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A number of generalizations of the well-known Banach contraction
theorem are obtained in various directions. However one of them, stated
in [5], shows that the Banach contraction theorem still holds for a class
of non-metric spaces. This suggests that the notion of metric may not
be essential in the Banach contraction theorem and some of its generali-
zations.

The main purpose of this paper is to show that the Banach contraction
theorem and its generalizations due to Diaz and Margolis [1], Luxemburg
[7], [8]., Maia [9], and the author [5] can be easily derived from a
simple fixed point theorem in spaces of type L of Fréchet, which we
shall call separated L-spaces. Similar results in non-separated L-spaces
will be also stated Moreover as an application to linear spaces, we

shall derive a generalization of a theorem of Dotson [2].

1. Let o denote the set of all nonnegative integers. A pair (X, —)
of a set X and a subset — of the set X*X X is called an L-space? f
the following two conditions are satisfied:

1) If z,=xz&X for all n€w, then ({x,;}nca, ) E —.

(2) If (s,x)e—, then (¢ x)&— for every subsequence ¢ of s.
In what follows, we shall write s—x or x,—x instead of (s, x) & —,

and read s converges to x, where s = {Z,}rco. If $={Z,}neois a sequence
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in a set X, and if f is a mapping on X, then f(s) denotes the sequence
{f(xn) } newr

Let (X, —) be an L-space. It 's said to be separated if each se-
quence in X converges to at most one point of X. A mapping f of X
into an L-space (X', —’) is said to be continuous if s—x implies f(t)
—’f(x) for some subsequence t of s. By the product space of (X, —)
and (X', =»’), we mean the L-space (XXX’, —"”), where —” is defined
as follows: (x,, v,) =" (x,y) if and only if z,—x and y,—’y. Let d
be a nonnegative extended real valued function on XX X. The L-space
(X, —) is said to be d-complete if each sequence {x,},c., in X with
S od (X1, x,) <00 converges to at least one point of X. We need the

following

Lemma 1. Lez (x, —) be an L-space which is d-complete for
a nonnegative extended real valued function d on XX X. If (X, —)
is separated, then d(x,y) =d(y,x) =0 implies x=y for every x,y
in X.

Proof. Assume d(x,y) =d(y,x) =0, and define a,,=x and a,; =2y
for each n=w. Then since Y g od(@y.., a,) =0, we have a,—>a for some
ac=X. Hence the sequence {a,},c, converges to a and x at the same

time, and consequently we have a=x. Similarly a=y.

For each mapping f of a set X into itself, f° stands for the identity
mapping of X into itself.

2. We shall begin with the following simple observation, which

generalizes a known result in metric spaces.

Theorem 1. Let (X, =) be a separated L-space which is d-com-
plete for a nonnegative extended real valued function d on XX X, and f
be a continuous mapping of X into itself satisfying the jollowing
conditions for some a, 3 with 0<a<<1l and 0<f<oo.

Q) d(Ff(x), f(x)Zad(f(x), x) Sfor every xe&X with

d(f(x), =) <B.
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(2) d(f(a),a)<<B for some acX.
Then f has a fired poini, and the sequence {f"(a)},c. converges to
a fixed point of f.

Proof. As can readily be seen by induction, d(f""'(a),f"(a))<
a'd(f(a), a) for every n€w, and so we have D o d (/"' (a),f"(a)) <
co. Hence the d-completeness of the space implies that the sequence s=
{f"(a)}neco converges to some x&X. So, by the continuity of f, there
is a subsequence t of s such that f(¢) —f(x). But then since f(i) is a

subsequence of s, we have f(t) >x. Therefore we obtain f(x) =x.

As an immediale consequence of this theorem we have a fixed point

theorem of Banach s contraction type in L-spaces:

Theorem 2. Let (X, —) be a separated L-space which is d-com-
plete for a nonnegative extended real valued function d on XXX, and
f be a continuous mapping of X into itself satisfying the following
conditions for some «, 8 with 0=a<1l and 0<f<oo.

1) dUf@),f())Zad(x.y) for every x, yeX with d(x y)<p.

(2) d(f(a),a)<B for some acX.

Then f has a fixed point, and the sequence {f"(a)}n,c., converges Lo
a fixed point of f. If in addition
(L) d(x,y)<B for all fixed points x, yeX of f,

then f has a unique fixed point in X.

Proof. It will suffice to show that f has at most one fixed point
under the condition (L). Let x, y&X be fixed points of f. Then, since
d(x,y)<B, we have d(x,v) =d({f(x).f(¥))Zad(x,v), and so d(x.y)
=0. Siunce d(v,x)<f this implies d(v x)=0. Thereforc we have

x=y by Lemma 1.

