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Asymptotic Behavior at Infinity for Green’s
Functions of First Order Systems with
Characteristics of Nonuniform Multiplicity”

By

Mutsuhide MATSUMURA¥*

§ 1. TIutrodwction

Consider a first order hyperbolic system of partial differential equa-

tions with constant coefficients
1-1 _‘A L teR!, zcR”
ay (12 o > vy L Nu, @) =16, 0, teB, ek,

where [ is the unit matrix of order IV, the A; are complex N XN con-
stant matrices, and « (¢, x), /' (¢, x) are functions whose values are N x1
(column) matrices with complex entries. The hyperbolicity means that

the N roots of the associated characteristic equation in r:

=

(1-2) p(r,8)=det(zI-A(§)) =0, A() =

j=1

ngj7

~

are all real for any & in the real dual A" of the rcal zn-dimensional
Euclidean space R".

Our purpose is to study the asymptotic behavior al infuity of Green’s
function G (x; ) of the stationary (or steady-state wave propagation)
problem® correspounding to (1-1)

(1-3) (};f;A —a~—~/ll/v(.r;l)-g(x), re R,

j

where 1 is a complex parameter. The Green’s function G(x; )
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1) The essential part of this paper announced in Matsumura [15] and [16].
2) For more details concerning the steady-state wave propagation problem, see Schulen-
berger and Wilcox [18], Vainberg [23] and Wilcox [25].



318 MUTSUHIDE MATSUMURA

non real 1 is defined as the inverse Fourier transform of (A (£) —I) ':
18 G =@~ | (A© D~ exp iz, ) dt

in the sense of distributions. Here <{x,&> denotes the inner product
i€+ -+ x,E,. We shall show the existence of outgoing and incoming
Green’s functions G (x;0+170) of the problem (1-3) for real 1=¢=0
and give asymptotic formulas for |z|—oo of G(x;0+ie), ¢=0 under
suitable conditions on the operator A=~iiA;@/@x,-. Note that
G(x;0+7e) is a fundamental solution of tJh—e1 differential operator
A—(g+ie)l:

(1-5) (A= (0+ie))G(x;0+ie) =0(x), &¢=0

and that G(x; 1) is the kernel of the resolvent or Green’s operator
(A—20)~" in L*(R™)® when 1 is non real. Here §(x) is the Dirac
0-distribution and A is the closed linear operator in L*(R") with domain
D(A) ={v;v, Ave I)(R")}, defined by A.

The asymptotic behavior of solutions or fundamental solutions of
partial differential equations with constant coefficients has been studied
by Grusin [5], Littman [11], Vainberg [23] and others. For first order
systems, it is investigated by Wilcox [25], Matsumura [13]-[16] and
Schulenberger and Wilcox [19].

Let ¢° be an arbitrarily fixed non zero real number and § a positive
number such that the interval [¢°—§, 0°+ 0] does not contain zero. We
put 4.,={1=04+1i¢g; [0—0°=<7, 0<¢<<¢°}. In the previous paper [14],
the author gave, under the following conditions, an asymptotic estimate
for |x|—>oc of the Green’s function G(x; 1) which is uniformly valid
when ] runs over the region 4..

(i) The N roots A,(&) of p(r,&) =0 in ¢ are real and have con-

stant multiplicity for all §= 8"\ {0}: ie,
1-6) p,H)=GC—-LEN" =)™ at +an=N

where we label the roots 2,(§) in decreasing order:

3) L*R™ denotes the Hilbert space of €¥-valued square integrable functions on R* with
norm

oli={[ Jowrdz .
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-7 M(E)>2:(6) > >n(§) for all real §0.

(i1) A rool 2;(€) vavishes for some real €540 if and only if it
vanishes identically.

(iii) The matrix A(S)zfj &;A; is semi-simple or diagonalizable
for any £ 8", =
From i) and i) it follows that the normal or slowness surface
{s; p(1,s) =0} consists of [m/2]" disjoint sheets S,= {s; 1,(s) =1},
1, -+, [m/2] which are C* closed hypersurfaces in B”. Then we assume
(iv) For every k(1<k<[m/2]), the Gaussian curvature K, (s)

of S, at each point s is different from zero.

S=
k:

We shall present in § 2 a simple criterion due to C. H. Wilcox for
a homogeneous hyperbolic polynomial p(z, &) to salisfy the conditions
i) and ii). The condition iii) can be removed. We shall give in § 8
a corresponding result for the case when the condition iii) is not assumed.

The main purpose of this paper is to study the asymptotic behavior
at infinity of the Green’s functions for a class of first order systems
with self-intersections of the normal surface, more precisely for the first
order systems satisfying the following conditions:

1° p(r, &) is a product of strictly hyperbolic polynomials:
(1-8) p(c,8) =pu(v,8) (7, )
1-9) 20, 8) =@ =2 €)= n(8), I=1,-r
where we label the roots {A,'(&)}i<k<n, In decreasing order:
(1-10) M(E) > >n, () for §=EM\{0}.

Moreover the multiplicity of the roots in ¢ of the equation p(r, &) =0 is,
except 1=0, at most double for every &= &8\ {0}.

2° A root 1, (§) vanishes for some £=£0 if and only if it vanishes
identically.

3° Let S,' denote the hypersurface {s;21,'(s)=1} for 1<[<r,
1<k<b,=[m,;/2]. Then

(1-11) grad 1,5 (s) s=grad 1,/ (s) [for any s&S,:/N.S,,
1<i<l=r, 1=)=b;, 1=k=0b,.

4) For a non-negative real number /, [/] denotes the greatest integer not exceeding !.
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4° For every [ and k&, 1<<[<r, 1<k<<5,, the Gaussian curvature
K (s) of S,' never vanishes anywhere in S

To simplify statements in Theorem 8.3 which is a main purpose
of this paper, we assume the following.

5° IF SANS 40, 1<i<U<r, 1=<;j=<b;, 1=k=<},, the matrix A(s)

is not diagonalizable {or every s=.5,S,.

Remark 1. The geometric assumption that if S,;* and S, intersect,
their tangent hyperplanes do not coincide at any point of S, S,* im-

plies the condition 3°.

Remark 2. When we do not assume the condition 5°, we must

classify the possible cases.

The present work was suggested by Duff [1]. Note that there is a
work [12] by Ludwig and Granoff on the propagation of singularities
for first order hyperbolic systems with characteristics of nonuniform
multiplicity. However, the contents and the treatment are quite different
from ours. We shall indicate the plan of this paper by giving below
the table of contents. Finally, the author should like to thank S.
Wakabayashi for his contribution to this paper. The proof of Theorem

7.1 on the Gaussian curvature is due to him.

Contents
§ 1. Introduction
2. Hyperbolic operators and systems
§ 3. Spectral representations of matrices
§ 4. Method of stationary phase
§ 5. Asymptotic behavior at infinity of the Fourier transform of a measure concentrated
on a hypersurface
§ 6. Basic formulas I
§ 7. Basic formulas II

§ 8. Formulas for the asymptotic behavior of Green’s functions at infinity

§ 2. Hyperbolic Operators and Systems

In this section we recall some definitions and relations on the

hyperbolicity in order to clarify the situation for the conditions which
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we have imposed on the system (1-1).

Given a linear differential operator P(D,, D,) = 3, a..D/D,* of
krla|<m

order m in (nz+1) variables (¢, x) eR™"' with constant coefficients, the
corresponding polynomial P(r,&) obtained replacing D,= —i9/0¢, D,
= (—10/0xy, -+, —i0/0x,) by the variables r, & is called its characteristic
polynomial. The principal part of P(D,, D,) is defined as the homo-
geneous part of order /n in (D,,D,) and denoted by P,(D,,D.,).

Definition 2.1. 7he operator P(D,, D,) is said to be hyperbolic if
P,(1,0) =a,,040 and P(r, &) 0 when é€EB" and 1m t is less than some
JSized numbcer. A system of differential operators P(D,, D,) = (P;,(D,,
D)) gkt n is said Lo be hyperbolic if det P(D,, D,) is hyperbolic.

If P(D,, D,) is hyperbolic, it follows that P(r, &) s~0 when ¢ E"
and |Im 7| is greater than some fixed number 0. Thus the zeros ol P(x, &)
in ¢ when & runs over B all lie in a strip {r; |Im ¢|<35,<+ oo} of
the complex r-plane. From this we cau easily see that a homogeneous
operator P(D,, D,) is hyperbolic il and only if P(1,0)50 and the
equation P(r,§) =0 in ¢ has only real roots when £ B" (i.e. 5,=0).
I P(D,, D,) is hyperbolic, it follows that the principal part P, (D,, D,)
is also hyperbolic. But the converse is not always true. The problem
of characterizing the lower order terms one may add to a homogeneous
hyperbolic polynomial or matrix without loss ol the hypcrbolicity is
solved by Svenssons [22] for the single operators and Volevi¢ systems
with constant coefficients. On the other hand, Kasahara and Yamaguti
[8] introduced the notion of strong hyperbolicity and gave an algebraic
characterization of strong hyperbolicity for the Kowalevsky systems
with constant coefficients. (See also Yamaguti and Kasahara [26],
Strang [21] and Svensson [22].)

Definition 2.2. .\ differential operator FP(D,, D,) =P, (D,, D,)
+Q(D,, D,) is said to be strongly hyperbolic if P, (D, D,) +Q"(D,, D,)
is hyperbolic for any choice of the lower order operator Q' (D, D,).

A first order system ID,— Y A;D, + B is called strongly hyperbolic if

7=1
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ID,— i A;D,,+ B’ is hyperbolic for any choice of the matriz B’>
=1

A differential operator P(D,, D,) is strongly hyperbolic if and only
if the roots of the equation P, (r,£) =0 in ¢ are all real and distinct
for every § € 8"\ {0}. A differential operator P(D,, D,) having this prop-
erty is called strictly hyperbolic. A first order system L=IDt—£__]A,D$,.
+ B is said to be strictly hyperbolic if the roots of det (tI—-A]Eé)) =0
in ¢ are all real and distinct for every £ 8"\ {0}.® Thus strong hyper-
bolicity is equivalent to strict hyperbolicity for a single differential
operator P(D,, D;). But this is not true for systems. A first order
system L=ED,— ' A;D,+B is called symmetric if E,A,, j=1,--n
are Hermitian and]=i1f E is positive definite. A first order symmelric
hyperbolic system is always strongly hyperbolic but not necessarily strict.
The following characterization of strongly hyperbolic first order systems
is due to Yamaguti and Kasahara [26].

A first order system L=ID,— 3} A;D, + B is strongly hyperbolic
=1

if and only if the following conditions on the matrix A(E)=2‘n_,$,-A,
are satisfied. -

(a) All characteristic roots of A (§) are real for any 2= {¢; |¢|
=1}.

(b) A(¢) is uniformly diagonalizable on @, that is, there exists a
diagonalizor N(€) of A(£) such that N(§)A(E)N(§) ' is a diagonal
matrix, the row vectors of N(§) are of length 1 and !det N(§)|=C,
where C is a positive constant independent of § € 4.

Our assumptions i) and iii) on the first order system L=ID,
—Z’Lj A;D,, mean that L is a strongly hyperbolic operator of constant
mljl_tliplicity. Now we present a criterion due to C. H. Wilcox for a
hyperbolic polynomial to be of constant multiplicity and satisfy the con-
dition ii).

Let a(r,&) be a homogeneous hyperbolic polynomial of order N.

Then a(r, &) has a factorization

(l(f, g) =alﬁ1 (T’ é) "'arﬁr(fﬁ S)

5), 6) The notion of strong and strict hyperbolicity can be defined analogously for higher
order Kowalevsky or Volevic systems. However we restrict, for simplicity, ourselves
to the first order systems to be treated later on.
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where the factors a;(t, &) are distinct homogeneous polynomial in (z, §),
irreducible over the real number field. Since we can assume a(1,0) =1,
the factors a;(r,§) are unique apart from their order by requiring
a;(1,0)=1. Let

b(r,§) =ai(zr,§) a(r, &)

dcnote the corresponding polynomial with simple irreducible factors.

Theorem 2.3. (Wilcox [24]) A nccessary and sufficient con-
dition in order that the N roots of the equation a(r, &) =0 have con-
stant multiplicity for all £ = E"\ {0} and satisfy the condition ii) is that
the normal or slowness surface S= {s=(s1, -+, s,) ; a(1,s) =0} is bounded
and <s, grad 6(1,5) »#0 when s S.

A first order symmetric hyperbolic system whose characteristic
polynomial det (vr/— A(§)) has this properly is named uniformly propa-
gative by C. H. Wilcox. A proof of sufficiency of the theorem is given
in §4 of Wilcox [24]. The necessity easily follows the following
[act” proved by Matsuura [17].

Let a(r,£) be a homogeneous hyperbolic polynomial of constant
wmultiplicity, that is, in the [actorization of «(t, &) into linear f{actors in
tia(r,§) =(c—4(E))™(t—2,()%, s+ +a,=N, the roots 2;(§)

are all real and distinct for every £§=&"\{0}. Then we have
b(r, ) =a (v, §) a;(r,8) = (t—2(6)) - (t —2,(£)).

We conclude this section with two examples of hyperbolic systems

of first order.

Example 1. Consider the following hyperbolic matrix.

tl—A@E) =tl—|—& 0 —& =k 5
o o o/ 0 0 ¢

T

)

o

2

1 —& 0 \ /7“51 & 0

The characteristic polynomial is of the form.
7) See also Kitahara, Asymptotic wave functions and energy distributions for symmetric
hyperbolic systems of first order (Appendix), to appear.
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p(r,8) =det(rI-A&)) =t (F* =& —&D).

