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On Some Generalizations of the
Banach Contraction Theorem
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A number of generalizations of the well-known Banach contraction

theorem are obtained in various directions. However one of them, stated

in [5], shows that the Banach contraction theorem still holds for a class

of non-metric spaces. This suggests that the notion of metric may not

be essential in the Banach contraction theorem and some of its generali-

zations.

The main purpose of this paper is to show that the Banach contraction

theorem and its generalizations due to Diaz and Margolis [1], Luxemburg

[7], [8], Maia [9], and the author [5] can be easily derived from a

simple fixed point theorem in spaces of type L of Frechet, which we

shall call separated L-spaces. Similar results in non-separated L-spaces

will be also stated Moreover as an application to linear spaces, we

shall derive a generalization of a theorem of Dotson [2].

1. Let to denote the set of all nonnegative integers. A pair (X, —>)

of a set X and a subset —> of the set X°XX is called an L-spacel} "f

the following two conditions are satisfied:

(1) If xn = x^X for all n^co, then ({xn}n^, x} e —>.

(2) If (s, x) G —>, then (t, x) e —» for every subsequence t of s.

In what follows, we shall write s—->x or xn—*x instead of (s, x) GE —>,

and read s converges to x, where s= {xn}nGu). If s= {xn}n& is a sequence
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(1) This is called a multivalued convergence space by Novak (e.g. see [10]).
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in a set X, and if f is a mapping on X, then f(s) denotes the sequence

{/OOK©..

Let (X, —>) be an L-space. It Is said to be separated if each se-

quence in X converges to at most one point of X. A mapping f of X

into an L-space (X', -V) is said to be continuous if s^x implies /(f)

—>' f (x ) for some subsequence t of s. By the product space of (X, —>)

and (X*, —» ' )» we mean the L-space (XxX', —>"), where —>" is defined

as follows: (.rn, yre) —>" (.r, y) if and only if xn—>x and yn—>'y. Let ^

be a noiinegative extended real valued function on XxX. The L-space

(X, —») is said to be d-complete if each sequence {j:n}neo, in X with

Zjn=o^(-^n+i» x^ < oo converges to at least one point of X. We need the

following

Lemma 1. Let (jc, —>) be an L-space which is d-complete for

a nonnegative extended real valued function d on XxX. If (X, —>)

is separated, then d(x, y) =d(y, x) =0 implies x=y for every x, y

in X.

Proof. Assume d(x,y) =d(y,x) =0, and define a2n = x and a2n+1= y

for each ?2EEo). Then since ^n=od(an+1, an} =0, we have an-^>a for some

a^X. Hence the sequence {<zn}n(Efl) converges to a and x at the same

time, and consequently we have a=x. Similarly a=y.

For each mapping f of a set X into itself, f° stands for the identity

mapping of X into itself.

28 We shall begin with the following simple observation, which

generalizes a known result in metric spaces.

Theorem I. Let (X, —>) be a separated L-space -which is d-com-

plete for a nonnegative extended real valued function d on XxX, and f

be a continuous mapping of X into itself satisfying the follovuing

conditions for some a, fi zvith 0<^a<Cl and 0</?<^oo.

(1) d(fz(x},f(x}}<Lad(f(x},x} for every x^X with
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(2) d(f(a) , a) </9 for some a<=X.

Then f has a fixed point, and the sequence {/n(<z)Ke«> converges to

a fixed point of /

Proof. As can readily be seen by induction, d(fn+] (a) ,

and(f(a),a) for every we a), and so we have X]«=o^(/n+1(^

oo. Hence the ^-completeness of the space implies that the sequence s =

{/"C^OKea, converges to some x£^X. So, by the continuity of / there

is a subsequence f of s such that /(O — »/(.r) . But then since f ( f ) is a

subsequence of s, we have /(£) — >x. Therefore we obtain f(x) =x.

As an immediate consequence of this theorem we have a fixed point

theorem of Banach s contraction type in L-spaces:

Theorem 2. Let (X, — >) be a separated 1^-space which is d-com-

plete for a nonnegative extended real valued function d on XxX, and

f be a continuous mapping of X into itself satisfying the follo^ving

conditions for some a, @ with 0<a<<l and 0<j3<[°o.

