On Asymptotic Behaviour of the Spectra of a One-Dimensional Hamiltonian with a Certain Random Coefficient

By

Shin'ichi KOTANI*

§ 0. Introduction

Let $\{Q(x)\}$ be a random process with stationary independent increments. We consider a second order differential operator L defined by

$$L\varphi = -\frac{d\frac{d\varphi}{dx} - \varphi dQ(x)}{dx}.$$

Let $N(\lambda, I)$ be the number of eigenvalues not exceeding λ for a certain boundary value problem of the operator L in the interval I. We define the spectral distribution function of L by

$$N(\lambda) = \lim_{|I| \to \infty} \frac{1}{|I|} N(\lambda, I),$$

if it exists, where |I| is the length of I.

The operator L has been used as a Schrödinger operator describing a motion of an electron in a one-dimensional random array of atoms (cf. M. Lax-J. C. Phillips [1], I. M. Lifšic [2]). We are concerned with the study of asymptotic properties of $N(\lambda)$ at the edges of the support. One interest is in making clear the influences caused by the randomness of potentials. One of them is the exponential decay of $N(\lambda)$ at the left edge, which was shown by many authors for various potentials (cf. H. L. Frisch-S. P. Lloyd [3], M. M. Benderskii-L. A. Pastur [4], [5], T. P. Eggarter [6]). L. A. Pastur [7] is a survey written mainly from mathematical points of view and gives us good informations about the problems arising

Communicated by K. Jtô, April 23, 1976.

^{*} Department of Mathematics, Kyoto University, Kyoto 606, Japan.

from random differential equations.

The author, suggested by H. L. Frisch-S. P. Lloyd [3], has succeeded in developing their results to obtain a sharper estimate of $N(\lambda)$ at the left end point. The purpose of the present paper is to give a complete proof of a formula obtained by H. L. Frisch-S. P. Lloyd [3] for potentials belonging to a slightly wider class and to obtain the estimate of $N(\lambda)$ by analyzing the formula on the pure imaginary axis. In the proof of the formula, the author was given valuable suggestions from M. Fukushima-S. Nakao [8]. Further the author would like to remark that S. Nakao [9] has obtained satisfactory results in several dimensional case by making use of the result of Donsker-Varadhan on "Wiener sausage".

Now, we explain the content of this paper. In § 1, as a preparation for the latter sections, we shall prove some properties relating to the zeros of eigenfunctions of a generalized differential operator

$$\frac{d\frac{d\varphi}{dx} - \varphi dQ(x)}{dM(x)}.$$

In § 2, we shall prove the ergodic property of the solution of a Ricatti equation with a random coefficient

$$dz(x) = (z(x)^2 + \lambda) dx - dQ(x),$$

where $\lambda > 0$ and Q is a process with stationary independent increments [Theorem 2.5]. With the help of this theorem, the Rice formula and the Frisch-Lloyd formula will be proved [Corollary 2.6 and 2.8]. In § 3, we restrict ourselves to the case when the process Q is increasing and express the spectra $N(\lambda)$ in a simpler form [Theorem 3.2]. In § 4, applying this form, we shall obtain the main result for the asymptotic behaviour of $N(\lambda)$ at the origin [Theorem 4.7]. In § 5, we shall give an expression of the spectral distribution $N(\lambda)$ of an equation

$$\frac{d}{dM}\frac{d\varphi}{dx} = -\lambda\varphi\;,$$

where M is an increasing process with stationary independent increments. In § 6, we shall give a comment on the spectral distribution of an equation defined on the whole line \mathbb{R}^1 .

The author wishes to express thanks to Prof. M. Fukushima for teaching him the problem and to Prof. S. Watanabe for his constant attention to the present work.

§ 1. On the Behaviour of Zeros of Eigenfunctions of Generalized Second Order Differential Equations

First of all, let us introduce necessary notations and terminologies. Let [a,b] be a finite closed interval. We denote $f \in V[a,b]$, if f consists of a function f(x) of bounded variation in [a,b] and two additional numbers $\{f(a-0), f(b+0)\}$. To any $f \in V[a,b]$, a complex measure df corresponds in such a way that

$$\begin{cases} df = the \ usual \ one \ in \ (a,b), \\ df(a) = f(a+0) - f(a-0), \ df(b) = f(b+0) - f(b-0). \end{cases}$$

We remark here that it is possible to define $g(x) = \int_{[a,x]} f(y) dQ(y) \in V[a,b]$ for any $Q \in V[a,b]$ and $f \in L^1(|dQ|,[a,b])$ if we put g(a-0) = 0 and $g(b+0) = \int_{[a,b]} f(y) dQ(y)$.

Let M and $Q \in V[a, b]$. Throughout this section we assume that dM defines a nonnegative measure and dQ defines a real one. We denote the right (left) derivative of a function f at x by $f^+(x)$ (resp. $f^-(x)$). Put

 $D[a,b] = \{f \in C[a,b]; \text{ there exists an } f^+ \in V[a,b] \text{ coinciding with } f^+(x) \text{ for every } x \in [a,b) \text{ and the measure } df^+ - fdQ \text{ is absolutely continuous with respect to } dM \text{ and its density belongs to } L^2(dM, [a,b]).\}$

$$D_{\alpha,\beta}[a, b] = \{ f \in D[a, b]; f(a) \cos \alpha + f^+(a-0) \sin \alpha = 0, f(b) \cos \beta + f^+(b+0) \sin \beta = 0. \}.$$

It is not difficult to see that any element of D[a, b] is absolutely continuous with respect to the Lebesgue measure in [a, b] and has the left derivative at each point in (a, b]. Let L denote an operator defined by

$$Lf = -\frac{df^+ - fdQ}{dM}$$

for $f \in D[a, b]$. Let $\varphi_{\alpha}(x, \lambda)$ and $\psi_{\beta}(x, \lambda)$ be solutions of the following

integral equations

$$(1\cdot 1) \quad \varphi_{\alpha}(x,\lambda) = -\sin\alpha + (x-a)\cos\alpha + \int_{[a,x]} (x-y)\varphi_{\alpha}(y,\lambda)dQ(y)$$

$$-\lambda \int_{[a,x]} (x-y)\varphi_{\alpha}(y,\lambda)dM(y),$$

$$\psi_{\beta}(x,\lambda) = -\sin\beta + (x-b)\cos\beta + \int_{[x,b]} (y-x)\psi_{\beta}(y,\lambda)dQ(y)$$

$$-\lambda \int_{[x,b]} (y-x)\psi_{\beta}(y,\lambda)dM(y).$$

It is easy to see that these functions may be determined as the unique solutions of the following equations respectively

$$\begin{cases} L\varphi = \lambda \varphi, & \varphi(a) = -\sin \alpha, & \varphi^+(a-0) = \cos \alpha, \\ L\psi = \lambda \psi, & \psi(b) = -\sin \beta, & \psi^+(b+0) = \cos \beta. \end{cases}$$

Here we note the well-known identity between those functions of D[a, b].

Lemma 1.1. Let $f, g \in D[a, b]$ and let $c, d \in [a, b]$. Then we have

$$\int_{[e_{\pm 0}, d_{\pm 0}]} \{ Lf(x) g(x) - f(x) Lg(x) \} dM(x)$$

$$= [f(x) g^{+}(x) - f^{+}(x) g(x)]_{e \pm 0}^{d \pm 0},$$

where
$$[c+0, d+0] = (c, d]$$
, $[c-0, d-0] = [c, d)$ and so on.

The following comparison relation between zeros of solutions will be very usefull.

Lemma 1.2. Let φ , ψ be nontrivial solutions of $L\varphi = \lambda \varphi$, $L\psi = \mu \psi$ in (x_1, x_2) . Suppose $\psi(x_1) = \psi(x_2) = 0$ and ψ has no zeros in (x_1, x_2) . If $\lambda \geq \mu$, then either φ has at least one zero in (x_1, x_2) or φ is a constant multiple of ψ in (x_1, x_2) . Here the latter case occurs only if $\lambda = \mu$ or dM = 0 in (x_1, x_2) .

Proof. In Lemma 1.1, substituting $c=x_1$, $d=x_2$, $f=\varphi$ and $g=\psi$, we have

$$(1\cdot 2) \quad (\lambda-\mu) \int_{(x_1,x_2)} \varphi(x) \psi(x) dM(x) = \varphi(x_2) \psi^+(x_2-0) - \varphi(x_1) \psi^+(x_1+0),$$

where we have used the assumption $\psi(x_1) = \psi(x_2) = 0$. Since ψ has no zeros in (x_1, x_2) , we may assume $\psi(x) > 0$ for any $x \in (x_1, x_2)$. Then we have

(1·3)
$$\psi^+(x_2-0)<0 \text{ and } \psi^+(x_1+0)>0.$$

For at any fixed point x, it is impossible that $\psi(x)$ and $\psi^{\pm}(x)$ vanish simultaneously.

Now we consider the two cases separately.

- 1°) Either $\lambda = \mu$ or dM = 0 in (x_1, x_2) . Then from $(1 \cdot 2)$ it follows that $\varphi(x_2)\psi^+(x_2-0) = \varphi(x_1)\psi^+(x_1+0)$. Noting $(1 \cdot 3)$, we see that either $\varphi(x_1) = \varphi(x_2) = 0$ or $\varphi(x_1)\varphi(x_2) < 0$ holds. Since under the condition 1°) φ and ψ satisfy the same equation, the first case implies that φ is a constant multiple of ψ . In the second case, from the continuity of φ we see that there exists at least one zero of φ .
- 2°) $\lambda > \mu$ and dM = 0 in (x_1, x_2) . Suppose φ has no zeros in (x_1, x_2) , hence assume $\varphi(x) > 0$ for any $x \in (x_1, x_2)$. Then from $(1 \cdot 2)$ we have

$$\varphi(x_2)\psi^+(x_2-0) > \varphi(x_1)\psi^+(x_1+0) \ge 0$$
,

which implies $\varphi(x_2) < 0$. This contradicts the assumption $\varphi(x) > 0$ in (x_1, x_2) . This proves the lemma.

Since $\varphi_{\alpha}(x,\lambda)$ is a solution of $L\varphi = \lambda \varphi$, the set of zeros of $\varphi_{\alpha}(x,\lambda)$ in [a,b] has no accumulating points. Let $\tau_n(\alpha,\lambda)$ be the *n*-th zero from the left end point a of [a,b], where $n=1,2,\cdots$. We denote the support of dM by F_M and put

$$(1\cdot 4) a_0 = \inf F_M, b_0 = \sup F_M.$$

Let $\varphi_{\alpha}(x)$ be $\varphi_{\alpha}(x,0)$ and let $\{x_1, \dots x_{n_0}\}$ be the set of zeros of $\varphi_{\alpha}(x)$ in $[a,a_0]$. Then it is obvious that every solution $\varphi_{\alpha}(x,\lambda)$ has the common zeros $\{x_1, x_2, \dots x_{n_0}\}$.

Proposition 1.3.

(1) If $\lambda > \mu$, then $\tau_n(\alpha, \lambda) \leq \tau_n(\alpha, \mu)$ for $n = 1, 2, \cdots$. Moreover $\tau_{n+n_0}(\alpha, \lambda) = \tau_{n+n_0}(\alpha, \mu)$ holds for some $n \geq 1$ if and only if there exists a sequence $\{a_k\}_{k=1}^n$ such that

$$\begin{cases} a_k = \tau_{k+n_0}(\alpha, \lambda) & \text{for } \mathbf{R}^1, \ k=1, 2, \dots n, \\ F_M \cap [a, a_n] \subset \{a_0, a_1, a_2, \dots a_n\}. \end{cases}$$

and theer exists a nontrivial solution φ_{α} of the equation

(1.5)
$$\begin{cases} d\varphi^{+} = \varphi dQ & in \quad [a, a_{n}] \\ \varphi(a)\cos\alpha + \varphi^{+}(a-0)\sin\alpha = 0 \\ \varphi(a_{k}) = 0 & for \quad k = 0, 1, 2, \dots n \end{cases}$$

(2) $\tau_n(\alpha, \lambda)$ is continuous in λ for every fixed α .

Proof. First we consider the case n=1. Let $\xi = \tau_{n_0+1}(\alpha, \lambda)$ and $\eta = \tau_{n_0+1}(\alpha, \mu)$. Suppose $\xi > \eta$. In Lemma 1.1, substituting c = a, $d = \eta$, $f(x) = \varphi_{\alpha}(x, \lambda)$ and $g(x) = \varphi_{\alpha}(x, \mu)$, we have

$$(1 \cdot 6) \quad (\lambda - \mu) \int_{\lceil a_{n}, \eta \rceil} \varphi_{\alpha}(x, \lambda) \varphi_{\alpha}(x, \mu) dM(x) = \varphi_{\alpha}(\eta, \lambda) \varphi_{\alpha}^{+}(\eta - 0, \mu),$$

here we have used the facts that $\varphi_{\alpha}(a,\lambda) = \varphi_{\alpha}(a,\mu) = -\sin\alpha$. $\varphi_{\alpha}^{+}(a-0,\lambda) = \varphi_{\alpha}^{+}(a-0,\mu) = \cos\alpha$, $\varphi_{\alpha}(\eta,\mu) = 0$ and dM = 0 in $[a,a_{0})$. Once we have obtained the identity $(1\cdot6)$, the situation becomes quite similar to the one of Lemma 1.2, so we stop going into details.

Next we consider the case n>1. It follows from Lemma 1.1 that $\tau_{n_0+n}(\alpha,\lambda) \leq \tau_{n_0+n}(\alpha,\mu)$. Suppose $\tau_{n_0+n}(\alpha,\lambda) = \tau_{n_0+n}(\alpha,\mu)$. Put $a_k = \tau_{n_0+k}(\alpha,\mu)$ for $k=1,2,\cdots n$. Unless $\varphi_{\alpha}(x,\lambda)$ is a constant multiple of $\varphi_{\alpha}(x,\mu)$ in (a_{n-1},a_n) , $\tau_{n_0+n}(\alpha,\lambda) < \tau_{n_0+n}(\alpha,\mu)$. Hence it is necessary that $\varphi_{\alpha}(x,\lambda)$ and $\varphi_{\alpha}(x,\mu)$ are lineary dependent in (a_{n-1},a_n) and dM=0 in (a_{n-1},a_n) . Consequently we have $\tau_{n_0+n-1}(\alpha,\lambda) = \tau_{n_0+n-1}(\alpha,\mu)$. Continuing this argument until n=1, we may prove (1).

