Publ. RIMS, Kyoto Univ.
12 (1977), 577-708

A Foundation of Finite Mathematics”

By

Moto-o TAKAHASHI*

Contents

Introduction

1. Informal theory of hereditarily finite sets

2. Formal theory of hereditarily finite sets, introduction
3. The formal system FCS

4. Some basic theorems and metatheorems in FCS

S. Set theoretic operations

6. The existence and the uniqueness condition

7. Alternative versions of induction principle

8. The law of the excluded middle

9. J-formulas

10. Expansion by definition of 4-predicates

11. Expansion by definition of functions

12. Finite set theory

13. Natural numbers and number theory

14. Recursion theorem

15. Miscellaneous development

16. Formalizing formal systems into FCS

17. The standard model R,, plausibility and completeness theorems
18. Godelization and Godel’s theorems

19. Characterization of primitive recursive functions
20. Equivalence to primitive recursive arithmetic
21. Conservative expansion of PRA including all first order formulas

22. Extensions of number systems
Bibliography

Introduction

The purpose of this article is to study the foundation of finite mathe-
matics from the viewpoint of hereditarily finite sets. (Roughly speaking,
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finite mathematics is that part of mathematics which does not depend on
the existence of the actual infinity.)

We shall give a formal system for this theory and develop its syntax
and semantics in some extent. We shall also study the relationship
between this theory and the theory of primitive recursive arithmetic, and
prove that they are essentially equivalent to each other. (To be more
exact, the latter can be conservatively embedded into the former.)

Relation to the so-called ‘‘effectivity in number theory” will also be
discussed.

When one considers finite mathematics, the following problems would
be basic:

1°. What are finitary objects?

2°, What are finitary operations (and methods)?

3°. What are finitary proofs?

Philosophers may consider these problems philosophically. But let us
consider them mathematically here. We seek mathematical formulations
of the above three kinds of things. Here mathematical formulation is of
course to give exact mathematical definition of what is seemingly mathe-
matical, by abstraction and idealization.

1°.  What are finitary objects?

Natural numbers, symbols, finite sets and sequences of such things
etc., are usually regarded as finitary objects. But it would be too com-
plex and inconvenient to treat all of them in different types. It would
be a reasonable mathematical way to choose some basic type of objects
and represent others by these.

Natural numbers or finite sequences of some symbols are usually
taken as basic, and it is well-known that other objects are represented by
them via Godel numbers or a kind of coding.

So there would be nothing more to say about the possibility of
mathematical formulation of finitary objects. We shall however adopt
hereditarily finite sets (for the definition see Section 1) as basic finitary
objects in this article, because of their fine structure.

2°. What are finitary operations?
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Finitary operations may operate on infinite objects (such as sets of
natural numbers). But here we confine ourselves to consider only those
finitary operations which operate on finitary objects.

Finitary operations, which are also called algorithm, are finite
methods by which any given finitary objects (of a specified kind) are
transformed to other finitary objects.

It is well-known that the mathematical formulation of this concept
were achieved in 1930’s by Herbrand-Goédel, Church, Turing and Post,
almost independently. (See e.g. Davis [1].)

When natural numbers are taken as basic, finitary operations are
defined to be recursive functions. (Church’s thesis). When hereditarily
finite sets are taken as basic, they are defined to be X -definable func-
tions. (See below.)

3°. What are finitary proofs?

Among various kinds of mathematical proofs, finitary (finistic, effec-
tive or constructive) proofs have been distinguished often since late 19t
century.

Some mathematicians take these finitary proofs as the only mathe-
matically true proofs. Some accepts other proofs but less authentically
than finitary proofs. And some others are indifferent to such descrimi-
nation.

In this article we would like to give a mathematical formulation of
finitary proofs in a fairly strong sense (we call them strict finitary
proofs). That is to say, we will define them to be formal proofs in the
formal system FCS we are going to present.

