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Scattering Theory for Wave Equations
with Dissipative Terms
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Kiyoshi MOCHIZUKI*

§ 1. Introduction

We shall consider wave equations of the form

(1-1) wlt(x, 0 +b(x, i)vut(x, f) -Avu(x, t) = 0 ,

where x^R1 (n=£2) , £>0, rvt = dw/dt, zvtt = d*w/dt* and A is the n-

dimensional Laplacian. b(x, t) is a non-negative function and is assumed

to satisfy the following conditions:

(Al) There exist constants Cj^X) and (J>0 such that

0<i(,r, f)<C,(\ + \x y1-8 for any x^Rn, £>0 .

(A2) bt (x, t) is bounded continuous in x €E Rn and ^>0.

In the following we assume that ff<l without an}^ loss of genelarity.

Since b(x, t) >0, b(x, t)zvt(x, t) represents the resistance of viscous type.

Our aim of this note is to show that the solutions of (1-1) are asymp-

totically equal for I— >oo to those of the free wave equation

(1-2) wlt(x,t)-Jw\x,t)=Q.

More precisely, we shall show the existence of the Miller wave operators.

We restrict ourselves to solutions with finite energy. For pa rs

f={fi9fz} of functions in Rn the energy is defined by

f
JE

where Df1=(D1fl9-"9Dnf1) (D, = d/dx,) and 12/11'= S A/118. The
.7=1

Hilbert space M is defined as the completion in the energy norm of
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smooth data with bounded support in Rn. Put u — {w, wt}. Then (1-1)

can be expressed in the matrix notation as

(1-4) ut = A(t)u = AQu—V(t)u,

where

O 1\ /O 0
A=U o) and •- ' \o

Put M°={W°, w(°}. Then (1-2) is expressed as

(1-5) M,0 = 4,«°.

^I0 determines a skew-selfadjoint operator in S£ with domain

(1-6)

where all the derivatives are considered in the distribution sense. Thus,

AQ generates a one-parameter group {t/0(£) =eAot-y t^R} of unitary opera-

tors. Under the above conditions on b ( x , f ) , A(t) determines for each

t>Q a closed operator in M with domain £ ) ( A ( t } ) = S) (J0) - Moreover,

positive numbers belong to the resolvent set of each A(t) and

A(t)(A(0} — I)"1, where /is the identity in M, is continuously differentiate

in t in operator norm. Thus applying results of Kato [2], we see that

there exists a unique family {U(t, s); £>s>0} of contraction evolution

operators which is defined as mapping solution data of (1 • 4) at time 5

into those at time t.

Now the main results can be stated as follows:

Theorem. 1. (a) The -wave operator

(1 - 7) Z= strong lim UQ(-t) U(t, 0)
S-3.00

exists, (b) Z is a not identically vanishing contraction operator in

JK. (c) If ive denote by Z* the adjoint of Z, then

(1 -8) Z* = strong lim U(t, 0) * C70 (t) .

We also consider the special case where b(x, t) is independent of

Then the operator A = A$ — V, where V=z (

semi-group {£/(£) ;£>0} of contraction operators.
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In this case we have the following

Theorem 2. (a) The -wave operators

(I • 9) W= strong lim [7(0 UQ ( - 0 ,

(1 • 10) Z= strong lim [70 ( - 0 [7(0
£^>oo

exist, (b) They both are not identically vanishing contraction oper-

ators in M. (c) [70(0 flftdf f^(0 are intertwined by both W and
Z, i.e.,

(1-11) WT/0(0=t7(OW, Z[7(0=Ui(OZ for any £>0.

(d) 77z£ scattering operator, defined by S=ZW, commutes 'with

(1-12) 5[70(0=C70(OS for any

The proof of these theorems will be based on the "smooth perturba-

tion theory" developed by Kato [3].

The above theorems generalize some results already announced in

Mochizuki [7], where the main concern was in the local energy decay

for wave equations with non-linear dissipative terms. The scattering the-

ory has been developed by Lax-Phillips [4] for wave equation: wtt = dw

in an exterior domain of Rn (n>2) with lossy boundary conditions: wn

Jra(x)wt = Q, ct(x)>Q. Some related problems has been studied in [1]

and [5].

§ 2. Preliminaries

First we shall show an inequality for ^-solutions of the Helmholtz

equation

(2-1) -An-i?u=f(x) in R" ,

where K is a complex number such that Im /G^O and f(x) is a function

such that (1 + ! x\ ) (1+*)/2/(x) e V (Rn) .

Lemma 2. 1. Let Im /cS^O. Then we have for any
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\dS(2-2) — f (\d!L + lL-Lu
2 JspVl 9r 2r

f / »—1 \
+ |Im£| |Z)« 2H N2 + |/c|2 «|2 <ir

J#P\ 2r /

If 2 f v —
— 1 {/ + ' Ct& ~y~ I JvC I J' "lfcU I CL3C j

^ jSp JKp

where r = \x\, Sp= {x\ \x\ =p}5 ^p={x; ^1 <p}

/Q Q\ /I (/M

(2-d) ^± = ~^
2r

Proof. Note the identity

9r 2r
du . n — 14- u
9r 2r

Then (2-2) follows from the integration by parts of (2-1) multiplied

by ifcu.

Lemma 28 28 Let Im /c5gO. Then zve have

) |Im«| f ^{|C±r+ ^"^"
J«» I 4r2

4- f r-^{(l-l)(|C±]2-|
Jis» l \ 2/

+ (»_l ) (M-3)(2-j)_ f r-3+>|2^= f ^Re^fl-]^,
8 J«» JJ2n

(2 -5) £±=Du+ U~ — u T x/c— w .
2r r r

Proof (cf., Mochizuki [6]). Put v = e*iKrr^~"'*u. Then

/Q fi\ _ ^ , / n ~~ 1 -r- 0 • \ @V _)- (^ "~ ^) (^ ~~ ^) — +*«»• ('

; ~ V 2 /"97 4^ ^"^

Multiply by ^T2lm/cV~n+1+5(9t;/9r) on both sides and take the real parts.