Now let us prove (2). If $\alpha \equiv 0 \pmod{\pi}$, then $\tau_1(\alpha, \lambda) = a$ for every λ , hence the continuity is trivial. So we may suppose $\alpha \not\equiv 0 \pmod{\pi}$. First we consider the case when

$$a < \tau_1(\alpha, \lambda) < \tau_2(\alpha, \lambda) < \cdots < \tau_n(\alpha, \lambda) < b$$
.

For brevity we put $\varphi_{\lambda}(x) = \varphi_{\alpha}(x, \lambda)$ and $\tau_{k}(\lambda) = \tau_{k}(\alpha, \lambda)$. $\varphi_{\lambda}^{+}(x)$ is continuous at each point $\tau_{k}(\lambda)$. This is because we have

$$\varphi_{\lambda}^{+}(\tau_{k}(\lambda)) - \varphi_{\lambda}^{-}(\tau_{k}(\lambda)) = \varphi_{\lambda}(\tau_{k}(\lambda)) \left\{ dQ(\tau_{k}(\lambda)) - \lambda dM(\tau_{k}(\lambda)) \right\} = 0.$$

Therefore for any fixed sufficiently small $\varepsilon > 0$, φ_{λ} in $[\tau_k(\lambda) - \varepsilon, \tau_k(\lambda))$

and φ_{λ} in $(\tau_{k}(\lambda), \tau_{k}(\lambda) + \varepsilon]$ have different signs. Since $\varphi_{\mu}(x)$ converges to $\varphi_{\lambda}(x)$ uniformly in [a, b] as $\mu \to \lambda$, there exists $\delta > 0$ such that for any μ satisfying $|\mu - \lambda| < \delta$, $\varphi_{\mu}(x_{k}) \varphi_{\mu}(y_{k}) < 0$ holds for some $x_{k} \in [\tau_{k}(\lambda) - \varepsilon, \tau_{k}(\lambda))$ and $y_{k} \in (\tau_{k}(\lambda), \tau_{k}(\lambda) + \varepsilon]$. Hence φ_{μ} has at least one zero in $[\tau_{k}(\lambda) - \varepsilon, \tau_{k}(\lambda) + \varepsilon]$ for every μ , $|\mu - \lambda| < \delta$. Again from the continuity of $\varphi_{\lambda}^{+}(x)$ at $\tau_{k}(\lambda)$, we may assume that $\varphi_{\lambda}^{+}(x)$ does not vanish in $[\tau_{k}(\lambda) - \varepsilon, \tau_{k}(\lambda) + \varepsilon]$. On the other hand, it is easy to see that $\varphi_{\mu}^{+}(\varphi_{\mu}^{-})$ also converges uniformly to $\varphi_{\lambda}^{+}(\text{resp. }\varphi_{\lambda}^{-})$. Hence $\varphi_{\mu}^{\pm}(x)$ have the same sign as $\varphi_{\lambda}^{+}(x)$ for every $x \in [\tau_{k}(\lambda) - \varepsilon, \tau_{k}(\lambda) + \varepsilon]$ for $k = 1, 2, \dots n$. Hence $|\tau_{k}(\lambda) - \tau_{k}(\mu)| < \varepsilon$ for every μ such that $|\lambda - \mu| < \delta$.

In case $\tau_n(\lambda) = b$, we have only to extend the measures dQ and dM to a closed interval including [a,b] in which $\varphi_\alpha(x,\lambda)$ has more than n+1 zeros. Then the problem may be reduced to the above case. This completes the proof of (2).

Since $\varphi_{\alpha}(x,\lambda)$ and $\varphi_{\alpha}^{+}(x,\lambda)$ do not vanish simultaneously, we may define

$$z_{\alpha}(x) = -rac{arphi_{lpha}^{+}(x,\lambda)}{arphi_{lpha}(x,\lambda)}$$

as a function taking the values in $\mathbf{R}^{1\cup}\infty$.

Lemma 1.4. As far as $\varphi_{\alpha}(x,\lambda)$ dose not vanish, we have

(1)
$$\begin{cases} dz_{\alpha}(x) = z_{\alpha}(x)^{2}dx - dQ(x) + \lambda dM(x) \\ z_{\alpha}(a-0) = \cot \alpha \end{cases},$$

(2) $z_{\alpha}(x)$ is continuous at $\tau_{k}(\alpha, \lambda)$ and $z_{\alpha}(\tau_{k}(\alpha, \lambda) - 0) = +\infty, \quad z_{\alpha}(\tau_{k}(\alpha, \lambda) + 0) = -\infty.$

Proof. (1) may be proved by easy calculations. As for (2), we note that $\varphi_{\alpha}^{+}(x,\lambda)$ is continuous at the zeros of $\varphi_{\alpha}(x,\lambda)$, which was proved in the argument in Proposition 1.3. Hence $z_{\alpha}(x)$ is continuous at $\tau_{k}(\alpha,\lambda)$. The last equalities are obvious, so we omit the proof.

Proposition 1.5.

- (1) If $0 \leq \alpha < \beta < \pi$, then $\tau_n(\alpha, \lambda) < \tau_n(\beta, \lambda) < \tau_{n+1}(\alpha, \lambda)$.
- (2) $\tau_n(\alpha, \lambda)$ is continuous in $\alpha \in [0, \pi)$.
- (3) $\tau_n(\pi-0,\lambda) = \tau_{n+1}(0,\lambda) \text{ for } n=1,2,\cdots$

Proof. We restrict α and β to $[0,\pi)$ in the following argument and for brevity denote $\tau_n(\alpha) = \tau_n(\alpha,\lambda)$. First it should be noted that in any subinterval of [a,b], $\varphi_\alpha(x,\lambda)$ and $\varphi_\beta(x,\lambda)$ are linearly independent if $\alpha \neq \beta$. This is because every solution of $L\varphi = \lambda \varphi$ is uniquely determined by the values $\{\varphi(c), \varphi^{\pm}(c)\}$ at arbitrary fixed point $c \in [a,b]$. Hence from Lemma 1.2, there exists at least one zero of $\varphi_\alpha(x,\lambda)$ between two successive zeros of $\varphi_\beta(x,\lambda)$ and vice versa. Hence in order to prove (1) it is sufficient to verify $\tau_1(\alpha) < \tau_1(\beta)$. If $\alpha = 0$ and $0 < \beta < \pi$, then $0 = \tau_1(\alpha) < \tau_1(\beta)$, which proves (1). Suppose $0 < \alpha < \beta < \pi$ and put $\delta(x) = z_\alpha(x) - z_\beta(x)$, $\delta_0 = \cot \alpha - \cot \beta$. Then from (1) of Lemma 1.4 we have

$$\left\{ egin{aligned} d\delta\left(x
ight) &= \left\{z_{lpha}(x) + z_{eta}(x)
ight\}\delta\left(x
ight)dx \ \delta\left(a - 0
ight) &= \delta_{0}\,. \end{aligned}
ight.$$

Hence we see

(1.7)
$$\delta(x) = \delta_0 \exp\left\{ \int_a^x (z_\alpha(y) + z_\beta(y)) \, dy \right\},\,$$

as long as both $\varphi_{\alpha}(x,\lambda)$ and $\varphi_{\beta}(x,\lambda)$ do not vanish. Since $\delta_0 > 0$, we have by $(1\cdot7)$

$$(1\cdot 8) z_{\alpha}(x) > z_{\beta}(x).$$

Suppose $\tau_1(\alpha) > \tau_1(\beta)$. Then combining (2) of Lemma 1.4 and (1·8), we have

$$+\infty>z_{\alpha}(\tau_{1}(\beta)-0)>z_{\beta}(\tau_{1}(\beta)-0)=+\infty$$

which is a contradiction. Consequently, noting φ_{α} and φ_{β} have no common zeros, we see $\tau_1(\alpha) < \tau_1(\beta)$. This proves (1).

Let us fix $\alpha \in [0, \pi)$. Suppose $\tau_n(\alpha) < \tau_n(\beta)$ for some $\beta \in (0, \pi)$. Because $\varphi_\alpha(x, \lambda)$ may have as many zeros as we need by extending the measures dQ and dM appropriately, this assumption becomes no restriction. From (1), we have $\tau_n(\alpha + 0) \ge \tau_n(\alpha)$. Since $\varphi_\alpha(x, \lambda)$ is continuous in (x, α) , we have $\varphi_{\alpha}(\tau_n(\alpha+0), \lambda) = 0$. Suppose $\tau_n(\alpha+0) > \tau_n(\alpha)$. Then there exists only one zero of $\varphi_{\beta}(x, \lambda)$ in $(\tau_n(\alpha), \tau_n(\alpha+0))$, which is equal to $\tau_n(\beta)$. This contradicts the fact $\tau_n(\alpha+0) < \tau_n(\beta)$. Hence $\tau_n(\alpha+0) = \tau_n(\alpha)$. We may prove also $\tau_n(\alpha-0) = \tau_n(\alpha)$ for $\alpha > 0$. This proves the continuity of $\tau_n(\alpha)$.

In the inequality

$$\tau_n(\alpha) < \tau_n(\beta) < \tau_{n+1}(\alpha)$$
,

for $0 \le \alpha < \beta < \pi$, letting $\beta \to \pi$ and $\alpha = 0$, we have

$$\tau_n(\alpha) < \tau_n(\pi - 0) \leq \tau_{n+1}(0).$$

Since $\tau_n(\pi-0)$ is a zero of $\varphi_0(x,\lambda)$, we have necessarily $\tau_n(\pi-0) = \tau_{n+1}(0)$. This completes the proof.

Definition 1.6. The pair $(L, D_{\alpha,\beta}[a,b])$ is said to have the E_0 -property if F_N consists of finite elements and the equation

(1.9)
$$\begin{cases} d\varphi^{+} = \varphi dQ & in \quad [a, b] \\ \varphi(a)\cos\alpha + \varphi^{+}(a-0)\sin\alpha = 0 \\ \varphi(b)\cos\beta + \varphi^{+}(b+0)\sin\beta = 0 \\ \varphi(x) = 0 & for \ every \ x \in F_{M} \end{cases}$$

has a nontrivial solution.

Let $\Delta_{\alpha,\beta}(\lambda)$ be the Wronskian of $\varphi_{\alpha}(x,\lambda)$ and $\psi_{\beta}(x,\lambda)$, namely $\Delta_{\alpha,\beta}(\lambda) = \psi_{\beta}^{+}(a-0,\lambda)\sin\alpha + \psi_{\beta}(a,\lambda)\cos\alpha$ $= -\varphi_{\alpha}(b,\lambda)\cos\beta - \varphi_{\alpha}^{+}(b+0,\lambda)\sin\beta.$

Proposition 1.7. (L, $D_{\alpha,\beta}[a,b]$) has the E_0 -property if and only if $\Delta_{\alpha,\beta}=0$. Moreover this is equivalent to that $\varphi_{\alpha}(x,\lambda)=0$, a.e. dM in [a,b] and $\Delta_{\alpha,\beta}(\lambda)=0$ for some (or every) λ .

Proof. In Lemma 1.1, substituting $f(x) = \varphi_{\alpha}(x, \lambda)$, $g(x) = \varphi_{\alpha}(x, \mu)$, c = a and d = b, we have

$$-\varphi_{\alpha}(b,\mu)\varphi_{\alpha}^{+}(b+0,\lambda).$$

Suppose $\Delta_{\alpha,\beta}(\lambda) = 0$ identically. Then by the definition of $\Delta_{\alpha,\beta}$, we have

(1.11)
$$\varphi_{\alpha}(b,\lambda)\cos\beta + \varphi_{\alpha}^{+}(b+0,\lambda)\sin\beta = 0.$$

Combining $(1 \cdot 10)$ and $(1 \cdot 11)$, we have

$$\int_{[a,b]} \varphi_{\alpha}(x,\lambda) \varphi_{\alpha}(x,\mu) dM(x) = 0$$

for every λ , μ . Hence we see $\varphi_{\alpha}(x,\lambda)=0$, a.e. dM in [a,b] for every λ . In particular, putting $\varphi(x)=\varphi_{\alpha}(x,0)$, we see that φ satisfies $(1\cdot 9)$. Since φ is nontrivial, this is possible only when F_M has no accumulating points in [a,b]. Hence F_M should be a finite set.

Conversely assume (1.9) has a nontrivial solution φ . Then for any λ , we have

$$d\varphi^+ = \varphi dQ - \lambda \varphi dM.$$

Noting $\varphi(x)$ and $\varphi_{\alpha}(x, \lambda)$ satisfy the same boundary condition at a, we see that there exists a constant C depending on λ such that $\varphi_{\alpha}(x, \lambda) = C\varphi(x)$ holds for any $x \in [a, b]$. Then we have

$$d_{\alpha,\beta}(\lambda) = C(\varphi(b)\cos\beta + \varphi^+(b+0)\sin\beta)$$

= 0,

which completes the proof.

For simplicity, we denote

$$\varphi_0(x) = \varphi_\alpha(x,0), \quad \psi_0(x) = \psi_\beta(x,0).$$

Define

$$V(x, y) = \frac{1}{\Delta_{\alpha, \beta}(0)} \{ \varphi_0(x) \psi_0(y) - \varphi_0(y) \psi_0(x) \},$$

except for the case $\Delta_{\alpha,\beta}(0) \neq 0$.

Lemma 1.8. Suppose $\Delta_{\alpha,\beta}(0) \neq 0$. Then $\varphi_{\alpha}(x,\lambda)$ and $\psi_{\beta}(x,\lambda)$ satisfy the integral equations

$$(1\cdot 12) \qquad \begin{cases} \varphi_{\alpha}(x,\lambda) = \varphi_{0}(x) - \lambda \int_{[a,x)} V(x,y) \varphi_{\alpha}(y,\lambda) dM(y) \\ \\ \varphi_{\beta}(x,\lambda) = \varphi_{0}(x) + \lambda \int_{(x,b)} V(x,y) \psi_{\beta}(x,\lambda) dM(y). \end{cases}$$

Moreover $\varphi_{\alpha}(x, \lambda)$ and $\psi_{\beta}(x, \lambda)$ have the estimates

$$(1 \cdot 13) \qquad |\varphi_{\alpha}(x,\lambda)| \leq C \cosh(c(x-a)M_{+}(x)|\lambda|)^{1/2}$$
$$|\psi_{\beta}(x,\lambda)| \leq C \cosh(c(b-x)M_{-}(x)|\lambda|)^{1/2}$$

where $M_+(x) = \int_{[a,x)} dM(y)$, $M_-(x) = \int_{(x,b]} dM(y)$ and C is a constant.

