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Higher-Order Approximate Solutions of Neumann
Problems by Isoparametric Finite Element Method

with Relevant Lumping Operator

By

Masahisa TABATA*

§ 1. Introduction

Jn 1966, Friedriehs and Keller [1 j proposed a generalized finite

difference scheme for the Neumann problem. Today, their method can

be regarded as a finite element method using the piecewise linear "cha-

peau" bases. From the viewpoint of computations, however, their method

is not convenient enough, except the case of a polygonal domain, since

it requires to perform all the integrations which appear in obtaining Ritz

coefficients and right-hand sides of determinate linear equations, in an

exact domain and on an exact boundary.

The purpose of this paper is to consider a higher-order approximate

procedure for the Neumann problem in an approximate domain, using

isoparametric finite elements. This forces us to change slightly the data

functions to gtiarantee the solvability of the determinate linear system.

We shall stud\ some kinds of errors, which are caused by the selection

of the basis functions (approximation errors), by the change in domain,

by the approximation of data functions and b\ the change of data functions

for the solvability. Errors caused by the selection of die basis functions

are, of course, inevitable. Tt is desirable tha t errors due to other reasons

mentioned above do not destroy the order of accuracy which the basis

functions could achieve. In this sense, it appears to be reasonable to

expect that, when the boundary P is curved, the optimal order of accuracy

can be achie\ ed by the use of isoparametric technique. Also, we may

apply the lumping technique to the body force term/, which may simplify
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the computation of the inner product including it. Our main conclusion

is that the scheme using the isoparametric elements guarantees the optimal

order of accuracy in .ff-norrn, and that it may not be destroyed by the

introduction of a class of lumping operators, //-estimates are also ob-

tained using Nitsche's trick [2]. Our results can be extended also to

the Dirichlet problem straightforwards.

Strang and Fix [8] have discussed the error due to the change in

domain for the equation —J^ + ^=/*with the Neumann condition, in which

there is no problem on the solvability of approximate equations. With

regards to the Dirichlet problem, Ciarlet and Raviart [4], Nitsche [3], and

Strang and Verger [7] have investigated the effects of approximate bound-

ary conditions. Numerical integrations, which may produce errors of dif-

ferent type, are also taken into account in [4]. Aubin [10] has discussed

external approximations from the theoretical standpoint. The lumping

operator in this paper may also be considered as one of them.

In § 2, we introduce the problem. In § 3, we obtain general error

estimates for approximate solutions with a lumping operator in an approx-

imate domain. In § 4, after the isoparametric finite element procedure

and the relevant lumping operator are described in detail, the convergence

orders are obtained in terms of the maximum side-length of the triangles.

Although the isoparametric finite elements we treat here are of Lagrang-

ean type only, it may be clear that we can extend the results to the

case of elements of Hermitian type. In the last section, we show some

examples. For the results of the numerical experiments of these exam-

ples, readers are referred to [12].

§ 20 Preliminaries

The problem we consider is

-Au=f in fl,

du-— = Q on r,
dn

where S is a bounded domain in Rz and F is its boundary. We assume

that F is sufficiently smooth and that it is expressed as

(2-2) r
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In (2-1), A = dz/dxz + dz/dy2 and n refers to the outer normal to F.

Let //m(*£?) denote the usual Sobolev space with the norm given by

fJa

Here a = (o^, a'2) , and oCi and az are non-negative integers such that

rj\a\U

a =aL + a2 and D"//

H°GQ) is also denoted by L2(J2). Similarly, Hm(r) and L2(F) are de-

fined to be the Sobolev spaces defined on F. Here and later, c indicates

a generic numerical positive constant, independent of A, ^/, f and <7, which

may be different at different places. (/i is a parameter depending on a

subdivision of j?.)

An approximate domain Qh is obtained as a union of finite elements.

(Qh is not always a polygonal domain. For details, see § 4.) Let {Pi}^

be all the nodal points in Qh. Let S(Sh) be a subspace of H1 (Sh)

spanned by {(pi(x, y)}?=i such that

(2-3) ^.
(2-4) 0<(P,)=ff« for iJ = I,...,

and

(2-5) Ef^^-1 in ft.