The matrix A (&) is diagonalizable for any & with || =1, but not uni-
formly diagonalizable, so the corresponding hyperbolic system is not
strongly hyperbolic (see Kasahara and Yamaguti [8] and Svensson [22]).

This example is due to Petrowsky.

Example 2. Consider the following hyperbolic matrix.

§i+26 —26 —2& 0
2 — (&,+2¢ 3 —2
I AE) =cl— & (&, ) $2 ﬂ &
0 0 — (28, + &) 2
0 0 —2& 26+ &
T — (&4 2§,) 2§, 2%, 0
- —2&, T+ &6 +28 & 2¢,
0 0 T+ 286+ & —2&
0 0 28, t—(26+8&)

The characteristic polynomial is of the form.
p(c,8) = (P —E&5—4&7) (P —4&°—&).

It is clear that the system satisfies the conditions 1°, 2°, 3° and 4°. It

also satisfies the condition 5°. Since we have

2¢&, 2¢; 0
T+ &1+ 28, & 2¢, = —4&2,
0 TH26,+& —26
p(r,€) is the minimal polynomial of A(£) for & with &=0. For
&=1/++5and §=1/++5, we have p(r, &) = (:*—1)%. Therefore the

matrix A (&) is not diagonalizable for such €.

§ 3. Speciral Representalions of Matrices

In this section we shall make no distinction between a linear operator
on the N-dimensional complex number space GV and the corresponding
representation matrix in the canonical base, since we shall not change
the base. Let p(r, &) be the characteristic polynomial det (v/—A(§))

n

of a matrix A(&) =) §;A;, where the A; are complex N XN constant
i=1
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matrices and §¢=.HF". Suppose that the N eigenvalues 1,(&) of A(§)
are real and have constant multiplicity {or all real &= 8"\ {0}, in other
words, p(r, &) is a hyperbolic polynomial of constant multiplicity:
(3'1) P(T, S) = (7—11(5))‘”"'(f_lm(é))“m, af1+ +am:N,
where the eigenvalues 2, () are enumnerated in decreasing order:
(3-2) L(E)>2(6) > >2.(8) for every §€8"\{0}.
Since 1,(¢) satisfies

0/07) % p (A (§),6) =0 and  (3/07)“p(2:(£),€) #0 for &=0,

it follows from the implicit function theorem that 1,(§) is an analytic
function of & in B"= {0}. Further with the enumeration (3-2), the

eigenvalues 1, (§) are positively homogeneous of degree one and satisfy
(3'3> ik(_$> = _lm—k-kl(é) and a’k:“m—k*ly k:]‘, ”.37”'

These follow from (3-2) and the relation:
p(ed) = T (= M) =c" o5, ¢) = 1 (- -l (@)
k—1 C k=1

for any non zero real c.

Under the further assumption that 2,(€) vanishes {or some real
&=£0 if and only if it vanishes identically, i.e.,
B4 1E=0 or ), (&)=£0 for any £=dF"\{0}, k=1, -, m,

we have the following relations. When m =20 is even,

B8 M@ >HE)>0>00(8) =2 (=85> > ()
=—h(=§ for £=B"\{0}.
When m=2b+1 (b=[m/2]) is odd,
(B:6)  ALE)> () > () =0>1,:(8)
=—b(=6)> >l =—-h(=¢) for §€E"\{0}.
Now let us consider the operator P,(£) in C" defined by
1
2l Jrv®
() A )
(@m0t U =0,y

z2=2,(§)
J

3D P.(&) =

(- A(8))d=
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where ", (€) is a positively oriented contour enclosing the point 2, (&)
but excluding the other points of the spectrum of A(§), and ‘cof (21— A(§))
is the transpose of the cofactor matrix of (zI—A(€)). Then the P,(§)
are analytic functions of & in F™\ {0} and positively homogeneous of

degree zero. Moreover they have the following properties.

(3-8) P (&) P(§) =0 P (5),

3:9) P&+ +P, (&)= {for &0,
(3-10) A@ P (&) =P (A&,

(3-11) Ppi(=8) =Pn_ra(8).

We shall denote by M, (&) the range of P.(¢). Then it follows from
(3-8) and (3-9) that the vector space C" can be decomposed into the
direct sum of the subspaces M, (§), .-, M, (&) and the operator P, (&)
is the projection on M, (&) along the subspace M,(§)D---PM,_,(§)
OM, ()P DM, (). The subspace M, (&) consists of all vectors
¢ in CY which satisfy the equation:

(3-12) (AE) ~a@&ID)™L=0,
and we have
(3-13) dim M, (&) =«; .

The subspace M, (&) is called the root subspace or generalized eigen-
space of the operator A (&) corresponding to the eigenvalue 1,(§). We

now set
(3-14) Q(§) =(A) -2 D P (), k=1, ,m.

Then it is easy to see that the Q,(£) have the following properties.
(3-15) P;(8) Qi (§) =01Q,(8) P;(8),

(3-16) Q;(6)Qx(8) =0 if jF&,

(3-17) (Q:(§)*=0,

(3-18) A0 () =0 () A(S).

From (3:9) and (3-14), we obtain the spectral representation of A(§):

(3-19) A®) =k"2; (O P + 0. (D).
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Let ¢(z) be a holomorphic function in a domain of C which contains
all the eigenvalues 1,(§) of A(§). Then the spectral representation of
the function ¢(A(§)) of A(&) is given in the form

@20 pae) =5 T 0@y R .

J

&

In particular we have for ¢(2) =1/(z— 1) (1=real)

3-21 A@ D=0 % (-1 (Q©)Y p g
e a@-n =5 ey GON p e

If A(&) 1s diagonalizable or semi-simple for any é=E", we have

(3-22) A®=LLOPO,

m l
3.23 A@E) —D'=3 -~ P.(&), Areal.
(3:23)  (A@ =D Y P®), ifren

We shall derive a representation for the resolvent (A (&) —AI) ' of
the matrix A(§) whose characteristic polynomial p(r, &) satisfies the
conditions 1°, 2° and 3° in § 1. For this purpose we first consider the
case when the roots of p(z, &) =0 are all distinct for every &= 5"\ {0}.

Define a function u(r, 2, &) by

1 1
3. _ — — ———
(3-24) u(z, 1, 8) 1) 2mi
% f E=2,0) E=4l) 1 a(8))de
1 (z—1) ’

where y (&) is a positively oriented contour enclosing the points 2;(§)
and 1, (&) but excluding the other points of the spectrum of A(&). Then
we have from (3-24)

1 tcof (rI—A(€))

3.25 $) = 9
(3-25) u(t, 2,8 c=2 (T2 (E) 55 (= 2w (&)

3-26) u(,(®), 18 = —@%ﬁl’; ©®

and w(1,(8),1,%) Z%j—;gf’k 8,

where }'\indicates that (r—2;(€)) is omitted. Therefore
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597 (A -t W@, 18 u(s(®,1,9)
( ) (A& 1) i (&) —2: (&) 2;(8) — (&)

Y 1
+ —P, (8).

l+j,k

Now, we know that

(3-28) u(2;6),48) _ u(8),49)
2:8) =2 (&) 2,08 — 1)

= [ on©+ a-9uea.

To simplify formulae, we introduce the notation:
(3-29) A (§,9) =92;(8) + A=) 2 (£),

(330) ij (5’ 19)8>:“1_ (z_}\j (5)) (z— 2 (E)) (zI—-A (5))—1d2

2ri o (2—2,(5,9))

tcof (rI—A(€))

T k@) @) ety
P | (2—2;(8) (z—=2:(6)) -1
3' 1 R k s - . ? -
(3-31) (€, ) o1l S (em i B 9)) (=I—-A(§))'d=
_ 0 teof (tI— A (§)) }\
ot I(T—fnl(g))""}"'ﬁ"'(T_“/IN(S)) ‘r=11k(5,12).
Then we obtain the representation:
! 1 ;
3.32 A& -1 '= - Py, 9
@32 AQ D= [ P e D)
+ ! Rufare 31— L P,
@A, ) —4) ’ S (@) —

where P;.(&,9) and R;.(& 9) are C* functions in (&"\{0}) x [0, 1]
and positively homogeneous of degree 1 and 0 in & respectively.

We consider the case when in an open subset U of E™\ {0}, 2; ()
and 1,(€) may coincide for some & but the other eigenvalues are all
simple for any é=U. Then the above representation (3-32) remains

valid in this open set U. Let us now establish a general formula for

8) Pu(§,0)=Fc(®), Pi(§,1)=F,(&)
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A (&) satisfying the conditions 1°, 2° and 3° in § 1. To simplify the
description, we change some notations. Taking account of the relations
corresponding to (3-3) and (3-6) for the roots of p,(r,&) =0 in 7, we
reenumerate the roots of p(r,%£) =0 in r in the following way.

(333 p680 =G -L@)" [ - 1@), a+2=N,

k|=

where 1,(§)=0, 1, (&)>0 and 1_,(§) <0 for £ B8\{0}, £=1,2,---, b
and 1, (=& = —21_.(&), k=1, b.

Thus the 2,'(§&), I=1,--,r, k=1, b,=[my;] are in a suitable
way reeuumerated as 2,(€), -, 1, (€), b=b,+---+b,. We also denote
by S, the sheet {s: 1,(s) =1}, 1<<k<<) of the normal surface of p(r, ).

Form the assumptions 1° and 3° in § 1, it follows that every S;N.S,
(j<<k) is an empty set or an (12 —2)-dimensional smooth submanifold of
S;(Sy) . In fact, suppose that s°=.S; NS, ie., 2,(°) =2,(°) =1. From
the condition 3° we may assume without loss of generality that 92, (s°) /0&.
#02,(s%) /0&,. By the implicit function theorem there exists a C*
function s,=/(s") defined in a neighborhood of s° such that 2;(s", ("))
=", () and 5,°=1(*). Cousider the equation 2,(s",f(s)) =1.
Then

&(SO) . a&k (SO>

grad 1, (', /()| s oy Doy 86 B8 .
5 §7—§07 061 0511 __a_ij_ (SO) . all. (SO)
06x 0¢,

('M,- (SO)_ alh (SO)

0[7‘ (SO) . 0{:7 (SO) 0$n 1 _@EJ“‘L o #0
a‘fn [ (’Qg,, ﬂz_(sc) _ a/llc (50)
061[ 05"

For otherwise we have grad 2;(s°) =grad 1, (s°). Thus S;NS,is a C
¢ ¢
submanifold of S, (and S;).
Set

(3-34) 0p=1s/ls]:s€S;NS} CR={s:Is|=1}, j<k.

Take open subsets V, and V7, of £ such that 0,;,CV ;. C V;,.. Let w,, (€)
be a C~ function on @ such that 7w, (€) =1 in V}, and supp w;,C V4.

We denote by the same letter the C° function extended to the space
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"\ {0} by homogeneity of degree 0: w;,(§) =w,;,(§/|€]). Note that
we can choose V;, and V), as small as desired.

Making use of the functions w;, for (j, %) such that j<k and
S;NS,#0, we obtain the following representation which is valid for
A (&) whose characteristic polynomial p(r, &) satisfies the conditions 1°,
2° and 3° in § 1.

(3:35) (A —AD) =3 lef"@ {_ﬁ%
Tk 0 FLANY) -

Rue® |y o P,
(muaﬂ)—m} o z““e){m@>-z

P () wx_ Pr(§)
PRCESY AR S w st
Here the sum X* is taken over all pairs (j, k) such that 1<j<;k<<)
or —1>j;>k>—b, and S,;; NS x 0. On the other hand the sum I**
is taken over all %2 such that 1<|[k|<<b and S NS;=0 for any j7|k|
(A1<;<b). We defined w_;,_; by w_; (&) =w;,(—8&), 1=<j, k=b.
Note that if A(€°) is diagonalizable for some £°=.S;NS,, we have

(3-36) P, (&°,9) =0.

§ 4. Method of Stationary Phase

In this section we first present some basic facts concerning the
method of stationary phase.

Let G be a bounded domain in the real m-dimensional Euclidean
space A™, and let A be a real valued C function on G. A point aG
is called a critical or stationary point of 4 il grad h(a) = (04 (a) /0¢,,
<, 0h(a) /0E,) =0. A critical point a is called non-degenerate if and
only if the Hessian Hess 4 (a) =det (6°1 (@) /0&,0&,) of h at a is different
from zero. The inverse function theorem implies that a non-degenerate
critical point is isolated, for Hess 2 (€) is the Jacobian D(y) /D (&) of
the map: &~ y=grad h(§). We shall denote by H(a) the Hessian
matrix (0%*h(a)/0&,0¢,) of h at a and by sgn H(a) its signature, i.e.
the number of positive eigenvalues of H(«¢) minus the number of nega-

tive ones.
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Now we consider the integral

(4-1) 1@ = j g (&) exp {it h (&)} dt,

where g=C.,"(G). We are interested in the asymptotic behavior at
lt|—>o00 of f(¢). If h has no critical points on supp ¢, the exponential
oscillates rapidly for large |#| and the positive and negative swings in
value will tend to cancel oul in the integration. In fact we can show
by integration by parts that f(¢) approaches zero as |£|—>oo faster than
any negative power of |Z|]. Thus the principal contribution to the asymp-
totic behavior of f(#) for large [¢| should arise from the immediate

neighborhoods of the critical points of A (§).

Theorem 4.1. 1° If h has no critical points on supp ¢, then we

have
4-2) S =0(¢t) as |[t|>oo.

2° Let h have critical points on supp § and assume that these
points are all non-degenerate. Since non-degenerate critical points are
isolated, h has only finitely many such points a®,--- a™ on suppg.