Proof. (1·12) is easy to verify, so we omit the proof. Noting $\varDelta_{\alpha,\beta}(0)\,V(x,y) = \int_x^y \{\varphi_0(x)\,\psi_0^-(u) - \psi_0(x)\,\varphi_0^+(u)\}\,du\,,$

we have

$$|V(x,y)| \le C|x-y|$$

for every $x, y \in [a, b]$. Then referring to I. S. Kac-M. G. Krein [10], we may obtain the inequality $(1 \cdot 13)$.

Definition 1.9. The pair $(L, D_{\alpha,\beta}[a,b])$ is said to have the E_1 -property if F_M consists of finite elements and the equation

$$(1 \cdot 14) d\varphi^{+} = \varphi dQ in [a, b]$$

$$\begin{cases} \{\varphi(a)\cos\alpha + \varphi^{+}(a-0)\sin\alpha\} \ \{\varphi(b)\cos\beta + \varphi^{+}(b+0)\sin\beta\} = 0 \\ \{\varphi(a)\cos\alpha + \varphi^{+}(a-0)\sin\alpha\} + \{\varphi(b)\cos\beta + \varphi^{+}(b+0)\sin\beta\} \neq 0 \\ \varphi(x) = 0, \quad for \quad x \in F_{\mathsf{M}} \end{cases}$$

has a solution.

Proposition 1.10. The entire function $\Delta_{\alpha,\beta}$ has no zeros if and only if $(L, D_{\alpha,\beta}[a,b])$ has the E_1 -property. Moreover this is equivalent to that either $\varphi_{\alpha}(x,\lambda)$ or $\psi_{\beta}(x,\lambda)$ is equal to zero, a.e. dM in [a,b] for some (or every) λ and $\Delta_{\alpha,\beta}$ is nontrivial.

Proof. From (1·13), it follows that $\Delta_{\alpha,\beta}(\lambda) = -\varphi_{\alpha}(b,\lambda)\cos\beta$

 $\varphi_{\alpha}^{+}(b+0,\lambda)\sin\beta$ is an entire function of order at most 1/2. Hence according to the Hadamard factorization theorem, $\Delta_{\alpha,\beta}$ has no zeros if and only if $\Delta_{\alpha,\beta}$ is a nonzero constant δ . Without loss of generality, we may assume $\sin\beta\neq 0$. Then we have

$$\varphi_{\alpha}^{+}(b+0,\lambda) = -\delta \csc \beta - \varphi_{\alpha}(b,\lambda) \cot \beta$$
.

Hence from the identity $(1 \cdot 10)$, we have

$$(\lambda - \mu) \int_{[a,b]} \varphi_{\alpha}(x,\lambda) \varphi_{\alpha}(x,\mu) dM(x) = \delta \operatorname{cosec} \beta [\varphi_{\alpha}(b,\mu) - \varphi_{\alpha}(b,\lambda)]$$

for every λ , μ . Putting $\mu = \bar{\lambda}$, we have

$$(\operatorname{Im} \lambda) \int_{[a,b]} |\varphi_{\alpha}(x,\lambda)|^2 dM(x) = -\delta \operatorname{cosec} \beta \operatorname{Im} \varphi_{\alpha}(b,\lambda).$$

Hence we see that $\operatorname{Im} \varphi_{\alpha}(b,\lambda) \geq 0$ or ≤ 0 in C_+ according as $\delta \operatorname{cosec} \beta < 0$ or >0. Since $\varphi_{\alpha}(b,\lambda)$ is an entire function, $\varphi_{\alpha}(b,\lambda) = p\lambda + q$ for some real numbers p, q (cf. B.Ja. Levin [11] p. 230). Consequently we have

$$\int_{[a,b]} \varphi_{\alpha}(x,\lambda) \varphi_{\alpha}(x,\mu) dM(x) = -p\delta \csc \beta,$$

for every λ , μ . From this identity, it follows that for every λ

$$\varphi_{\alpha}(x,\lambda) = \varphi_{\alpha}(x,0) = \varphi_{0}(x)$$

for every $x \in F_M$ holds. It is obvious that by the same argument as above we have for ψ_{β}

$$\psi_{\alpha}(x,\lambda) = \psi_{\alpha}(x,0) = \psi_{\alpha}(x)$$

for every $x \in F_M$. Hence from $(1 \cdot 12)$ it follows that

$$(1 \cdot 15) \quad \varphi_0(x) \int_{[a,x]} \psi_0(y) \varphi_0(y) dM(y) = \psi_0(x) \int_{[a,x]} \varphi_0(y)^2 dM(y)$$

$$(1 \cdot 16) \quad \varphi_0(x) \int_{[x, b]} \psi_0(y)^2 dM(y) = \psi_0(x) \int_{[x, b]} \varphi_0(y) \, \psi_0(y) \, dM(y)$$

hold for every $x \in F_M$.

First we show that F_M is a finite set. Assume F_M is infinite. Then F_M has an accumulating point x_0 . Without loss of generality we may assume that x_0 is a right accumulating point. Then taking the right derivatives in $(1\cdot15)$ and $(1\cdot16)$ we have

Noting $\Delta_{\alpha,\beta}(0) = \delta \neq 0$, we see that $\varphi_0(x_0)$ and $\psi_0(x_0)$ do not vanish simultaneously. Hence

$$\int_{[a,x_0]} \varphi_0(y)^2 dM(y) + \int_{(x_0,b]} \psi_0(y)^2 dM(y) \neq 0.$$

We may assume for instance $\int_{[a,x_0]} \varphi_0(y)^2 dM(y) \neq 0$. In this case, from $(1\cdot 15)$ and $(1\cdot 17)$, it follows that φ_0 and ψ_0 are linearly dependent, which contradicts $\Delta_{\alpha,\beta}(0) \neq 0$. In this way, we may prove that F_M is a finite set.

Let $F_M = \{x_1, x_2, \cdots x_n\}$, where $a \leq x_1 < x_2 \cdots < x_n \leq b$. Put $\varphi_0(x_k) = \alpha_k$, $\psi_0(x_k) = \beta_k$ and $dM(x_k) = m_k$. Then (1·15) and (1·16) turn to the equations

(1·19)
$$\alpha_k \sum_{i=1}^k \alpha_i \beta_i m_i = \beta_k \sum_{i=1}^k \alpha_i^2 m_i$$

$$(1\cdot 20) \alpha_k \sum_{j=k}^n \beta_j^2 m_j = \beta_k \sum_{j=k}^n \alpha_j \beta_j m_j.$$

Supposing $\alpha_k = 0$ for some $k \ge 1$, we have from $(1 \cdot 19)$

$$\beta_k \sum_{j=1}^k \alpha_j^2 m_j = 0$$
.

Noting $\varphi_0(x)$ and $\psi_0(x)$ do not vanish simultaneously, we have

$$\sum_{j=1}^k \alpha_j^2 m_j = 0,$$

which implies $\alpha_j = 0$ for every $1 \leq j \leq k$. The parallel argument is possible also for β_j , hence we may assume that there exists a finite subset (possibly empty) S of $\{1, 2, \dots n\}$ such that

$$\begin{cases} \alpha_j \neq 0, \; \beta_j \neq 0 & \text{for every} \; j \in S \\ \alpha_j = 0 & \text{for every} \; j < n_1 \\ \beta_j = 0 & \text{for every} \; j > n_2 \,, \end{cases}$$

where $n_1 = \min S$ and $n_2 = \max S$. In this case, the equations (1·19) and (1·20) are valid even if we change n to n_2 and 1 to n_1 . Then it is

easy to prove inductively that

$$\beta_i/\alpha_i = \gamma$$
 for every $j \in S$.

However putting $k=n_1-1$ in $(1\cdot 20)$, we obtain

$$\alpha_{n_1-1} \sum_{j=n_1-1}^{n_2} \beta_j^2 m_j = \beta_{n_1-1} \sum_{j=n_1-1}^{n_2} \alpha_j \beta_j m_j$$
.

Noting $\alpha_{n_1-1}=0$ and $\beta_{n_1-1}\neq 0$, we have

$$\sum_{j=n_1}^{n_2} \alpha_j \beta_j m_j = 0.$$

Substituting $\beta_j = \gamma \alpha_j$ into the above identity, we see

$$\gamma \sum_{j=n_1}^{n_2} \alpha_j^2 m_j = 0.$$

However this is possible only when S is empty, which implies $\alpha_j = 0$, $\beta_j \neq 0$ for every $j = 1, 2, \dots n$. Hence in this case $\varphi(x) = \varphi_{\alpha}(x, 0)$ satisfies the equation $(1 \cdot 14)$.

Next suppose $\alpha_j \neq 0$ and $\beta_j \neq 0$ for every $j=1, 2, \dots n$. Then as we have seen in the above discussions, from $(1\cdot 19)$ and $(1\cdot 20)$ there exists some constant γ such that

$$\beta_i = \gamma \alpha_i$$
 for every $j = 1, 2, \dots n$.

Put $\varphi(x) = \psi_{\beta}(x, 0) - \gamma \varphi_{\alpha}(x, 0)$. Since ψ_{β} and φ_{α} are linearly independent, φ does not vanish identically. By the definition of φ , φ satisfies the equation

$$(1 \cdot 21) d\varphi^{\scriptscriptstyle \top} = \varphi dQ - \lambda \varphi dM.$$

However we have assumed $\Delta_{\alpha,\beta}(\lambda) \neq 0$, hence $\varphi_{\alpha}(x,\lambda)$ and $\psi_{\beta}(x,\lambda)$ are linearly independent solutions of $(1\cdot 21)$. Therefore there exist some constants $p(\lambda)$ and $q(\lambda)$ such that

$$\varphi(x) = p(\lambda)\psi_{\beta}(x,\lambda) - q(\lambda)\varphi_{\alpha}(x,\lambda)$$

holds for every $x \in [a, b]$. As has been seen,

$$0 = \varphi(x_k) = p(\lambda)\beta_k - q(\lambda)\alpha_k = \{\gamma p(\lambda) - q(\lambda)\}\alpha_k$$

holds for every $x_k \in F_M$. Since $\alpha_k \neq 0$, we have

$$q(\lambda) = \gamma p(\lambda)$$
.

Hence $\varphi(x) = p(\lambda) \{ \psi_{\beta}(x, \lambda) - \gamma \varphi_{\alpha}(x, \lambda) \}$. Taking $x_0 \in [a, b]$ such that $\varphi(x_0) \neq 0$, we have

$$p(\lambda)^{-1} = \varphi(x_0)^{-1} \{ \psi_{\beta}(x_0, \lambda) - \gamma \varphi_{\alpha}(x_0, \lambda) \}.$$

From $(1 \cdot 13)$ we see that the right hand side is an entire function of order at most 1/2. Since $p(\lambda)$ has no zeros, $p(\lambda)$ should be a nonzero constant. Since p(0) = 1, we see $p(\lambda) = 1$ identically. Consequently we have

$$\begin{cases} \varphi(x) = \psi_{\mathcal{B}}(x, \lambda) - \gamma \varphi_{\alpha}(x, \lambda) \\ \varphi^{+}(x) = \psi_{\mathcal{B}}^{+}(x, \lambda) - \gamma \varphi_{\alpha}^{+}(x, \lambda) \end{cases}$$

for every $x \in [a, b]$ and λ . Putting x = b + 0, we have

$$\varphi_{\alpha}(b,\lambda) = C_1, \quad \varphi_{\alpha}^+(b+0,\lambda) = C_2,$$

where C_1 and C_2 are constants independent of λ . Choosing β' such that $C_1 \cos \beta' + C_2 \sin \beta' = 0$, we consider a boundary value problem

$$\begin{cases} f(a)\cos\alpha + f^{+}(a-0)\sin\alpha = 0\\ f(b)\cos\beta' + f^{+}(b+0)\sin\beta' = 0. \end{cases}$$

Then by the definition of β' , we have $\mathcal{L}_{\alpha,\beta'}(\lambda) = 0$ for every λ . Hence applying Proposition 1.7, we see $\varphi_{\alpha}(x,0) = 0$, a.e. dM in [a,b], which contradicts the assumption that $\varphi_{\alpha}(x,0)$ has no zeros in F_M .

Conversely suppose $(L, D_{\alpha,\beta}[a,b])$ has the E_1 -property. We may assume a solution of $(1\cdot 14)$ satisfies the equation

$$\begin{cases} \varphi(a) = -\sin \alpha, & \varphi^+(a-0) = \cos \alpha \\ \varphi(b)\cos \beta + \varphi^+(b-0)\sin \beta \neq 0 \end{cases}.$$

Since $d\varphi^+ = \varphi dQ - \lambda \varphi dM$ for every λ , we have

$$\varphi_{\alpha}(x,\lambda) = \varphi(x)$$

for every $x \in [a, b]$ and λ . Hence we have

$$\begin{split} \varDelta_{\alpha,\beta}(\lambda) &= -\cos\beta\varphi_{\alpha}(b,\lambda) - \sin\beta\varphi_{\alpha}^{\ \ }(b+0,\lambda) \\ &= -\cos\beta\varphi(b) - \sin\beta\varphi^{+}(b+0), \end{split}$$

which proves the proposition.

Theorem 1.11. Suppose that $\Delta_{\alpha,\beta}(\lambda)$ is a nontrivial function pos-

sessing at least one zero. Let $\{\lambda_n\}$ be the set of zeros of $\Delta_{\alpha,\beta}$ and arrange them according to magnitude. Let N_n be the number of zeros of $\varphi_{\alpha}(x,\lambda_n)$. Then we have

- (1) There exists the minimum λ_0 of $\{\lambda_n\}$.
- (2) $N_n = n + \# \{x \in [a, b]; \varphi_\alpha(x, \lambda_0) = 0\}.$

Proof. From (1) of Proposition 1.3 it follows that N_n is a non-decreasing sequence. First we show that N_n is strictly increasing. Suppose $N_n = N_{n+1}$ for some n. Then from (1) of Proposition 1.3 it follows that

$$\tau_k(\alpha, \lambda_{n+1}) \leq \tau_k(\alpha, \lambda_n), \quad k=1, 2, \dots N_n$$
.

However the similar argument as in Proposition 1.3 is possible also for ϕ_{β} , hence we obtain

$$\tau_k(\alpha, \lambda_{n+1}) \geq \tau_k(\alpha, \lambda_n), \quad k=1, 2, \dots N_n.$$

Consequently we have

$$\tau_k(\alpha, \lambda_{n+1}) = \tau_k(\alpha, \lambda_n), \quad k=1, 2, \dots N_n.$$

Applying (1) of Proposition 1.3, we see that $(L, D_{\alpha,\beta}[a,b])$ has the E_0 -property, which contradicts the assumption that $\mathcal{L}_{\alpha,\beta}$ is nontrivial. Hence N_n should be strictly increasing.