Let T(ft) be a subspace of L2(ft) spanned by

such that

(2-6)

and

(2-7) 2fti0<^l almost everywhere in ft.

We define two linear mappings P and Q from C(ft) into 5 (ft) and

T(ft), respectively,

P: C(ft) ->5(ft) such that

(2-8) JP* = SfJi«(P<)&,

Q: C(ft) ->T(ft) such that
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(2-9) QK = 2f-'i«(Q«)?«.

where {Qi}fji Is a subset of {P^f^. Q is called a lumping operator

associated with P.

Remark 2.1. For 0f? the condition as (2-4) is not required.

Remark 2,2. If we take 0z- = 0, and Q* = Pf (x = l, • • • , N2 = N1), then

Remark 2.3. P2 = P and QP = Q.

Remark 2 A. We assume that 7"^ (the boundary of J2A) approximates

r so naturally that the following conditions are satisfied:

i) There exists a bounded domain S such that J2CJ2 and QhC.S for

all //,

ii) for any /e £T OS*) , there exists a f^Hl(S) such that

(2-10) ll/lka^ll/lk** for x=0, l ,

and

iii) for any /e -?/1 (flA) , it holds that

These conditions may be satisfied when Q is approximated by a polygon

iflft whose vertices are all on 7"1, or when isoparametric finite element

procedures are used.

We use the following notations throughout this paper:

(./>)= (f-vdxdy for /,
Js

^7 (w, z;) = (du/dx, dv/dx) -f- (du/dy, dv/dy) for H, v e H1

'V^ for

and

and we define (f,v)h, ah(u,v) and [g, v]A by replacing J2 and 71 with

Qh and ^ in ( f , v ) 9 a(ji,v) and [(/, v], respectively.

§ 3. General Error Estimates for Approximate Solutions

In order that a solution of (2-1) exists, the condition on f and g,
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(3-1) (/;i) + [g , l j=0 ,

is required. Conversely, if / and g satisfy (3-1) and have appropriate

smoothness, a solution exists in Hm(@) uniquely under the condition

(3-2) («, 1 ) ^ = 0 ,

for some m. Let &EE JjP7l(.fi) be a smooth extension of u such that

(3-3) NU ÎNU^

and fii be u — k^ where

(3-4) k1=(H9l)

We give two functions /x&L2(fi f t) and f/^ezZ/C/^), which may approxi-

mate ./ and (/ in some sense. (An example of fA and {/^ will be given

later in Theorem 4.1.) Let /i be fA — kz, where

(3-5) ^

The finite element solution of (2-1) and (3-2) is defined to be the

function we5(«G/0 such that

(3-6) **(M) = C/

and

(3-7)

Theorem 3. 1. We assume that Fh is a natural approximation oj

F in the sense of Remark 2.4. Further, -we assume (2-3), (2-4) and

(2-5) for S(Qh}, and (2-6) and (2-7) for T(Sh). Then, ihe system

(3-6) and (3-7) has a unique solution u in S($fl)7 and

(3-8) llfc-alka

V n-5*-- ^ / i iu>-»ft I

fifrz/t <U

ivhere nh refers to ihe outer normal to Fh,

For the proof of Theorem 3.1, the following lemma is used.
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Lemma 3. 1« Let £($) be a subspace of H1^) such that

E(J2) - {u^Hl(Q} ; (u, 1) -0}.

Then, {a(u,u)}1/2 is equivalent to \\u\\liS in

Proof. It is sufficient to show

(3-9) \\*l. a^c\u\ A for

where | u\ A = {a (u, u) } 1/2. Let k be any constant. It holds that

(u,u} = (u,u-k)^\\u\\0tS\\u-k\\Q,s for

Then we have

Here, the last inequality follows from the fact that u\A is equivalent to

the usual norm of the quotient space Jf1(J2)/P0, where P0 is the set of

all the constant functions. (See [11].)

Proof of Theorem 3,1. (3-6) forms A/j linear equations,

(3-10) ah(B,$i) = (f1,Q$t)h+[gA,$t']h for * = 1, • • • , A T 1 .