Our formulation of finitary proofs excludes the use of double induc-
tion unless it is reducible to the primitive induction (see below). Strictly
speaking, the double induction here means the double induction applied
to effective (i.e., Z,) predicates and is equivalent to simple induction
applied to II,-predicates and also to transfinite induction of w?2-type
applied to X,-predicates. (Primitive induction is the simple induction
applied to effective (i.e., 2,-) predicates. We cannot further confine it
to that applied only to decidable (i.e., 4,) predicates without assuming
other elementary functions than the one we shall adopt, for we need our
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primitive induction to prove the existence of the values of primitive
recursive functions.)

We do not think double induction (or equivalently, simple induction
applied to II,-formula) to be a strictly finitary method of proof. For,
suppose we want to prove VYzVx3yA(z, x,y), where A is a decidable
predicate, by proving

(1) Vxdy AQ, x, y)
and
(if) Vx3dyA(n, x, y) — VxIy A(n+1, x, y).

Then the assumption Vx3y A(n, x, y) in (i) is very infinistic, because it
assumes, for every x, the existence of y such that A(n, x, y). In some
cases this assumption may be used for only a few values of x to prove
the conclusion of (ii) so that the proof may be reduced to simple induc-
tion (applied to X,-predicate). But it is not the case in general. From
this observation one thinks natural to exclude such a proof from the
scope of finitary proofs. Our formulation will coincide with this intui-
tion.

As we show later, almost all theorems in elementary number theory
such as fundamental theorem of arithmetic, Fermat’s small theorem,
quadratic law of reciprocity etc., can be proved strictly finitarily (in the
above sense).

As for theorems on logic, Gentzen’s Hauptsatz for LK is proved
using double induction. So the proof itself is not strictly finitarily.
However this theorem can be proved strictly finitarily (and hence in FCS)
by a combined use of Herbrand’s theorem and Ackermann’s consistency
theorem, both of which can be proved strictly finitarily.

Incidentally it would be interesting to ask whether Fermat’s conjec-
ture (or other unsolved problems in number theory) can be proved in
FCS. It may be possible that the conjecture itsell is true but not
provable in FCS.

Finally, it should be noted that it is not our intention of this article
to conclude that finite mathematics is the only mathematics, because we
believe that infinite mathematics exists as its own right.



A FOUNDATION OF FINITE MATHEMATICS 581

Acknowledgement

I would like to express my thanks to Professor K. Godel and Pro-
fessor G. Takeuti for valuable discussions about finite mathematics.

1. Informal Theory of Hereditarily Finite Sets

For each natural number n, let R, be defined as follows:

Ry=¢ (the empty set), and R,,;=P(R,) (P for the power set opera-
tion). Then we put R,=\,R,. Elements of R, are called hereditarily
finite sets. The R,’s have the following properties:

1.I. R,SR,.1,
1.2. R, is finite,

1.3. R, is transitive, that is, xe R, and yex imply yeR,.

From these we see that R, consists precisely of finite subsets of R,,.
That is,

1.4. ueR,<ucR, and u is finite.
Indeed R, is the least set satisfying this condition, that is:

1.5. If X is a set such that X contains every finite subset of X,
then R, X.

w—

1.6. There is no infinite descending sequence such that R,3a,
E] az =l a3 Deer,

1.7. The structure (R,, €) is a model of Zermelo-Fraenkel axiom
system for set theory except the axiom of infinity, and is called Ackermann’s
model.

This comes easily from the facts that

(i) The power set of a finite set is finite,
(ii) the union of a finite set of finite sets is finite, and
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(iii) The range of a finite function (i.e., a function whose domain
is a finite set) is finite.

On account of 1.7, we can develop a finite set theory. For example,
an ordered pair (and more generally, an n-tuple) is defined by

<a, by={{a}, {a, b}}.
(Kayyeenr Ayy=<ay, {Agy..ny Ayrd.)

A finite relation is defined to be a set in R, such that every element of
it is a pair. A finite function f is a single-valued finite relation ({u, w),
{v, w) ef=>u=v). The domain and the range of f are:

dom (f)={w|3udu, w) ef} and rang(f)={u|Iwdu, w)ef}.

Both of these are elements of R, whenever f is, etc.