Then we have

4-3)  f(0) = @rymny A h(@®)+ (/Y sgn H(a®)sgnt} |\ np

= Hess i (a®) '
o g (' Q,(éﬂ)_] —muz}
x| 2 CoeDet |06 ) BT || e 4 R @),
and
(4-4) |Roy (8) |=Cl¢|™/*" as  |t|—>o00,

where E=¢'(y) is a C” change of wvariables in a neighborhood of a®

with y in a neighborhood of 0 in B™ such thai

D (¢Y)
“-5) a0=¢ @), 2|
D () To=o
and
12 0*h
4.6 (o =h(a® =3 — (@™ 7.
(4-6) 1(¢' () =h(a )+2MZ=] 52 06, (@) g
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Here

@7 Coum 2 @/02)% exp |~ LB ECH @0) 1z, |
a. z=0
vanishes for odd |a|, and is independent of \t| and .

The method of stationary phase for multiple integrals has been in-
vestigated by many authors. For the sake of completeness we give a

proof of this theorem (see e.g. Fedoriuk [2], Hérmander [7, 3.2]).

Proof. 1° For the differential operator

& 0k 0 ™ [ 0h N 2
. M=i" S
“o R e, e, [E(G®)
we have
4-9 exp{it h(&)} =t 'Mexp{it h (&)}].

Using repeatedly this relation, we find

Lg (6) expfit h(§)}dé =t L‘M[g (&) Jexp it h(§)}dé

== [ (M7 [9 (@) Texp fit h(@©}dg =,

where ‘M is the transposed operator of M. This means (4-2).

2° By use of a C™ partition of unity we see that it suffices to
consider the case when A has only one non-degenerate critical point a
and when the support is contained in a sufficiently small neighborhood

of . We can write
(4-10) h(&) —h(a) = ;’:; @ (®) (€ —a)) E—a)

1
2

Hy(§—a), (§—a)),

where

0°h
0§ ;08

1) H=@aa®),an® = [ A-0-"2 @+ ¢-a0d.

Note that the «;, (&) are C= functions and that the matrix H, is sym-
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e
w
[

metric, i.e. ‘H,=H, and

1 0
(4-12) a’,-,,(a):-z—béjagk (@), Hy,=H(a).
Here and in sequel, for a matrix H, ‘H denotes its transposed matrix.
If we set
4-13) K,=H,'H,=[+FE,,
we have
(4-14) K,=I(=id), E,=0,
(4-15) H,K,='K,d, and HE,="'E:-H,.

Define K,"* for & near a by
(4-16) K=Y 6B,
n=0

where the ¢, are the coefficients in the expansion (14 )= i‘cnp“.
n=0
Then it follows from (4-15) and (4-16) that

4-17) HK,*='K/H, and K/'K/*=K,.
Substituting § —a=K,;/"y in (4-10) and making use of (4-17), (4-12)
and (4-13), we find
, . 1
(4-18) h(€) —h(a)= %(HEK;/‘-//, K/ 'Ppy = E<H @, ).

On the other hand we have

D) | qerxy =1,
D) ls-a

Consequently, there exists the inverse {unction §&=¢(y) of = (K,/?)
X (¢ —a) which is defined in a neighborhood of 0 in B™ and ¢(0) =a,
D(p) /D () |,-o=1. Making the change of variables é=¢(y) in (4-1),

we have

(419) £ —explit k@) | 0:p) exo [ @) 7, )y,

where §:(9)=9(p(3)) D (¢)/D (7)€C,*(E™). Let us regard the integral in
(4-19) as the result of applying the temperate distribution exp {it(H(a)y,
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7)/2} to the test function g,, Then we obtain by the Fourier’s inver-
sion formula

420 f@exp{—ith@} =(exp {2t @n ), o)
= <exp {% <H(a)y, 77>} , g_1§g1>9)

(- fonf i<t ).
where §,=%¢,. From the well known Fresnel integral

9 172 ;,
(4-21) f exp{j:ip2}dp=<%> R g exp{i%},

we find

oo id . 2 | V2 it in
122 [ e | oo do= | T} exo {7+ Trsonal,
( ) —w exp 2 o 0 |d] *P 2d 4 °8

where d is a non-zero real and ¢ denotes the real dual variable of p.

From this we conclude that

@2) 7| iH@n D} |@

= @) [exe {2 <H @y, 1> =i, ) dy

_ @mleh)™
|det H (a) |

7
——<H(@a)™"
exp{ 57 < (@) 'z, z)

+ %sgn H (a) -sgn z}.
Substituting (4-23) in (4-20) we obtain

“-24)  £Q) =!T_I_e(§2.é7%-(_:)ipﬁexp {it h(a) + l}llsgn H(a) -sgn t}

X L:mal (x) exp { — —i—(H (a) 'z, :c>} dx.

9) & and ! denote respectively the Fourier transformation and the inverse Fourier
transformation in the space of temperate distributions.
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Let us apply to the function ¢(x) =exp {— : Sf’;n d {H(a) 'z, x)} the

Taylor’s formula:
p@) = 2 Cox+ 2. 2% (x),
la|<2N le|=2N
where

C.

|I

L2,
and

Do o (2) | =Consignm 25 sup|D'g(2)].

[rl<2N+(8| =

Since exp{—i(H(a) 'z, x)/2t} =exp{—isgn i{H(a)'z/|¢|"*, =/|t]'*>/2},

we obtain

(4-25) } J‘R"@ (x) exp { — %;(H (@) 'z, x)} dx

= 3 Gl [ a0y da

la|<laN

SConpnlt " 5 [l ).

Now
<L> <C <1+ Ed >|a| —c A+]z)'® for |¢>1
(3 |t[1/2 —Ylal,km it|1/2 —Vial,hm — 1.
Therefore
.26 a
I I e LIS
<Ciwam 2 suplz’f; (x)[j _dxz
= AN i m+1 2 Rm (1+|xDm+1
SCZN,hm j (ngl(n),d-”
|)’]<4N+m+1

From (4-24), (4-25), (4-26) and the relation

fxagl (D) dz= (2™ (D) (0),

we conclude that
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exp{it h(a) + % sgn H (a) sgn ¢}

— m/2 —m/2
£ — (@m) Tews 5 ()7 f

a D( ) | —la|/2
X By CD 96 B a1

SCZN,m,h,gltl_(mﬂ)_N fOI’ ]ﬂZl Q.E.D.

The following theorem we will use in §7 is concerned with the
asymptotic behavior at infinity for a one-dimensional integral with a phase
function of which a non-degenerate critical point is an end point of the

integral.

Theorem 4.2. Let (&) be a real-valued C* funciton defined in
[0, 00) and gC7[0, 00). Suppose that h’(0) =0, i’ (§)+£0 for §>0
and h” (0)=£0. Then wec have

@21 fQ) = 0°°g<s>exp{ith($>}de=‘:_}j:c,-t-u“vuRN(t),

and
(4-28) Ry (&) | <Cuyn,t~ "2 for 1=1,

where

. exp1it A (0) + i sgn h” (O)}
7\ i E { 4
(4 * 29) Cf = gl(j) (0) <"2“> < h” (0> |h” (0) Il/zzkk!

for j=2k even, £k=0,1,2, -,

and

n _ 3:9(0) PN ey o g
(4.30) ¢, =0 <h”(0)> 2% exp {it h(0)}

for j=2k+1 odd, k=0,1,2,---.

Proof. Since A’ (&) 0 for £>0, it suffices to consider the case
where the support of ¢ lies in a sufficiently small right neighborhood
of 0. Let £=¢(5) be the substitution of variable such that /(¢ (1)) —%(0)
=h" (0)9*/2, which was defined in the proof of Theorem 4.1. Here
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1
7= (2a(§) /h" (0))*¢ and a(s) = J; A =p)h"(so)dp. Put yi($)=g(p(n)
< D(p)/D(y). Choose an even function ¢&Cy (— o0, o0) so that ¢g=1

near supp ¢;. Then we have

f@&) =exp{it h(0)} J; () 91 (p) exp e 1”7 (0) 4*/2} dy.
Substituting the Taylor {formula for ¢;:

L 9.7 “’) L O A ¢ W Aol [ )

g1 () =
in the above integral, we get

(431)  S@Oepi=ithO) =g©) [ plesplic i ©) /2

“)) [Troeess i © /2y

e
+ fw () ¢ () exp it 7 (0) 9/ 2} dy

N1
=S + 2200050 /il +/x (£), respectively.
7=l
First consider f,(¢). Since ¢(y) is an even function,
Fo&) =T ™ gy exo it 17 (0 7/2) by

Let us apply 2° of Theorem 4.1 for m=1 to this integral. Since
#9(0) =0 for j =1, we have

@-32) £, ()= (”\1/ v(©) expéf,’f (S(%?f_”(o) My 0@

as [(—oco,

Next consider f;(¢). Using the relation:

1

4-33 v {it R” (0)9*/2} = ————
( ) 7 CXP L Nt ()77/} hl/(o) d

(exp {it " (0)4°/2})

and integrating by parts, we get

1

hO==757 ©) h” (0)

[ et @ 7/2ay.
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Since ¢’ () €Cy (0, 00), the second term of the right hand side decreases
faster than any negative power of # as t—>oco. Repeating the same argu-

ment we obtain for £=0,1,2, -

430 fua@ = [ exn it b O 7/2
= (@G/h” (0))* 2%kt 1+ O (™) as t-—>oo.
On the other hand, consider f;(¢). Integrating by parts, we find

1

0] Z—m

f’@s () + 76" (7)) exp {it h” (0) 7/2} dy

G @R O /2 0@ as ies.

In view of (4-32), we have

ooy _ (7w iexp{in sgn h” (0) /4} s Y o
f2(8) <2> 17 (0) |h” (0) | 74+ 0@) as ¢ .

Proceeding inductively, we deduce

4-35)  fur(t) = (%) /< h/f@ )k - (5)2)’72}22,‘ expin sgn b’ (0)/4)

XE"E#IDEL O (t7*) as t—oo, k=0,1,2, .-
By successive integrations by parts, we also find that
(4-36) fa@=0@ DA as tooo.

From (4:31), (4-34), (4-35) and (4-36), we conclude (4-27), (4-28),
(4:29) and (4-30). Q.E.D.

§ 5. Asymplotic Behavior at Infinity of the
Fourier Transform of a Measure

Concertrated on a Hypersurface

The method of stationary phase is applied to the investigation of
the asymptotic behavior at infinity of the Fourier transforms of measures
with smooth density concentrated on smooth hypersurfaces. In doing
this, we must recall some basic notions and theorems on hypersurfaces

in differential geometry.
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By a C= hypersurface S in B" we mean an (z—1)-dimensional C*
manifold without boundary embedded in E". We shall denote by s the
moving point on S. We can assign a unit normal n(s) to each point
in a coordinate neighborhood of a point on S in a such a way that n(s)
is a C~ vector field. But this can be done globally on § if and only
if 8 is orientable. Let n(s) be a C* unit normal vector field on S. Then
the n(s) defines a C~ map of S into the unit (z—1)-sphere £ and this
map is called the spherical or Gauss map. Our present study is local
so we fix a C* unit normal vector field on a neighborhood S* of a point
on S in question. For any s in S* and any vector v in the tangent
space TS, define the linear map L,: T'S;—7S, in the following way.
Pick any curve s=s(¢) through s so that ds(¢)/dt|..o=v. We follow
the normal n=n(s(¢)) as s traverses the curve. Then dn(s(t))/d¢t|._,
TS, and this veclor is independent of the choice of the curve s=s(¢)
so long as it has the prescribed tangent v at =0, so we define Lyv
=dn (s(¢)) /dt|,_,. This linear map L, in the tangent space 7'S; is called
the Weingarten map. It is easy to see that L, is self-adjoint with re-
spect to the inner product in 7S, induced naturally from EB" so the
representation matrix of L, with respect to an orthogonal base of TS,
is symmetric. For each integer 2>1, (L 'v, w), v, weTS, is called
the £-th {undamental form on S. The algebraic invariants of the linear
map L, at each point define the embedded geometric invariants of S at
each point. Thus the determinant of L; is the Gaussian or total curvature
K(s) of S at s, the trace of L,/(z—1) is the mean curvature. Since
L, is self-adjoint, its eigenvalues are all real and they are called princi-
pal curvatures at s. If they are all distinct, then the corresponding
eigenvectors of unit length are determined up to a sign and they are
called the principal directions at s. We have defined making use of
n(s) and L, the Gaussian curvature of the hypersurface at each point.
However, if 7z is odd, the Gaussian curvature depends only on the metric
in the tangent space 7'S;, that is, only on the Riemannian metric on §

-3

induced {rom &" (Gauss’ theorema egregium). Thus the Gaussian
curvature is, if #z is odd, an intrinsic invariant that is independent of
the embedding (i.e., of 1 (s) and L,). But this is false for any even .

Note that the principal curvatures change their sign whether » is odd
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or even if we replace n(s) by —n(s). Here we give the formula for
the Gaussian curvature K (s) at each point s of a C* hypersurface
defined by an equation s,=#A(s") where s” denotes (sy, -+, 5,_1). We
choose the C* unit normal vector field n (s) such that <n(s), (0,---,0,1)>
>0, that is,

Ok _(y,1).