(1) d(f(x) ,f(y) ) <^ad(x, y) for every x,y^.X with d(x 3') </3.

(2) d(f(a),a)<$ for some a^X.

Then f has a fixed point, and the sequence {fn(a)}n&u) converges to

a fixed point of f. If in addition

(L) d(x,y}<$ for all fixed points x, y^X of f,

then f has a unique fixed point in X.

Proof. It will suffice to show that f has at most one fixed point

under the condition (L). Let JT, y^X be fixed points of/. Then, since

d(x,y)<0, we have d(x9 y) = d(f(x) ,/(y))^arf(jr, v), and so d(x.y)

= 0. Since d(y,x)<^$ this implies d(y x) =0. Therefore we have

x = v by Lemma 1 ,

Remark I. Each theorem mentioned above asserts that under cer-

tain hypothesis (H) , if d(f(a),aX/3 for some a<^X, then /has a fixed

point in X, and the sequence {fn(^}n^u) converges to a fixed point of/.

However we can derive easily from each of them a "theorem of alterna-
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tive" (cf. [1]) of the form: for each x^X, the following alternative

holds under (H) : either

1° d(fn+l(x)Jn(x}}^$ for all »eo), or

2° the sequence {fm+n(x)}nGa> converges to a fixed point of / for

some m^a).

Moreover if the space (X, ->) is of type L* (see Kuratowski [6] ) ,

then 2° can be replaced by the assertion: the sequence {fn(x)}nG(a con-

verges to a fixed point of f.

The following example shows that Theorem 2, and hence Theorem 1,

is no longer true if. f is not continuous.

Example 1. Let X denote the closed interval [0, 1], and — > the

set of all (s, x)^X*XX such that s converges to x under the usual

topology on X. Furthermore, for each x, y^X, let

\x — y\9 if x=^0 and

1 , otherwise.

Then, it is easy to verify that (Xy — >) is a separated ^-complete L-space.

Consider the mapping f defined by /(O) = 1/2 and f(x) =x/2 for every

nonzero x in X. We have d(J(x)9f (y)} <*(]./ 2) d(x, y) for every x,

, but f is not continuous and has no fixed point.

So The author introduced the notion of premetric spaces in [5].

However, in order to clarify the relation with generalized complete metric

space of Luxemburg [7], we state here an alternative equivalent defini-

tion. A pair (X, d) of a set X and a nonnegative extended real valued

function d on XxX is called a premetric space, and d a premetric on

X, if the following conditions are satisfied:

(1) d(x,x)=Q for every x^X.

(2) d(x, y)<^(X z) +d(z, y) for every x, y, z^X.

We say that(2) a sequence {-rn}ne» in a premetric space (X, d) converges to

x£iX, and write xn— >x, if d(x, xn) — >0 as n-^oo-7 obviously (X, — >) is

Some modifications are made for the sake of simplicity.
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an L-space. A premetric space (X, d) is said to be separated™ if (X, — »)

is separated. We say that(2) a subset M of X is complete if each sequence

{.̂ n} ne*> in M satisfying the following condition (C) converges to at least

one point of M.

(C) For any £>0, there exists a k^o) such that d(xm, xn) <^e for

every m, n^to with m^ri^>Jz.

If (J£, d) is complete, then (.X, — ») is ^-complete, since xn GE ̂  and Xj«=o

d(xri+1, Xn) <^oo imply that, for each £>0, there exists a &^o) such that

<a?(.rm, x^<^™~nd(xiv , X;)<£ whenever m^>n^k. Note that a gener-

alized complete metric space s a complete premetric space. We are now

in a position to state the following consequence of Theorem 2.

Corollary I. ([5]) Let f be a mapping of a separated pre-

metric space (X, d) into itself . Suppose that the following conditions

are satisfied for some cc 'with 0<^(%<C1.

(1) d(f(x}*f(y}}<La,d(x,y) for every x, y^X with d(x,y)<^oo.

(2) There exists an a^X such that d(f(a),a)<^oo and M—

{x£LX\d(x,a)<^(l-a)-ld(f(a),a)} is complete.

Then f has a unique fixed point in M and the sequence {fn(a)}n&

converges to the fixed point.