Let us prove the equality

$$(1 \cdot 22) N_{n+1} = N_n + 1.$$

First we consider the case $\beta=0$. Then the boundary condition at b becomes $\varphi(b)=0$. Let λ_n be any fixed zero of $\Delta_{\alpha,\beta}(\lambda)$. We consider the two cases below:

- 1°) For any $\lambda > \lambda_n$, the number of zeros of $\varphi_a(x, \lambda)$ in [a, b] remains unchanged. Then since we have shown that N_n is strictly increasing, we see that there exists no greater zeros than λ_n .
- 2°) For some $\lambda > \lambda_n$, the number of zeros of $\varphi_{\alpha}(x,\lambda)$ in [a,b] increases. Let Q and M extend to the right hand side of b so that $\varphi_{\alpha}(x,\lambda)$ may have as many zeros in [a,c] for some c>b as we need. Let $\tau_k(\lambda)$ be the k-th zero of $\varphi_{\alpha}(x,\lambda)$ in [a,c]. Suppose $\varphi_{\alpha}(x,\lambda_n)$ has p zeros in [a,b]. Then we have obviously

$$\tau_{p+1}(\lambda_n) > \tau_p(\lambda_n) = b$$
.

On the other hand, from the assumption

$$\tau_{p+1}(\lambda) \leq \tau_p(\lambda_n) = b$$

for some $\lambda > \lambda_n$ follows. Since we have proved that $\tau_{p+1}(\lambda)$ is continuous (see Proposition 1.3), there exists $\mu > \lambda_n$ such that

$$\tau_{n+1}(\mu) = b$$
.

Noting $\varphi_{\alpha}(b, \mu) = 0$, we see $\mu \ge \lambda_{n+1}$. Remembering that N_n is increasing, we have $\mu = \lambda_{n+1}$, which proves $(1 \cdot 22)$ in case $\beta = 0$.

In case $\beta \not\equiv 0 \pmod{\pi}$, we may reduce the problem to the case $\beta = 0$, by extending dM and dQ to $[a, x_1]$ as follows:

$$dM=0$$
 in $(b, x_1]$

$$dQ(x) = q_0 \delta_{(x_0)}(dx),$$

where $x_1>x_0>b$, $q_0\in \mathbb{R}^1$ and $\delta_{\{x_0\}}(dx)$ is the Dirac measure at x_0 . Here three constants should be chosen to satisfy the identity

$$\{1+(x_1-x_0)q_0\}\sin\beta = \{(x_1-b)+(x_0-x_1)q_0\}\cos\beta$$
.

This is because for $x>x_0$, $\varphi_{\alpha}(x,\lambda)$ satisfies the equation

$$\varphi_{\alpha}(x,\lambda) = \varphi_{\alpha}(b,\lambda) + (x-b)\varphi_{\alpha}^{+}(b+0,\lambda)$$

$$+ \int_{(b,x]} (x-y) \varphi_{\alpha}(y,\lambda) dQ(y).$$

Consequently the equality $(1\cdot 22)$ has been established. This completes the proof.

Corollary 1.12. Under the same condition as Theorem 1.11, we have

$$\{n; \lambda_n \leq \lambda\} = \varepsilon(\lambda) + \# \{x \in [a, b]; \varphi_\alpha(x, \lambda) = 0\}$$

- $\# \{x \in [a, b]; \varphi_\alpha(x, \lambda_0) = 0\},$

where $|\varepsilon(\lambda)| \leq 2$.

It is complicated to count the number of zeros of $\varphi_{\alpha}(x, \lambda_0)$ explicitly. However, for instance in case dM(x) = dx or $dQ(x) \ge 0$, that number

becomes zero in (a_0, b_0) .

§ 2. Ergodic Property of the Solution of a Ricatti Equation with a Random Coefficient

Let $\{Q(x); x \in [0, \infty)\}$ be a random process with stationary independent increments whose characteristic function $\psi(\xi)$ defined by

$$E(e^{i\xi Q(x)}) = e^{x\psi(\xi)}$$

may be expressed as follows:

$$\psi(\xi) = \int_{-\infty}^{\infty} (e^{i\xi u} - 1) n(du),$$

where n(du) is a measure on \mathbb{R}^1 such that

$$\int_{-\infty}^{\infty} \min(1,|u|) n(dn) < \infty.$$

Under this condition, Q(x) becomes a function of bounded variation in each finite interval with probability one. Hence we may define the operator L by

$$L\varphi = -rac{drac{darphi}{dx} - arphi dQ(x)}{dx} \ .$$

Let φ be the solution of the equation

$$\{ egin{aligned} L arphi &= \lambda arphi \ arphi &= 0 \end{aligned} = -\sin lpha, \quad arphi^-(0) &= \cos lpha \;. \end{aligned}$$

Put $\xi(x) = \varphi(x)$, $\eta(x) = \varphi^+(x)$ and $\zeta(x) = (\xi(x), \eta(x))$. Then $\zeta(x)$ satisfies the following stochastic differential equation

(2·1)
$$\begin{cases} d\xi(x) = \eta(x) dx \\ d\eta(x) = -\lambda \xi(x) dx + \xi(x) dQ(x). \end{cases}$$

Without loss of generality, we may assume that Q(x) is continuous at the origin almost surely. Hence the initial value of $\zeta(x)$ is $\zeta(0) = (-\sin \alpha, \cos \alpha)$.

Now let G be a continuous map from $R^2 \setminus \{0\}$ to $R^{1 \cup} \infty$ defined by

$$G(\zeta) = -\frac{\eta}{\xi}, \quad for \quad \zeta = (\xi, \eta).$$

Since the equation $(2\cdot 1)$ is linear, we have immediately the following

Lemma 2.1. Let $\zeta(x, \zeta_i)$ be the solution of $(2 \cdot 1)$ with an initial value ζ_i (i=1,2). Suppose $G(\zeta_i) = G(\zeta_2)$. Then $G(\zeta(x,\zeta_1)) = G(\zeta(x,\zeta_2))$ for any $x \ge 0$.

Let us define a process $\{z(x)\}$ by

$$z(x) = G(\zeta(x)).$$

Since $\{\zeta(x)\}$ is a strong Markov process on $\mathbb{R}^2\setminus\{0\}$, from the above lemma it follows that $\{z(x)\}$ also becomes a strong Markov process on $\mathbb{R}^{1\cup}\infty$. The generator A of the process has the form

$$\begin{cases} Af(z) = (z^2 + \lambda) \frac{df}{dz} + \int_{-\infty}^{\infty} \{f(z - u) - f(z)\} n(du) & \text{for } z \neq \infty, \\ Af(\infty) = -\lim_{z \to \infty} z \{f(z) - f(\infty)\}. \end{cases}$$

Let us define a sequence of random times by

$$\begin{cases} \tau_1 = \inf \{x > 0; z(x) = \infty\}, \\ \tau_n = \inf \{x > \tau_{n-1}; z(x) = \infty\}. \end{cases}$$

Since z(x) is continuous at each τ_n by (2) of Lemma 1.4, it is easy to see that every τ_n becomes a Markov time.

We prepare some lemmas for our theorem.

Lemma 2.2. Let n be a measure on \mathbb{R}^1 such that $\int_{-\infty}^{\infty} \min(1, |u|) n(du) < \infty$. Then for every fixed $\lambda > 0$, we have the estimate

$$\left| \int_{-\infty}^{\infty} n(du) \right| \int_{z}^{z-u} \frac{dy}{y^{2} + \lambda} = O\left\{ |z|^{-3/2} + \int_{|u| > |z|^{1/2}} n(du) \right\}$$

as $|z| \to \infty$.

Proof. First we consider the case $z \rightarrow +\infty$. We divide the above integral into two parts.

$$\int_{-\infty}^{0} n(du) \int_{z}^{z-u} \frac{dy}{y^{2} + \lambda} = \int_{-\infty}^{-z^{1/2}} n(du) \int_{z}^{z-u} \frac{dy}{y^{2} + \lambda} + \int_{-z^{1/2}}^{-1} n(du) \int_{z}^{z-u} \frac{dy}{y^{2} + \lambda}$$

$$+ \int_{-1}^{0} n(du) \int_{z}^{z-u} \frac{dy}{y^{2} + \lambda}$$

$$\leq \int_{-\infty}^{-z^{1/2}} n(du) \int_{z}^{\infty} \frac{dy}{y^{2} + \lambda} + \int_{-\infty}^{-1} n(du) \int_{z}^{z+z^{1/2}} \frac{dy}{y^{2} + \lambda} + \frac{1}{z^{2} + \lambda} \int_{-1}^{0} |u| n(du)$$

$$= O\left\{z^{-8/2} + \int_{-\infty}^{-z^{1/2}} n(du)\right\}.$$

$$\int_{0}^{\infty} n(du) \int_{z-u}^{z} \frac{dy}{y^{2} + \lambda} = \int_{0}^{1} n(du) \int_{z-u}^{z} \frac{dy}{y^{2} + \lambda} + \int_{1}^{z^{1/2}} n(du) \int_{z-u}^{z} \frac{dy}{y^{2} + \lambda}$$

$$+ \int_{z^{1/2}}^{\infty} n(du) \int_{z-u}^{z} \frac{dy}{y^{2} + \lambda}$$

$$= O\left\{z^{-3/2} + \int_{z^{1/2}}^{\infty} n(du)\right\}.$$

As for the case $z \to -\infty$, we have only to put $\check{n}(du) = n(-du)$, then we have

$$\int_{-\infty}^{\infty} n(du) \int_{-z}^{-z-u} \frac{dy}{y^2 + \lambda} = \int_{-\infty}^{\infty} \check{n}(du) \int_{z}^{z-u} \frac{dy}{y^2 + \lambda}.$$

Consequently we may obtain the expected estimate.

Lemma 2.3. Let n be the same measure as in Lemma 2.2. Let $C_b(\mathbf{R}^1)$ be the space of bounded continuous functions on \mathbf{R}^1 with the supremum norm. For $g \in C_b(\mathbf{R}^1)$, we define

$$Ng(z) = \int_{-\infty}^{\infty} n(du) \int_{z}^{z-u} \frac{g(y) dy}{y^{2} + \lambda}.$$

Then for given $h \in C_b(\mathbb{R}^1)$, the following equation is uniquely solvable in $C_b(\mathbb{R}^1)$.

$$(2\cdot 2) g(z) + Ng(z) = h(z).$$

Proof. First we prove that N is completely continuous in $C_b(\mathbf{R}^1)$. Let B be the unit ball in $C_b(\mathbf{R}^1)$. Applying Lemma 2.2, we have the estimate

$$(2\cdot 3) |Ng(z)| \leq \int_{-\infty}^{\infty} n(du) \left| \int_{z}^{z-u} \frac{dy}{y^{2} + \lambda} \right| = O\left\{ |z|^{-3/2} + \int_{|u| \geq |z|^{1/2}} n(du) \right\}$$

uniformly with respect to $g \in B$. Putting

$$\delta\left(z,z_{0};u\right)=\sup_{g\in\mathcal{B}}\left|\int_{z}^{z-u}\frac{g\left(y\right)}{y^{2}+\lambda}dy-\int_{z_{0}}^{z_{0}-u}\frac{g\left(y\right)}{y^{2}+\lambda}dy\right|$$

for $z, z_0 \in \mathbb{R}^1$, we have the estimates

$$\delta(z, z_0; u) \leq 2 \min \left\{ |u|/\lambda, \int_{-\infty}^{\infty} \frac{dy}{v^2 + \lambda} \right\},$$

and

$$\delta(z, z_0; u) \leq (2/\lambda) |z - z_0|$$
.

Therefore, owing to the dominated convergence theorem, we have

$$(2\cdot 4) \qquad \sup_{g\in B} |Ng(z) - Ng(z_0)| \leq \int_{-\infty}^{\infty} \delta(z, z_0; u) n(du) \to 0$$

as $z \to z_0$. From $(2 \cdot 3)$ and $(2 \cdot 4)$ we may conclude that the image N(B) is relatively compact in $C_b(\mathbf{R}^1)$, hence N is completely continuous. In order to prove that the equation $(2 \cdot 2)$ is uniquely solvable, it is sufficient to show that $\operatorname{Ker}(I+N)=0$. For $g \in \operatorname{Ker}(I+N)$, put

$$f(z) = -\int_{z}^{\infty} \frac{g(y)}{y^{2} + \lambda} dy.$$

Then we see

$$(z^{2}+\lambda)\frac{df}{dz}+\int_{-\infty}^{\infty}\left\{f(z-u)-f(z)\right\}n(du)=g(z)+\int_{-\infty}^{\infty}n(du)\int_{z}^{z-u}\frac{g(y)}{y^{2}+\lambda}dy$$

$$=(I+N)g(z)=0.$$

Here we make use of the Markov process $\{z(x)\}$. The Dynkin formula gives us the identity

$$E_{z}(f(z(T_{k}))) - f(z) = E_{z}\left(\int_{0}^{T_{k}} (Af)(z(x)) dx\right)$$

for any $z\neq\infty$, where $T_k=\min(k,\tau_1)$. As has been verified in the above argument, Af(z)=0, for any $z\neq\infty$. Hence we have

$$f(z) = E_z(f(z(T_k))).$$

Remembering (2) of Lemma 1.4, we see by letting k to $+\infty$

$$f(z) = E_{s}(f(z(z_{1}-0))) = E_{s}(f(+\infty)) = 0$$
.

This implies Ker(I+N)=0, which completes the proof.

Lemma 2.4. For any $z \in \mathbb{R}^{1 \cup \infty}$ and $\lambda > 0$, $E_z(\tau_1)$ is finite. $f(z) = E_z(\tau_1)$ is a unique solution of the equation

$$(2\cdot 5) \qquad \begin{cases} (z^2 + \lambda) \frac{df}{dz} + \int_{-\infty}^{\infty} \{f(z-u) - f(z)\} n(du) = -1 \\ f(+\infty) = \lim_{z \to +\infty} f(z) = 0, \quad |f(-\infty)| < \infty. \end{cases}$$

Proof. Let us consider the integral equation

$$g(z) + \int_{-\infty}^{\infty} n(du) \int_{z}^{z-u} \frac{g(y)}{v^{2} + \lambda} dy = -1.$$

Applying Lemma 2.3, we have a unique solution g(z) in $C_b(\mathbf{R}^1)$. Put

$$f(z) = -\int_{z}^{\infty} \frac{g(y)}{v^{2} + \lambda} dy.$$

Then f satisfies the equation

$$\begin{cases} (z^2 + \lambda) \frac{df}{dz} + \int_{-\infty}^{\infty} \{f(z - u) - f(z)\} n(du) = -1 \\ f(+\infty) = 0, \quad |f(-\infty)| < \infty. \end{cases}$$

For $z\neq\infty$, the Dynkin formula leads us to

$$E_{z}(f(z(T_{k})))-f(z)=E_{z}\Big(\int_{0}^{T_{k}}(Af)(z(x))dx\Big).$$

Since, by the definition of A, Af(z) = -1 for any $z \neq \infty$, we have

$$E_{z}(f(z(T_{k}))) - f(z) = -E_{z}(T_{k}).$$

Letting k to $+\infty$ and observing $z(\tau_1-0)=+\infty$, we have

$$E_{z}(\tau_{1}) = f(z) - E_{z}(f(+\infty)) = f(z)$$

for any $z\neq\infty$. Applying Proposition 1.5, we have

$$E_{\infty}(\tau_1) = \lim_{z \to -\infty} E_z(\tau_1) = f(-\infty).$$

This completes the proof.

