} — e

Therefore for s>0 we find

(6-32) F(ff + »e;/) - F(ff' + iS;/) = w - L o g - - C/GO ~
\ & — Z£ '

+ (,-o r /(P+O -/GO ^p
J— - « ( - 2 4 - f e

(p-ie)

In this formula we can let 2 tend to zero on account of the Holder

continuity in I of /. So we have for e>0

,fi oox TO + fss/j-FQr' + fe;/)(6-33)

r
J

r
J-»

= Ji + J2 + Ja, respectively.

Consider J,:

<w-. r
"'- J-

f"° dp.
J-»!p(p-2A)|

Now

1 dt

<2
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and

2b I — dp = 2b I dp = Log
J— |p(p — 2b) Js p(p + 2&)

Hence

(6-34) ],

In the same way

(6-35) |,

From (6-33), (6-34) and (6-35) we have (6-29) with C t f > 7 l =7T+ ^ f - .

+ 2 Log - ^— . This completes the proof.

Lemma 6. 2. Let q (x) be a CM function in R71 such that for

every multi-index v with |v|<J+l (j is a fixed integer^SS) the estimate

(6-36) \(d/dx)vq(x) <Cy|x|-(7l+1)/2 for x\>Rj

is valid for some constants Cj and Rjt Let 1^ be a closed interval

in R+ = (0, oo ) and let o) (p) be a CM function 'with compact support

in R+ uohich is 1 in a neighborhood of I\. Then for every y "with

c have

r co(p)<?(px) _ ,
J« Co-C(r±z£)V' + 1(6-37)

/or | a; ~^_MjltJ and (Te/i. Here' CIltliJ and MIltj are positive constants

and CIiiTij is independent of tfe/i and e>0 and MfliJ independent

of ffe J1? r^ (0, 1) ttwd £>00

Proof. It is sufficient to show (6-37) for j= 0, since we can reduce

the general case to this case by integration by parts. Take a bounded

open interval 7= (a, ft) such that o)(p) =1 on 7 and set

(6-38) /*(p)=fi)(p)g(p.r).

From the assumption (6-36) there exists a constant C/ depending on 7

such that
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(6-39) |/,(p)|<C/:c|-<'1+1>/' for \x>RJa.

Consider for p, p'e/

_ q(px)-q(p'x) *-*

\p-p '\1-T
P-P

\q(px) -q(pf

From (6-36) we have

\q(px) -q(p'x) |r<Cr i / |x|-(Bfl)r/' for \x\>RJa

and

q(px) -q(p'x) 1 ! _ vn

p-p

_^i_xv r JC I IO1

Hence

i-r
Z^ ^ " ""

(6-40)

for

From (6-39) and (6 = 40) it follows that

for \x\>RJa.

Thus we obtain

(6-41) |/,(p)!i-r<const.r5l!^-^1)/2^ for \x\>RJa.

Applying 1° of Lemma 6.1 to fx(fi) we have (6-37) for j=Q from

(6 • 41) . Therefore the proof is complete.

Summing up the preceding arguments in this section we have proved

Theorem 6» 3* Let ®j(x\ (T±/s) be the function defined by (6-9).

Then (d/dx)v(Dj(x'9 tTdLzs) has the follozuing asymptotic formula for

(6• 42) (9/9x)'§ t(x; ff±te) = (2?r)("~
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for |^i->oo, Q = x/\x\, <7e=[<r° -9 ,<7 0 + 9], s>0.

Here

r^ (n-i

(6-43) /,.,,.(*; <T±*e)= I*'' -£
J" -(p

the functions Ij,V)S(±(n (x\ tfzt/s) ^n? bounded continuous in {x\ \x\

±. Further the order relation O In (6-42) zs uniform with

respect to (6, (T±zs) ej2 X J±. /;? particular

(6-44) (d/dx)v$j(x', <r±/0) = ±

X exp {=p /7T (w - 1) /4 + /(T<^,

/or |j: ->oo, Q = x/\x

Moreover -we obtain for following estimate making use of 2° o/

Lemma 6. 1,

(6-45) 1 (9/9.r) y {«y (x-

/or

§ 7. Basic Foiainiilas II

In this section we shall investigate the asymptotic behavior of the

function W(x\6±.iz) defined by (6-10). By transforming to the polar

coordinates with respect ro S($) : (p, 5) , 0-<p< + oo, s <=*?($), we find

(7-1) ¥(x;

= p _p-_'+V(A

J" (p — (ff ± /e) )2 t J« Jsw j g r a c l A C ^ ,

X exp {7'p<^j;,

The existence of the limits ¥(x;(J±iO) can be proved by the same
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argument as in the case of the function 0(x;(T±z"e) defined by (6-9).