Summing up these jVi equations, we obtain a trivial relation

(3-11) ah(U, 1) = (/lf 1),+ IQA, 1]A = 0

from (2-5), (2-7) and (3-5). Therefore, the system (3-6) and (3-7)

is not overdetermined. Suppose that there exists a nontrivial solution

u for fA = gA = Q. Then,

(3-12) ah(u,U)=0 and (0,1)A = 0.

These conclude ^^0 by Lemma 3.1, which is a contradiction. This shows

that the system (3-6) and (3-7) is solvable for any data/4 and QA and

that it has a unique solution in

Let us prove (3-8). First,

(3-13) P-»k^

By Lemma 3.1, we have

(3-14) ||fl-«i|I
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= ah(u — u, u — 'u)

= ah(u — u, Pu — u) + ah(u — u, u — Pli).

Each term of the right-hand side is estimated as follows:

(3-15) 1st lerm|<||0-a||1|fl/fc \\Pu-~u\^tl ,

(3-16) |2nd term| = | ( / 1 ,Q(«- JPa)) f c+L^,a-PaJA

-(-Au,ti-Pn)h-\^-,u-l\ ^fttL

(ja, (I-Q) (u-

dU

Combining (3- 13) ̂ ^(3- 16) and the trivial inequality

(3-17) ll«

we obtain (3-8). This completes the proof.

Let us estimate \\u — w||o.0A, using Nitsche's trick. Let e be u — u

be a smooth extension of e such that

^ Q . I Q ^ j ll^ll ~<^r\\f>\\ for 7—0 1y O JL Oy ^ t, J? —L/ t J j j j . J-U1 i — \J^ J- 5

and e{ be e — ks, where

Let wG/jP(J2) be the unique solution of

— AW — CI in J2,

£/?£>
(3-20)

dn
- = 0 on

and w^Hz(Q} be a smooth extension of ze; such that

(3-21) IH
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Theorem 3* 2* In the same assumptions of Theorem 3. 1, the

following estimate is obLained,

(3-22) lu-ulk^

x
o,r f t

dn
dnh

 ?

here Ji = ls-$We\\Vw\dxdy-}-la-$\Ve\\Vw\dxdy and J2
=:

Proof, From (3-20) and (3-21), \ve obtain

(3-23) l|w||,iJBfc^||^||o.i,

and

(3-24) lki||!ifl=(^i,

^, w — Pw} -*-aA(ej, Fit;) -f

Each term of the right-hand side is estimated as follows:

(3-25) 1st term|<W l f f iJ|w-Pw;||i f f iA ,

(3 • 26) 1 2nd term | =--= I (/!,

Q)«0*l

dnh
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and

(3-27) | 3rd term + 4th term <Ji .

Combining (3-23)^(3-27) and the inequality

(3-28) lkl[o.*A^ll*l|o

we obtain (3-22). This completes the proof.

§ 4. Isoparametric Finite Elements and

Relevant. Lumping Operators

We shall illustrate the isoparametric finite element procedure. Let T0

be a closed fundamental triangle with vertices Aj(0, 1), A2(0, 0) and A8(l, 0)

in (f, if) -plane. In T*0, there exist k fundamental nodal points, Aj, i

= 1, • • • , & , including the three vertices. Let {</>*(£, ??)}*_i be a set of real

functions defined in TQ such that

i) <^eC(T0) H HI(TQ°}> where T0° is an interior of T0,

ii) </>£ (Ay) — dij for i,j = l, • • • , & ,

iii) Ef-ifr^l ,

iv) there exist two sets of real numbers {of*} jLi and {/9j}jLi such that

g and Eti&^W ,

v) $i = Q on an}r side which does not contain A^, and

vi) the set {(Af, ^0 5 A< is on the side of T0} is symmetric with

respect to the baryccnler of T0, i.e., if At= (h\ J,2\ As
l) r, ̂ i(A)

— ^<((^i, ^2, ^s) r) by the barycentric coordinate expression and AilA2*

•A3
l = 0, then (SA1, ^(S~JA)) coincides with some nodal point and

its corresponding function, where S is any 3X3 permutation matrix.