Now we may prove the ergodic property of $\{z(x)\}$.

Theorem 2.5. For any fixed $\lambda > 0$, $\{z(x)\}$ is ergodic, namely

for any continuous function φ in $\mathbb{R}^{1} \cup \infty$, the equality

(2.6)
$$\lim_{l\to\infty}\frac{1}{l}\int_{0}^{l}\varphi(z(x))dx = \frac{1}{E_{\infty}(\tau_{1})}E_{\infty}\left(\int_{0}^{\tau_{1}}\varphi(z(x))dx\right)$$

holds almost surely for any P_z . Moreover the process has an invariant measure T(z) dz which may be determined as a unique solution of the equation

(2.7)
$$\begin{cases} \frac{d}{dz} \left\{ (z^2 + \lambda) T(z) \right\} = \int_{-\infty}^{\infty} \left\{ T(z+u) - T(z) \right\} n(du) \\ \int_{-\infty}^{\infty} T(z) dz = 1. \end{cases}$$

Proof. Since we have observed in (2) of Lemma 1.4 that $z(\tau_n) = \infty$, from the strong Markov property of $\{z(x)\}$ it follows that the sequence of random variables

$$\int_{\tau_n}^{\tau_{n-1}} \varphi(z(x)) dx, \quad n=1,2,\cdots$$

is independent and has the same distribution as

$$P_{\sim}\left\{\int_{0}^{\tau_{1}} \varphi(z(x)) dx < a\right\}$$

with respect to any probability measure P_z . Since we have verified the finiteness of $E_{co}(\tau_1)$ in Lemma 2.4, the strong law of large numbers gives us the identity

$$\lim_{l \to \infty} \frac{1}{l} \int_{0}^{l} \varphi(z(x)) dx = \lim_{n \to \infty} \frac{1}{\tau_{n}} \int_{0}^{\tau_{n}} \varphi(z(x)) dx$$

$$= \lim_{n \to \infty} \frac{n}{\tau_{n}} \frac{1}{n} \sum_{k=1}^{n} \int_{\tau_{k}}^{\tau_{k}} \varphi(z(x)) dx$$

$$= \frac{1}{E_{\infty}(\tau_{1})} E_{\infty} \left(\int_{0}^{\tau_{1}} \varphi(z(x)) dx \right)$$

almost surely for P_z , which proves the identity (2.6).

Let g be a unique solution of the equation

$$g(z) + \int_{-\infty}^{\infty} n(du) \int_{z}^{z-u} \frac{g(y)}{v^{2}+\lambda} dy = -\varphi(z),$$

whose existence was assured in Lemma 2. 3. Putting $h(z) = -\int_{z}^{\infty} \frac{g(y)}{y^{2} + \lambda} dy$, we have

$$(z^2+\lambda)\frac{dh}{dz}+\int_{-\infty}^{\infty}\left\{h\left(z-u\right)-h\left(z\right)\right\}n\left(du\right)=-\varphi\left(z\right).$$

As in the proof of Lemma 2.4, the Dynkin formula gives the identity

$$h(z) = E_z \Big(\int_0^{\tau_1} \varphi(z(x)) dx \Big).$$

Here we define a function S(z) by

$$S(-z) = -\frac{d}{dz}E_z(\tau_1),$$

then by (2.5) S satisfies the equation

$$(2\cdot8) (z^2+\lambda)S(z) + \int_{-\infty}^{\infty} n(du) \int_{z}^{z+u} S(y) dy = 1.$$

The following formal calculation may be easily justified through the approximation of the measure n by those with compact supports.

$$\begin{split} \int_{-\infty}^{\infty} \varphi(z) \, S(z) \, dz &= -\int_{-\infty}^{\infty} (z^2 + \lambda) \frac{dh}{dz} S(z) \, dz \\ &- \int_{-\infty}^{\infty} S(z) \, dz \int_{-\infty}^{\infty} \{h(z - u) - h(z)\} \, n(du) \\ &= h(-\infty) + \int_{-\infty}^{\infty} h(z) \, dz \left\{ \frac{d}{dz} \left(z^2 + \lambda \right) S(z) \right. \\ &\left. - \int_{-\infty}^{\infty} (S(z + u) - S(z)) \, n(du) \right\}, \end{split}$$

where we have used the fact $h(+\infty) = 0$ and $(z^2 + \lambda)S(z) \to 1$ as $|z| \to \infty$. The identity $(2 \cdot 8)$ implies that the second term vanishes identically, hence we have

$$\int_{-\infty}^{\infty} \varphi(z) S(z) dz = h(-\infty) = E_{\infty} \left(\int_{0}^{\tau_{1}} \varphi(z(x)) dx \right).$$

Then it is easy to see that $T(z)=\frac{S(z)}{E_{\infty}(\tau_1)}$ satisfies $(2\cdot7)$. Thus we obtain the theorem.

Here we define a spectral distribution function. Let $N(\lambda, I)$ be the

number of eigenvalues not exceeding λ for a certain boundary value problem of L in the interval I.

Corollary 2.6. (Rice formula) For any $\lambda > 0$, we have the identity

(2.9)
$$\lim_{l\to\infty}\frac{1}{l}N(\lambda,[0,l])=\lim_{|z|\to\infty}z^2T(z),$$

almost surely for any Pz.

Proof. From Corollary 1.12, we have

$$N(\lambda, \lceil 0, l \rceil) = \# \{n; \tau_n \leq l\} + \varepsilon(\lambda),$$

where $|\varepsilon(\lambda)| \leq 2$. Hence we obtain by the law of large numbers

$$\lim_{l \to \infty} \frac{1}{l} N(\lambda, [0, l]) = \lim_{n \to \infty} n/\tau_n$$

$$= 1/E_{\infty}(\tau_1) \quad a.s. \ P_{\tau_1}$$

Noting $T(z) = S(z)/E_{\infty}(\tau_1)$ and $z^2S(z) \to 1$ as $|z| \to \infty$, we have easily the identity $(2 \cdot 9)$.

Definition 2.7. We call the function $\lim_{l\to\infty}\frac{1}{l}N(\lambda,[0,l])$ the spectral distribution function of L and denote it by $N(\lambda)$.

Corollary 2.8. (Frisch-Lloyd [3]) Suppose

$$\int_{|u|>1} \log |u| n(du) < \infty.$$

Then the function

$$\varphi(s) = \int_{-\infty}^{\infty} e^{-isz} T(z) dz$$

satisfies the equations

(2·10)
$$\begin{cases} \frac{d^2\varphi}{ds^2}(s) = \left\{\lambda - \frac{\psi(s)}{is}\right\}\varphi(s) & in \quad \mathbf{R}^1 \setminus \{0\} \\ \varphi(\pm \infty) = 0, \quad \varphi(0) = 1, \end{cases}$$

and

$$(2\cdot 11) N(\lambda) = -\frac{1}{\pi} \operatorname{Re} \frac{d\varphi}{ds} (0+),$$

where

$$\psi(s) = \int_{-\infty}^{\infty} (e^{isu} - 1) n(du).$$

Proof. Since T(z) is integrable, we may take the Fourier transform of the both sides of $(2\cdot7)$ in the Schwartz distribution sense to obtain

$$is\left(-\frac{d^2}{ds^2}\varphi(s) + \lambda\varphi(s)\right) = \psi(s)\varphi(s).$$

The identities $\varphi(\pm \infty) = 0$ and $\varphi(0) = 1$ follow from the Riemann-Lebesgue theorem and the definition of T(z) respectively, which proves $(2\cdot 10)$. On the other hand, the assumption for n(du) implies

$$\int_{|z|\geq 1} \frac{dz}{|z|} \int_{|u|\geq |z|^{1/2}} n(du) < \infty.$$

Noting $|T(z)| \leq \frac{C}{z^2 + \lambda}$ for some constant C, we see by Lemma 2.2

$$(2\cdot 12) \qquad \int_{-\infty}^{\infty} \frac{|z| dz}{z^2 + \lambda} \int_{-\infty}^{\infty} n(du) \left| \int_{z}^{z+u} T(x) dx \right| < \infty.$$

By the definition of $N(\lambda)$ and T(z), the equality

$$T(z) = \frac{N(\lambda)}{z^2 + \lambda} + \frac{1}{z^2 + \lambda} \int_{-\infty}^{\infty} n(du) \int_{z}^{z+u} T(x) dx$$

holds. Applying the Fourier transform to the both sides, we have

$$\varphi(s) = \frac{\pi}{\lambda^{1/2}} N(\lambda) e^{-\lambda^{1/2}|s|} + \int_{-\infty}^{\infty} \frac{e^{-isz}}{z^2 + \lambda} dz \int_{-\infty}^{\infty} n(du) \int_{z}^{z+u} T(x) dx.$$

Observing $(2 \cdot 12)$, we may differentiate the both sides to obtain

$$\frac{d\varphi}{ds} = -\pi N(\lambda) e^{-\lambda^{1/2}s} - i \int_{-\infty}^{\infty} \frac{z e^{-isz}}{z^2 + \lambda} dz \int_{-\infty}^{\infty} n(du) \int_{z}^{z+u} T(x) dx.$$

Since T(x) is real, we have immediately

Re
$$\frac{d\varphi}{ds}(0+) = -\pi N(\lambda)$$
,

which completes the proof.

§ 3. Analytic Continuation of $\varphi(s)$ to the Upper Half Plane When the Support of n Is Contained in $(0, \infty)$

We assume that the support of n is contained in $(0, \infty)$ thereafter, whence the process $\{Q(x)\}$ is nondecreasing. Put

$$V(s) = \frac{1}{is} \int_0^\infty (e^{ius} - 1) n(du).$$

Then since V(s) is holomorphic in the upper half plane C_+ , the Frisch-Lloyd formula $(2\cdot 10)$ may be studied on the pure imaginary axis. On this axis V(s) is real valued and behaves like the function $s^{-\alpha}$, which makes it possible to apply the methods used in the scattering theory.

For this we need the following

Lemma 3.1. Let V(z) be a holomorphic function in C_+ satisfying

- (1) $\int_{1}^{\infty} \left| \frac{dV}{dz} (re^{i\theta}) \right| dr < \infty$, for each $0 < \theta < \pi$, and
- (2) V(iy) is real valued for every y>0,
- (3) $\sup\{|V(z)|; |z| \ge M, \theta \le \arg z \le \pi \theta\} \to 0 \text{ as } M \to \infty, \text{ for each } 0 < \theta < \pi/2,$

Then for each fixed $\lambda > 0$, there exist unique linearly independent solutions $g_{\pm}(z)$ of the equation

$$\frac{d^{2}}{dz^{2}}g(z) = \{\lambda - V(z)\}g(z)$$

such that

$$\begin{cases} g_{\pm}(z) \sim \exp\left\{\pm \int_{z_0}^z (\lambda - V(s))^{1/2} ds\right\} \\ \frac{d}{dz} g_{\pm}(z) \sim \pm \lambda^{1/2} \exp\left\{\pm \int_{z_0}^z (\lambda - V(s))^{1/2} ds\right\} \end{cases}$$

as $z\to\infty$ in each angle $\{z;\theta\leq \arg z\leq \pi-\theta\}$, $0<\theta<\pi/2$, where we choose as a branch of $(\lambda-V(s))^{1/2}$ the one tending to $\lambda^{1/2}$ as $s\to\infty$, and z_0 is an arbitrary point in C_+ such that $\lambda-V(z_0)\neq 0$.

Proof. Since it is not difficult to extend the way of R. Bellman

[12] (ch. 2, Th. 8, p.50) to the above complex variable case, we omit the proof.

Q.E.D.

Since in C_+ we have

$$V(z) = \int_0^\infty e^{iuz} du \int_u^\infty n(dt),$$

the inequality

$$\int_{1}^{\infty} \left| \frac{dV}{dz} (re^{i\theta}) \right| dr \leq \frac{1}{\sin \theta} \int_{0}^{\infty} \exp(-u \sin \theta) du \int_{u}^{\infty} n(dt) < \infty$$

follows from $\int_0^1 du \int_u^\infty n(dt) < \infty$. Hence V(z) satisfies the all conditions of Lemma 3.1. Put

$$U(x) = V(ix)$$
.

Theorem 3.2. Suppose

$$\int_{1}^{\infty} \log u \, n(du) < \infty.$$

Then for each $\lambda > 0$, we have

$$(3\cdot 2) N(\lambda) = \frac{\lambda^{1/2}}{\pi |f_{-}(0,\lambda)|^2},$$

where f_{-} is a unique solution of the equation

(3·3)
$$\begin{cases} \frac{d^2}{dx^2} f_-(x) = \{-\lambda + U(x)\} f_-(x) \\ f_-(x) \sim \exp\left\{-i \int_{x_0}^x (\lambda - U(y))^{1/2} dy\right\} \end{cases}$$

as $x \to +\infty$. x_0 is any positive number such that $\lambda - U(x_0) \neq 0$.