Sn—1 /

6-1)  n()={l+grad h(s')|2}—1/2<_g_/1(31), e
s 51

Then the Gaussian curvature K(s) with respect to n(s) is given in

the form

2
(- det(ﬁi_ )
(5-2) K(s) = e
{1+ |grad h(s") |2} ®+D/2

Hence we have K(s) =(—1)""'Hess 2(s") if s’ is a critical point of
h(s"y. Let Ay, -, 2,1 be the eigenvalues of the Hessian matrix
(0°h (s") /0s;0s,). Then the principal curvatures in the normal direction
n(s) are —2y, -, — o1

Both the Gaussian curvature and the Weingarten operator are closely
related to the convexity of a hypersurface. A hypersurface S in E" is
said to be convex at a point s€.S if the hyperplane 4, of FE" tangent
to S at s does not separate a neighborhood of s in S into two parts.
Moreover, if s is the only point of a neighborhood which lies on 4,
then S is said to be strictly convex at s. If, for every s€.S, 4, does not
separate S into two parts, then S is said to be convex. If, for every
s€S, s is the only point of S which lies on 4(;, S is said to be strictly
convex. A convex hypersurface is always orientable. Convexity of a
C*= hypersurface S can be expressed in terms of a definiteness condition
on the Weingarten operator L,, A C* hypersurface S in B" is strictly
convex at a point s if L, is definite, i.e. if the second fundamental form
{Lgv, vy is either positive or negative definite. The converse is not
true. L, may be semi-definite and therefore the Gaussian curvature K (s)
may vanish. A C* hypersurface S is convex at a point s if and only
if L, is semi-definite.

Now we recall the following theorems concerning global property.
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Theorem D.G. I. For a C> closed hypersurface in E* (n=>2),
namely a connected and compact (n—1)-dimensional C° manifold wwith-
out boundary embedded in E", the following conditions are equivalent.

(1) 7The Gaussian curvature K(s) of S never vanishes on S.

(2) The Weingarten operator L is definite for every s€.S, that
is, the second fundamental form {Lsv,v) is definite cverywhere on S.

(8) S is orientable and the spherical map S—R 1s a C™ diffeomor-

phism.

Theorem D.G. Il (Hadamard). Anv one of the conditions above

implies that S is strictly convez.

Remark. If we mean by a hypersurface in E" an (#7—1)-dimen-
sional manifold with an immersion, the above theorems are true only
for n=>3.

For proofs of these theorems and more details concerning curvatures
of hypersurfaces, cne may consult, for example Flanders [3], Hicks [6],
Kobayashi and Nomizu [9] or Sternberg [20].

Under these preparations, we proceed to the following theorem
which 1s our main purpose in this section. This theorem which de-
scribes the asymptotic behavior at infinity of the Fourier transforms of
the measures with C™ density concertrated on C* hypersurfaces in H”,
has been investigated by many authors, e.g. Fedoriuk [2], Grusin [5],
Littman [10], Vainberg [23] and others (see also Matsumura [13],
[14], [15]).

Theorem 5.1. Let S be a C” hypersurface in E", n a C” function
defined on S with compact support and define

-3) I(z) = J;;x(s) exp {i(zx, sSrdS, zeR",

where dS is the surface element on S. Assume that the Gaussian
curvature K (s) of S does not vanish on supp y1. Then Lhe set of points
on supp u# at which the normal to S is parallel to 0 is finite in number

for each unit vector 0 2. We denote these points by s'(0), -+, s (6).

10) 6 and 2 denote respectively a unit vector and rthe unit sphere in 8" and in R
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Taking 0 as the positive direction at s'(0), denote by p,* (0) and p,~(6)
the number of positive and negative principal curvatures at s'(0) re-
spectively. Then the asymptotic behavior of I(x) for |x|—>oo along

the ray x=|x|0, is given by

G4 I@=-eprory| W(’ﬂ_(g(g)))llﬁ— exp fil21<0, 5' (0))

+ (o0 @) —pr-‘(a))}]er-<"-’>ﬂ+q<x),

where for each multi-index v
(5-5) (0/0x)*q(x) =0 (|z|= ") as |z|—>o0,
uniformly for 0< 2.

Proof. We first remark that the measure m, with C” density x(s)

concentrated on S is defined by

e py= | 1©e©)dS, oI @,

It is obvious that supp m,C.S. Since the Fourier transforin of m, is
defined by

(Gmy, ¢p=my, Ty, $J (R,

we have

(Fm,, > = L ,a(s){J;”g[)(x) exp{—i(z, s>}dx}ds

- . { L/l(s)exp{———z(l‘, S>}d5}¢(x)dx'

Thus I(—x) is the Fourier transform of m,. Let us return to the study
of the asymptotic behavior of I(x) as |x|—>oo. First we will study the
case when x is (0,---,0, z,) and write simply I(x,) instead of I(0,---,
0,z,). We show that the major contribution to I(zx,) as |z,|—>o0
arises from the immediate vicinity of the points at which the normal
to the surface S is parallel to the vector (0,---,0,1). For this let us
take a finite number of sufficiently small patchs {U,} for the C® manifold

S which cover supp # and a C* partition of unity {p,} subordinate to
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this covering such that > ¢;(s) =1 on supp #. Decompose

5:6) I(x,)=2 f L (s)exp{iz,s,} dS= 3 I;(x,), respectively,
7 U; 7

where si;=¢;n. We consider a patch U; which does not contain any
point such that the normal to S at this point is parallel to the vector
,.--,0,1). Since U; is a part of a C” hypersurface, U; may be re-
presented by the equations s,=s, (01, -+, 0n 1), k=1, -+, 7 where the s,
are C= functions defined on some open set in ¢’ = (¢4, -+, 0,_1)-Space.
Then our above assumption on U; implies that there exists at least a
tangent vector which is not orthogonal to the vector (0,---,0,1). Thus
we have 0s, (07) /00,0 for some 7. By changing from integration over

U; to integration with respect to ay,---,0,_;, we have
L) = (1600 @) exp lizs @)} o',

where w(0)d6" =dS= {3 |D(sy, -++, Sk, =+, $n)/D(Cs, -+, Cu_)|*} Vd0O - dG s
k=1
(" means “omit”). Since grads,(6’) 0 on supp s;(s(¢’)), we have
g’ G’
by 1° in Theorem 4.1 that

G I;(z) =0 (Jz.I7")  as  |za|—0c0.

From this, we see that the main contribution to I(x,) as |z,|—>co arises
from those terms I;(z,) such that U; contains points at which the normal
to S is parallel to (0,:--,0,1). Such U; may be represented by the
equation in the form s,=2(s, -, s,_,) where /& is a C” function. In
fact, let s,=s,(0y, -+, 0n_1), B=1,---, 7 be the system of equations that
defines U; and s(f) a point in U; at which the normal to .S is parallel
to 6=(0,---,0,1). Then the unit normal at s(0) is given in the form

(5'8) C<_ D(Sz,...,sn) (—l)kD(Sh"',gk,"',S,,‘
D(UI, "',O-'n—l) D(Glg Y Gn—l)

)

o qya DGy ey Sac)
, (—1) D(al,-~-,a,,_l))

3
6’=6"(0)

where C= {IE ID(sy, -+, 50, 0y 80) /D (04, -+, 0n_1) | 7/ and s(0)=s(c" (0)).
k=1

Since this normal is, by assumption, parallel to 0= (0, ---,0,1), we have

D(SI’ ) 37!—1) /D(Gl; Y Gn—l)

the inverse function theorem, as ¢,=0,(sy, -+, s,_,) where the ¢, are C~

e=ary70. Consequently we can solve, by
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functions of s"= (sy, ---,s._1). By substituting this in s,=s5,(01, -+, On_1)
we see that U, is represented by the equation s,=s,(0:(s"), -+, 0n_1(s"))
=h(sy, ", S,1). Further the vector (—0hi(s")/0s1, -, —0h(s") /05n_1,
1) |y 1is normal to S at the point s(§) and therefore parallel to
©,--+,0,1) by assumption. Thus we have gr?d h(s’(0)) =0, that is,
s"(0) is a crilical point of the function h(s')s. From the assumption
that the Gaussian curvature K(s) of S does not vanish on supp g, it
follows that the critical point s”(0) is non-degenerate. For we have
Hess A(s”(0)) 0 according to (5-2). Therefore the points at which
the normal to S is parallel to (0,---,0,1) are isolated. So we may
assume that U; will contain no more than one such point. If we
denote by i, -+, 1.1 the eigenvalues of the Hessian matrix H(s"(0))
= (0*h (s"(0)) /0s,0s:), the principal curvatures of S at s(f) with respect
to the unit normal vector field (5-1) are given by — 1, -+, —21,-1 and
we have ﬁl sgn l;=p" () —p*7(0). Let us return to the integral I, (x,).
By chang;r_llg from integration over U; to integration with respect to s,

we have
L) = [ #6576 L+ lgrad h(5) [ exp izt ()} s

From the above consideration, it is possible to apply the case 2° of
Theorem 4.1 to this integral. Thus we get the following asymptotic

formula:

69 L) =Ener B e O eplia ®)

+ (07 (0) —p* (B))sen ) |, |

+ Oz~ as [z —oo.

The general case is easily reduced to this case. In fact, let 7 be an
orthogonal transformation in 8" such that *7'6="(0, ---,0,1). By making

the change of variables s=7%, we have
L@ = | 1 @nexp e, Toyyds,

= | mTpexs el as,.
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After applying (5-9) to this integral, we perform the inverse transforma-

tion y=T"'s. Then we obtain

—_ n—1y/2 ﬂ (3(0)) s
I (@)= (2m) o R e {zlx](ﬁ,s(@)}

+f'4i<p~ 0) —p* (o>>} || O (|| )
as |x|—oo

along the ray x=z|f. Further it is easy to see that the order rela-

tion O is uniform with respect to §£. Summing up, we have
(56-10) I(z) = lz;C, (0) exp {i|x (<0, s' (O) D} ||~ + O (||~ D7)
for |z|—oo, uniformly for 0=xz/|z| €2 where
G100 = e LE D)oo LG 0 - o).
Set
a(2) =I(2) — X C, () exp {lxi<0, 5 ()} |~ %,
Noting that ( is a function of x, differentiate the both sides.
(6-12) (8/0x)"q (x) = (0/02) "I (x)
31 G5 (0))" C (0 exp (il 1<0, 5 ()}
X172+ O (Je| =7 as  [z[—oo.
Applying the asymptotic formula obtained above to the integral

0/02)°1 () = [ G () exp ticz, s,

we have
(0/0x)*q (x) =0 (Jx! =) for |x|—>o0, uniformly for §=x/|x| L.

This completes the proof.

In particular, consider the case when S is a closed C* hypersurface.

As stated before, if the Gaussian curvature K (s) does not vanish on S,
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S is strictly convex and the Gauss map is a diffeomorphism of S to 2.
We choose as n(s) the outward unit normal vector field and denote by
s(0) the inverse map of the Gauss map Sos—»>n(s) €2. Then, for each
0= 8, there exist only two points s(f) and s(—8@) at which the normal
to S is parallel to §. The n—1 principal curvatures of S at s(f) and
at s(—0) with respect to the direction § are all positive and all nega-

tive respectively. In this case we have the following asymptotic formula:

(5-13)  I(x)= L 1 (s) exp {iz, s>} dS

_ n—1y/2 ,u(S(ﬁ)) x Jx s ___i_?f_ _
@2m) [—_—jK(s(ﬁ))I‘/Z expilz[<0, 5 (0)) — - (n~ 1)

+Wexp{z!xl<0,s( 0>+ (-1}
X |z~ D2 4 g (x)
as |z|—>oo along the ray x=|x|0, where q(x) satisfies (5-5). If S is

the unit sphere @ of B&" and x(s)=1, we have the well known formula
(5:14) 1) = | expiiCa, 9} dS =2 (11/2) " "y ()
2
— 27" (| 2] /2) -<"—1>/2cos<;x; —% (1))

+0 (=)

as |x|—>o0, where J,(¢) denotes the Bessel function of order y.

§ 6. Basic Formulas |

Let 2(€) be a real valued function on B" satisfying the conditions:

(. 1) A(€) is positively homogeneous of degree 1.

(A.i1)  A(&) 1is positive and C* in E™\ {0}.
Then the set S= {s€&"; 1(s) =1} forms a C=, closed and non-singular
surface of dimension #—1 which encloses the origin. For we have
grad 1(§) #0 for £ 8™\ {0} from the Euler’s relation ZnISj@i (&) /0¢;
=A(€). From this we see that .S is non-singular, namely ]a_ C*= manifold
of dimension 7—1. Since the map 23& > &/1(€) €S is one to one and

bicontinuous, S is a closed surface and encloses the origin.
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Making use of the function A(§), we can introduce new coordinates

(p,s) in the space B™\{0} such that

6-1) E=ps, 0Cp<+o>, s&f.
Then we have

(6-2) dé= (0"""/Igrad 2(s) ) dodS.

Take a finite covering of S which consists of sufficiently small open
subsets of S, and a C* partition of unity {@;(s)} subordinate to this
covering. I we extend these {unctions to the space H"\ {0} by positive
homogeneity of degree 0: 0;(§) =0,(£/1(€8)), {6.(8)} is a C™ partition
of unity in H"\{0}. Then it suffices to show

(6-3) 0:(§)ds=0:(s) (0"7"/|grad 2(s) DdodS.

Let s° be a point in supp @;(s) CS. From the assumption i) we may
assume without loss of generality that 9i(s)/9£.,40 in a small neigh-
borhood of s° on S. By the implicit function theorem, there exists a C~
function s,=h(s"), s"=(sy, -+, s,_1) such that 2(s", 2 (s"))=1 and 04 (s")/Ds;
= —(01(s) /0&;) /(@A (s) /0&,), j=1,---,m—1. In a conic neighborhood

o]

of s° which contains supp @;(§), we have

~‘Q (él,‘éz,—:.’;ei‘),, L o om 13{—_1 0/1 " )
D(‘)’SU"',S“_I) =( ]> 0 (,(___}Si_'-*‘“(s) ]](S)>

i=1 ‘5].