We triangulate j? to obtain the set of closed triangles {^}fji and the

set of vertices {Pi} f_°i such that

ii) AI P, Aj is empty or equal to a common completely overlapping side,

for any i=^j*

iii) inf {minimum angle of AI} ̂ >c,
i

and
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iv) all vertices of the polygon U&4 are on F.

With each triangulation, h is associated as follows:

7i = max {maximum side-length of At} .
i

{ ^ t } f j i consists of two types of triangles, i.e., interior triangles and bound-

ary triangles. An interior triangle has at most one vertex on F and a

boundary triangle has just two vertices on F. We add required nodal

points {Pi}f=No+i in J2 so that there exist k nodal points {B/}f=1 in a

neighbourhood of each triangle J,- satisfying the following four conditions.

0 {B/Kti is a subset of {Pt}^.

ii) B/, Bg"7 and Eg7 are vertices of J/.

iii) For the interior triangle, B/ =B/ for / = 4, --9k, where B/ is a

point which has the same bary centric coordinates as A£.

iv) For the boundary triangle, B/ and ~B/ are on F. (B2
J is in $.)

B/ = B/ for all A^ lying on AiA2 and A2A3. For each A^ on

A8 A!, Bi"7 is taken on F near the point C/, which is on F and

satisfies

where B/C/ is the length from B/ to C/ along F. Each B/

of the other nodal points is taken at the position which B/ occupies

after adding an appropriate small shift to B/. (This shift is chosen

so that (4-1) may hold.)

With each J/, the mapping Fj from T0 into R2 are associated as follows:

F^Sf.A'fc.

Let {Kj}^^ be the set of finite elements, where

and Sh be an approximate domain of .0 such that

£A = an interior of \J*ZiKj .

Remark 4.1. For interior elements, it is clear that

Fy = B/7? + B/(l-?-??)H-B/? and K, = A,.

Therefore, the Jacobians of Fj for interior elements are constant.

Let S^Sh) be a A^ dimensional subspace of Hl{^h} spanned by
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{fc.ynEli. Here

tfVS^Pf.B/^CF,-1) in KJ9

where <?(?*, B/) =1 if P£ = B/ and =0 otherwise. It should be noted

that $t satisfies the conditions (2-3), (2-4) and (2-5). Let P be an

interpolating operator from C(Qh) into S(fi^) defined by (2-8). As the

boundary is smooth, there exists a one to one correspondence V from F

onto rh such that P(*) -v(P(0) is normal to T for P(f) = (X(*),

eF. Let (5(0. e(0) be the components of the vector y(P(») —

and A(£) be its length.

Then, we say that an isoparametric finite element procedure is of

order a. if the following four conditions are satisfied:

i) For any f^Ha+l(Q} nC(fi) and i=0, 1,

ii) For any /eHa(J2)

(4-2) || Ci-

rri) For 1 = 0, 1,

(4-3)

iv) For any

(4-4)

Next, we define the lumping operator Q. Let {0i(f, "^)}^=i be a set

of real measurable functions defined in T0 such that

ii) Xjf=J0i^l almost everywhere in T0

and

iii) the set {A$; A$ /5 o« ^/z^ 5/^ of T0 and </) ̂ 0} is symmetric with

respect to the bary center.

Renumbering the nodal points which belong to

{Pt;
3B/ such that B/ = Pj and 0 t^0, / = !, • • • , M},

we obtain {Qi}?=i- Let T*(J?ft) be a subspace of Z/(J2ft) spanned by

f-'i, where
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(4-5) ^Sf-iflCQfcB.OfoCF,-') in X, .

satisfies the condition (2-6) and (2-7). Let Q be a linear oper-

ator from C(@h*) into T(^) defined by (2-9). We call Q a lumping

operator of type (/?, 7) associated with P5 if the following two conditions

are satisfied:

i) For any /<

(4-6) ||(/.

are satisfied for z = l if /? —0 and i = I,2 if

ii) There exists a continuous linear operator R0 from C(T0) into

C(T0) such that,

a) for u, ^eC(T0)?