Proof. First we prove that the analytic continuation of φ , which will be denoted by the same notation, is linearly dependent on g_- of Lemma 3.1. Since g_\pm are linearly independent solutions, there exist two constants a, b such that

$$\varphi(z) = aq_+(z) + bq_-(z).$$

Since g_{\pm} are bounded on the upper pure imaginary axis, so is φ . More-

over, by the definition of φ , φ must be bounded also on \mathbb{R}^1 . The estimate (3·1) implies that φ is a holomorphic function in \mathbb{C}_+ with exponential type at most $\lambda^{1/2}$. Hence according to the Phragmén-Lindelöf theorem, φ is bounded in \mathbb{C}_+ . On the other hand, noting that for each fixed $0 < \theta < \pi/2$, $g_+(re^{i\theta})$ is of exponential growth and $g_-(re^{i\theta})$ is of exponential decay, we may conclude that a is zero, whence we have

$$(3\cdot 4) \varphi(z) = bg_{-}(z).$$

 $\varphi(z)$ may be irregular at the origin. However the assumption $\int_1^\infty \log u$ $n(du) < \infty$ implies

$$\int_{0+} |U(re^{i\theta})| dr < \infty$$

for each $0 \le \theta \le \pi$, whence we may avoid that possibility. In particular, we have $\frac{d\varphi}{ds}(0+) = \frac{d\varphi}{ds}(i0+)$, which together with $(2\cdot 11)$ gives us the identity

$$N(\lambda) = -\frac{1}{\pi} \operatorname{Re} \frac{d\varphi}{ds} (i0+).$$

Now put $f_{-}(x) = g_{-}(ix)$. Then from (3·4) and $\varphi(0) = 1$, we have

$$\varphi(z) = \frac{f_{-}(-iz)}{f_{-}(0)}, \quad \frac{d\varphi}{dz} = -i\frac{\frac{d}{dz}f_{-}(-iz)}{f_{-}(0)}.$$

By the definition, f_{-} is a solution of the equation

(3.5)
$$\begin{cases} \frac{d^2}{dx^2} f_-(x) = \{-\lambda + U(x)\} f_-(x) \\ f_-(x) \sim \exp\left\{-i \int_{x_0}^x (\lambda - U(y))^{1/2} dy\right\} \\ \frac{d}{dx} f_-(x) \sim -i \lambda^{1/2} \exp\left\{-i \int_{x_0}^x (\lambda - U(y))^{1/2} dy\right\}, \end{cases}$$

as $x \to +\infty$. Since U(x) is real valued for each positive number x, the conjugate function \bar{f}_- of f_- is also a solution of (3.5) with the conjugate asymptotic behaviour of f_- . Hence according to the invariance of the Wronskian, we have

$$\frac{d}{dx}f_{-}(0+)\overline{f_{-}(0)} - f_{-}(0)\frac{d}{dx}f_{-}(0+) = \frac{d}{dx}f_{-}(x)\overline{f_{-}(x)} - f_{-}(x)\frac{d}{dx}f_{-}(x)$$
$$= -2i\lambda^{1/2}.$$

Consequently we have

$$N(\lambda) = -rac{1}{\pi} \operatorname{Im} rac{rac{d}{dx} f_{-}(0+)}{f_{-}(0)} = rac{\lambda^{1/2}}{\pi |f_{-}(0)|^2},$$

which completes the proof.

§ 4. Asymptotic Behaviour of $N(\lambda)$ at the Origin

In the previous section, our problem was reduced to the analysis of a familiar equation

$$(4\cdot 1) \qquad \frac{d^2f}{dx^2} = \{-\lambda + U(x)\}f(x).$$

Observing $U(x) = \int_0^\infty e^{-xu} \int_u^\infty n(dt)$, we see that U is strictly monotone decreasing and $U(+\infty) = 0$. Let $x(\lambda)$ denote a unique solution of $U(x) = \lambda$. As long as we are concerned with small $\lambda > 0$, there are no problems whether the solution exists or not for large λ . Define ζ by

$$\zeta(x) = egin{cases} \int_{x(\lambda)}^x (\lambda - U(y))^{1/2} dy \ , & for \quad x \geqq x(\lambda) \ e^{-3\pi i/2} \int_x^{x(\lambda)} (U(y) - \lambda)^{1/2} dy \ , & for \quad 0 < x < x(\lambda) \ . \end{cases}$$

Put

$$\begin{cases} Q(x) = -\frac{1}{4} \, \frac{d^2 U/dx^2}{(\lambda - U(x))^2} - \frac{5}{16} \, \frac{(dU/dx)^2}{(\lambda - U(x))^3} + \frac{5}{36} \, \frac{1}{\zeta(x)^2} \,, \\ \eta_0(\zeta) = (\pi \zeta)^{1/2} H_{\nu}^{(2)}(\zeta) \,, \quad \eta_1(\zeta) = (\pi \zeta)^{1/2} H_{\nu}^{(1)}(\zeta) \,, \end{cases}$$

where $\nu = 1/3$ and $H_{\nu}^{(i)}$ is the Hankel function. Define a Green function

$$G(\zeta, \theta) = \frac{1}{4i} \left\{ \eta_1(\zeta) \, \eta_0(\theta) - \eta_1(\theta) \, \eta_0(\zeta) \right\}.$$

Then the Liuoville transformation of $(4\cdot 1)$ by the variable $\zeta(x)$ leads us to the integral equation

$$(4\cdot 2) \quad g(x) = \eta_0(\zeta(x)) - \int_x^{\infty} G(\zeta(x), \zeta(y)) g(y) Q(y) (\lambda - U(y))^{1/2} dy,$$

where $g(x) = (\lambda - U(x))^{1/4} f(x)$.

This procedure, which was found out by R.E. Langer, is stated in

E. C. Titchmarsh [13] (p. 356 \sim) and very effective in studing the behaviour of the solution of (4·1) with respect to (x, λ) simultaneously.

For the latter purpose, we give here the asymptotic behaviours of η_k

$$\left\{ egin{aligned} \eta_{\scriptscriptstyle 0}(\zeta)\!\sim\!2^{\scriptscriptstyle 1/2}\exp\!\left(i\zeta-rac{2
u+1}{4}\pi i
ight), \ \eta_{\scriptscriptstyle 1}(\zeta)\!\sim\!2^{\scriptscriptstyle 1/2}\exp\!\left(-i\zeta+rac{2
u+1}{4}\pi i
ight) \end{aligned}
ight.$$

as $\zeta \to \infty$. G and $\frac{\partial G}{\partial \zeta}$ also have the estimates

$$(4 \cdot 4) \qquad \begin{cases} |G(\zeta,\theta)| \leq C \\ \left| \frac{\partial G(\zeta,\theta)}{\partial \zeta} \right| \leq C ((1+\zeta)/\zeta)^{5/6}, \quad \text{ for } \ \, \zeta,\theta \geq 0, \end{cases}$$

$$(4.5) |G(\zeta(x),\zeta(y))| \leq C \exp(|\zeta(x)| - |\zeta(y)|), \text{ for } 0 < x \leq y \leq x(\lambda),$$

where C is a constant independent of both λ and the variable x.

Here we give some lemmas for later use.

Lemma 4.1.

(1)
$$\lim_{x\to\infty} xU(x) = -\lim_{x\to\infty} x^2 \frac{dU}{dx} = \int_0^\infty n(du).$$

(2) $\frac{dU}{dx}/U(x) \ge \frac{d^2U}{dx^2}/\frac{dU}{dx} \ge \cdots$, and each one is negative monotone increasing function.

(3)
$$-\frac{d^{k+1}U}{dx^{k+1}} / \frac{d^kU}{dx^k} \leq \frac{k+1}{x}, \text{ for } k=0,1,2,\cdots.$$

Proof. From the identities

$$xU(x) = \int_0^\infty (1 - e^{-xu}) n(du)$$
 and $-x^2 \frac{dU}{dx}$
$$= \int_0^\infty (1 - e^{-xu} - xue^{-xu}) n(du),$$

(1) follows immediately. (2) results from the Schwarz inequality. (3) may be proved by simple computations, whence we omit the proof.

For further developments we must impose a restriction on U(x), namely

$$(4.6) -x\frac{dU}{dx}/U(x) \ge c > 0$$

holds for every sufficiently large x.

Lemma 4.2. Under the condition (4.6), we have the estimates for every a>1 and b<1,

$$(4\cdot7) a^{-1/c}x(\lambda) \leq x(a\lambda) \leq a^{-1}x(\lambda),$$

(4.8) $a^{-1}U(x) \leq U(ax) \leq a^{-c}U(x)$, for every sufficiently small λ and large x, and

$$(4\cdot 9) \qquad |\zeta(x(a\lambda))| \to \infty \text{ and } |\zeta(x(b\lambda))| \to \infty \text{ as } \lambda \to 0.$$

Proof. From Lemma 4.1, we have $-x\frac{dU}{dx} \le U(x)$. Putting $x = x(\lambda)$, we see

$$-x(\lambda)\frac{dU}{dx}(x(\lambda)) \leq U(x(\lambda)) = \lambda.$$

Further noting $\frac{dx}{d\lambda} = \frac{dU}{dx}(x(\lambda))^{-1}$, we have $-\frac{dx}{d\lambda}/x(\lambda) \ge 1/\lambda$. This implies the inequality

$$\log(x(\lambda)/x(a\lambda)) = -\int_{\lambda}^{a\lambda} \frac{dx}{du}/x(u) du \ge \int_{\lambda}^{a\lambda} \frac{du}{u} = \log a,$$

which proves the inequality $(4\cdot7)$. We may show $(4\cdot8)$ similarly.

Since we have for $y < x(\lambda)$

$$U(y) - \lambda = -\int_{y}^{x(\lambda)} \frac{dU}{du} du \ge -\frac{dU}{dx}(x(\lambda))(x(\lambda) - y),$$

whence noting $(4 \cdot 7)$ we obtain

$$egin{aligned} |\zeta(x(a\lambda))| &= \int_{x(a\lambda)}^{x(\lambda)} (U(y)-\lambda)^{1/2} dy &\geq rac{2}{3} \left(-rac{dU}{dx}(x(\lambda))
ight)^{1/2} (x(\lambda)-x(a\lambda))^{3/2} \ &\geq rac{2}{3} \left(1-a^{-1}
ight)^{3/2} \left(-x(\lambda)^2 rac{dU}{dx}(x(\lambda))
ight)^{1/2} x(\lambda)^{1/2} \,. \end{aligned}$$

Since $x(\lambda) \to \infty$ as $\lambda \to 0$ and $-x(\lambda)^2 \frac{dU}{dx}(x(\lambda))$ is bounded from below by

some positive number as $\lambda \to 0$, we have $|\zeta(x(a\lambda))| \to \infty$ as $\lambda \to 0$. The second one may be proved similarly.

Lemma 4.3. Under the condition (4.6) we obtain the estimates

(4.10)
$$\int_{x(a\lambda)}^{\infty} |Q(y)(\lambda - U(y))^{1/2}| dy = o(1),$$

(4.11)
$$\int_{x}^{x(a\lambda)} |Q(y)(\lambda - U(y))^{1/2}| dy = o(1)$$

as $\lambda \rightarrow 0$ for every sufficiently small a > 1.

Proof. Put

$$\begin{cases} I_1 = \int_{x(b\lambda)}^{\infty} |Q(y) (\lambda - U(y))^{1/2}| dy, & I_2 = \int_{x(\lambda)}^{x(b\lambda)} |Q(y) (\lambda - U(y))^{1/2}| dy, \\ I_3 = \int_{x(a\lambda)}^{x(\lambda)} |Q(y) (\lambda - U(y))^{1/2}| dy, & I_4 = \int_{x}^{x(a\lambda)} |Q(y) (\lambda - U(y))^{1/2}| dy. \end{cases}$$

Then we have

$$\int_{x(a\lambda)}^{\infty} |Q(y)(\lambda - U(y))^{1/2}| dy = I_1 + I_2 + I_3.$$

Since we may treat I_1 and I_4 (resp. I_2 and I_3) analogously, we prove only the estimates for I_1 and I_2 .

By the definition of Q, we have

$$\begin{split} I_{1} & \leq \frac{1}{4} \int_{x(b\lambda)}^{\infty} \frac{d^{2}U/dx^{2}}{(\lambda - U(x))^{3/2}} dx + \frac{5}{16} \int_{x(b\lambda)}^{\infty} \frac{(dU/dx)^{2}}{(\lambda - U(x))^{5/2}} dx \\ & + \frac{5}{36} \int_{x(b\lambda)}^{\infty} \frac{(\lambda - U(x))^{1/2}}{\zeta(x)} dx \,, \end{split}$$

which we denote by J_1 , J_2 and J_3 respectively. Noting the inequality

$$\lambda - U(x) = (1/b) U(x(b\lambda)) - U(x) \ge (1/b - 1) U(x),$$

in order to verify that J_1 and J_2 tend to zero as $\lambda \rightarrow 0$, we have only to show

$$\int_{1}^{\infty} \left(\frac{d^{2}U/dx^{2}}{U(x)^{8/2}} + \frac{(dU/dx)^{2}}{U(x)^{5/2}} \right) dx < \infty.$$

From Lemma 4. 1, it follows that

$$\int_{1}^{\infty} rac{d^{2}U/dx^{2}}{U(x)^{3/2}} dx = \int_{1}^{\infty} rac{d^{2}U/dx^{2}}{-dU/dx} rac{1}{U(x)} rac{-dU/dx}{U(x)^{1/2}} dx$$

$$\leq \int_{1}^{\infty} rac{2}{xU(x)} rac{-dU/dx}{U(x)^{1/2}} dx \leq CU(1)^{1/2} < \infty ,$$

and

$$\begin{split} \int_{1}^{\infty} & \frac{(dU/dx)^{2}}{U(x)^{5/2}} dx = \int_{1}^{\infty} \frac{-dU/dx}{U(x)} \frac{1}{U(x)} \frac{-dU/dx}{U(x)^{1/2}} dx \\ & \leq C \int_{1}^{\infty} \frac{-dU/dx}{U(x)^{1/2}} dx \leq 2CU(1)^{1/2} < \infty \; . \end{split}$$

On the other hand, the identity

$$J_3 = \frac{5}{36} \int_{x(b\lambda)}^{\infty} \frac{d\zeta/dx}{\zeta(x)} dx = \frac{5}{36} \frac{1}{\zeta(x(b\lambda))}$$

and the estimate (4.9) imply $J_3 \rightarrow 0$ as $\lambda \rightarrow 0$. This proves that $I_1 \rightarrow 0$ as $\lambda \rightarrow 0$.