In order to derive the asymptotic formula for W(x\6±i£) as |.r|— »oo,

we must study the asymptotic behavior as x ->oo of the integral of

the form

(7-2) /(*)= fW f
JO JS(

where /j. (s, $) is a C°° function on £($) which depends infinitely dif-

ferentiably on $ e [0, 1]. For this purpose we first start the following

theorem required presently.

Theorem 7* 1. If the Gaussian curvatures of Si= {s; /U(X) =1}

a;z<^ 52= {•*; ^2(5) — 1} never vanish on 8l and S2 respectively, the

Gaussian curvature K(s9$) of *$($) never vanishes on S(&) for any

*e (0,1).

For the proof we need an elementary lemma.

Lemma 7* 2* Let E be a symmetric matrix -with real entries of

the form

*-(% :)•
-where a is an (ii — V) xl matrix, b a real number and la denotes the

transposed matrix of a. If the (w —1) x (?z — 1) matrix E0 is positive

definite and E has zero as an eigenvalue, then E is no??negative definite

and its kernel ker E has the dimension 1. Conversely, if E is non-

negative definite and ker E= {aC; aeR} for some fixed real vector

with Cn^Oj then E0 is positive definite.

Proof. Let us set

/ In-l

where In_1 is the identity matrix of order n — 1. Then we have
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0
„

\0-0 b-<E0- 'a,a>

and detV~ 1. Therefore

det£=(det£0)(fa-<E0- 'a,a».

Since det£0^0, we have b — (E^a, a). Consider the transformation

in 3n:g=Vri. Then

Thus E is nonnegative definite. Since V is regular, dim ker £ = dim ker
E° °\ Hence ker £ has the dimension 1.
0 O/

Conversely, if E is nonnegative definite, we have

,O>0 for any £=
\ o

Suppose that there exists a vector g /eS"~1\{0} such that

Then

Therefore

Since ker E = ker E1/2, we have feker£. This contradicts that ker E

= {a^;a^J$} for some C e f f n with Cn=^0. Thus E0 must be positive

definite.

Proof of Theorem 7.1. Let u(£) be a real valued function of

? eS" which is positively homogeneous of degree 1, infinitely differenti-

able and w(£)>0 for f^O. Let 5° be an arbitrarily fixed point of the

hypersurface 2 = {s; u (s) =1} . Then there exists a suitable orthogonal

transformation ^ = T^ such that

(7-4) -^
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In fact it suffices to choose the transformation in such a way that the

direction of the outward normal at s° to the surface 2 coincides with

the positive direction of ^ axis in 97 coordinate system. The surface

2 can be represented by the equation of the form 7]n = h (??1? • • • , 7]n-i) is

a neighborhood of 6° and we have

The determinant of the matrix of the left-hand side equals the Gaussian

curvature of S at the point 5° (<T° in y coordinate system) . If the

Gaussian curvature of 2 never vanishes on £9 the matrix of the left-

hand side of (7-5) is positive definite and therefore the matrix (dru (Tff°) /

Qflfiflk) j,k=i,...,n-i is so. Conversely, if the matrix (d*u (Tff°)/dyjd'qk') jtk= i,.,.,

n_i is positive definite, the Gaussian curvature of Z at the point 5° does

not vanish. Now we note the following.

The Hessian matrix of #(£) at f=^=0 has zero as an eigenvalue and

g is a corresponding eigenvector.

Indeed, this follows from the positive homogeneity of degree 1 of

w(?) and from Euler's identity:

n

ri

Now let 5° be an arbitrarily fixed point of the surface 5(#), $ being

fixed. For #(£) = A ( f , ^), choose an orthogonal transformation £ =

such that

(7.7) -

where A( f , *) =*Ai(f) + (1-*) A*(f) and 5°-T(^)(70. On the other

hand there exist positive numbers p^>0 and sc e Sf such that pcs
: = s°9

1 = 1,2. We choose orthogonal transformations ? — T(7]c
9 c = !92 such

that

(7-8) J?^(T<<r<)=0, j=l, - •,»-!, ^-(T
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where sl = Tcff
c, £ — 1,2. By the assumption on Gaussian curvatures of

S(9 c = ~L,2 and the corresponding relations to (7-5), the matrices

O2^(T^)/9^9^j)y,*-i,...,w-i (* = 1,2) of order w-1 are positive de-

finite. Consequently, by the first statement of Lemma 7. 2, the Hessian

matrices (d*^(TtG
l)/d-qjd-ql) j,*^,...,* of le(Te-q

e) (relative to ^) at y' = fie

arc nonnegative definite and hnve zero as an eigenvalue. Now we have

where sc = Tc(f
c, c = l,2.