Now we define a binary operation # on R, as follows: for a, b
€R,, a#b=aU {b}, that is, a#b is the set a added by a single element
b. This extremely primitive operation will be taken as basic in our for-
mal theory of hereditarily finite sets below.

Now, R, is generated from 0 by this # operation,®) that is,

1.8. If X is a set such that 0e X and that a, be X imply a#beX,

then R,=X. Indeed we can show by induction that R,cX, using the
fact that

{ala--" am}=("'(o#a1)#"')#am)'

1.8 will be taken as an induction principle in our formal theory (named
primitive induction).

Let N denote the set of all natural numbers: N={0, 1, 2,...}.
Let D be the bijection from N onto P,(N) (the set of all finite subsets
of N) defined by

1.9. D(n)(=Dn)={"1,-~-, nk}:

where ni,...,n, are distinct and n=2"t142"24...42m,  je., the right-

%) From now on the empty set @ is identified with O.
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hand side is the binary expansion of n. Then a bijection ¢t from N
onto R, is defined by induction thus;

1.10.  t(n)(=n")={t(i)lieD,}.

This function is well defined, since if ie D, then i<n. This function
is really 1-1 onto, as can easily be shown by induction. It gives a
canonical 1-1 coding of h.f. (hereditarily finite) sets into natural numbers.
By definition we have

1.11. x'ey'ssxeD, for any x, yeN.

The predicate Ax, y(xeD,) is primitive recursive. Also the function
Ax, y.-t"1(x*#y") is primitive recursive. Since the function ¢ and its
inverse ¢! are very simple and to be effectively calculable, it is natural
that relations on R, and functions on R, to R, are defined to be primi-
tive (general) recursive iff they are so when they are transferred into re-
lations on N and functions on N to N via t. For instance, if R(a, b)
is a relation on R,, then R is primitive recursive iff the relation R’
defined by R’(x, y)<R(x', y*) is primitive recursive, and if f(a) is a
function on R, to R,, then f is general recursive iff the function f’' on
N to N defined by f'(x)=t"1(f(x")) is general recursive.

According to the above, natural numbers are regarded as hereditarily
finite sets (via ¢ operation). In spite of it, this coding of natural num-
bers (into R,) might be somewhat unnatural and hard to treat. It would
rather be preferable to define natural numbers (in the theory of heredi-
tarily finite sets) as von Neumann ordinals (since we only treat finite
sets, we have only finite von Neumann ordinals). Thus a h.f. set is a
natural number (in symbol Nat(x)) iff x is transitive and every element
of x is transitive. (This definition of von Neumann ordinals is due to
Shoenfield [1].) Thus natural numbers are regarded as a special kind of
h.f. sets. Starting from this definition elementary number theory can be
developed.

Finite sequences (of h.f. sets) are a special kind of finite functions
(defined as above and which itself is a h.f. set) i.e.,, a function whose
domain is a natural number i.e. the set of natural numbers less than it).

Thus, formulas (of a finitary logic) may be expressed by h.f. sets,
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as finite sequences of certain symbols, where these symbols are in turn
preassumed to be special h.f. sets.

But they can also be coded by the method of cumulative construc-
tion. For example, formulas of the usual propositional calculus are
defined in the theory of h.f. sets as follows:

(i) <0, n) is a formula;

(ii) if A is a formula, then <1, 4> is a formula;

(iii) if 4 and B are formulas, then (2, 4, B) is a formula;
(iv) the only formulas are obtained by (i)-(iii).

Intuitively, <0, n) stands for the n'" propositional variable, (1, A) for
—1A4,¢2, A, B) for AVB. Then AAB is, as usual, defined to be -1 (4
V —1B), i.e., 1,42, <1, A), {1, B)>>. Note that the usual convention for
using and abbreviating parentheses is naturally accepted in this case.

Moreover, the notion of formal proofs (in a finitary logic), in which-
ever style it is formulated, can be reformulated in the theory of h.f.
sets in an obvious way. Thus the theory of a finitary logic can be sub-
sumed into the theory of h.f. sets.