Put

$$\delta(x) = \frac{2}{5} \frac{dU/dx}{(\lambda - U(x))^{8/2}} \int_{x(\lambda)}^{x} \frac{(\lambda - U(y))^{3/2} d^2 U/dy^2}{(dU/dy)^2} dy.$$

Then Q(x) may be expressed by $\delta(x)$ as follows:

$$Q(x) = \frac{5}{16} \frac{(dU/dx)^2}{(\lambda - U(x))^3} \frac{\delta(x)^2 (3 + 2\delta(x))}{1 + \delta(x)}.$$

First note the inequality

$$\begin{split} |\delta(x)| &\leq \frac{2}{5} \frac{-dU/dx}{(\lambda - U(x))^{3/2}} (\lambda - U(x))^{3/2} \int_{x(\lambda)}^{x} \frac{d^{2}U/dy^{2}}{(dU/dy)^{2}} dy \\ &= \frac{2}{5} \frac{1}{-\frac{dU}{dx}(x(\lambda))} \left\{ \frac{dU}{dx}(x) - \frac{dU}{dx}(x(\lambda)) \right\} \\ &= \frac{2}{5} \frac{1}{-\frac{dU}{dx}(x(\lambda))} \int_{x(\lambda)}^{x} \frac{d^{2}U}{dy^{2}} dy \leq \frac{2}{5} \frac{d^{2}U/dx^{2}}{-\frac{dU}/dx}(x(\lambda))(x - x(\lambda)) \\ (4.13) &\leq \frac{4}{5} \frac{x - x(\lambda)}{x(\lambda)} \, . \end{split}$$

This together with (4.7) gives us the inequality for $x(\lambda) \leq x \leq x(b\lambda)$

$$|\delta(x)| \leq \frac{4}{5} (b^{-1/c} - 1).$$

Choose b < 1 so that $|\delta(x)| \leq \frac{1}{2}$ may hold for every $x(\lambda) \leq x \leq x(b\lambda)$. Then the main term of Q becomes

$$Q_0(x) = \frac{25}{16} \frac{(du/dx)^2}{(\lambda - U(x))^3} \delta(x)^2.$$

Noting for $x \ge x(\lambda)$

$$\lambda - U(x) = -\int_{x(\lambda)}^{x} \frac{dU}{dy} dy \ge -\frac{dU}{dx} (x - x(\lambda))$$

and applying (4.13), we have

$$\begin{split} &\int_{x(\lambda)}^{x(b\lambda)} Q_0(x) \, (\lambda - U(x))^{1/2} dx \\ & \leq \frac{1}{x(\lambda)^2} \int_{x(\lambda)}^{x(b\lambda)} \frac{(dU/dx)^2}{(\lambda - U(x))^3} (\lambda - U(x))^{1/2} (x - x(\lambda))^2 dx \\ & \leq \frac{1}{x(\lambda)^2} \int_{x(\lambda)}^{x(b\lambda)} \left(-\frac{dU}{dx} (x - x(\lambda)) \right)^{-1/2} dx \\ & \leq x(\lambda)^{-2} \left(-\frac{dU}{dx} (x(b\lambda)) \right)^{-1/2} \int_{x(\lambda)}^{x(b\lambda)} (x - x(\lambda))^{-1/2} dx \\ & = 2x(\lambda)^{-2} \left(-\frac{dU}{dx} (x(b\lambda)) \right)^{-1/2} (x(b\lambda)) - x(\lambda))^{1/2} \\ & \leq C \left(-x(b\lambda)^2 \frac{dU}{dx} (x(b\lambda)) \right)^{-1/2} x(b\lambda)^{-1/2} \, . \end{split}$$

Applying Lemma 4.1, we see that the last term tends to zero as $\lambda \to 0$, which implies $I_2 = o(1)$ as $\lambda \to 0$. This completes the proof.

Here we give the estimates of the solution of the equation $(4 \cdot 2)$.

Lemma 4.4. (The estimate for $x \ge x(\lambda)$.) Let g(x) be a solution of $(4 \cdot 2)$. Then we have for $x \ge x(\lambda)$

$$(1) |g(x)| \leq Ce^{CA(x)}$$

(2)
$$|g(x) - \eta_0(\zeta(x))| \leq C(e^{CA(x)} - 1),$$

where $A(x) = \int_x^{\infty} |Q(y)(\lambda - U(y))|^{1/2} dy$ and C is a constant independent

of λ , x.

Proof. Since we have the estimates $(4 \cdot 3)$ and $(4 \cdot 4)$, the expected estimates may be obtained by ordinary calculations, so we omit the proof.

Put

$$B(x) = \int_{x}^{x(\lambda)} |Q(y) (\lambda - U(y))^{1/2} |dy$$

and let h(x) be a unique solution of the integral equation

$$(4\cdot 14) \qquad h(x) = h_0(x) - \int_x^\infty G_0(x,y) Q_0(y) h(y) (-U(y))^{1/2} dy,$$

where

$$\begin{cases} Q_0(x) = -\frac{1}{4} \, \frac{d^2 U/dx^2}{U(x)^2} + \frac{5}{16} \, \frac{(dU/dx)^2}{U(x)^3} \,, \\ h_0(x) = 2^{1/2} \exp\Bigl(\frac{2\nu + 1}{4}\pi i - \int_0^x (U(y))^{1/2} dy\Bigr), \\ G_0(x,y) = \frac{1}{2i} \Bigl\{ \exp\Bigl(-\int_x^y (U(u))^{1/2} du\Bigr) - \exp\Bigl(\int_x^y (U(u))^{1/2} du\Bigr) \Bigr\}, \ for \ \ y {\geqq} x \,. \end{cases}$$

Lemma 4.5. (The estimate for $0 < x \le x(\lambda)$.) Under the condition (4.6), g(x) has the estimate

$$(4.15) |g(x)| \leq C \exp(|\zeta(x)| + CB(x))$$

for every $0 < x \le x(\lambda)$ and $0 < \lambda \le 1$, moreover $h(x, \lambda) = e^{-|\zeta(0)|}g(x)$ tends to h(x) as $\lambda \to 0$.

Proof. Let

$$\begin{cases} \alpha = \frac{1}{4i} \int_{x(\lambda)}^{\infty} \eta_1(\zeta(y)) g(y) Q(y) (\lambda - U(y))^{1/2} dy, \\ \beta = -\frac{1}{4i} \int_{x(\lambda)}^{\infty} \eta_0(\zeta(y)) g(y) Q(y) (\lambda - U(y))^{1/2} dy. \end{cases}$$

Then by the definition of g we have for $0 < x \le x(\lambda)$

$$egin{aligned} g\left(x
ight) &= \left(1+lpha
ight)\eta_{0}(\zeta\left(x
ight)) + eta\eta_{1}(\zeta\left(x
ight)) \ &- \int_{x}^{x\left(\lambda
ight)} &G(\zeta\left(x
ight),\zeta\left(y
ight))Q(y)g\left(y
ight)(\lambda - U(y))^{1/2}dy \,. \end{aligned}$$

Put

$$\xi_0(\zeta) = (1+\alpha)\,\eta_0(\zeta) + \beta\eta_1(\zeta).$$

Then g satisfies the equation

$$(4 \cdot 16) \quad g(x) = \xi_0(\zeta(x))$$

$$- \int_x^{x(\lambda)} G(\zeta(x), \zeta(y)) Q(y) g(y) (\lambda - U(y))^{1/2} dy.$$

By Lemma 4.2, we have the estimate

$$(4\cdot17) |\alpha| + |\beta| \leq C(e^{CA(x(\lambda))} - 1).$$

Lemma 4.3 implies $A(x(\lambda)) = o(1)$ as $\lambda \to 0$, whence by $(4 \cdot 17)$ we obtain

$$(4 \cdot 18) \qquad \alpha = o(1), \ \beta = o(1) \text{ as } \lambda \rightarrow 0.$$

This together with (4.3) gives the estimate

$$(4\cdot19) |\xi_0(\zeta(x))| \leq Ce^{|\zeta(x)|}$$

for $0 < \lambda \le 1$ and $0 < x \le x(\lambda)$. Put

$$\begin{cases} g_0(x) = \hat{\xi}_0(\zeta(x)), \\ g_n(x) = -\int_x^{x(\lambda)} G(\zeta(x), \zeta(y)) Q(y) g_{n-1}(y) (\lambda - U(y))^{1/2} dy. \end{cases}$$

Then using (4.5) and (4.19), we obtain

$$(4\cdot20) |g_n(x)| \leq C \frac{(CB(x))^n}{n!} e^{|\zeta(x)|},$$

which gives the estimate (4.15).

Now we proceed to the proof of the latter half of the lemma. Put

$$\begin{cases} k_n(x) = e^{-|\zeta(0)|} g_n(x), \\ h_n(x) = -\int_x^{\infty} G_0(x, y) h_{n-1}(y) Q_0(y) (-U(y))^{1/2} dy. \end{cases}$$

We must show that each k_n tends to h_n as $\lambda \to 0$. First we see by $(4 \cdot 18)$ and $(4 \cdot 3)$ $k_0(x) \to h_0(x)$ as $\lambda \to 0$. Assume $k_n \to h_n$ as $\lambda \to 0$. By the definition of k_n , we have

$$k_{n+1}(x) = I_n + J_n,$$

where

$$\begin{cases} I_n = -\int_{x(a\lambda)}^{x(\lambda)} G(\zeta(x), \zeta(y)) k_n(y) Q(y) (\lambda - U(y))^{1/2} dy, \\ J_n = -\int_{x}^{x(a\lambda)} G(\zeta(x), \zeta(y)) k_n(y) Q(y) (\lambda - U(y))^{1/2} dy. \end{cases}$$

From $(4 \cdot 20)$ we have the inequality

$$|I_n| \leq \frac{(CB(x(a\lambda)))^{n+1}}{(n+1)!} \exp\Big(\int_0^x (U(y)-\lambda)^{1/2} dy\Big).$$

which together with Lemma 4.3 gives the estimate

$$(4\cdot 21) I_n = o(1) as \lambda \rightarrow 0.$$

Here remember the definition of Q:

$$Q(x) = -\frac{1}{4} \frac{d^2 U/dx^2}{(\lambda - U(x))^2} - \frac{5}{16} \frac{(dU/dx)^2}{(\lambda - U(x))^3} + \frac{5}{36} \frac{1}{\zeta(x)^2}.$$

In the estimate for J_n , the last term is negligible. For we have

$$\begin{split} & \int_{x}^{x(a\lambda)} |G(\zeta(x), \zeta(y)) k_{n}(y) (\lambda - U(y))^{1/2} \zeta(y)^{-2} | dy \\ & \leq \frac{C}{n!} \exp \left(\int_{0}^{x} (U(y) - \lambda)^{1/2} dy \right) \int_{x}^{x(a\lambda)} (CB(y))^{n} |\zeta(y)|^{-2} (-d|\zeta(y)|) \\ & \leq C \frac{(CB(x))^{n}}{n!} |\zeta(x(a\lambda))|^{-1} \exp \left(\int_{0}^{x} (U(y) - \lambda)^{1/2} dy \right) \end{split}$$

as $\lambda \rightarrow 0$ from Lemmas 4.2 and 4.3. Noting the inequality for $0 < y \le x(a\lambda)$

$$U(y) - \lambda = U(y) - a^{-1}U(x(a\lambda)) \ge U(y) (1 - a^{-1}),$$

we have

$$(U(y))^{1/2}|Q(y)-\frac{5}{36}\zeta(y)^{-2}| \leq C \left(\frac{d^2U/dy^2}{U(y)^2}+\frac{(dU/dy)^2}{U(y)^3}\right)(U(y))^{1/2}.$$

 $(4\cdot 12)$ implies that the right hand side is integrable in each (c, ∞) , whence applying the dominated convergence theorem and noting $(4\cdot 21)$ we see that $k_{n+1}(x)$ converges to $h_{n+1}(x)$ as $\lambda \to 0$ for each x>0. Consequently we see $k_n \to h_n$ as $\lambda \to 0$ for each n. On the other hand from Lemma 4.3 and $(4\cdot 20)$ we have the estimate

$$|k_n(x)| \leq \frac{C^{n+1}}{n!} \exp\left(-\int_0^x (U(y)-\lambda)^{1/2} dy\right)$$

for every x>0 and $0<\lambda\leq 1$. Then it is easy to see that $h(x,\lambda)=\sum_{n=0}^{\infty}k_n(x)$ tends to $h(x)=\sum_{n=0}^{\infty}h_n(x)$, which proves the lemma.

Define $f(x, \lambda)$ by

$$f(x, \lambda) = \frac{g(x, \lambda)}{2^{1/2}(\lambda - U(x))^{1/4}} \exp\left(-\frac{2\nu + 1}{4}\pi i - |\zeta(0)|\right),$$

where $g(x, \lambda) = g(x)$. Then as we stated before, $f(x, \lambda)$ satisfies the equation

$$\frac{d^2}{dx^2}f(x,\lambda) = (-\lambda + U(x))f(x,\lambda).$$

Lemma 4.6. $f(0,0+)\neq 0$ and f(x,0+) satisfies the equation

(4.22)
$$\frac{d^2}{dx^2}f(x,0+) = U(x)f(x,0+).$$

Proof. Fix a>0. Let $\varphi(x,\lambda)$, $\psi(x,\lambda)$ be the solutions of $(4\cdot 1)$ satisfying the initial conditions

$$\begin{cases} \varphi(a, \lambda) = 1, & \psi(a, \lambda) = 0, \\ \frac{d}{dx} \varphi(a, \lambda) = 0, & \frac{d}{dx} \psi(a, \lambda) = 1. \end{cases}$$

Since from the assumption $\int_{-\infty}^{+\infty} \log u \, n(du) < \infty$, U(x) is integrable in the neighbourhood of the origin, φ and ψ are continuous with respect to the variable $(x, \lambda) \in [0, \infty) \times \mathbb{R}^1$. Note the identity

$$(4\cdot23) f(x,\lambda) = f(a,\lambda)\varphi(x,\lambda) + \frac{d}{dx}f(a,\lambda)\psi(x,\lambda)$$

for any $x \ge 0$, $\lambda \in \mathbb{R}^1$. Lemma 4.5 implies the existence of f(x,0+) for any x > 0. Observing $\psi(x,0) \ne 0$, we see by $(4 \cdot 23)$ that $\frac{d}{dx} f(a,0+)$ also exists. Therefore it is evident from $(4 \cdot 23)$ that f(x,0+) exists for any $x \ge 0$ and has the form:

$$f(x,0+) = f(a,0+)\varphi(x,0) + \frac{d}{dx}f(a,0+)\psi(x,0).$$

This implies that f(x, 0+) is a solution of the equation $\frac{d^2}{dx^2}f(x) = U(x)$ f(x). By $(4\cdot 14)$ f(x, 0+) has the estimate

$$(4\cdot 24) \qquad |f(x,0+)| \leq CU(x)^{-1/4} \exp\left(-\int_0^x (U(y))^{1/2} dy\right).$$

Noting the inequality

$$U(x)^{1/4} \exp \Big(\int_0^x (U(y))^{1/2} dy \Big) {\ge} U(x)^{1/4} \int_0^x (U(y))^{1/2} dy {\ge} U(x)^{3/4} x ,$$

we see by Lemma 4.1 that the right hand side of $(4\cdot 24)$ tends to zero as $x\to\infty$, whence we have

$$(4\cdot 25) f(x,0+) \to 0 \text{ as } x \to +\infty.$$

Suppose f(0, 0+) = 0. Then f(x, 0+) satisfies the equation

$$f(x,0+) = \frac{d}{dx}f(0,0+)x + \int_0^x (x-y)f(y,0+)U(y)dy.$$

Noting U(y) > 0 and $\frac{d}{dx} f(0, 0+) \neq 0$, we have $|f(x, 0+)| \geq \left| \frac{d}{dx} f(0, 0+) \right| x$ for x > 0, which contradicts $(4 \cdot 25)$. Thus we complete the proof.