/

:(—l)n—klpn—!(ﬁ—‘:‘sj gg (s)\)/ 60; (S)=(~1)nupn—1/ gg (),
=1 J n n

n—1
because > s;00(s)/0&;=2(s) =1 for s€S. Thus we get (6-3) from the
=1

well known formula

6-4) (]SI(&// );‘] (_0@;1 (S)\)Z/OOTA@)V ds’ .

\ =1

Next we consider two functions 2,(§), 2,(€) satisfying the condi-
tions (A.1), (A.11) and the following.
(2.1i1)  Si={s; 2:(s) =1} and S,= {s; .(s) =1} have non empty
intersection and grad 1,(s) #=grad 1.(s) for any sS85 NS, We set
¢ ¢
(6-5) A(ED) =00LE) + A=) 2:(6), 0<9=<1.

(6-6) S@) = {s; 1(s,9) =1}.



348 MUTSUHIDE MATSUMURA

Introducing in the same way the coordinate system (p,s):
6-7)  é=ps, 0<p<+ o0, s€S(®) for each He<[0,1],
we have

6-8) ds = (0""/|grad 2(s,9) ) dpdS (9).

Let ¢° be an arbitrarily fixed positive number and & a positive
number such that the closed interval [¢°—40, 0°+40] does not contain
0. Let ¢=Cy(®") and satisfy supp ¢C {p: |0—0°|<<40}, ¢(p) =1 for
lo—0°|=30. Then x(£)=x(0s) =¢(0), 0<<p<+oo, s&€S and 7,(£)
=15(05) =¢(p), 0<p<<+ o0, s€S(¥) define C> functions with compact
support in E™ {0} such that (&) =1, %,(€) =1 in a neighborhood of
0°S and of ¢°S(¥) respectively. We consider the following functions.

on s [ TUREOEO

S [60—6’ 60+6]’ €>O)

(6-10) ¥ (x;0+ie) = Lexp{i<x, 5>}( j 1(11 (? ;é;)f((fﬁ_)?)ydﬁl)df,

ce[0°—0,0°+0], ¢>0.

Here P(€) and P(§,9) are positively homogeneous functions of degree
d=>0 with respect to & which are C* in 8"\ {0} and in (&"\{0}) x [0, 1]
respectively. We shall study in this section the existence of the limits
0 (x; 0 £70) and the asymptotic behavior of @ (x;0+i¢) as |x|—o0, and
in the next section those for ¥ (x;0+i¢). By shifting in (6-9) to the
polar coordinates with respect to S; (p,s), 0<{p<<+ o0, s€.S, we obtain

(6-11) O(x;0+ie) = im—(p—p%é%)ﬁ

xp {Z _ P
x| [emptioce, ) L0

dS}a’p,
ce[6°—0d,0°+0], &>0.

Since ¢(p) =1 in [p—0°|<<30, the integrand in the integral with respect
to p can be extended to an analytic function of the complex variable p

in a domain including the interval [¢°—38, 0°+30]. Then we can deform
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the path [0, c0) in (6-11) so as to avoid the zeros of p— (0*ie) for
ce0°—0,6°+0], e>0. More precisely we replace the interval [¢°—2¢,
0°+20] in the path [0, oo) in (6-11) by a semi-circle of radius 2¢ and
center al ¢° in the lower half-plane or in the upper half-plane according
to 0+ig or 0—z¢. Letting ¢ tend to zero, we see that the limits
O (x,0440) exist and they define continuous functions of (x,d) in
(R™\{0}) x[6°—0,0°+0]. In fact, they can be continued analytically
across the real axis into a domain in the other half-plane.

In order to investigate the asymptotic behavior as |zj—oo of
O (x;0+1ic), we now assume the following:

(A.iv)  The Gaussian curvature K(s) of & never vanishes.

Applying the formula (5-13) to the inner integral of (6-11), we find

P(S(ﬂ))exp{~i;1"—.(n—1)}
|K(s(0))|"*|grad 1(s(6))

(6-12) O (x;0+ie) = (2r) A

PG (=) exp & (11

Jsw (T30 £ ie) + - I
X Jsy (3 0 de) l_I}(’(s(_g))‘l/z]grad A(s(=0))]

A Ty (236 Eig)l ||

AN A () d 0 o
] a 0" — ’G ? 'ZO,
e raenydo, o<l ~0,0°+a), ¢

where

w (n—-1)/2+d
6:13) J.(zsotie) = | 000 do,
(6:13)  Jjs(x50£de) = | (p_((fiie)>jue>£1>{zp<x, syhdp

gel0°—7,06°+ 0], e¢=0.

Here we know that

5.14 v exp {zpt} g @y .y "
©-19) J—w (o— (c£ie))* dp= +2m j_.'— (£t)exp{i(o+ie)t},

j=01,

[} H

and

615 [ a@o () exptiodo= ) | TaG - @ar,
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where Y (¢) is the Heaviside function and

(6-16) 2 () = fa (0) exp (it} dp.
From (6-13), (6-14), (6-15) and (6-16), we get

617 Jyuworio =3 () 0t
Jl k=0 \k

X j_(:” (=)@ (v) exp {i (6 + i) Kz, s» —1)}dr,

and

ciil .
__Z]+ J

2 (4 )<z "

Jl k=0

(6-18) I, (5 0—ie) =

X L: . (=) * () exp{i (6 —ie) Kx, s)—r1)}dr,

where ¢ (p) =" V%) (p). Thus the functions J;(x;0+tie) are conti-
nuous in R"x 4. respectively and

(6:19)  J, . (x;0+ie) =0(|z}) for |z|—oo, 6ticed.,

where 4.={A=0=%iec;|0—0°|<F, 0<<e¢<<c°} and the order relation O
is uniform with respect to g+icecs 4..

Since S is a strictly convex closed hypersurface, we have
(6-20) inf {0, s(0)>>0 and sup<h,s(—0)><0.
lif=x] =]
From these relations it follows that

(6-21) 5o (x5 0+i2) =0 (|z ™)
and  J; 0 (z;0—ie) =0 (||’

for |zl—>o0, §=x/|x|, where the order relation O is uniform with

respect to (0,0+ie) €Rxd4.. We also have

i+1 X
(6:22)  Jyuw (23 0+i0) = Lz, 5 ()
J:

Kz, s(0)>
% [T 5@ exptio o, 50> — e + Ol

-
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i

s exp o 5(0)))

4w
N j‘ o (c)exp{—iot}dr+ O (x|’

e, 5(0)) 00 exp {2146, 5(0)))

+O0(r™H

for |x|—>o0, 6€[0°—F,0°+06] and
. . —2ni . ic(n 1)/2td
(6-23) Jisi0) (250 —100) = —=== (i, s(--0) ) 0"
J!

X exp{ig]x|<0, s(—0) >} + O (=]’ ™)
for |x|-—>co, 0 [0°—0,0°+8].

(0/0x)*®;(x;0 £ig) can be handled in the same way. Thus we obtain

| 0V oo i) oo GsCEO)P(£0)
©24) (L) 0G5 0i0) = (2m) P TRG(L0) 17 lgrad 1G(£0))|

Xexp{Fin(n—1) /4} I, 50 (x5 0 £18) || 7@ 7D/2H
+0 (|.Z‘|_("+1)/2+‘i)

oo pd+]u|+n—1¢) (0)
-, (0— (0 xie)) ™

q(ox)dp, as |r|—>oo, 0=x/|x],

where

6-25) 1, (2502 iz) = |l 7 [T oo, S dp
v (o—(0£ig))’™

and the functions I, s.p(x;0+ie) are bounded continuous in {x;
lz| =1} X 4..

To estimate the last integral in the second member of (6-24), we
give here two lemmas.

Lemma 6.1. 1° Let I=(a,B) be a bounded open interval in
R=(—o0,00) and f(po) a Hélder continuous function of order
F(0<V=<1) defined in I, that is

6-26)  |flo=sup|f (o) |+ sup {|./(0) =f(0")|/lo—0’I?} oo,
P'ﬁépﬁ'EI
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Then the integral

627 F(o+ie; f =j—f—(")——d
(6-27) @ie;) = [ —LOap
exists for every 01 and every ¢0 and there exists, for any compact

subinterval I, of I, a positive constant Cy ;, such that
(6'28) IF(O.:EiS;f)iSC,y‘IJIfH,; for GEIl and EZO,

where Cy 1, depends on & and I, but not on ¢=0 and f.
2°  Further, if 0<90<1, the function F(0xie;f) is Hélder con-

tinuous of order © and there exists a positive constant Cy ;, such that
(6-29) |F(o+ic;f)—F(0 +ie;f)i<Cslo—0|’|fls for c,0’ €l

and ¢>0, where Cj 1, depends on ¥ and I, but not on ¢2>0 and f. If
0=1, (6-29) holds for cvery 9= (0,1).

Remark. The second statement is usually called “lemma of
Privalov” (see Friedrichs [4]).

Proof. 1° We will only discuss the case ¢ -+i¢, for the other case
can be handled in the same way. Define f (x) =0 outside of I. Then
we have

rN
Ftic:f)= | LOTD 40 for gel and >0,

J-¥ p—ic

— Y flo+0) '“f(o.) do+£(0) j‘_NN 1 dp

J-» o—ie o—1ie

rN _ A
= [ LrD D 4y 1) (Log N2 4 i),
J-¥ p—1ie N+ie

where N is a suitable positive number and Log 2z denotes the principal
value of log z. From the Hélder continuity in I of f, we see that the

limit

F@@+i0; f) =lim F(6+ic; /) = f” So+0) =FO) 45 ¢ inf(e)
e—0 -N 0

exists for every 0=/ and
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(6-30) F@+i05 f) =pwv. ﬁ%d(mmf(a).

Here the symbol p.v. means the Cauchy principal value. Thus for ¢>0
we have

\F(o+ic: f>|<j

ir+Log N—L_a
N+ie

|f(0)]

—'lu
N —_

<j S0 +0) —f(0)

= | u 0 I

Choose ¢>0 so that I;C (a+7,5—0) and let

e R A

=K, + K, + K, respectively.

Now

Kl =I71s [ ol do=20111./5.
On the other hand
| K|, | Ks| <2 stglf(o) |-Log(N/0d).
4

Hence (6-28) holds with Cy ;,=20/9+2Log (IV/3).

2° Next we proceed to show the second statement. For ¢, ¢’ =/,
0’0o, we sel

(6-31) G—0'=2b(>0), ¢+0 =2r.

Then we have

P(o+iesf) —F(0 +is:f) = (6—0") j(; : S(0).

—ic) (p— 0" —ic)
Y S A () B S o d
~ij‘_w (p—0—1i¢) (p—0" —1e) p+2bj (0—0—ic) (o—0’ —ie) 0

_ b So+0d") - So+0)
=26 do=+2b L (0—ie) (p+26—ic)

- (0—2b—1ic) (p—ie)
Y flo+0d) —f) 1

=2b d, 206f (0 d
g =) T ) o m i e

P LG
(p—z¢) (p+2b—ic)

- 1
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Now
b s~
ij 1 ——dp=Log b+z,° —in
-« (0—2b—1i¢) (p—i€) b—ie
and
1 . b+ie
2bj dp=in—Log L%
b (p—i0) 0+ 2b—in) P S

Therefore for ¢>0 we find

6:32)  F(o+isif) —F(0 +is; ) = (in— LogZ“’a)(f(a) ~f(@))

ooy [* L) =f@)
- (p—1i€g) (0—2b—ic)

Sflo+0) —f(0)
+ 0= ")J (o—ie) (p+2b—is)

In this formula we can let ¢ tend to zero on account of the Hélder

continuity in I of f. So we have for ¢=0

©-33 F@+isf) —F@'+ies )] ) 1£(©@) =f(@)]
lo—a’|” c—a’|?

Lo [* £+ —F (@)
sen | (o—iz) (o—2b—is)| “°
s [~ !f(0+6) “‘f(GH
e | T

=J,+J,+J;, respectively.
Consider J;:

|, <25'7 Jb |S(o+0") —f(a)]
0 = |o(p—28)]

o
o lo'~?|o—2b]

dp

<2if1 | do+20-sup 1/ )| |

2b) i
Now

oo o= [ —
- lo|'"?lo—2b] T J-=[t]'7?2—2]

<2 ft"—ldt + rﬁ—wszw 1—9)
0 1
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and
o [Tt de=2 [ dp=log 020
-~ lo(o—28)] s 0(p+2b) 0
Hence
4 0426

6-34 g < +L .
(6-34) =gy e M
In the same way

- 4 0+2b
6-35 Iy < |[— +L .
( ) |J5] <§l(1—ﬁ) 0g 5 >|f|a
From (6:33), (6:34) and (6:35) we have (6:29) with Cy;, =7+ (f’:&)
+2 Log 6+2b. This completes the proof.

o

Lemma 6.2, Let g(x) bc a C* function in R" such that for
cvery mulli-index vy with |\yv|<<j+1 (jis a fixed integer=0) the estimate

(6-36) 10/0x)q (2) | =Cylx|~"™" for |x|ZR;

is valid for some constants C; and R;. Let I, be a closed interval
in R.=(0,00) and let w(p) be a C° [function with compact support
in R, which is 1 in a neighborhood of I,. Then for every y with
0<y<1 we have

- a)(O)(I(&'Q__dp <Cj;,, ;x| @b+

©50 ) o= rzin)y

for |x|=M,, ; and c€l,. Here Cy,, ; and M;, ; are positive constants
and Cy,, ; is independent of €I, and ¢=0 and M;, ; independent
of 6l;, y=(0,1) and ¢=>0.