Proof. Let — > denote the induced structure of — > into M. Then

(A/, — >) is a ^-complete L-space. Now for each x^M, we have

) , /(a) ) + d(f(a) , a) ̂ ad(x9 a} + d(f(a) , a)

l-a

Hence the restriction of f into M is a mapping of M into itself, which

is continuous. Since a belongs to M, we see from Theorem 2 that is

suffices to prove the uniqueness of the fixed point of f. To this end

let x, y^M be fixed points of f. Then since d(x,a}<^oo, we have

d(x, fn(a})<^and(x, a} for every n&ol. Consequently the sequence

{/n(a)}n(Ea) converges to x. This shows that the sequence also converges

to y, and so we obtain x = y.
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Corollary 2a Let f be a continuous mapping of a complete sepa-

rated premetric space (X, d) into itself, and d' be a nonnegative ex-

tended real valued function on XxX. Suppose that the following

conditions are satisfied for some a, $ 'with 0<^a<l and 0</?<^oo.

(1) d(x, y) <^df (.r, y) for every x, y^X.

(2) d'(f(x)9f(y))^ad'(x,y) for every x, y^X with d'(x,y)

Then for each x^X the folio-wing alternative holds: either

1° rf'tf*+1 (*),/•(*)) ̂ £ /or all n^a, or

2° the sequence {/^C^OIne^ converges to a fixed point of f.

If in particular d' (/(a) , a) <</9 for some a^X and if the condition

(L) is satisfied, then f has a unique fixed point.

Proof. Since (.X, — >) is ^-complete, it is ^'-complete by the condition

(1). Hence the conclusion follows immediately from Theorem 2 and

Remark 1.

The fixed point theorem of Diaz and Margolis [1], and hence those

of Luxemburg [7], [8], are obtained from Corollary 2 by letting (X, d)

a generalized complete metric space and d' '=d, though Luxemburg's are

direct consequences of Theorem 2. The fixed point theorem due to Maia

[9] is also a special case of Corollary 2. In fact, it suffices to take two

metrics d, d' and jff = oo.

40 We shall now proceed to establish some similar results for non-

separated L-spaces.

Theorem 3. Let (X, — >) be an l^-space -which is d-complete for

a continuous nonnegative extended real valued function d on the prod-

uct space XxX with the property that d(x,y) =0 implies x = y. If

f is a continuous mapping of X into itself satisfying the conditions

(1) and (2) of Theorem 1 for some a, /? with 0<^a<l and 0</:?<^oo?

then f has a fixed point, and the sequence { f n ( a ) } n & ( a converges to a

fixed point of f.
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Proof. By induction, we have

for every n^.a). Hence the same argument employed in the proof of

Theorem 1 yields that the sequence s= {fn(a)}n&a> converges to some x^X,

and that f(t) -*f(x) for some subsequence t of s. Therefore the conti-

nuity of d implies that d(f(fn^(a)}Jn(m^(a)}-^d(f(x),x) for some sub-

sequence {/n(m)(a)}m€E, of t. But (*) shows that d(f(f*™ (a)) ,/n(w)(a))

— >0. Hence d(f(x),x)=Q9 and thus we have /(x) =x.

It follows from this result that Theorem 2 also holds for such an

L-space.

As the following example shows, there is a non-separated L-space

(X, — >) which is ^-complete for a continuous nonnegative real valued

function d on the product space XxXwith the property that d(x,y) = 0

implies x = y.

Example 2. Let J£= {0, 1}, and let — •> denote the set of all ordered

pairs (s, 0) and (£, 1), where s={j:n}neu) is a sequence in X satisfying

the following conditions (0) or (1), and t={xn}n^0) is a sequence in X

satisfying (1):

(0) There is an m£Ea) such that xn = 0 for all n^rn.

(1) There is an m^o) such that xn = I for all n^rn.

Then (X, — >) is a non-separated L-space. The constant function d on

XxX with value 1 is obviously continuous and satisfies trivially the

condition that d(x,y)=Q implies x = y. It is clear that (X, — *) is £/-

complete.

It should be noted however that an L-space (X, — >) is separated if

there is a continuous nonnegative extended real valued function d on

XxX satisfying the condition that d(x,y) =0 if and only if x=y.

The following example shows that Theorem 3 is no longer true if

/ is not continuous.