Thus the matrices (92A,(T($) tf0)/9^-99?&) jtk=i,...,n of order n are non-

negative definite and have zero as an eigenvector and dim ker(92Af(T(#)0"0)/

dijjdijk) y ,A-- i , . . . , n - 1. 63^ the relation:

(7-9) f-^jj-

the Hessian matrix of ^(Ty.'d-) (relative to •$) at y = G° is nonnegative

definite and the dimension of its kernel is 1, Moreover <T° is an eigen-

vector of the matrix corresponding to the eigenvalue 0 and (5"n°^0, for

(7-10) l =
dy»

By the second statement of Lemma 7.2, the matrix (92A(T($)(T0, $)/

dijjdTjk) j,k=-\,...t1t-i of order ?z — 1 is positive definite. This implies that

the Gaussian curvature of *S($) at s° is different from zero. The proof

is complete.

Let us now investigate the asymptotic behavior as \x — >oo of the

integral (7-2) under the assumption in Theorem 7. 1. It suffices to con-

sider the integral for the case x= (0, • • - , 0, xn) since it is possible to

reduce the general case to this one by rotation of coordinate axes as

in the proof of Theorem 5. 1. We choose a finite partition of unity {0y}

over [0, 1]:X1^(5)=1 in [0,1], where ^eC~(- f f , 1 + 5), d>0 and
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the supports of all the 0y are sufficiently small. Let {pk (0) } be a

sufficiently fine C°° partition of unity on the unit sphere S. We extend

every (pk to the space En by homogeneity of degree 0 and denote it by

the same letter cpk (£ ) . The system {#?&(£)} forms a C°° partition of

unity in jjn\ {0} . Then the integral (7 • 2) is represented in the form

of a sum

(7-11) J(x)=
./,

where /0*(5>$) = <pj ($) ^fc (5) ̂  (5, $) . By this localization, it is sufficient

to consider the case when /*(,?, $)^0 only for & is a small neighborhood

(#°-<y,#° + <y) n[0, 1] of a point #°e[0,l] and only for 5 in a small

neighborhood in Sn of a point s°^S(d-°).

First consider the case when the normal to the surface 5(#°) at 5°

is not parallel to the vector (0, • • • , 0, 1). Then we may assume that the

normal to /S($) at every point s belonging to supp #($,#) is never

parallel to (0, - - - , 0 , 1) for any # e= (#°-<J, #° + <J) fl [0, 1] taking 5 suf-

ficiently small if necessary. Let Sj = Sj(ff'9 ft) , ff' = (ffi, • • • , (Tn_i), j = l, • • - , w

be a system of equations which defines the part of the surface 5(#)

containing supp /i (s, #) for every 5 e (*° - 5, i?0 + <J) R [0, 1] . By as-
5

sumption we have

(7 - 12) grad sn ((TX
5 *) ^0 for # e (#° - 5, ̂ ° -f 5) fl [0, 1]

a'

and for $' such that ^((T7, ?5) e supp // (5, ̂ ) . Hence successive integra-
s

tions by parts give

(7-13) 7(0,;cB)=0(*n") as ^->oo.

Next consider the case when the normal to the surface s($°) at 5°

is parallel to the vector (0, • • - , 0, 1) . In this case the part of the surface

$($) containing supp #(,£,#) can be defined by an equation of the form

sn = h(s',&) for any # e= (^°-05 i?° + (J) H [0, 1] taking <J>0 smaller if

necessary (see the proof of Theorem 5.1). Here sn = h(s'9 ^) satisfies

(7-14) A(/ ,A(5 / ,*) ,*)=1 and 5n° = A(50/, *°).

Consider the system of equations
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(7-15) «,(^#)H^(*',#)=0, ./=!,. ",*-!.
asj

By assumption

(7- 16) *X^O=^-(*°',in==0, .;=1,. .-,*-!
05;

and by Theorem 7. 1 we have

a'A 0/

(7-17) ' =det

Consequently there exists by the implicit function theorem a system of

C3 functions 5/(*) = (5 1C*),-- ,5 I I _!(*)) defined in (S°-<y, #°+ ff) fl [0, 1]

such that

(7-18) rtX*'W,#)=^(*'W,«)=o, ;=i, ••• ,»-! .