Remark 1. Each theorem mentioned above asserts that under cer-
tain hypothesis (H), if d(f(a), a) <3 for some a= X, then / has a fixed
point in X, and the sequence {f"(a)},c. converges to a fixed point of f.

However we can derive easily from each of them a ‘‘theorem of alterna-



430 SHOURO KASAHARA

tive” (cf. [1]) of the form: for each x&X, the following alternative
holds under (H): either
1° d(f"(x),f"(x))=RB for all n€w, or
2° the sequence {f™*"(x)},c., converges to a fixed point of f for
some MmEw.
Moreover if the space (X, —) is of type L* (see Kuratowski [6]),
then 2° can be replaced by the assertion: the sequence {f"(x)}.c. con-

verges to a fixed point of f.

The following example shows that Theorem 2, and hence Theorem 1,

is no longer true if f is not continuous.

Example 1. Let X denote the closed interval [0,1], and — the
set of all (s,x) €X”X X such that s converges to x under the usual
topology on X. Furthermore, for each x, yeX, let

lx—yi, if x=£0 and y=0,
d(z,y) =
1, otherwise.
Then, it is easy to verify that (X, —) is a separated d-complete L-space.
Consider the mapping f defined by f(0) =1/2 and f(x) =x/2 for every
nonzero x in X. We have d(f(x),f(»))<(1/2)d(x,y) for every xz,

ye& X, but f is not continuous and has no fixed point.

3. The author introduced the notion of premetric spaces in [5].
However, in order to clarify the relation with generalized complete metric
space of Luxemburg [7], we state here an alternative equivalent defini-
tion. A pair (X,d) of a set X and a nonnegative extended real valued
function 4 on XXX is called a premetric space, and d a premetric on
X, if the following conditions are satisfied:

1) d(x,z)=0 for every x&X.

2) d(z,y)<d(x,z)+d(z,y) for every x, vy, z€X.

We say that® a sequence {x,},c, in a premetric space (X, d) converges to

. a . . a. .
rc X, and write x,—x, if d(x, x,) >0 as n—o0; obviously (X, —) is

® Some modifications are made for the sake of simplicity.
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an L-space. A premetric space (X, d) is said to be separated® if (X, %)

is separated. We say that®

a subset M of X is complete if each sequence
{Zn}new iIn M satisfying the following condition (C) converges to at least
one point of M.

(C) For any &0, there exists a £ ® such that d(x,, x,) <¢ for

every m, n€w with m=n=k.

If (X,d) is complete, then (X, i>) is d-complete, since x,€X and D neo
d(Zpsq, X,) <oo imply that, for each €>0, there exists a 2w such that
d(Zm, ) XD 00 d (x; ., x;) <6 whenever m>n—=k. Note that a gener-
alized complete metric space s a complete premetric space. We are now

in a position to state the following consequence of Theorem 2.

Corollary 1. ([5]) Let f be a mapping of a separated pre-
metric space (X, d) into itself. Suppose that the following conditions
are satisfied for some o with 0<a<]1.

1) d(f(x).f(y))Zad(x,y) for every x, ye X with d(x,y) <oo.

(2) There exists an acX such that d(f(a),a)<oo and M=

{reXld(x.a) <A —a)'d(f(a),a)} is complete.
Then f has a unique fixed point in M and the sequence {f"(a)}.co

converges to the fixed point.

. a
Proof. Let — denote the induced structure of — into M. Then

(M, —) is a d-complete L-space. Now for each x& M, we have

d(f(x),a) =d(f(x),f(a)) +d(f(a),a) =ad(x,a) +d(f(a),a)

<! a¢@,a.
1«

Hence the restriction of f into M is a mapping of M into itself, which
is continuous. Since a belongs to M, we see from Theorem 2 that is
suffices to prove the uniqueness of the fixed point of f. To this end
let =, y& M be fixed points of f. Then since d(x,a)<co, we have
d(z, f*(a))<a"d(x, a) for every nEw. Consequently the sequence
{f"(a)}nco converges to x. This shows that the sequence also converges

to y, and so we obtain x=y.
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Corollary 2. Let f be a continuous mapping of a complete sepa-
rated premetric space (X, d) into itself, and d' be a nonnegative ex-
tended real valued function on XXX. Suppose that the following
conditions are satisfied for some a, B with 0<a<1l and 0<B<oo.

Q) d(z,y)<d' (x,v) for every x, yeX.

2) dU(x),fM)Zad (x,y) for every x, yeX with d' (x,v)

<B.
Then for each x=X the following alternative holds: either

1° & (x), " (x)) =8 for all ncw, or

2° the sequence {f"(x)}.co converges to a fixed point of f.

If in particular d' (f(a),a)<B for some ac=X and if the condition
(L) is satisfied, then f has a unique fixed point.

Proof. Since (X, i>) is d-complete, it is d’-complete by the condition
(1). Hence the conclusion follows immediately from Theorem 2 and
Remark 1.