Example 3* Consider the L-space (X, — >) and the mapping f of
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Example 1. (X, — >) is J-complete for the usual metric d on X. it is

easy to see that f satisfies the inequality

for every x^X, but it has no fixed point.

5» In [4], Hanspeter showed that the fixed point theorem of Ty-

chonoff remains valid in certain convergence linear spaces (limitierten

Vektorrdumen of Fischer [3]). On the other hand, Dotson [2] showed

that the postulate of convexity in the fixed point theorem of Schauder can

be relaxed for nonexpansive mappings. In this section, we shall prove,

as an application of Theorem 2, a fixed point theorem in convergence lineal-

spaces which generalizes the theorem of Dotson. An intermediate result

(Lemma 3 below) in our argument shows that Theorem 2 properly in-

volves the Banach contraction theorem.

The linear spaces we shall consider are defined on the field K. of

real or complex numbers. The neighborhood filter of 0 EE K for the usual

topology on K will be denoted by V. A subset B of convergence linear

space (E, r) is said to be bounded if the filter V-B generated by the

filter base {VB\ V<= V} converges to OeE (see Hanspeter [4]). A se-

quence s in E is said to converge to x^E if so does the filter 0(s)

generated by s. We say that a subset X of E is sequentially compact

if each sequence in X has a subsequence converging to at least one point

of X, A mapping f of X into E is said to be sequentially continuous

"f for every x^X, each sequence in .X" converging to x has a subsequence

s such that /(s) converges to f(x) , A subset X of a linear space is

said to be star- shaped provided that there is an a^X such that x^X

and 0<A<1 imply /Uz-f (1 — fyx^X. The main result of this section is

the following

Theorem 4* Let X be a sequentially compact star-shaped subset

of a separated convergence linear space (E, r), and fa sequentially

continuous mapping of X into itself. Suppose that there exists a non-

empty subset B of E satisfying the folio-wing conditions:

(1) The convex hull of B is bounded.
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(2) .r-;y<E/LB(A>0) implies f(x) -f(y) e/LB, for every x,

(3) For each x^X, there exists a real number JUL such that

Then f has a fixed point.

Note that in this theorem, if (£, r) is a Hausdorff locally convex

space, then (1) can be replaced by the condition that B "s bounded.

In order to prove the theorem, we need some lemmas. We say that

a subset X of a convergence linear space is sequentially complete f each

sequence s in X which generates a Cauchy filter 0(s) converges to some

point of X.

Remark 2. If X is a sequentially compact subset of a convergence

linear space (E, r), then X 's sequentially complete. In fact, let s be a

sequence in X such that 0(s) s a Cauchy filter. Then s has a subse-

quence t converging to some x^X. It is not hard to see that the filter

$0) is finer than the filter W = 0(t) +0(s) — $(». Since <D(s) is a Cau-

chy filter and 0 (fc) G: rar, the filter W belongs to rx, and hence so does

000.

Let X be a subset of a convergence linear space (£, r) , and let

-A- denote the set of all (s, x~) ̂ X" XX with 0(s) erx. Then (X, ->)

is an L-space. For a nonempty subset B of E, define a nonnegative

extended real valued function dB on E X E by

for every (.r, y) 6E -E X -E. The restriction of dB into XxX will be also

denoted by <fs.

Lemma 2, If X is a sequentially complete subset of a conver-

gence linear space (E, r) , and if B is a nonempty subset of E 'with

bounded convex hull F(B)* then the L-space (X, — >) is dB-complete.

Proof. Assume XIn=o ds(xn+1, ^n)<oo, where s={xn}n& s a se-

quence in X, and let £ be an arbitrary positive real number. Then there



436 SHOURO KASAHARA

is a k^o) such that XI?=m dB(x(^l7 x^) <£ for every m, n^a) with k<^

Let £TO, £m+i, • • • , £n_! be real numbers for which we have Xj?=m £*<£

and dB(xi+1, x ) <£? for each z'e A^= {m, ra + l, • • • , ?z — 1}. Then for each

zGE-ZV, we can find a positive real number /lj<C£z such that xi+

Hence we have

c (^+^1 +
where Vs denotes the set of all feX" with | $ <£. This shows that

{.rj ;*:>&} - {.rj ;*;>&} 6E Y£r(J3). Therefore the filter 0(s) -(P(s) is fin-

er than the filter ¥/"(£) erO, and so (D(s) — 0(s) erO. Hence (J(s) is

a Cauchy filter. Thus @(s) <E.tx for some xeX.