\vhere P,u = 2JL,« (A<)& and

b) for any /e H* " (8)

(4-8) IK/

"where R is a linear mapping from C(,8/0 into Z/2(J2/i) such that

(4 • 9) U«= (£o«(F,) ) (F,-1) in ^ ,

and

c) there exists a continuous function Hj (f , ^) for each boundary

element Kj such that

(4-10) ^(f.i?)!^^6

and

(4-11) ((Jj(£,7/)-Hj(£,y»R0v, (P0-Qo)«)r0=0 for

where Jj(s,ff) is the Jacobian of F,.

Theorem 4.10 In (3-6) a:;zJ (3-7), ze;̂  use the isoparametric

finite element procedure of order (%Q>T) and the lumping operator

of type (& r) 0?;>0). Assuming f<=C(Q) , g^C(r) and (3-1), we

take fA — Pf and gA — Pg* Then (3-6) and (3-7) 7wzs a unique solution

and the folio-wing estimates hold:

(4-12) ||fl-a||1.fli^c{A"(||^^fl + ||«||4.
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and

!NI/s+3,fl + Ar+s/2IMk*}

(4-13)

if /3>1,

'where u is a smooth extension over Q of the smooth solution n of

(2-1).

Remark 4.2. From the condition v) of </^, Pg is well-defined on 7\.

Remark 4.3. If Q = P, Q is of type (a, oo). This is shown by

taking RQ — PQ and Hj=Q. Then, (4-12) and (4-13) are reduced to

(4-12')

and

(4-13')

Proof of Theorem 4.1. We can estimate each term of the right-

hand side of (3-8) as follows:

(4-14)

(4-15)

(4-16)

(4-17)

(4-18)

(4-19) |(J», (J-Q)(fi-.

and

dn(4-20)

(4-12) follows from these inequalities. (4-15) and (4-17) are direct

consequences of (4-1) and (4-2). (4-14) and (4-18) are proved easily.
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For (4-16), it holds that

(4-21) *2={(/i + Jfc,l)*- f fdxdy- { Audxdy
\ Ja-sh Jah-s

The first three terms of the right-hand side of (4-21) are bounded by

cha\\2i\\a+2i cha+1\\u\\z and cha+1\\u\\s. To estimate the last two terms we use

the functions 5(0 and s(*). From (2-2), it holds that

5(0 ==*(*) y(0 and e(0 - -/l(0^(0.

We introduce v(x,y) which is defined in Q as follows: In a neighbour-

hood of r,

(4 - 22) v Cr, y) = |* (*, y) y (0 - ^ (x, y) X(0 ,
9 :̂ o1^

where (x — X(t),y—Y(t}) is the normal to F, and t;(x, 3') is extended

smoothly over Si. It is easy to see that v(x,y) is equal to Q on F.

Now we have

(4-23)

t; ( v (P (o ) ) { c+c + ) - 1} dt

Using the following inequalities,

and

J ,y+e ) - — (X, Y)\Y

— (x-i- 5, y + s) - -—(x, i
dy ay

we estimate each term of the right-hand side of (4-23) by cha\\u\\a+2,

cha+1\\u\\i and ch"+1\\ul. For (4-19),
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(4-24) (&, (I-Q)(u-Pu)-)h=((I-R)M, (J-Q) (fi-P»))»

Each term of (4-24) is estimated as follows:

(4-25) [1st

and

(4-26) (2nd term| = f RAu'(P-Q)(u-Pu)dxdy
jKj

R,AT,- (P, - Q.) (fi - PS) ,7, (?,

f R«AT< • (A - Q.) (/? - P«) H,- (f,
Jr,

>< & f f K-Po - Q.) (fi - Par) l2^- (f ,
I JTQ

where £]* means the summation over all the boundary elements. Here

we have used

(4-19) follows from (4-24), (4-25) and (4-26). For (4-20), with

(4-1) and v(x, v) of (4-22), we obtain

(4-27) v - da |

Let us prove (4-13). This is concluded from (3-22) with (4-12),

(4-20) and the following estimates:

(4-28) !I

(4-29) l l
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(4-30) i

(4-32) (Jfc, (P-Q)fu)h\/\\w\\2,ah

U if /? = <

|4} if

(4-33) k»--7^
L dii*

(4-34)

(4-35)

and

(4-36)

(4-28), (4-29), (4-31) and (4-34)— (4-36) are shown easily. (4-32)

is proved by the same way as (4-19) in the case /9 = 0. In /9^1, using

the inequality

we obtain (4-32). For (4-33), it holds that

(4-37)

-h {(~J^, w

The second and the third terms are bounded by cha + l\\2i\mw\\l>nfi and

cha+1§u\\2\\w\\2,8h, respectively. The first term is divided into

(4-38) [(P-/)T',w] fc-r-{[^w] fc-[i; fze;]}.