With the help of these lemmas we obtain the main

Theorem 4.7. Suppose
$$U(x)=\frac{1}{x}\int_0^\infty (1-e^{-xu})n(du)$$
 satisfies
$$\int_{0+} U(x)dx < \infty , \quad \frac{-xdU/dx}{U(x)} \ge c > 0$$

for every sufficiently large x. Then the spectral distribution $N(\lambda)$ has the asymptotic behaviour:

$$(4\cdot 26) \quad N(\lambda) \sim \frac{1}{\pi |f(0)|^2} \exp\left(-2 \int_0^{x(\lambda)} (U(y) - \lambda)^{1/2} dy\right) \text{ as } \lambda \to 0,$$

where f is a unique solution of the equation

$$\frac{d^2}{dx^2}f(x) = U(x)f(x), \quad f(x) \sim U(x)^{-1/4} \exp\left(-\int_0^x (U(y))^{1/2} dy\right)$$
as $x \to +\infty$.

and $x(\lambda)$ is the inverse function of U(x).

Proof. All we have to do is to find the relation between $f(x, \lambda)$ and $f_{-}(x, \lambda)$ of Theorem 3.2. Noting A(x) = o(1) as $x \to \infty$, we have by Lemma 4.4,

$$f(x, \lambda) \sim \frac{\eta_0(\zeta(x))}{2^{1/2}(\lambda - U(x))^{1/4}} \exp\left(-\frac{2\nu + 1}{4}\pi i - |\zeta(0)|\right) \ \sim \lambda^{-1/4} \exp\left(-i\zeta(x) - |\zeta(0)|\right)$$

as $x\to\infty$. Therefore by the definition of $f_-(x,\lambda)$ we see

$$f_{-}(x,\lambda) = \lambda^{1/4} e^{|\zeta(0)|} f(x,\lambda).$$

Hence Theorem 3.2 together with Lemma 4.6 gives us

$$N(\lambda) = rac{\lambda^{1/2}}{\pi |f_{-}(0,\lambda)|^2} = rac{e^{-2|\zeta(0)|}}{\pi |f(0,\lambda)|^2} \ \sim rac{1}{\pi |f(0,0+)|^2} \exp\Bigl(-2\int_0^{x(\lambda)} (U(y)-\lambda)^{1/2} dy\Bigr)$$

as $\lambda \rightarrow 0$. This complete the proof.

Corollary 4.8. Suppose Q is a stable process with index α , namely $U(x) = nx^{-(1-\alpha)}(0 < \alpha < 1)$. Then we have the asymptotic form:

$$N(\lambda) \sim B_{\alpha} n^{\frac{1}{1-\alpha}} \exp\left(-C_{\alpha} n^{\frac{1}{1-\alpha}} \lambda^{-\frac{1}{1-\alpha} + \frac{1}{2}}\right),$$

where

$$B_{\alpha}=(1+\alpha)^{-\frac{1-\alpha}{1+\alpha}}\Gamma\left(\frac{1}{1+\alpha}\right)^{-2},\quad C_{\alpha}=\pi^{1/2}\Gamma\left(\frac{1}{1-\alpha}-\frac{1}{2}\right)\Gamma\left(\frac{1}{1-\alpha}\right)^{-1}.$$

$$\begin{split} Proof. \quad \text{Note} \quad 2 \int_0^{x(\lambda)} (U(y) - \lambda)^{1/2} dy = C_\alpha n^{\frac{1}{1-\alpha}} \lambda^{-\frac{1+\alpha}{2(1-\alpha)}} \quad \text{and} \\ \begin{cases} f(x) = 2 \left(\pi (1+\alpha)\right)^{-1/2} x^{1/2} K_{\frac{1}{1+\alpha}} \left(\frac{2n^{1/2}}{1+\alpha} x^{(1+\alpha)/2}\right) \\ \\ f(0) = \pi^{1/2} (1+\alpha)^{(1-\alpha)/2(1+\alpha)} n^{-1/2(1+\alpha)} \Gamma\left(\frac{1}{1+\alpha}\right), \end{cases} \end{split}$$

where K_{ν} is the modified Bessel function, which proves the corollary.

The above system is a continuous analogue of the one considered by M. Fukushima [14] and the result gives us some suggestions to a discrete system.

Corollary 4.9. Suppose

$$\int_0^\infty n(du) + \int_0^{+\infty} \log u \, n(du) < \infty.$$

Then

$$N(\lambda) \sim rac{1}{|f(0)|^2} \exp\Bigl(-2\int_0^{x(\lambda)} \!\! (U(y)-\lambda)^{1/2} dy\Bigr)$$

as $\lambda \rightarrow 0$, and further we have

$$(4\cdot 27) 2 \int_0^{x(\lambda)} (U(y) - \lambda)^{1/2} dy = n\pi \lambda^{-1/2} + o(\lambda^{-1/2}),$$

where $n = \int_0^\infty n(du)$.

Proof. In this case the second condition of Theorem 4.7 is satisfied automatically in view of Lemma 4.1. The estimate $(4\cdot27)$ may be verified without difficulty.

Remark. When Q is a Poisson process, we may obtain a more explicit asymptotic form:

$$N(\lambda) \sim \frac{1}{|f(0)|^2} e^{-n\pi\lambda^{-1/2}}$$
.

This is a completion of the result of T. P. Eggarter [6]. We remark that S. Nakao [9] obtained the estimate $\lambda^{1/2} \log N(\lambda) \rightarrow -n\pi$ by the different method from ours.

Although it is more desirable to consider this problem for general additive process, we have not succeeded yet. However we remark that M.Fukushima and S.Nakao [8] treated the white Gaussian noise potential and gave a precise formulation of the eigenvalue problem to obtain the explicit form of $N(\lambda)$.

§ 5. A Remark to the Spectral Distribution Function of a One Dimensional Hamiltonian with a Random Weight

In this section we treat an operator

$$L = -\frac{d}{dM} \frac{d}{dx}$$
,

where $\{M(x)\}$ is a increasing process of stationary independent increments. We study the spectral distribution function of L. However the method is similar to the one of § 4, we avoid going into details.

Let ψ be the exponent of the characteristic function of M, namely

$$E(e^{-\xi M(x)}) = e^{-x\psi(\xi)},$$

and suppose that ψ has the form:

$$\psi(\xi) = a\xi + \int_0^\infty (1 - e^{-\xi u}) n(du),$$

where $a \ge 0$ and $\int_0^\infty \min(1, u) n(du) < \infty$. First we consider the case a > 0. Define an additive process M_0 with the exponent $\int_0^\infty (1 - e^{-\xi u}) n(du)$ by the equation

$$M(x) = ax + M_0(x)$$
.

Let $(\xi(x), \eta(x))$ be the solutions of the equation

$$\left\{ egin{aligned} d\xi\left(x
ight) &= \eta\left(x
ight) dx \ d\eta\left(x
ight) &= -\lambda a\xi\left(x
ight) dx - \lambda\xi\left(x
ight) dM_{\scriptscriptstyle 0}(x) \,. \end{aligned}
ight.$$

Then Corollary 1. 12 gives us the identity

$$N(\lambda, \lceil 0, l \rceil) = \#\{x \in \lceil 0, l \rceil; \xi(x) = 0\} + \varepsilon(\lambda).$$

where $|\varepsilon(\lambda)| \leq 2$. Regarding λ as λa and Q as $-\lambda M_0$ in $(2\cdot 1)$ of § 2, we may study the spectral distribution of L in the same way as in the previous section if we perform the analytic continuation of the solution of the Frisch-Lloyd formula to the lower half plane. Namely we have

$$(5\cdot 1) N(\lambda) = \frac{\lambda^{1/2}}{\pi |f(0, 1/\lambda)|^2}$$

where $f(x, \lambda)$ is a unique solution of the equation

(5·2)
$$\begin{cases} \frac{d^2}{dx^2} f(x,\lambda) = -\lambda U(x) f(x,\lambda), \\ f(x,\lambda) \sim U(x)^{-1/4} \exp\left(i\lambda^{1/2} \int_0^x (U(y))^{1/2} dy\right), \end{cases}$$

as
$$x\to\infty$$
, where $U(x)=a+\frac{1}{x}\int_0^\infty (1-e^{-xu})n(du)$.

Letting $a \to 0$ in the equation $(5 \cdot 2)$, we see that the solutions $f(x, \lambda)$ converges to the solution of the equation $(5 \cdot 2)$ regarding a as 0. Hence it may be concluded that the process $\{z(x)\}$ is ergodic even in the case a=0. Summing up these arguments we obtain

Theorem 5.1. Suppose U(x) satisfies

$$\int_{0+} U(x) \, dx < \infty.$$

Then the spectral distribution $N(\lambda)$ may be expressed as $(5\cdot 1)$ by the solution of $(5\cdot 2)$.

Example 1.
$$a=0, \ U(x)=nx^{-(1-\alpha)} \ \ (0<\alpha<1).$$

$$N(\lambda)=n^{1/1+\alpha}\Gamma\left(\frac{1}{1+\alpha}\right)^{-2}(1+\alpha)^{-(1-\alpha)/(1+\alpha)}\lambda^{\alpha/(1+\alpha)}.$$

Example 2.
$$a=0$$
, $U(x)=\frac{n}{x+c}(c>0)$, namely $dn(x)=cne^{-cx}dx$.

$$N(\lambda) = \frac{\lambda}{c\pi^2} |H_1^{(1)} (2(nc/\lambda)^{1/2})|^{-2},$$

where $H_1^{(1)}$ is the Hankel function of the first kind.

§ 6. A Remark to the Spectral Distribution of Equations Defined on the Whole Line R^1

In the previous section we have considered the case when the equations are defined on the half line. In this section we remark a relation between the spectral function on the half line and the one on the whole line.

Let L be one of the operators

$$-\frac{d\frac{d}{dx}-dQ}{dx}, \quad -\frac{d}{dM}\frac{d}{dx},$$

where Q is a function of bounded variation in each finite interval of \mathbb{R}^1 and M is a nondecreasing function on \mathbb{R}^1 . Put

$$\begin{cases} N_{+}(\lambda) = \lim_{l \to \infty} \frac{1}{l} N(\lambda, [0, l]), \\ N_{-}(\lambda) = \lim_{l \to \infty} \frac{1}{l} N(\lambda, [-l, 0]), \\ N(\lambda) = \lim_{l \to \infty} \frac{1}{2l} N(\lambda, [-l, l]), \end{cases}$$

if they exist. Then we have the following

Theorem 6.1. Suppose $N_{\pm}(\lambda)$ exists for each λ . Then $N(\lambda)$ also exists and has the form:

$$N(\lambda) = \frac{1}{2} (N_+(\lambda) + N_-(\lambda)).$$

Proof. Let $N_0(\lambda, [a, b])$ and $N_\infty(\lambda, [a, b])$ be the number of eigenvalues not exceeding λ for the boundary value problem

$$f(a) = f(b) = 0$$
 and $\frac{df}{dx}(a) = \frac{df}{dx}(b) = 0$,

respectively. Then these functions satisfy the inequalities

$$\begin{cases} 0 \leq N_{\infty}(\lambda, [a, b]) - N_{0}(\lambda, [a, b]) \leq 2, \\ N_{0}(\lambda, [a, b]) \leq N(\lambda, [a, b]) \leq N_{\infty}(\lambda, [a, b]), \end{cases}$$

by the results of § 1. Further the mini-max principle gives the inequalities for $a\!<\!c\!<\!b$

$$N_{\infty}(\lambda, [a, b]) \leq N_{\infty}(\lambda, [a, c]) + N_{\infty}(\lambda, [c, b]),$$

 $N_{\infty}(\lambda, [a, b]) \geq N_{\infty}(\lambda, [a, c]) + N_{\infty}(\lambda, [c, b]).$

Then the theorem is easily obtained.

Owing to this theorem, we may apply the results of $\S 4 \sim 5$ to the

spectral distribution of equations on the whole line.

References

- Lax, M. and Phillips, J. C., One-dimensional impurity bands, Phys. Rev., 110 (1958), 41-49.
- [2] Lifšic, I. M., Energy spectrum structure and quantum states of disordered condensed systems, Soviet Phys. Uspekhi, 7 (1965), 549-573.
- [3] Frisch, H. L. and Lloyd, S. P., Electron levels in one-dimensional lattice, Phys. Rev., 120 (1960), 1175-1189.
- [4] Benderskii, M. M. and Pastur, L. A., On the spectrum of the one-dimensional Schrödinger equation with a random potential, *Mat. Sb.*, 82 (1970), 273-284.
- [5] ——, Calculation of the average number of states in a model problem, Soviet Phys. JETP, 30 (1970), 158-162.
- [6] Eggarter, T. P., Some exact results on electron energy levels in certain one-dimensional random potentials, *Phys. Rev.*, *B*, 5 (1972), 3863-3865.
- [7] Pastur, L. A., Spectra of random self-adjoint operator, Russian Math. Surveys, 28 (1973), 1-69.
- [8] Fukushima, M. and Nakao, S., On spectra of the Schrödinger operator with a white Gaussian noise potential, to appear in Z. Wahrscheinlichkeitstheorie verw. Gebiete.
- [9] Nakao, S., On the spectral distribution of the Schrödinger operator with random potential, to appear.
- [10] Kac, I. S. and Krein, M. G., On spectral functions of a string, Amer. Math. Soc. Transl. (2), 103 (1974), 19-102.
- [11] Levin, B. Ja., Distribution of zeros of entire functions, *Transl. Math. Monographs* 5, Amer. Math. Soc., Providence, R. I., 1964.
- [12] Bellman, R., Stability theory of differential equations, Dover Publications, Inc. New York, 1953.
- [13] Titchmarsh, E. C., Eigenfunction expansions, part 2, Oxford, 1962.
- [14] Fukushima, M., On the spectral distribution of a disordered system and the range of a random walk, *Osaka J. Math.*, 11 (1974), 73-85.