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Scattering Theory for Wave Equations
with Dissipative Terms

By

Kiyoshi MOCHIZUKI*

§ 1. Introduction
We shall consider wave equations of the [orm
1-1) wy (z, ) +b(z, )w,(x, 1) —dw(x, t) =0,

where x€ R" (n£2), t>0, w,=0w/0t, w, =0"w/0t* and 4 is the n-
dimensional Laplacian. &(x, #) is a non-negative function and is assumed
to satisfy the following conditions:

(A1) There exist constants C,>0 and 0>0 such that
0<b(x, t)<C,(1+]|x|)™'% for any z=R", t=0.

(A2) b,(x,t) is bounded continuous in x& R" and =>0.

In the following we assume that 0<C1 without any loss of geuelarity.
Since b(x, t) =0, b(x, t)w,(x, t) represents the resistance of viscous type.
Our aim of this note is to show that the solutions of (1-1) are asymp-

totically equal for Zz—oco to those of the free wave equation
(1-2) wi (x, t) — W’ (x, t) =0.

More precisely, we shall show the existence of the M@ller wave operators.
We restrict ourselves to solutions with finite energy. For pa'rs
f=A{f1, f2} of functions in R" the energy is defined by

(1-3) 1Fl= [, ADA+IfID dz.

where Dfi=(D:fi, -+, D,fy) (D;=0/0x;) and [DfllzzilDﬂﬂlz. The
=1

Hilbert space H is defined as the completion in the energy norm of
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smooth data with bounded support in R*. Put #={w, w,}. Then (1-1)

can be expressed in the matrix notation as
(1-4) w=A@)u=du— V() u,

where

A"=<O (1)> and V(t)=<g b(iz))’

Put #’={w’, w,}. Then (1-2) is expressed as

(1-5) u= Al .

A, determines a skew-selfadjoint operator in K with domain
1-6) D () ={fed; 4f, DifLELX(RY) (G=1, -, )},

where all the derivatives are considered in the distribution sense. Thus,
A, generates a one-parameter group {U,(z) =e”*; = R} of unitary opera-
tors. Under the above conditions on &(x, ), A(¢) determines for each
t=>0 a closed operator in 4 with domain D (A4(2)) =D (4,). Moreover,
positive numbers belong to the resolvent set of each A(Z) and
A()(A0)—I)7!, where I is the identity in 4, is continuously differentiable
in ¢ in operator norm. Thus applying results of Kato [2], we see that
there exists a unique family {U(¢, s); £==s=>0} of contraction evolution
operators which is defined as mapping solution data of (1-4) at time s
into those at time .

Now the main results can be stated as follows:

Theorem 1. (a) The wave operator
a-7n Z=strong lim Uy(—¢)U(%,0)
t—oo
exists. (b) Z is a not identically vanishing contraction operator in
H. (c) If we denote by Z* the adjoint of Z, then

1-8) Z* =strong lim U(z, 0)*U,(2).
t—oo

We also consider the special case where &(x,t) is independent of

t. Then the operator A=A4,—V, where V=<g b(()x)>’ generates a

semi-group {U(Z); =0} of contraction operators.
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In this case we have the following

Theorem 2. (a) The wave operators

1-9 W=strong lim U(z) U,(—¢),
t—o0

(1-10) Z=strong lim Uy(—¢) U(%)
t—o0

exist. (b) They both are not identically vanishing contraction oper-
ators in H. (c) Uy(t) and U(t) are intertwined by both W and
Z, i.e.,

(1-11) WU,(8) =U) W, ZU () =U,(8)Z for amy t=0.

(d) The scattering operator, defined by S=ZW, commutes with
U, (2):

(1-12) SU(t) =Uy(£)S  for any tER.

The proof of these theorems will be based on the “smooth perturba-
tion theory” developed by Kato [3].

The above theorems generalize some results already announced in
Mochizuki [7], where the main concern was in the local energy decay
for wave equations with non-linear dissipative terms. The scattering the-
ory has been developed by Lax-Phillips [4] for wave equation: w,,=4w
in an exterior domain of R™ (#=>2) with lossy boundary conditions: w,
+a(x)w,=0, a(x)=>0. Some related problems has been studied in [1]
and [5].

§ 2. Preliminaries

First we shall show an inequality for L*solutions of the Helmholtz

equation
(2-1) —du—r*u=f(x) in R",

where £ is a complex number such that Im £5~0 and f(x) is a function
such that (1-+|x|)“*®%f(x) € L*(R™).

Lemma 2.1. Let Im £=0. Then we have for any p>0
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) 1 ou n—1 |2 P
@2 g [ (5 g e v ellar)as

+ | Im x|J | Du|? + 22 o lul + |g|? |u|>

:lj 10.1:dSF j Re[ firu]dz,
2 Js, K,

where r=|x), S,={x;|z| =0}, K,={x;|z| <o} and

@-3) p. =0 =1

or r

uFiku.

Proof. Note the identity

—Re[iu—i/?u] =—Img n—

or

Then (2-2) follows from the integration by parts of (2-1) multiplied
by iku.