The second term of (4-38) is bounded by cha + l\\2t\\^\!w\\z,s2h similarly in

(4-23). For the first term of (4-38), using (4-4), we obtain

(4-39) |[(P-I)^^]
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From these estimates follows (4 • 33) . Using the same argument as

(4-39) to estimate the first term of the right-hancl side of (4-23), we

obtain (4-30). This completes the proof.

§ SB Examples

Now let us consider some examples of P and Q.

Example 5. 1. Let £ = 3, and {</>,-} ]=] he taken as follows:

and

These are the usual piecewise linear bases. (4- l )~(4-4) are satisfied

for CK = 1. Then, three kinds of O may be considered. The first {0*}5=-i

is as follows:

0i = l in Si and =0 otherwise,

0"2 = 1 in S2 and =0 otherwise,

and

05 = 1 in Sz and =0 otherwise ,

where S1 is the quadrilateral with vertices A2, A4, G and AG, and S2 and

Ss are taken similarly. (See Fig. 5. 1.) The second case is:

0i=0\ =03 = — -
o

In these cases, O is of type (0, co) by taking

(5-1) JR0// = 2 f i<($.Ti)dsdii.
JT0

In fact, as Jj(j;,ff) is constant for each j and

(5-2) (1, <fr-0,)7-0-=0 for /-1,2, 3,

we may take //;(?, 97) =0. Therefore, we obtain

(5-3) iff-sii^^oc/i) and ||i?-ar||0.fl.=0(/i!).

The third case is:
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0f = $« for z = l,2,3.

Then (5-3) is valid from (4-12') and (4-13').

G: barycentre

As As

Fig. 5. 1. Fundamental Triangle. Fig. 5. 2. Curved Element.

Example 5« 2e Let k = 6. Let A4, A5 and A6 be taken at the mid-

points of AiA2, A2A3 and A3A1? respectively. {^}J=1 is as follows:

and

These are the usual piecewise quadratic bases. B6
3 is taken on F in such

a way that BQ
JB/ is perpendicular to B/Bf. Then, (4-1)^(4-4) are

satisfied for a = 2. (See [6] for (4-1) and (4-2).) The Jacobian of

FJ for the boundary element Kj is

(5 • 4)

where

^o = (x* — x2) (y i - 3>2) — (^i ~
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and (jTj, yf) is the coordinates of B/ for /"I, • • • , 6 . Four kinds of Q

are considered. In the first case {0/l/Vi is as follows:

{jjl— 0? — 0a — 0 ,

04 = 1 in Sj and ~0 otherwise,

03 = 1 in *S5 and ==0 otherwise,

and

06= r l in 56 and =0 otherwise,

where Si is the triangle with vertices A], A2 and G, and S5 and S6 are

l.'iken similarly. In the second case,

_ _ _ _ _ _ 1
01 = 0, = 0S = 0 and 04 = 05 = 06=:

o

In these cases, taking RQ of (5-1) and Hj = c^-\-cz'y/ from (5-4) for the

boundary element, we find O to he of type (0,0). Therefore, we obtain

(5-5) j|/?-?r|U,,=0(A2) and

Tn the third case,

_ 2 3

T 3 4
0«. = 7r-—5 5

and

_ .

Taking J?0 equal to P0 of Example 5.1, and Hj being the same as the
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first and the second cases, we find Q to be of type (1, 0). This is shown

by (5-2) and

(5-6) (f,&-0,)r. = 0 and 07,&-00rD = 0 for z = l, -,6.

Therefore, we obtain

(5-7) \\u~u\\,,Sh = 0(h2} and ||0-f?||0,iu

In the fourth case,

<pi = $i for z = l, • • • , 6.

From (4-12') and (4-137), we obtain (5-7).
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