Since Hess h(s°', $°) =K(s°, $°) 7^0? we may assume that the critical
s'

point s' ($) of h (j7, -5-) as a function of s' is non-degenerate, that is,

(7-19) Hess/z(/09)5#)^0 for any <d e= (^°- ff, i5° + 5) H [0, 1].
s'

Now consider the integral (7-2) with j:= (0, • • • , 0, x,^) . We can write

(7-20) I(0,^ f l)= f^ f / K / ^ / z C / ^ ^ . ^ i l + i g r a d / z C / , ^ ) 2}!/2

Jn J3n-i s'

Since the support of /t (s' ., A(.?7, ^) , d) as a function of 57 is compact in

B71^1, we can apply 2° of Theorem 4.1 to the inside integral of (7-20).

The application gives

(7-21) 7(0, J:B) -

x
o I Hess A(s (#),

as

where 0(i?) is a C~° function of ^ in (#°-<J, #° + fl) fl [0, 1]. We set

(7-22)

Then
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(7 '23) ^ (ft0} — ^ (s0/ #0>) — — ̂  (5°

dsn

o.
)

Consider the case s ° ^ S 1 f ~ ] S 2 . In this case we have

from (7-23). If 0<$°<1 we may assume from the localization (7-11)

that the support of the function /i (/ ($) , h (s' (#) , #) , #) of $ is com-

pact and contained in the open interval ($° — d, $° + cT) C (0, 1) with a

sufficiently small ff>0. Therefore we find by repeated use of integra-

tion by parts

(7-24) I(0,xn)=0(x-) as xn-»oo.

When -^° = 0 or 1? an integration by parts gives

(7-25) 1(0,*.) =z-(l-20°) (27t) <->^ (^°' ̂ 0) SXP { ~ £7r(

]Hess

as

X exp { - w (» - 1) /4 + «.s.°} xn-
(" +1)/2 + O (^«B

Consider the case s°e=S1r\S2. In this case we have dh(s°\

= 0 from (7-23) and so (s°'9 T^°) is a critical point of A(s', #) as a

function of the variable (sx
? -i?) . Moreover we have

(7-26) (5-r)=0

x o
(7-27)

for some jC l—J— # — 1) •

In fact, (7-27) follows from the assumption (/[. iii) in § 6 and Euler's

identities for the homogeneous functions /L and /12. Denote by
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H = H(s°\ 0°) the Hessian matrix (92/z(s0/, #°)/9^9sfc) ,>fc_i,...,n-i of h(s\ #°)

at 5° as a function of s' and by I; = ^(5°, #°) the vector * ( - 9 GU - >U) (s0)/

by Theorem 7.1 and fj^O by (7-27), we have

(7 - 28) Hess h (s0/ ', #°) - det ( W - (det H) <Jf-1 Ij,
<«'.*> \ f) O/

Thus the point (s°\ $°) is a non-degenerate critical one of h(s',-d) as

a function of (s'? $) . Since every non-degenerate critical point is isolat-

ed, we may assume that the support of ju. (V, h(s', ^) , d) contains no

other critical points of A(/ ? #) than (50/, ̂ °) . We note that on Si fl *%

there exists only a finite number of points s at which the normal to

S(#) is parallel to the vector (0, • • • , 0, 1) for some $ e [0, 1] (depending

on 5). Now we know that if the normal to 5(#°) at ^e^n^ is

parallel to (0, • • • , ( ) , 1), #° is a critical point of b (#) - A (/ (#) , #) . So

let us show that the critical point is non-degenerate. In view of (7-26)

we have

(7 . 29) ~ - (#°)
d&

On the other hand, differentiating the both sides of (7 • 18) with respect

to $, we get

and so

els'(7-30)

Substituting (7-30) in (7-29), we have

,2,
(7-31) ^^.(;

Hence, if 0<T5°<1 we can apply 2° of Theorem 4.1 (for m = l) to

the integral (7-21) with respect to $. This gives

/ / 0 - °

(7 • 32) 7 (0, *w) - (2?r) "/2 - --



366 MUTSUHIDE MATSUMURA

X exp { - inn/4 + ixnsn°} x~n/2 + O (x'(n

as xn-*oo,

The asymptotic formula can also be obtained applying directly 2° of

Theorem 4.1 to the integral (7-20) with respect to (s',d). If #° = 0

we apply Theorem 4.2 to the integral (7-21). Then we find

(7-33)

X exp { - inn/ 4 + ixnsn°} x~n/2 + O (x^

as

The case #° = 1 can be reduced to this one by the substitution of 7? for

1 — $ in the integral (7-21). Summing up? we have proved

Theorem 7» 3. Le£ /U (?) a/z<f A2 (f ) be real valued functions En

satisfying the conditions ( /Li) , (A. ii) and (/L iii) z^ §6 aTzcf ^Ac a^-

sumption in Theorem 1 . 1. &tf A (? , 5) = * Ai (?) + (1 — #) >12 (?) and

S(#) = {^; A (^, i?) =1}, 0<T?<1. L^ I(x) be the integral defined by

(7 • 2) <z?z<f fe£ 6 be a given unit vector. If there exist points s on

Slr\S2 at -which the normal to 5($) for some $ e [0, 1] (the $ J#-

pending on the point s) is parallel to 0, let s l ( d } , '",sr(Q} be all such

points and # 1
J - - - , , $ r the corresponding values of the parameter $.