Then the repeated use of integration by parts gives (2-4) if we note
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n

(2-7) ^±=e^iKTr~(n~^/2Dv and 0± = Xj—-[C±]^»
/=i r

where [C±]./ is the j-th component of £+.

Proposition 2.1. Le£ ^^ &e a U'-solution of (2-1). Then there

exists a constant C2>0 such that for any IC^C — R

(2-8) |/c|2 f (l+rr'-V^fcc^C, f
JJ2« JJ2

. Multiply by (l + p)"2V"1+5 on both sides of (2-2) and inte-

grate over [0, oo). Then we have

(2-9) — /c i 2 f (l + ry2Sr~1+s\u\2dx
2 JR*

<! f r-1+s\6+\2dx + C(d) f \fiicu\dx.
2 JRn JRn

On the other hand, noting that n=^2, 0<^<1 and !C±|^> |0± | , we have

from (2-4)

(2-10) f r-1^'!^]2^^^)2 f rl^\f\2dx.
JR* \ § 7 JjR»

Inequality (2-8) then follows if we note (1 -}-r) -1Hr<(l +r)

3. Proof of Theorem I

(a) Let /= {/;,/2} e^f. Then u(f) = U(t, O)/ satisfies (1-4) and

the initial condition £^(0) =f. Since AQ is skew-selfadjoint, we have from

(1-4)

(3-1) Ut ( - 1) U(t, O)/-/- f V0 ( - r) V(r) C7(r,
Jo

and

(3-2)

We put

(3-3) A=(°
\ 0 a
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Note that A>-JV<y). Then for any g^M

(3 • 4) | (£/„ ( - r) Y(r) U(r, O)/, g)£| ^r

<( jjj v/V(0 C7(r,

where ( , )# denotes the inner product in M. Thus, to see the existence

of the strong limit of (3-1) as t— >oo, it is sufficient to prove that there

exists a constant C3>0 such that

(3-5) r\\AUQ(t)g\\E
2dt<C,\\g\\E for any gs=JC.

Jo

The following result is due to Kato [3].

Proposition 3. 1. There exists a C3>0 satisfying (3-5) if the

operator A satisfies the condition

(3-6) sup \\A(AQ-ir.I)-1A\\E<oo.

For g={gl9gz}^3C put

(3-7) u= fa, uz} = (AQ-iKl) ~lAg .

Then, as is easily seen, the second component u2 satisfies equation (2-1)

with f=—ifca(x}gz. Thus, by Proposition 2.1 we have

(3-8) !/c|2 f (l+r}-l-8\u2\
zdx<C2 f (l+rY+8\iKa(x)g2\

zdx
JRn JRn

<aC2|£|2 f \gz\
2dx.

Jnn

Since A(A0-ifcI) ~lAg= {0, a(x)u£, it follows from (3-8) that

(3-9) \\A(A0~ifcI)-1Ag\\E
2= f \a(x)u2\

2dx
JR*

<C,2C2 f \g
JR*

This proves that A satisfies condition (3 • 6) . Hence, (3 • 5) holds and

the wave operator Z exists.

(b) To show the existence of /"GE M such that Z/%^0, we assume
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contrary, i.e., for any f^M \\U(t, 0)/||B—»0 as £^oo. Then we have

from (3-2)

(3-10) \\f\\E =2 [~yV(?)U(t,O)f\\E
2dt.

Jo

Further, by (3-1) and (3-4)

a oo \ 1/2 / Poo \ 1/2

yV(t)U(t,V)f\\E
2dt} \\AUQ(t}f\\E

zdt] .
\ I \ Jo /

Hence, it follows that

f^.1 9} II fll z<" J
^o- iz; ii/ \\E S--

^

Put f=U,(s)g, where ||g|U = l. Then by (3-12)

/ 'Q. IQ^ \\T T ( c i nil — 1 <^~ I | \ /\ TI ( /• i n II /^7/ >0 Q c c ^ ooV^O J-Oy II LSQ \->y y||S —-i-^^- 1 JI-Tlwo v^-y t/||S ̂ ^ ^^5 "^ ^ ^u^j

(cf., (3-5)). This is a contradiction and (b) is proved.

(c) It follows from (3-5) that in (3-4)

(3-14) Jj|Af/0(r)g||A/r->0 as s, ^oo „

On the other hand, we have from (3-2)

(3-15) f ~yV(?)U(t, 0)/|U2^<1||/|U2 for any ff=JC.
Jo Z

Thus, U(t, 0)*t/0(^)g converges in M as t-^oo and (c) is proved.

§ 4. Proof of Theorem 2

The assertions (a) and (b) for the operator W can be proved by

the same argument as in the proof of Theorem 1 if we note that the

adjoint semigroup U(t)* has generator

(3-16) A*=-At-V with domain 3) (A*) =0(4,).

(c) and (d) are obvious from the definition of W and Z,
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Added in Proof. Recently, Mr. A. Matsumura (Dept. Appl. Math. Phys., Fac.
Engi., Kyoto U.) obtained the following result: If b(x,t) in (1-1) satisfies feO

bt (x, £)<0 and min b(x, t)^— ,
\*\<R+t K+et

where R, K, £ are positive constants, and if the initial data /= {/i,/a} has support
contained in {x; |.r|<-R}, then the total energy of solution of (1-1) decays like

r as

By this result we can say that our assumption (Al) is settled in a sense.