Lemma 2.2. Let Im £=0. Then we have

@-4) [Imgl L {fc (=D (2=3) |}dx

4 2
—1+8 2 2
[ =2 aer—ioa + Sio.
+ (72—1) (”'—3) (2_6) T'_8+alu!2dx= J‘ rsRe[ftﬂ]dx,
8 R» R~
where
(2-5) ¢.=Du+ n—1 LurinZu.

2r r r

Proof (cf., Mochizuki [6]). Put v=e*"7r"""%y Then

. —_ n— 1 (n 1) (n 3) +i/¢7’ m—-1)/2
(2-6) Av—i—( 2 :|:2u€> ar ——4r » ’f.

Multiply by e®™f7+""*1*2(9%/0r) on both sides and take the real parts.
Then the repeated use of integration by parts gives (2-4) if we note



SCATTERING THEORY FOR WAVE EQUATIONS 387

@-7) o= =0=Dy and 0,=)FL[C.],,
r

i=1

where [{.]; is the j-th component of &..

Proposition 2.1. Let u be a L*solution of (2-1). Then there
exists a constant C,>0 such that for any k€C—R

(2-8) L Lna )W dr <G, L"a A

Proof. Multiply by (1+p0) ®07'" on both sides of (2-2) and inte-

grate over [0, o). Then we have

(2.9) %miz j‘Rn(l‘l'r)_gBerslulzdx

<1 r“+5|6i|2dx+C(6)j | firuldz.
Rn

2 Jr

On the other hand, noting that n+2, 0<{0<<1 and !{.|>|0.], we have
from (2-4)

(2-10) [ rpaz=(2) | rirpae.
R® 0 R»
Inequality (2-8) then follows if we note (1+4+7) '7°<(1+7) #r 1",

§ 3. Proof of Theorem 1
(a) Let f={fi, i 9. Then u(z) =U(¢,0)f satisfies (1-4) and

the initial condition #(0) =f. Since A, is skew-selfadjoint, we have from

14

(CIY) U(= U@, 0)f=f— LtUo(—f) V(@) U(x, 0)fde

and
(3-2) Uz, 0)F]5 +2 j WV UG, 0)flide=|fls .
We put

0 0 .
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Note that A>vV (). Then for any g%

3-4) Ltl(Uo(—f) V(@ U(z,0)f, 9) sl de

2

<([Wveue o) ( [1an@dsa)”,

where ( , )z denotes the inner product in 4. Thus, to see the existence
of the strong limit of (3-1) as ¢t—>oo, it is sufficient to prove that there

exists a constant C;>0 such that
(3-5) j;I]AUo(t)gHEzdthSHgHEz for any ge L.

The following result is due to Kato [3].

Proposition 3.1. There exists a C,>0 satisfying (3-5) if the

operator A satisfies the condition

(3-6) sup [|A(4—irD) T Alp<loo.
eC-R

For g={g,, g:} €9 put
(3-7) u={w, u} = (4dy—1ixl) 'Ag.

Then, as is easily seen, the second component u, satisfies equation (2-1)

with f=—ika(z)gs Thus, by Proposition 2.1 we have
@8 e[ AT upde<C, [ A4n) v @) gl
<CClu* | lgdda.
Since A(A—ixD) "' Ag=1{0, a(x)u}, it follows from (3-8) that
(3-9) |AG~icD " Aglst= | |a(e)uml'dz
<CG, [ lgd*de=C: Cloli'

This proves that A satisfies condition (3:6). Hence, (3-5) holds and
the wave operator Z exists.

(b) To show the existence of f& ¥ such that Zf=~0, we assume
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contrary, ie., for any fed |U(¢ 0)f|z—0 as z—>oo. Then we have
from (3-2)

(3-10) Ifle=2 [ Vv U 0 sl
Further, by (3-1) and (3-4)
@1 ([ vv@ue osa)( [T1av@snsa)”
Hence, it follows that
-1 = 2
(3-12) < [1av@ sz
Put f=U,(s)g, where |g|z=1. Then by (3-12)
(313 Ul =1= [ AU glsdi—0, as s—oo

(cf., (3:5)). This is a contradiction and (b) is proved.
(¢) It follows from (3-5) that in (3-4)

t

(3-14) JHAUo(r)gHEzdf—»O as s, t—00 |
s

On the other hand, we have from (3-2)

(3-15) jm||VV(T)U(t, O)f||,g2dt£%||f'HE2 for any fe 4.
0
Thus, U(z,0)*U,(2)g converges in Y as t—>oo0 and (c) is proved.

§ 4. Proof of Theorem 2

The assertions (a) and (b) for the operator W can be proved by
the same argument as in the proof of Theorem 1 if we note that the

adjoint semigroup U(#)* has generator
(3-16) A*¥*=—A—V  with domain 9D (A*) =D (4,).
(c¢) and (d) are obvious from the definition of W and Z.
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Added in Proof. Recently, Mr. A. Matsumura (Dept. Appl. Math. Phys., Fac.

Engi., Kyoto U.) obtained the following result: If &(xz,2) in (1-1) satisfies £=0

1
0 i ——
b (x,t)<0 and tJplrglril“b(:z:, t>_K+£t s

where R, K, € are positive constants, and if the initial data f={fi,f:} has support
contained in {z; |z|<<R}, then the total energy of solution of (1-1) decays like

lUE O flle=0 @) as t—>oo.

By this result we can say that our assumption (Al) is settled in a sense.