Then the asymptotic behavior of I(x) for \x\-*oo along the ray

x=.\x\Q is given by

(7-34) l(x) =
C

where

if 0<#<1,
(7-35) C(0,s,W={

(2ri) n/2ju (s, 0) exp { - inn/4}
2\K(s, *) <//-1 (s, ^) § (19, 5, *), f) (0, 5,

z/ ^=0 or I

and for each multi-index v
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(7-36) (d/dx)vq(x) = O(\x\-(n^/2) for |x|->oo along x=-x\d.

In the formula (7-35), K(s7$) is the Gaussian curvature of S($) at

s^S1(^S2, H(s9$) denotes the Weigarten operator in the tangent space

of £($) at the point s and I) ((9, s? $) denotes the orthogonal projection

of the vector grad (Ai — /U) (s) /(grad A (s, $), Oy on the tangent hyperplane

of <S($) at the point s.

Next suppose that for any point SE^ S1C\SZ and any $ e [0, 1] the

normal to 5($) at s is never parallel to 6. Let sk(Q) be the inverse

image of 0 under the Gauss map Sk 3 s >-> nk (s) ^Q for k = ~L,2. Then

the asymptotic behavior of I(x) for \x\-*oo along the ray x=\x\0 is

given by

(7-37) I(x) =i(2n}(ri-i}/° T [ ^ ̂  (g) » 2 ~ ̂ ) <grad ^ (s* (fl) » fl) >
T""*™^ I I Î 7" f (£k\\ I1 /!7 '' "* " x / A > \ \ \

X exp { - ZTT (w -1) /4 + i<^, •

X exp {w (» - 1) /4 + z<^, s* ( - 0) » M -<n+1)/I + ? (x) ,

-where for each multi-index v

(7-38) (9/9x)^(x)-O(|^|-(n+3)/2) /or |x|->o

Applying Theorem 7. 3 to the inner integral of the last expression

of (7-1) and repeating the same argument as for (5(.r; (7±z"e), we obtain

Theorem 7. 4, Let W (x\ 6 ± re) be the function defined by (6 • 10) .

Let ff° be an arbitrarily fixed positive number and d a small positive

number such that [0° — 48, 0° -f 45] does not contain 0. Under the same

assumptions as in Theorem 7.2, the asymptotic behavior F(x;d"±ze)

for x\— >oo is described by the formulas given below.

The case where there exist points s on Si p) ^2 at which the normal

to S($) for some # e [0, 1] is parallel to a given unit vector 6: Let
s" (0), •", sr (0) be all such points and $\ • • • , $r £/z<? corresponding values

of the parameter. Then
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(7-39)

for |.r|->oo along the ray x—\x\d, ( 7 ± z £ e J ± , 0<7-<l/2,

(7-40) C±,,(8,s,W

(2it)"fl(fsyP(s, #) exp { T inn/4} ___
\K(s, ffKH-1^, ^(0, s, £)YK0,^ #)>Hgrad i(s,

«y o<a<i,
(2g) "/2 (M) "P (s, fr) exp { T CT«/4>

1 (5, 0) f, ((?, 5, *) ,§ (0, j, *) >|^|grad A (5, *) |

if # = 0 or 1

(•<» -Tl/2-l+(l + |»| ; / . , > >

(7-41) / , f l (x ; (7±£e)= |a : - 1 -2 - fW exp {£p<^
J o - ( T ± X £ 2

-where the summation Z in (7-39) is taken over c such that (0, 5£

c

or the <(0,^(0))><0 according as (7 + ze or (J — ie and the order relation

O in (7-39) is uniform with respect to tfiz'eej.,. but depends on 7.