Lemnia 3. Let X be a sequentially complete subset of a sepa-

rated convergence linear space (JE, r) , and f a sequentially continuous

mapping of X into itself. Suppose that there exist a nonempty subset

B of jE 'with bounded convex hull and an a -with 0<^a<l satisfying

the folio-wing conditions'.

(1) x — ;yelB(/l>0) implies f(x) — f(y) ^alB.for every x.y^X.

(2) f(a)—a^$Bfor some a ̂ X and for some real number 0.

Then f has a fixed point, and the sequence {fn(d)}n^ converges to a

fixed point of f.

Proof. Evidently one can assume <2>0 and /?>0. Suppose that

,y)<^dB(f(x),f(y)} for some x, y^X. Then we can choose an

£ with adB(x,yXe<ids(f(x),f(y)). Hence x — y^XB for some A with

dB(x,y)<^l<s/a. So it follows from (1) that f(x) -f(y) <E alB, which

implies ^s(/(j:),/(y))^^A<£<^5(/(j:),/(y)), a contradiction. This es-

tablishes that dB(f(x},f(y}}<jX,dB(xyy) for every x9y^.X. Obviously

dB(f(a), a) <C°°. Thus Lemma 2 and Theorem 2 yield the conclusion.

Proof of Theorem 4. Since X is star-shaped, there is an

such that x^X and 0<^<1 imply la-\- (1 — K)x^X. For each nonzero

), define mapping fn of X into itself by
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for every x€=X. Clearly each fn is sequentially continuous. If x, y

A>0 and x — y^lB, then

-/GO)

Since f(a)—a^0B for some real number /3, we have

/„(*)-*= (l-l
\ n

Therefore by Remark 2 and Lemma 3, each fn has a fixed point in X.

Hence the axiom of choice guarantees the existence of a sequence s

= {.z^lnea, in X such that xQ = a and fn(x^ =xn for every nonzero 7/EEco.

Since X is sequentially compact, some subsequence t of s converges to

a point x of X, and so by the sequential continuity of f, we can find a

subsequence {xnjiew of t such that the sequence {f(^cn^}i<=^ converges

to f(x) . On the other hand, since

/Y >k _ 1
J V^-n-J --

i-J

the sequence {/"(^nz)}feu) converges to x. Thus we have f(x} =x.

References

[ 1 ] Diaz, J. B. and Margolis, B., A fixed point theorem of the alternative, for contrac-
tions on a generalized complete metric space, Bull. Amer. Math. Soc., 74 (1968),
305-309.

[ 2 ] Dotson, Jr., W. G., Fixed point theorems for non-expansive mappings on star-shaped
subsets of Banach spaces, J. London Math. Soc. (2), 4 (1971/2), 408-410.

[3] Fischer, H. R., Limesraume, Math. Ann., 137 (1959), 269-303.
[ 4 ] Hanspeter, B., Der Satz von Hahn-Banach und Fixpunktsatze in limitierten Vektor-

raumen, Comrn. Math. Helv., 45 (1970), 393-404.
[5] Kasahara, S., A remark on the contraction principle, Proc. Japan Acad., 44 (1968),

21-26.
[6] Kuratowski, C., Topologie 7, Mono. Math., XX (1952), Polska Math. Nauk, Wars-

zawa.
[ 7 ] Luxemburg, W. A. J., On the convergence of successive approximations in the

theory of ordinary differential equations II, Indag. Math., 20 (1958), 540-546.
[ 8 ] Luxemburg, W. A. J., On the convergence of successive approximations in the

theory of ordinary differential equations III, Nieuw Arch. Wisk. (3) , 6 (1958) , 93-98.
[9] Maia, M. G., Un'osservazione sulle contrazioni metrich, Rend. Semi. Mat. Univ.

Padova, 40 (1968), 139-143.
[10] Novak, J., On some problems concerning multivalued convergences, Czechoslovak

Math. J., 14 (89), (1964), 548-561.