Proof. 1t is sufficient to show (6-37) for j=0, since we can reduce
the general case to this case by integration by parts. Take a bounded

open interval I= (a, ) such that w(p) =1 on I and set
(6-38) f2(0) =0 (0)q(ox).

From the assumption (6-36) there exists a constant C; depending on I

such that
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(6-39) |f2(0) |=Cilz|" ™2 for [z|=R,/a.

Consider for p, p’e/l

‘g (ox) —q (') I".

lg(ox) —q(p’x)| _ I q(px) —q(p’x) [\
lo—o’|" ! o—0
From (6-36) we have

lg (o) —q (0" ) ["=Cy x|~V for |z|=R,/a

and
_ ’ 1— n 1—r
2(ex) =a(0"2) ™ _ 151 2, 99 (574 (p—p")0) )
0—0 7= 03:,-
=C, |2 for x| =R, /a.
Hence
6:40)  1a(pz) ~q(0'x) |/Ip— 0" T=C, slz| A

for |z|=R,/a.
From (6-39) and (6-40) it {ollows that
[f2(0) —f= (") /10— 0| T=C,, | x| "D

for |z|=R,/c.

Thus we obtain
(6-41) 1= (@), <const., ;lx|~ Y27 for |z|=R,/c.

Applying 1° of Lemma 6.1 to f,(p) we have (6-37) for j=O0 from
(6-41). Therefore the proof is complete.

Summing up the preceding arguments in this section we have proved

Theorem 6.3. Let O;(x;0%ic) be the function defined by (6-9).
Then (0/0x)*0;(x;0+ic) has the following asymptolic formula for
|z|—>o00.

sl v z: ; — n—-1)/2 (is(ie))up(s(io))
(6-42) (0/0x)*0;(x;0+ic) = 2r)™ " K (s(£0))|"|grad 1(s(£=6))!

xexp{Fin(n—1) /4 I, ..sce0 (x; 0 £ic) || "7V

4 o) (lxl—<n—1)/2—r+j)
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for |xj—oo, =x/|x|, 6 [6°—0,6°+06], ¢=0.

Here

43 N s 1O W
(6:43) I;,.(x;0+i¢) =|x| » (0= G Lie)) ™ exp {iplx, s)}dp

and the functions 1;, .0 (x;0+1e) are bounded continuous in {x; |x|
=1} X d.. Further the order relation O in (6-42) is uniform with
respect to (0,0+is) €@xd,.. In particular

(6-44) (0/0x)*0; (x; 6 £70) = £ (27) "+

% (s(iﬁ))u<0s5(i0)>jp(s<i0))L,)-m*])/udﬂ»\
JUK (s(£0)) [Vgrad A(s(£0)) |

xexp{Fir(n—1)/4+i0{x, s(£0) D} | x| "L/

+O(|rif(w4)/247+i)
for |x|—oo, 0=x/|x|, 0=[6°—0,0°+0d].

Moreover we obtain for following estimate making use of 2° of
&> =] -

Lemma 6. 1.
(645) I(a/ax)u{m7(1’6ize)”*@7’(1'.()‘/:]:28)}}
Scf.p,r.;m-0’]T]x|—<"—3)/2-|f

for |z|=Ry,, 0,0 €[0°=d,0°+d], c=0.

§ 7. Basic Formulas TT

In this section we shall investigate the asymptotic behavior of the
function ¥ (x;0+7z) defined by (6-10). By transforming to the polar
coordinates with respect to S(9): (p,s), 0<p<+ o0, s=S(¥), we find

. . 7a) — : 10(5>P<$s 19) . ~ &
71 W(z;otic) J;dﬁ‘ Lﬂ OO e (i, ) ds

— r 0" (o) Jj‘ dﬁj PG
v (p—(gxie))? L s |grad 2 (s, 9) |

< exp fiplzx, 5+ dS (D) } do.

The existence of the limits ¥ (x;0+70) can be proved by the same
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argument as in the case of the function @ (x; 0 +i¢) defined by (6-9).
In order to derive the asymptotic formula for ¥ (x;0+ie) as |x|—>o0,
we must study the asymptotic behavior as |x|—>oco of the integral of

the form
(7-2) I(z) = fda Lw)ﬂ(s, 9 exp iz, sSrAS (),

where #(s,¥) is a C~ function on S(¢) which depends infinitely dif-
ferentiably on ¢ =[0,1]. For this purpose we first start the following

theorem required presently.

Theorem 7.1. If the Gaussian curvatures of Si={s;2:(s) =1}
and S,={s; A:(s) =1} never wanish on S, and S, respectively, the
Gaussian curvature K(s,9) of S(O) mever wvanishes on S(§) for any
4 (0,1).

For the proof we need an elementary lemma.

Lemma 7.2. Let E be a symmetric matrix with real entries of

the form

E, a\
7-3 E:< ° ,
7-3) ‘a b)

where a is an (n—1) X1 matrixz, b a real number and ‘a denotes the
transposed matrix of a. If the (n—1) X (n—1) matrix E, is positive
definite and E has zero as an eigenvalue, then E is nonnegative definite
and its kernel ker E has the dimension 1. Conversely, if E is non-
negative definite and ker E={al; R} for some fixed real wvector
e B with £,50, then L, is positive definite.

Proof. Let us set

V= {na E°_1a>
0.0 1 )’

where I,_; is the identity matrix of order #—1. Then we have
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0
E, :
E='V 0 7
0---0 b—<E,"a,a>
and det V'=1. Therefore
det E= (det E,) (b—<E, 'a, a)).

Since det E,50, we have b=<E,'a,a). Consider the transformation
in B*: £=17. Then

: E, 0y A\
N S (I =

Thus E is nonnegative definite. Since V is regular, dim ker E=dim ker
(EO 0

v0 0
Conversely, if E is nonnegative definite, we have

>. Hence ker £ has the dimension 1.

=/

(Ee, 8y —(E&,85=0 for any &=(°

)eEﬁ
. 0

Suppose that there exists a vector ¢’ 8" '\{0} such that E & =0,
Then

O= <E$, $‘>:/\E1/‘2$’ El/2$> .
Therefore
E7E=0.

Since ker E=ker E'*, we have &£cker E. This contradicts that ker E
={al; =R} for some g™ with ,50. Thus E, must be positive

definite.

Proof of Theorem 7.1. Let u(§) be a real valued {unction of
£ B™ which is positively homogeneous of degree 1, infinitely differenti-
able and #(€) >0 for ££0. Let s° be an arbitrarily fixed point of the
hypersurface 3 = {s; u(s) =1}. Then there exists a suitable orthogonal

transformation £€=7T7% such that

ou

(7-4)
075

Ty =0, j=1,- 01 a@” (Tp| >0, °=T¢".

b
g n = go
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In fact it suffices to choose the transformation in such a way that the
direction of the outward normal at s° to the surface 2 coincides with
the positive direction of 7, axis in 7 coordinate system. The surface
2 can be represented by the equation of the form %,=h(y, -, 7._1) is

a neighborhood of ¢° and we have

0%

o (TGO)
@9) (- Tk _(g)) —| 0001 _
8ﬂ a"h J k=1, n—1 ou :
’ (T'o°)
N G =1, 1

The determinant of the matrix of the left-hand side equals the Gaussian
curvature of X at the point s° (6° in 7y coordinate system). If the
Gaussian curvature of 2 never vanishes on Y, the matrix of the left-
hand side of (7-5) is positive definite and therefore the matrix (8*« (7¢°)/
09,07k j,k=1,.n—1 is so. Conversely, if the matrix (0*«(7'0°)/09;07) j,-1,..,
a1 1s positive definite, the Gaussian curvature of J at the point s° does
not vanish, Now we note the following.

The Hessian matrix of #(¢) at &=~0 has zero as an eigenvalue and
& is a corresponding eigenvector,

Indeed, this follows from the positive homogeneity of degree 1 of

# (&) and from Euler’s identity:

‘7

(7-6) <a§g& (§)> 5 =1,...,n<: ) CZ &, ag—k(g)ﬂ) =1,...,ﬂ:0'

Now let s° be an arbitrarily fixed point of the surface S(?), 9 being
fixed. For u (&) =1(¢, ), choose an orthogonal transformation é=7"(4) 7
such that

@7 2 (1@)0,9) =0, j=1, -, n—1, §L<T<ﬁ>a°,a>>o,

0”1 Nn
where A(6,9) =90,(&) + A=) 2,(&) and s5°=T ($#)c°. On the other
hand there exist positive numbers ¢,>0 and s‘.S, such that p,s°=s°,
¢=1,2. We choose orthogonal transformations &§=77° ¢=1, 2 such
that

@8 P (Tgy=0, j=1, a1, I (159>0, =12,
07; 07,
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where s‘=T,0° ¢=1,2. By the assumplion on Gaussian curvatures of
S,, ¢=1,2 and the corresponding relations to (7-5), the matrices
@2, (T0%) J09f07E) je-1,nt (¢=1,2) of order n—1 are positive de-
finite. Consequently, by the first statement of Lemma 7.2, the Hessian
matrices (0°2,(T,0°) /09:09%) ;. x-1,n ol A (Ty") (relative to 7°) at y°=0*
arc nonnegative definite and have zero as an eigenvalue. Now we have

_ 0% o iy G L
(oo @) | =HTT o) (G @) T 0)

=0 ”CT!T@))(%“UV,( (T, =12,
70k S gk=1,00

where s'=7T,0° ¢=1, 2.
Thus the matrices (0%, (T (9)0°) /09;079x) j,6=1,.,» 0of order n are non-
negative definite and have zero as an eigenvector and dim ker(8*2,(7T'(9)0°)/

07,;07%) j,x-1,.,n=1. By the relation:

7. /_*7 _ — azll o
ao  (Glhoamen) | =Gk T @) |

~1,7

o 02y o
+ 11— (T®Wgo
) (LA 7o T ),
the Hessian matrix of 1(7y, 9) (relative to ) at p=0° is nonnegative
definite and the dimension of its kernel is 1. Moreover ¢° is an eigen-

vector of the matrix corresponding to the eigenvalue 0 and ¢,°5£0, for

(710) 1=2T @), 9) =230, T (T 0)0°, 9) =022 (T @) 0°, 9).
J=1 J N

By the second statement of Lemma 7.2, the matrix (0*°2(7T°(%)0°,9)/

07;07%) jik=1,.u1 Of order z—1 is positive definite. This implies that

the Gaussian curvature of S(§) at s° is different from zero. The proof

is complete.

Let us now investigate the asymptotic behavior as |x|—>oo of the
integral (7-2) under the assumption in Theorem 7.1. Tt suffices to con-
sider the integral for the case x= (0, -+, 0, x,) since it is possible to
reduce the general case to this one by rotation of coordinate axes as
in the proof of Theorem 5.1. We choose a finite partition of unity {¢;}

over [0,1]:31¢;(9) =1 in [0,1], where ¢,€C3(~0,140), 6>0 and
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the supports of all the ¢; are sufficiently small. Let {p,(6)} be a
sufficiently fine C* partition of unity on the unit sphere £. We extend
every ¢, to the space E" by homogeneity of degree O and denote it by
the same letter ¢,(£). The system {p,(§)} forms a C* partition of
unity in A"\ {0}. Then the integral (7-2) is represented in the form

of a sum

(7-11) I@) =3 fcw Lmﬂjk (s, 9) exp iz, H}AS(D),

where 4;,(s,9) =¢; () e (s) #(5,9). By this localization, it is sufficient
to consider the case when # (s, 9) =0 only for & is a small neighborhood
(@°—0,9°+0) N[0,1] of a point #°=[0,1] and only for s in a small
neighborhood in " of a point s°c S(9°).

First consider the case when the normal to the surface S(9°) at s°
is not parallel to the vector (0, ---,0,1). Then we may assume that the
normal to S(&) at every point s belonging to supp y(s,®) is never
parallel to (0,---,0,1) for any 9 (8°—7, 9°+0) ﬂs[O, 1] taking 0 suf-
ficiently small if necessary. Let s;=s,(07,9), 0" = (01, -+, 0n_1), =1, -+, 2
be a system of equations which defines the part of the surface S(&)
containing supp U(s,d) for every de (9°—4,9°+0)N[0,1]. By as-

sumption we have
(7-12) gra}d . (07,9)#0 for d9= @®°—0,9°+0)NI[0,1]

and for ¢’ such that s(6’,9) €supp u(s,9). Hence successive integra-
s

tions by parts give
(7-13) 1(0, z,) =0 (x;~) as x,—o0.

Next consider the case when the normal to the surface s(9°) at s°
is parallel to the vector (0,---,0,1). In this case the part of the surface
S(9) containing supp # (s, #) can be defined by an equation of the form

S

$p=h(s’, %) for any de (9°—0,9°+0) N[0,1] taking 6>0 smaller if
necessary (see the proof of Theorem 5.1). Here s,=hA(s",9) satisfies

(7-14) A, h(s,9),9) =1 and s,°=h(s",9°).

Consider the system of equations
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(7-15) a; (s, ) =" (¢ 9)=0, j=1,. n—1.
as]-
By assumption
,- o7 o ah or o .
(7-16) a;(s ,z?)za—(s ,9°) =0, j=1,-,n—-1
Si

and by Theorem 7.1 we have

— — D([ll an,1)| { 02]7- or o o o
.1 AL T Pl =det{ ———(s°,9°) | =K (s°, ¢ 0.
(( () D(Sl, N sn_]) [(s°’,ﬂ°) e \ aSj@Sk (S )> (S )5’5

Consequently there exists by the implicit function theorem a system of
C functions s (4) = (s, (#), -+, s,: (#)) defined in (I°—¢,9°+ ) N[O, 1]

such that

oh

(7-18)  a;(s(@),9) =
OS,-

"($),9)=0, j=1,-,n—1.