The fixed point theorem of Diaz and Margolis [1], and hence those
of Luxemburg [7], [8], are obtained from Corollary 2 by letting (X, d)
a generalized complete metric space and d =d, though Luxemburg’s are
direct consequences of Theorem 2. The fixed point theorem due to Maia
[9] is also a special case of Corollary 2. In fact, it suffices to take two

metrics d, d’ and §=oo.

4. We shall now proceed to establish some similar results {or non-

separated L-spaces.

Theorem 3. Let (X, —») be an L-space which is d-complete for
a continuous nonnegative extended real valued function d on the prod-
uct space XXX with the property that d(x,y) =0 implies x=y. If
f is a continuous mapping of X into itself satisfying the conditions
(1) and (2) of Theorem 1 for some &, B with 0= a<<1 and 0<f< oo,
then f has a fixed point, and the sequence {f"(a)}.c. converges to a
fixed point of f.
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Proof. By induction, we have
™ d(f*(a),f"(a)=a"d(f(a),a)

for every n€w. Hence the same argument employed in the proof of
Theorem 1 yields that the sequence s= {f"(a) } ,c, converges to some x € X,
and that f(&) =f(x) for some subsequence ¢ of s. Therefore the conti-
nuity of d implies that (f(f*™ (a)), /"™ (a)) —»d(f(x), x) for some sub-
sequence {f™™ (a)}neo of £. But (*) shows that (S(/™™ (a)), "™ (a))
—0. Hence d(f(x),x) =0, and thus we have f(x)==x.

It follows from this result that Theorem 2 also holds for such an
L-space.

As the following example shows, there is a mnon-separated L-space
(X, =) which is d-complete for a continuous nonnegative real valued
function d on the product space X X X with the property that d(x,y) =0

implies x=1x.

Example 2. Let X={0,1}, and let — denote the set of all ordered
pairs (s,0) and (¢,1), where s={x,},c. 1S a sequence in X satisfying
the following conditions (0) ot (1), and £={x,}.c, is a sequence in X
satisfying (1):

(0) There is an mEw such that x,=0 for all n=>m.

(1) There is an mEw such that x,=1 for all n=>m.

Then (X, —) is a non-separated L-space. The constant function d on
XXX with value 1 is obviously continuous and satisfies trivially the
condition that d(a,y) =0 implies x=y. It is clear that (X, —) is d-

complete.

It should be noted however that an L-space (X, —) is separated il
there is a continuous nonnegative extended real valued function d on
X X X satisfying the condition that d(zx,y) =0 if and only if x=y.

The following example shows that Theorem 3 is no longer true if

f is not continuous.

Example 3. Consider the L-space (X, —) and the mapping f of
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Example 1. (X, —) is d-complete for the usual metric 4 on X. it is
easy to see that f satisfies the inequality

ad(f*(x), f(x)) <4d(f(x). )

for every x& X, but it has no fixed point.

5. In [4], Hanspeter showed that the fixed point theorem of Ty-
chonoff remains valid in certain convergence linear spaces (limitierten
Vektorrdumen of Fischer [3]). On the other hand, Dotson [2] showed
that the postulate of convexity in the fixed point theorem of Schauder can
be relaxed for nonexpansive mappings. In this section, we shall prove,
as an application of Theorem 2, a fixed point theorem in convergence linear
spaces which generalizes the theorem of Dotson. An intermediate result
(Lemma 3 below) in our argument shows that Theorem 2 properly in-
volves the Banach contraction theorem.

The linear spaces we shall consider are defined on the field K of
real or complex numbers. The neighborhood filter of 0 € K for the usual
topology on K will be denoted by V. A subset B of convergence linear
space (E,7) is said to be bounded if the filter VB generated by the
filter base {VB|V&V} converges to 0 E (see Hanspeter [4]). A se-
quence s in E is said to converge to x<E if so does the filter @(s)
generated by s. We say that a subset X of E is sequentially compact
if each sequence in X has a subsequence converging to at least one point
of X. A mapping f of X into E is said to be sequentially continuous
'f for every x& X, each sequence in X converging to . has a subsequence
s such that f(s) converges to f(x). A subset X of a linear space is
said to be star-shaped provided that there is an a€X such that z€X
and 0<{A<1 imply da+ (1—2)x=X. The main result of this section is
the following

Theorem 4. Let X be a sequentially compact star-shaped subset
of a separated convergence linear space (E,t), and f a sequentially
continuous mapping of X inio itself. Suppose that there exists a non-
empty subset B of E satisfying the following conditions:

(1) The convex hull of B is bounded.
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(2) z—yceAB(A>0) implies f(x) —f(y) €E1B, for every x, ycX.
(38) For each x=X, there exists a real number u such that
f(x) —x=uB.
Then f has a fixed point.