Further Iv,Si(0) (x\ ff±is) are bounded continuous functions in {x\\x\

>!} X J±. In particular,

(7-42)

/or \x —>oo along the ray x=\x\Q, (j — (T° |<f f 0

-where for any point s^S1^S2 and any d e [0, 1]

normal to S(d) at s is never parallel to 0: Let sk(0) be the Inverse

image of 0 under the Gauss map : Sk 3 s «-» n (s) e Q -where n (s) is the

out-ward unit normal to Sk at s and Q is the unit sphere. Then we

have

(7 • 43) (d/dx) " ¥ ( x ; f f ± *e) = i (2?r) ("-1)/:: exp { q= w (« - 1) /4}

y,

X x
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for \x — >oo along the ray x=\x\6,

and

(7-44) /,,.(*; ffi/e)^!-1 -- - V exp{*p<*,*»<*P,

-where the order relation O in (7 • 43) /s uniform with respect to

ff±is e J± £&£ depends on f (0<j<l) a/z<^ /yjSfc(±9) (x; (T±z£) are bounded

continuous functions in {x\ \x >!} X J±. /^ particular ;

(7 - 45) (9/Ur) yr (x; <r ± zO) - T (2?r)(" 1)/2^(n

X exp { T /7T (« - 1) /4 4- ZCT<J:, 5, ( ±

/or |x |— >c» along ihe ray x—\x\Q, \ff — «7°|^ff.

§ 8. Formulas for the Asymptotic Behavior of

Green's Functions at Infinity

In this section we shall give formulas for the asymptotic behavior

as |.c|— >oo of the Green's functions of the operators A~^I which satisfy

the conditions i) , ii) and iv) , or the conditions 1°, 2°, 3°, 4° and 5° in

o J_

Under the conditions i) , ii) and iv), we have

Theorem 8* 1. The Green's function G(x, /i) of A — ̂ I defined

by (1-4) has the following properties:

(G. 1) G(x\ A) is C -with respect to x in R"\{0} for each fixed

A e C\R awcf analytic with respect to /i z"» C\R for each fixed x e Rn\ {0} .

Moreover, for every multi-index y, (d/dx) VG (x ; A) ^ continuous in

(!T\{0})x(C\R).

(G. 2) For gflcA multi-index v and each (x, <f) e (R7l\ {0} )

x (R\{0» ^A

(8-1) G (y )(^; ^±zO) - lim
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exist and the convergence is uniform on every compact subset of

Rn\{0}. Further G(I°(.r; (J±z"0) are continuous functions of (.r, tf) in

(R-\{0})x(R\{0».

(G. 3) Let u~° be an arbitrarily fixed non zero real number. We

denote by J± the set {i = ff±ie-9 |(T-(T0|<5? 0<e<e°} and by J the set

{A; |Re A — 6° <5, |Im A|^£0}. If we choose the positive number d

suitably small, the Green's functions G(x\(J±ie) in M n x j ± have a

decomposition of the form :

(8-2) G(
Jb=l

where for any multi-index y and for any j -with 0<f<O, ^A^ functions

Gk(x;(>±ie) have the asymptotic behavior:

(8-3) (9/^)yG f c(x;(T±z£) - (sgnff) (- l)«fc-1(27r) -(ft+1)/2

(Z5fc ( =b fl) Sgn (T)' [Q fc (5fc ( ± g) ) ] ̂ "^ (5fc ( ± Q) )

X exp { =F w (n — 1) sgn (7/4}

/or — >oo .r^

sk (Q) denotes the inverse of the Gauss map: Sk-^>Q, Pk(%

Qk (?) are the matrices defined by (3-7) and (3-14) respectively ^ and

f°° n(n-1)/2+o:fc-1 +
(8-4) Iat_lt,tg(x;ff±is)= x\^ I- -

Jo (p- ((T±ze))

zvhere 0 z°5 a suitable function such that 0eC0°°(0,oo)

/or |p — (T°|<5. The order relation O in (8-3) is uniform -with respect

to tfiz'eej-t a^ 0 = x/\x ej^ ^^^ depends on j. The functions

I a k _ l j V , S k ( ± B ) ( x \ \6"\±is) are bounded continuous in {x\ lx|>l} X A±. For

2=0, the functions (d/dxyGk(x; (T±fe) have, in particular, the form:

(8-5) ' = l , (±0) sgn
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n-1)/2+a*-1-r) for ;c|->oo, x = x\Q, \G-G°\<8.

Further zvc have for some positive numbers Cj±ta!c}Tjil and Rj±,a!c

(8-6)

zvhen \x\>RJ±,ak 6, a' e [<T° - d, 6° + 5]

0<o<£°.

F(x; A) (A — (T±/s) /;z ihe decomposition (8-2) zs <2 distribution of x

in R^ <2/2<^ a C°° function of x in Rn\ {0} yor ^^cA fixed A G J IZTZO?

analytic with respect to A /or ^acA fixed x e R7l\ {0} . Moreover -we

have for any multi-index v

(8-7)

-where the order relation O is uniform -with respect to A in A.