Since Hess 2 (s%, 9°) =K (s°, 9°) £0, we may assume that the critical
¥

point s (9) of /i (s’,9¥) as a function of s’ is non-degenerate, that is,

(7-19) Hess h(s"(9),9)#0 for any 9 (9°—0,9°+0) N [0,1].
Now consider the integral (7-2) with x=(0,---,0,2,). We can write
(7-20) 1(0,z) = jd& L a8, (L9, 9) L+ [grad h(s, 9) 137

xexp{ix,h (s",9)} ds’.

Since the support of s(s", h(s",¥),9) as a function of s” is compact in
H"' we can apply 2° of Theorem 4.1 to the inside integral of (7-20).

The application gives

(7-21)  1(0,z,) = (2) " VF exp{—in (n—1) /4} 2,

(T a @), A (), D),9) 1N e £ ,
< |, esch (s () By (LHODED e lin (@), D)y

+O @& ") as xy,—o0,
where ¢(9) is a C™ function of ¢ in (¥°—0,9°+0) N[0,1]. We set
(7-22) bN=h(@),0).
Then
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db o ak o/ o ll (SO) - 12 (SO)

7.23 Lo 9oy =0 (s, 9oy = A Z ()

@2 a0 O . 9%
asn ’

Consider the case s°¢S5;1S,. In this case we have db(8°)/d9=0
from (7-23). If 0<9°<1 we may assume from the localization (7-11)
that the support of the function x(s"(®),A(s" (9),9),9) of & is com-
pact and contained in the open interval (9°—¢, 9°+0)C(0,1) with a
sufficiently small ¢>>0. Therefore we find hy repeated use of integra-
tion by parts

(7-24) 100, x,) =0 (x;") as x,—o00.

When $#°=0 or 1, an integration by parts gives

(7 . 25) I(O, xn) =7 (1 _ 2190) (271,) (n—l)/Zﬂ (50; ’(9'0) €Xp {_ iﬁ'(?’l — 1)/4 + ixns'no}

0h
H / o/ 190 1/2 O/’ 190
[Hess £(s”, 9%) -2 (7, 9°)

X 2 ™V | O(x;(n+3)/2) as  x,—>00
uGsey90) O ()
=i(27t (n—1)2 Sn,
) [K(s°, 9°) " (1= Z1-0 (57))

X exp{—in (n—1) /4 +ix,5,°} 27 "7+ O (x; "9

as x,—o0co.

Consider the case s°€.S;(1S,. In this case we have 94 (s, 9°) /09
=0 from (7-23) and so (s°/,9°) is a critical point of A(s",?d) as a

function of the variable (s',¢). Moreover we have

0°h

(7-26) 2 (7,99 =0
011 o 0&2 o
2 O (o O (o)
(7-27) Oh (s, 9= —0% 06~ 4o
65_]01? al (Sc, 190)

0¢,
for some j1<;<zn-—1).

In fact, (7-27) follows from the assumption (.iii) in § 6 and Euler’s

identities for the homogeneous functions [, and J,. Denote by
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H=H{(s",9°) the Hessian matrix (8*4 (s*", 9°)/0s;05¢) j,&_1,..,n-1 0f R (s, ¥°)
at s° as a function of 5" and by =0 (s°, 9#°) the vector *(—8 (2, — 1) (s°)/
Bs1, -, —0 (i A9) (5°)/Dsn_1) / (@2.(s°, 9°)/0s,) . Since det H=K (s°, §°)70
by Theorem 7.1 and Hh=~0 by (7-27), we have

H h
(7-28) Hess h(s, 9°) :det<
@) h 0

Thus the point (s°, 9°) is a non-degenerate critical one of A(s’,9) as

>: — (det HY(H™'p, §>70.

a function of (s,%). Since every non-degenerate critical point is isolat-
ed, we may assume that the support of u(s’,A(s’,®),?) contains no
other critical points of A(s’,9) than (s*,9°). We note that on S;NS,
there exists only a finite number of points s at which the normal to
S(9) is parallel to the vector (0, ---,0,1) for some 9 = [0,1] (depending
on s). Now we know that if the normal to S(§#°) at s°€5:NS; is
parallel to (0,---,0,1), 9°1is a critical point of 6(8) =A(s"(®),9). So
let us show that the critical point is non-degenerate. In view of (7-26)

we have
- d’b ds’

.2 a o oy @5 o .
(7-29) as® S <b’ do © )>

On the other hand, differentiating the both sides of (7-18) with respect
to 9, we get

= 0a; ’ ds; afl' .
Rt 3, 9 i (9) +2% (s (9),9) =0, j=1,--,n—1,
,:.lask(s() ) g @) (1), 9) j 7
and so
(7-30) j; (5°) = —H).

Substituting (7-30) in (7-29), we have

Hess A (5%, 9°)

d’b ;
9°) = —(H™'h, h) =2 0.
dy? %) CH™, b7 Hess 2 (s”,9°) >

(7-31)

Hence, if 0<<9°<{1 we can apply 2° of Theorem 4.1 (for m=1) to
the integral (7-21) with respect to 9. This gives

7.32 I O’ L) = 2 n/2 ﬂ(so,ﬁO)
( ) ( x ) ( 7[) IK<SO, 00) <H_1b’ b>}l/2
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X exp{—inn/4 +ix,s,°} ;" + O (x;, "I/
as x,—oo.

The asymptotic formula can also be obtained applying directly 2° of
Theorem 4.1 to the integral (7-20) with respect to (s’,9). If 9°=0
we apply Theorem 4.2 to the integral (7-21). Then we find

. X = _1.. n/2 ,U (SO’ O)
(7-33) 1(0, x,) 2 @r)™ |K (s°, 0)<H'p, h5|

Xexp{—inn/4+ix,s,°} x;"*+ O (x; "1 V7%
as x,—oo.

The case #°=1 can be reduced to this one by the substitution of ¥ for

1—9 in the integral (7-21). Summing up, we have proved

Theorem 7.3. Let 1,(§) and A,(§) be real valued functions B™
satisfying the conditions (A.1), (A.11) and (A.iii) in §6 and the as-
sumption in Theorem 7.1. Sct A(&,9) =028 + A —9)21,(&) and
S@) ={s; 4(5,9) =1}, 0<9<1. Let I(x) be the integral defined by
(7-2) and let 0 be a given unit wvector. If there exist points s on
S:NS. at which the normal to SW) for some $<[0,1] (the ¥ de-
pending on the point s) is parallel to 8, let s'(0), -+, s"(0) be all such
points and O, -+, 9" the corresponding wvalues of the parameter 9.
Then the asymptotic behavior of I(x) for |x|—oco along the ray

x=|x|0 is given by
(7-38)  I(x) =X C0,50), 9 exp ill<0, s O} || "+ q(a),

where

 @o)"u(s, 9)exp{—inn/4
'K (s, N<H(5,9)5(0,s, ), 600, s, )"

if 0<9<1,

@) ""u (s, 9 exp{—irn/4
21K (5, ) <H ' (5, )5 (0, 5, 9), § (0, 5, )/

if 9=0o0r1

(7-35) c@,s %) =

and for each multi-index y
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(7-36)  (0/0x)*q(x) =0 (x|~ for |x|—>oco0 along x=|x|0.

In the formula (7-35), K(s,®) is the Gaussian curvaturc of S(¥) al
seSiNS,, H(s, ) denotes the Weigarten operator in the tangent space
of S(8) at the point s and §H(0,s,¥) denotes the orthogonal projection
of the vector grad (1,— ;) (s) /{grad 1 (s, ©), 0> on the tangent hyperplane
of S(®) at Ifheé point s.

Next suppose that for any point s€SiNS; and any 0<[0,1] the
normal to S(O) at s is never parallel to 0. Let s5.(0) be the inverse
image of O under the Gauss map Sy,>s—->n,(s) €8 for k=1,2. Then
the asymptotic behavior of I(x) for |x|—co along the ray x=|x|0 is

given by

B Iew) (g o s [ 4G (0), 2 k) grad 2, (s, (8), 6)>
(7 3() I( ) 2(27[)( )/ ,?”;1[ [K(Sk(a))II/Z(I_}WW’G(‘%(O)))

X exp{—in(n—1) /4+ iz, s, (0) D}

1 (s (—0),2—k){grad 2, (5, (—=0)), —0)
[K (5 (=) 1" (A= 25— (5 (—0)))

xexplin(n—1) 4+ Kz, 5, (—0) )} |z| """+ q(2),

where for each multi-index y

(7-38)  (0/9x)*q(x) =0 (|x|~"*»*)  for |x|—oo along xz=|x|6.

Applying Theorem 7.3 to the inner integral of the last expression

of (7-1) and repeating the same argument as for @ (x; 047¢), we obtain

Theorem 7.4. Let ¥ (x;0+1ic) be the funciion defined by (6-10).
Let 0° be an arbitrarily fixed posiiive number and 0 a small positive
number such that [6°—40,0°+ 40] does not coniain 0. Undecr the same
assumptions as in Theorem 7.2, the asymptotic behavior W (x; 0 kic)
Sor |x|—>oo is described by the formulas given below.

The case where there exist points s on S;(\S, at which the normal
to S@) for some $<[0,1] is parallel to a given unit vector 0: Let
s0), -, s (0) be all such points and 9, ---, 9" the corresponding values
of the parameter. Then
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(7-39) (0/02)"¥ (x; 0+ie) =5 C. (0, 5(0), 8°) ||+
4

X I, si0y (x5 0 £2e) + O (|| 7"A17T)
Sfor |x|—>oco along the ray x=|x|0, cticed., 0<y<1/2,
(7-40) C.,(0,s 9

)" (is)*P (s, ) exp {Finn/4} )
K (s, ) <H™ (s, M) (0, s,9),500,s,9)>"|grad 1 (s, ¥) |
if 0<9<1,

- @Cr) " (1s)* P (s, ) exp {Finn/4} -
21K (s, 9)<H ' (s,9)5(0,s,9),5(0, s, ) >|"/*|grad 2 (s, 9) |

if 9=0o0r1

and
. B © 'n/2—1+d+\u\¢}(p) .

(7-41 L(x;0+ie) =]|x|™ Lfwa exp {tplx, sy} dp,

) )=lx7 ) (0= @<io))? {iox, sy} do
where the summation X in (7-39) is taken over ¢ such that <0, s (6) >>0

4

or the £0,s°(0) ><<0 according as 0+ie or 6 —ic and the order relation
O in (7-39) is uniform with respect to 0xice d. but depends on 7.
Further I, (x;0+ie) are bounded continuous functions in {x; |x|

>1} X d.. In particular,

(7-42)  (0/0x)'¥ (x; 0 £40) = F 20"+ 31 C. . (0, 5°(0), 99

X <0, s(0) > exp{ioz, s*(0) O} |x|~"** + O (|| ~"/*+'77)
for |x|->oco0 along the ray x=x|0, |¢—0°|=<0.

The case where for any point s€S;NS, and any 9 <[0,1] the
normal to S(O) at s is never parallel to 0: Let s.(0) be the inverse
image of 0 under the Gauss map: S,>s n(s) €Q where n(s) is the
outward unit normal to S, at s and  is the unit sphere. Then we

have
(7-43)  (0/0x)'¥ (x;0Lie) =i (Cn) * "V exp{Fin(n—1) /4}

w31 (@se(£0)) Py (51 (£ 0)) <grad 24 (s (£0)), £0>
=K (s, (£0)) ' grad 2, (s (£0)) [{1— 25 (52 (£ 0))}

X ||~ g0 (5 0 £ 7)) + O (||~
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for |x|—oo along the ray x=|x|0, ctics 4.

and

7-44)  IL,(ziokie) =]z | LI
o (p— (0£ie))?

exp {ipdz, )} dp,

wherc the order relation O in (7-43) is uniform with respect to
0+iced, but depends on 1 (0<y<{1) and I, 5,0 (x: 0 +1e) are bounded

continuous functions in {x;|x|=1} x4.. In particular,
(7-45)  (0/0x)*¥ (x;0+:i0) = F (2r) " WiEgr—H/ L

% \3\ (Zs(£ 6))qu (Sk( + 0)) <grad ik(slc( =+ 0)), + 0><0, se(£ 6)>
20 1K (5 (£0)) [grad A (s (£ 0)) [{1— A (52 (£0))}

Xexp{Fin(n—1)/4+i0dx, s, (£0)D} | x| 7

+0 (]~ )

for |x|—>oo along Lhe ray x=|z|0, |6—0°|=7.

§8. Formulas for the Asymptolic Behavior of

Green’s Functions at Infinity

In this section we shall give formulas for the asymptotic behavior
as |.x|—oo of the Green’s functions of the operators A — I which satisfy
the conditions 1), ii) and iv), or the conditions 1°, 2°, 3° 4° and 5° in
§ 1.

Under the conditions i), ii) aud iv), we have

Theorem 8.1. The Green’s function G(x,2) of A—II defined
by (1-4) has the following properties:

(G.1) G(x; Q) is C with respect to x in R*"\{0} for cach fixed
1€ C\R and analytic with respect to 1 in C\R for each fixed x=R™\ {0}.
Morcover, for every multi-index vy, (0/0x)'G(x; 1) is continuous in
R"\{0}) % (C\R).