Note that in this theorem, if (E,7) is a Hausdorff locally convex
space, then (1) can be replaced by the condition that B s bounded.
In order to prove the theorem, we need some lemmas. We say that
a subset X of a convergence linear space is sequentially complete { each
sequence s in X which generates a Cauchy filter @(s) converges to some

point of X.

Remark 2. If X is a sequentially compact subset of a convergence
linear space (FE,7), then X 's sequentially complete. In fact, let s be a
sequence in X such that @(s) s a Cauchy filter. Then s has a subse-
quence ¢ converging to some x&X. It is not hard to see that the filter
O (s) is finer than the filter ¥=0() +0(s) —@(s). Since O(s) is a Cau-
chy filter and @(¢) Etx, the filter ¥ belongs to tx, and hence so does
D(s).

Let X be a subset of a convergence linear space (E,7), and let
> denote the set of all (s, r) eX’*x X with O(s) erx. Then (X, —)
is an L-space. For a nonempty subset B of E, define a nonnegative

extended real valued function dz on EX E by
dg(x,y) =inf{A>0|x —y<=iB}

for every (x,y) € EXE. The restriction of dy into XXX will be also
denoted by ds.

Lemma 2. If X is a sequentially complete subset of a conver-
gence linear space (E,7), and if B is a nonempty subset of E with
bounded convex hull I'(B). then the L-space (X, —) is dg-complete.

Proof. Assume Y oo dp(Zpi1, o) <00, where s={Z,}n,co S a se-

quence in X, and let & be an arbitrary positive real number. Then there
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is a k= w such that > 72% ds(x, ., x;) <e for every m, nEw with A< m<n.
Let €,, €ns1, ***, €o_; be real numbers for which we have Y izh &<e
and dp(x;i1, x ) <g; for each i€ N={m,m+1, ---,n—1}. Then for each
i€ N, we can find a positive real number A;<(¢; such that x;., —a;€4;B.
Hence we have
=X E Ay B+ A B+ +2,.,B
C@untdn- 1+ +2-)[(B)C VI (B),

where V. denotes the set of all £ K with |§ <{e. This shows that
{x | n=k} — {z,|n=ky € V. I (B). Therefore the filter @(s) —@(s) is fin-
er than the filter VI'(B) €70, and so @(s) —@(s) =7t0. Hence @(s) is
a Cauchy filter. Thus @(s) €tx for some x=X.

Lemma 3. Let X be a sequentially complete subset of a sepa-
rated convergence lincar space (E,7), and f a sequentially continuous
mapping of X into itself. Suppose thai there exist a nonempty subset
B of E with bounded convex hull and an « with 0<a<1 satisfying
the following conditions:

1) z—y€iB(A>0) implies f(x) —f(y) EaldB, for every x, ye X.

(2) fla) —a€pBB for some ac=X and for some real number (.
Then f has a fixed point, and the sequence {f"(a)},c. converges to a
Sixed point of f.

Proof. Evidently one can assume >0 and $>0. Suppose that
adp(x,y) <dg(f(x),f(y)) for some x, y=X. Then we can choose an
e with adg(x, y) <<e<lds(f(x),f(v)). Hence x—y<1B for some 2 with
dg(x,y) <A<z/a. So it follows from (1) that f(x) —f(y) € adB, which
implies dz(f(x), f(¥)) Lad<e<dz(f(x),f(y)), a contradiction. This es-
tablishes that dz(f(x),f(y))Zadyz(x,y) for every x, y&X. Obviously
ds(f(a),a)<co. Thus Lemma 2 and Theorem 2 yield the conclusion.

Proof of Theorem 4. Since X is star-shaped, there is an a€X
such that x&X and 0<{A<{1 imply la+ (1—A)x&X. For each nonzero
nEw, define mapping f, of X into itself by

fr@=—at+(1-1) (@)
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for every x€X. Clearly each f, is sequentially continuous. If z, y&X,

/>0 and x—ye& 1B, then
Fo@ ~£0) = (1= 1) (f@ -r o)) e (1- L),
n 7

Since f(a) —a€ B {or some real number [, we have

fo@=a=(1-2) (f@ -a) = (1--)8B.

7

Therefore by Remark 2 and Lemma 3, each f, has a fixed point in X.
Hence the axiom of choice guarantees the existence of a sequence s
= {Z,} rew in X such that xy=a and f,(x,) =z, for every nonzero n € w.
Since X is sequentially compact, some subsequence ¢ of s converges to
a point x of X, and so by the sequential continuity of f, we can find a
subsequence {z,,}ic, of ¢ such that the sequence {f(x,,)}ico converges

to f(x). On the other hand, since

S @) =—— (2 ——a),

1— Wy

g

the sequence {f(x,,)}ic. converges to x. Thus we have f(x)=ux.
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