Proof. We first choose £>0 so that the interval [ff° — 4<J, (

does not contain zero and next a function 0 e Co00 (S1) with 0 (p) = 1 for

|p-l(J°||<35 and we define the functions %*eC0°°(SB\{0}), & = 1, • • • ,

b=[m/2] by

(8-8) % * ( f f ) = % * ( p 5 ) = 0 ( p ) , 0<p<+oo,

where (p, 5) are the polar coordinates associated with A& (or *S&) . Fur-

ther take %0 e C0
LO (5*71) which is 1 in a small neighborhood of the origin.

If 8 is small, the sets supp %OJ • • • , supp %& are pairwise disjoint.

Now we recall that we have the spectral representation (3-21) of

( A ( f ) — A/)"1 under the conditions i), ii) and iv) in §1. We consider

only the case where m is odd, since the even case can be proved in the

same way by obvious modifications. Taking account of (3-21) and mak-

ing use of the %fc (f ) , we decompose (A(f) — A / ) " 1 with & = (j±ie9 \ff — ff°\

<2(J, 0<^£^£° in the following way.

Case: (7°>0 and m = 2b+l



372 MUTSUHIDE MATSUMURA

where

(8-10)

x(Q, (£))'} A (£) + (! -*„(£)) I] {£
=6 + 2 .7=0

: (T°<0 and w =

(8-11)

where

(8 - 12) # (f , A) = Xo (£) (A (f ) - 1/)-1 - (i - xo (I)) "ij"1 (Q,+1 (f ) )

+ a - xo (f )) s {as ( - 1) ^ a* c« - A) -'-1 (Q. (f > ) ̂ i P* (o .
/c = l j=0

Making use of the relations (3-3), (3-11) and Qk ( — f) = — QTO-*+I(?)>

we find that for the case (T°<05 (A(f) — A/)~ l may be represented in the

form.

(8 • 13) (A (£) - IT) -1 = 2 x, ( - ?) {a£l ( - 1) J+1 (A, ( - £ ) + 1) ^

Define the functions Gk, k = l,---,b by

"(- lyUtC^-Cff i ie))- ' - 1
)

x) if <7°>>05

(- l)y + 1a*(f)-(- tTTfe))-- ' -1

— x) if (

(8-14)
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and the distribution F by

(8-15) F(*; A) =£

Applying Theorem 6.3 to Gk we get (8-3) with (8-4), (8-5) and

(8-6). To complete the proof of Theorem 8.1 it suffices Lo prove the

following elementary lemma.

Lemma 8. 2. Let 7\ be a temperate distribution valued function

of A defined in a domain D of the complex plane C and assume that

the Fourier transform 7\ (f ) of 7\ -with respect to x satisfies the con-

ditions:

(T.I) For every multi-index p9 (9/0? ) VT\ (f ) is a continuous

function of (x, A) in JET X D.

(T. 2) For any fixed £, Tx (£) is an analytic function of A in D,

(T. 3) For every v, there exists a constant Cv such that

ivhere Cv does not depend on f eST #77^ o?z

The?i, the distribution Tx fj a C°° function of x in R7?\ (0} a;?J

/or a;zy j9, (9/9.r)^7\ 25 a continuous function of (x, A) ^ (Rn\{0}) X D

fltfzc? analytic with respect to A f;? D -when each j:^R"\{0} is fixed.

Further •, as |j;|— >cx>, (d/dx~)^Tx converges to zero more rapidly than

any negative power of x , 'where the convergence is uniform with

respect to A z';z IX

Proof. For any positive integer /> there exists from (8-16) a con-

stant CPi/3 such that

(8-17) J i { ( i ? ) f f T , ( s ) } \ < C p , f f ( l + \ s \ y + ^ - * - » , £eB»,

where Jf denotes the Laplace operator and Cpj/9 is independent of

From (8-17)

L1^") if r+\0\-2p<-7i.

Consequently
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is a bounded continuous function of (x, A) and analytic in /(. where each

x^W is fixed. This implies that Tx is a C°° function of x in IT\{0}

and \(d/dxYT^x)\<,Mp^\x\-2p for any £>0 and .reRw\{0}, where Mp^

is a positive constant independent of

End of proof of Theorem 8. 1. It is obvious that R(£9 /I) satisfies

(T.I) and (T.2) with D = A - U; |Re 1-6° <<?, |Im A|<£°}. Since

Qfc (£) and Pfc (f ) are positively homogeneous (matrix valued) functions

of degree 1 and degree 0 respectively, which are C°° in 3n\{0}, R(g, A)

satisfies (T. 3) . By applying Lemma 8.2 to the distribution F(x\$

we have the statements on F in Theorem 8. 1.