(G.2) For each multiindex vy and each (x,0)< (R"\{0})
X (R\{0}) the limits

8-1) G® (x; 04+120) = lim (0/0x)’G (x; 6 £i¢)
£—->0+
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exist and the convergence is uniform on every compact subset of
R™NA{0}. Further G¥ (x;0+40) are continuous functions of (x,0) in
(R™\{0}) x (R\{0}).

(G.3) Let 0° be an arbitrarily fixed non zero real number. We
denote by d. the set {A=0xiec;|0—0°<0, 0<e¢=<¢°} and by 4 the set
{2; [Re 1—0°|<0, Im 1|<<e¢°}. If we choose the positive number 0§
suitably small, the Green’s functions G(x;0+ic) in R"X 4. have a

decomposition of the form:

8-2) G(x;o‘:tie)=[:2f Ge(x; 0+is) + F(z; 0+ ic),

where for any multi-index v and for any v with 0<y<{1, the functions
Gy (x;0+ie) have the asymptotic behavior:

(8-3) (0/0x)’G,(x; 0 +tie) = (sgna) (—1)** (2g) ~*+b/*

o (se (£0)sgn 0)*[Qy (5¢ (£ 0)) ] 7' Pi (s, (£6))
|K (se (£6))["*Igrad 2, (sc(£0)) |

X exp{Fin(n—1)sgnao/4}
X Ty, 50200 ((sg0 0) x5 || £2e sgn @) ||~ Do
+ O (|$| —(n—-1)/24 ka—-lfr)

for |x|—oo, x=|z|0, 0ticed,, 0<y<1.

Here s,(0) denotes the inverse of the Gauss map: S,—8, P.(§) and
Q. (&) are the matlrices defined by (3:7) and (3-14) respectively, and

A B oo ("~1)/2+9‘k—1+|"|¢(p) .
84 I,.,(x;0+ie) =]z j o - exp {iplx, sy} dp,
‘ o (o= (G+ie))™
where ¢ is a suitable function such that p=C,* (0, 00) and ¢(p) =1
for |p—0°1<<0. The order relation O in (8-3) is uniform with respect
to oxicsd, and O=x/|x|€l but depends on y. The functions
Ly 1,020y (x5 0| £2€) are bounded continuous in {x; |x|=1} X 4.. For
=0, the functions (0/0x)'G,(x; 0+ic) have, in particular, the form:
+i(—1)*'(2r) "V (s, (£ 6) sgn 6)*
(=D K (se (£0)) [

% (0, 5¢ (£0) >Q (5:. (£0)) sgn ) * ' Py (5, (= 0)) 7] (n—1)/2+ap—1+|v|
lgrad 2, (se (£ 0)) |

(8-5) (0/0x)*G,, (x; 0 £40) =
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Xexp{Fir(n—1)sgn g/4+i6<x, s, (£ 0) D} | x|~/ @t

+O (x|~ ety for  |x|—oo, z=|xl|0, |[0—0°=0.
Further we have for some positive numbers C, o, ;. and R, .,
(8-6) [(0/0x)*{Gi(x; 0+ie) —G(x; 0 Lie)}|
SCliapr|0— 07| z| e
when |x|=R,,,, 0,0 €[0°—0d,0°+0]
and 0<eg=<<¢°.

F(x; ) (A=0%ig) in the decomposition (8-2) is a distribution of x
in R" and a C® function of x in R™\ {0} for each fixed 14 and
analytic with respect to ) for each fixed x=R"\{0}. Moreover we

have for any multi-index y
8-7) (0/0x)"F(x; A) =0 (lx|™) as |x|—>00,

where the order relation O is uniform with respect to ) in 4.

Proof. We first choose 0>>0 so that the interval [¢°—46,6°+40]
does not contain zero and next a function ¢ =C,”(E") with ¢(p) =1 for
lo—10°|<<30 and we define the functions y,=C,~(E"\{0}), k=1, -,
b=[m/2] by

B:8) 1k () =ux(ps) =¢(p), 0<p<+ 00, sE8,={s; L (s) =1},

where (p,s) are the polar coordinates associated with 2, (or S;). Fur-
ther take y,=C,”(E™ which is 1 in a small neighborhood of the origin.
If ¢ is small, the sets supp y,, ---, supp y, are pairwise disjoint.

Now we recall that we have the spectral representation (3-21) of
(A(&) —2I) 7’ under the conditions 1), ii) and iv) in §1. We consider
only the case where m is odd, since the even case can be proved in the
same way by obvious modifications. Taking account of (3-21) and mak-
ing use of the y,(§), we decompose (A(§) —AL) ' with 1=d¢+ie, |0—0°]
<24, 0<<e<<¢° in the following way.

Case: 0°>0 and m=2b+1

69 AO-ID " =Ln@® (5 (DI @LE -

X (Qe(§) P (E)} +R(E, D),
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where

(8:10) R(,D =10 (A® ~2D = 12,6 8 Qs @)1
FA-2 @) Y A-n@) (L (-1 LE -0

K Q@) P + (1—7. @) 3 {L( 1)/

k=b+2 j=0

X (e (8) =) 777 (Qk(8)) T} P (8).
Case: 0°<0 and m=2b6+1
8-11) (A —1)'= Z Am—ir1(— 5){7( DI =7
X (Qr(£)} P (&) +R(&, 1),

where
(8:12) R(5 D) =1.(8) (A@) — D"~ (1—1.(&) “gl@mam—f-l

F A1 @) 3 A tnen (- (S (-1
X (L® =D Q)P

F A=z @) 2 H{E D/ G® -0 Q@) P

Making use of the relations (3-3), (3-11) and Q,(—§&) = —Qn_¢+:1(8),

we find that for the case ¢°<{0, (A(€)—1I)"' may be represented in the
form.

613 A®-ID =N n (-5 (X (DW= +n
X @ (=)} Pu(~8) T RE, D)
Define the functions Gy, k=1, ---, 6 by
T @ (- (@ — (i)
X @@)P.O1@ i >0,

8-14) Gi(x;0+tie) = »
F 1, (&) Z (—1) 7 (2, (&) — (—a Fie))

X (Qe(©) P (§)](—2) if ¢°<0,
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and the distribution F' by
(8-15) Flx; ) =9[R, D] (@)

Applying Theorem 6.3 to G, we get (8-3) with (8-4), (8-5) and
(8-6). To complete the proof of Theorem 8.1 it suffices Lo prove the

following elementary leinma.

Lemma 8.2. Let T, be a temperate distribution valued function
of X defined in a domain D of the complex plane C and assume that
the Fourier transform T, (&) of T, with respect to x satisfies the con-
ditions:

(T.1) For everv multi-index v, (0/0€)*T\ (&) is a continuous
function of (x, ) in B"XD.

(T.2) For any fixed &, T, (&) is an analytic function of A in D.

(T.3) For every y, there exists a constani C, such that
(8-16) | @/08)"T5 (&) |<C, (1 + &))",

where C, does not depend on ¢ E" and on j€D.

Then, the distribution T, is a C™ function of z in R™\ {0} and
Jor any B, (0/0x)#T, is a continuous function of (x,2) in (R™\{0}) xD
and analytic with respect to ) in D when each x=R"\{0} is fired.
Further, as |x|—o00, (0/0x)fT, converges to zero more rapidly than
any negative power of |x|, where the convergence is uniform with

respect to ) in D.

Proof. For any positive integer p there exisis from (8-16) a con-

stant C, g such that
(8:17)  [47{GE) T (D)} SC, s A+ DA, i,

where 4, denotes the Laplace operator and C, 4 is independent of 1€ D.
From (8-17)

47{GE T, () e LB if r+|fl—2p<—n.
Consequently

|| (8/0) T, = F [ (— d¢) * 1 (i8) * T (&)} ] (x)
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is a bounded continuous function of (x, 1) and analytic in A where each
xeR" is fixed. This implies that T, is a C* function of x in R™\ {0}
and [(0/0x)*T (x)| <M, ¢lx|7*" for any p>>0 and x=R"\ {0}, where M, .

is a positive constant independent of 1€ D.

End of proof of Theorem 8.1. It is obvious that R (&, 1) satisfies
(T.1) and (T.2) with D=4={1;|Re 1—0°|=0, |Im 1|<<e°}. Since
Q. (&) and P, (&) are positively homogeneous (matrix valued) functions
of degree 1 and degree 0 respectively, which are C* in ™\ {0}, R(€, 1)
satisfies (T.3). By applying Lemma 8.2 to the distribution F(x; )

we have the statements on F in Theorem 8. 1.

In order to describe the asymptotic behavior of the Green’s function
G (x; 1) of A—2I when the operator A satisfies the conditions 1°, 2°, 3°,
4° and 5°, we now recall and introduce some notation. Let {1.(} 5201,
be the roots reenumerated by (3-33) of the equation in r:p(c, &)
=det(v]— Z &;A,) =0 and let 2,,(§) be the function defined by (3-29).
Let P, (&) and P;. (&) be the matrix valued functions defined by (3-7)
and (3-30) respectively. Put

(8-18) S5 (®) =As; A (s, 9) =1}, #€[0,1], 1=/ <k=b.

K, (s) and K,,(s,?) denote the Gaussian curvatures of the hypersurfaces
S; and S;,(9) at seS, and at s€.S,,(9) respectively. We denote by
H;,(s,9) the Weingarten operator in the tangent space of S;,(9) at
seS8;,(#) and by §;.(0,s,9) the orthogonal projection of the vector
grad (1;— Az) (s) /<grad 2, (s, 9),0> (08) on the tangent hyperplane
of S;,(®) at s€S5;.(9).

Theorem 8.3. Under the conditions 1°, 2°, 3°, 4° and 5° in § 1,
the Green’s function G(x;2) of A—1I has the properties (G.1) and
(G.2) in Theorem 8.1 and

(G.3)* Given a unit wvector 08, the asymptotic behavior of
G (x;0xie) for |x|—>oo along the ray x=|x|0 are described by the
Sformulas (8-19) with (8-20), and (8-22).

The case where there exist pairs (k) 1=j<k<<b and poinits
seS8;N S, such that for some 9 <[0,1] the normal to S;.($) at the
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point s is parallel to the wvector: Let A be the set of all such pair
(G, k) and s5:.(0), -, s5"(0) €S; NS, be all such points and B, -

8 the correspondmg values of the parameter §. Then

3

(8-19) (0/0x)*G (x; 0+ie)

= Yﬁ v C+ y Iy ky v(o S'/k(e) ,0,7]») Sgn U) 1x|—ﬂ/3+1

(7, k)Elf T

XL, o) (x sgn 05 |0] =2 sgn 0) + O (|z|"*7177),
odticed., 0<r<1/2,

(8'20) C:t,j,k,v (6’ S, 197 sgn 6)

(sgn 0) (2m) " exp{F inn sgn 6/4) (s sgn 0)"P(s,9)
(K (s, 9) CH i (5, 9) 95000, 5,9, ;1 (0, 5 1(})Nl/z'grad AGs,9)
i 0<9<1
- (sgno)  (@m)~ "’2gxg{qii@son 0/4} (Gssgna)’P(s,9)
2 K, ) H K (5, 9)h;6(0,5,3), 0,00, 5 19)>W2|gr§ad A(s, 9) |
if 9=0 or 1,

where I, ;(x; 0 +ie) is the function defined by (7-41) with d=1 and
the summation X in (8-19) is taken over ¢ such that {0, si(6)>>0 or
that <0,51‘-k(0)>‘<0 according as G(x;0+1¢) or G(x;0—ie). Note
that the order relation O in (8-19) is wuniform with respect Lo
0ticed, but depends on v and that the functions I, g, (x; |0]£2c)
are bounded continuous functions in {x;|x|=1} X 4..

In particular we have

(8:21) (0/0x)'G(x;0+i0) =TF21 3> N C. ;4.(0,s55(0), 0%, sgno)

GHea
X<z, 555 (0) Ylo "M 2| 7 exp {i] (<0, s7x (0) D}
+O (x| ™7, o —0°| <8, 0<y<1/2.
The case where for any (j, k) with 1=j<k<<b and for 9<[0,1]
there is no point on S;N S, at which the normal to S;,(§) is parallel

to 0: Let s5.(0) be the inverse image of 0 wunder the Gauss map
S,2s>n(s)eR. Then

(8-22)  (9/0x)G (x; g +ic)
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B —(n+1)/2 > (ZSk(ie) sgn 6) Py (S"(:ta))
(sgn 0) () ,;] |K, (s, (£0)) 12| grad 1, (s:(£0)) |

Xexp{Fin(n—1)sgno/4} 1, ;.0 (xsgna; |0] £ic
Xsgn o) x| " V24O (||, cxieed., 0<y<],

where

(8-23) L, (x;0+de) = Lm% exp {ip{x, sy} dp.

The order relation O in (8-22) depends on 7 and the funclions
L o0 (x; |0 £ie) are bounded continuous in {x; |x|>0} X 4..

In particular
(8-24) (0/0x)*G (x; 0 £10) = +7(2x) ~ "D~

(s (£0)sgn 0)*Py (s (£06)) —|g| b
|K (s (£0)) [ grad 2, (5. (£0)) |

X exp{Fir(n—1)sgn /4 +iolx, s, (£ 0) D} |x|~ "~

+O(Jz|~"7bn), j0—0°| =8, 0<y<1.

The proof of this theorem can be done in the same way as that
of Theorem 8.1 using the representation (3-35) instead of (3-21) and
applying Theorem 7.4 instead of Theorem 6.3. Note that (8-22) and
(8-24) are respectively the special case: ay=:-=a,=1 of (8-3) and
(8:5) combined with (8-2) and (8-7).
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