In order to describe the asymptotic behavior of the Green's function

G(x\ A) of A — U when the operator A satisfies the conditions 1°, 2°, 3°,

4° and 5°, we now recall and introduce some notation. Let {Afc(£)} |fc |=o, i , . . . ,&

be the roots reenumerated by (3-33) of the equation in r : /> ( r , £)

= det(r/- |]?yAy)=0 and let ^ f c(f) be the function defined by (3-29).
.7=1

Let P;t(f) and PJk($) be the matrix valued functions defined by (3-7)

and (3-30) respectively. Put

(8-18) S,t(0) = {5;;iy t(*,0)=l}, 0e[0,l], !<.;<£<£.

J^fc (5) and Kjk (5, T?) denote the Gaussian curvatures of the hypersurfaces

Sk and 5yfc($) at s^S^ and at 5e*Syfc(-d) respectively. We denote by

Hjk(s,$) the Weingarten operator in the tangent space of <Syfc($) at

5e*Syfc(d) and by ()jk(6, s y d ) the orthogonal projection of the vector

gradUy-Ajb) 00/<grad ^^(5, *),0> (flefl) on the tangent hyperplane

of 5/fc(*) a

Theorem 80 3. C7w^/- Me conditions 1°, 2°? 3°, 4° a;z^ 5° z;? § 1,

the Green's function G ( x ; A ) of A — lI has the properties (G.I) and

(G. 2) z";? Theorem 8. 1 #7z<^

(G. 3) * Given a unit vector Q^Q^ the asymptotic behavior of

G(x\G±iz) for x|->oo along the ray x=\x\Q are described by the

formulas (8-19) -with (8-20), and (8-22).

case where there exist pairs (j, K) l^j<^^^ find points

k such that for some $ EE [0, 1] ^/z^ normal to Sik(^) at the
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point s is parallel to the vector: Let A be the set of all such pair

(j,K) and s}k(0),-~9s
r$'*>(6)e=Sjr\Sk be all such points and d]ki • • • ,

$j (fc' f e ) the corresponding values of the parameter $. Then

(8-19)

X /„.},«,) (x sgn <7;

ff±zeej±, 0<r<l/2,

(8-20) C± , , . , f r ,y(M,#,sgntf)

/ ff _ (27r)j"/2_exp{ Ti7rttsgn(T/4}(M sgnff) "P(v

(sgruT) ___ (27T) ""^ exp { =F g'CT sgn (7/4} (is sgn" """ "
2 |JC(5, #)<//,-*'(*, *)^*(fl, 5, *), *(fl, 5, «) >|1/2|grad

zf # = 0 or 1,

zvhere IVjS(x\ <7±z'e) z^ the function defined by (7-41) wz^/z c? =

^/2^ summation I, in (8-19) Z5 taken over c such that <(0, f/*(0)}>>0 °^
i

^/?a^ <(0, s j f r (#))><CO according as G(x\6 + i$) or G(x;o~ — is). Note

that the order relation O in (8-19) is uniform ivith j~espect to

( T d = z £ e J ± but depends on 7 and that the functions IVjiJh(d}(x; | t f | d=zs )

are bounded continuous functions in {x\ \x >!} X A±.

In particular ive have

(8-21) (9/fcc)-G(.r;(r±/0) = T27r E H C^y.K.Cfl , sj»(fl) , ^,, sgnff)

<0\ 0<r<l/2.

where for any (j, K) with ~L<:j<^k<b and for $ e [0, 1]

there is no point on Sj fl 5fc a^ which the normal to Sjk (i9-) Z5 parallel

to 6 : Let sk (0) £e ^/?^ inverse image of 6 under the Gauss map

Sk 3 s K> n (5) e J2. Then

(8-22)
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= (sgn <T) (27rt -(•+'>/» v*

X exp { =p in (n — 1) sgn ff/4}Ifi,l(±n (x sgn ff; \ff\±is

/•oo (n-l)/2+

(8-23) / , s Cr; t f±zs ) = ^
J° — ff

ex
p

The order relation O in (8-22) depends on / and the functions

Iv^k(Q^(x\ |0"|±ze) are bounded continuous in {x\ x >0} x A±.

In particular

(8-24) (d/dxYG(x;

X exp { T ZTT (w -1) sgn ff/4 + z(7<j:, 5, ( ± (9) >}

The proof of this theorem can be done in the same way as that

of Theorem 8.1 using the representation (3-35) instead of (3-21) and

applying Theorem 7.4 instead of Theorem 6.3. Note that (8-22) and

(8-24) are respectively the special case: #1 = . . . = # & = 1 of (8-3) and

(8-5) combined with (8-2) and (8-7).
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