A composition is a set with repetition. For instance, in a compo-
sition (ppgpq), which is the same as (pgpgp), p occurs three times and g
occurs twice, provided p and ¢ are different. Thus a composition is
represented by the function whose domain is the set of objects that occur
at least once in this composition and whose value at an object is the
number of occurrences of the object in the composition. In particular
a finite composition of h.f. sets is coded by a h.f. sets:

Cb(f)={f is a finite function} A Vx erang(f)(Nat(x)Ax#0).

Suppose f is a finite composition of natural numbers. Then we can
refer to the sum Xf and the product IIf (as natural number). If n
=IIf, then f is said to be a factorization of n. In addition, if f is
composed of prime numbers, then f is said to be a prime factorization
of n. TIn this framework we can state the fundamental theorem of ele-
mentary arithmetic as follows; if n is a positive natural number, then
there exists one and only one prime factorization (in the above sense)
of it. This formulation of the fundamental theorem is much more
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natural than other formulations of it, as in Skolem [1] (in which only
the existence-part of the theorem is formulated) and in Goodstein [4]
(in which the uniqueness-part of the theorem is not formulated as a
single theorem but a metatheorem (including function variables)), etc.

Moreover, within the theory of h.f. sets, we can go beyond natural
numbers (o integers, rational numbers, algebraic numbers (integers),
polynomials with coefficients from objects already defined, and so on, in
an obvious way. (Altbough the classification method does not apply
since it must make use of infinite sets, a finite counterpart of it is readily
available.) One can then develop elementary theories of such objects
(e.g. such algebraic thcory of numbers as Kronecker programmed (e.g.
Weyl [1], Reid [1]).

Remark. Primitive rccursive relations and functions on R, have
been characterized c¢.g. by Rodding [1] (finite) sct-theorctically and by
Gandy ctec., with such definition schemata as Klecne's. General recursive
relations and functions are characterized as A,-definable one e.g. by the
author [2]. These characterizations are all semantical. Any characteriza-
tion of gencral recursive functions is inevitably semantical and non-
constructive on account of Godcel’s consistency (i.c., the second incom-
pleteness) theorcm. Indecd, given a kind of syntactical standpoints (or
cven any of formalizable theories, c.g. ZF set theory), we can construct
a general rccursive [unction which cannot be proved to be gencral recur-
sive within thc system. To prove this let T be a formula in the given
system, say S, which defincs general recursive functions e.g. the one like
T-predicate of Kleene.  General recursive functions (say, of one variable)
arc then defincd in the system S by the predicatc

Gr(d)=Vx3y T, x, y),

which says that computation always halts. (All the variables are assumed
to range over natural numbers.) Let

Po, Pl’ P2,...

be an enumeration of formal proofs in S. Let g be defined by
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U(uyT({(n)y, 1, y)+1, if P, is a proof of
g(n)= Vx3yT((n)y, x, ),
0, otherwise.

(Notations are as in Kleene [1].)
g is clearly general recursive. But if it were proved to be general recur-
sive in S, in other words, if there were a number e such that e represents
the general recursive function g and +4Gr(e), then there would be a
proof of P, of Vx3yT(e, x, y) and so letting n=273¢, we would have
g(n)=U(uyT(e, n, y))+1=g(n)+1, a contradiction.

On the other hand, primitive recursive functions are characterized
by an effective method. In this paper we shall characterize them in a
formal system named FCS. Roughly speaking it takes the following
form: {@,| FecsVx3y T(e, x, y)} is just the set of all primitive recursive
functions, where ¢, is the function with G6del number e.

2. Formal Theory of Hereditarily Finite Sets, Introduction

In the monograph of P.J. Cohen [1], page 23, a formal system,
named Z,, of hereditarily finite sets is presented. His system is equiva-
lent to the usual axiom system for Zermelo-Fraenkel set theory excluding
the axiom of infinity and including, instead of it, an axiomschema of
mathematical induction on (von Neumann) ordinals.

It is also equivalent to the following simpler system which is com-
posed of the axioms;

(i) extensionality: VxVy(Vz(zex—zey)—Vu(xeu—yeu)),
(ii) empty set: IxVy—yex,
(or rather, using the constant 0, Vy—y e€0),
(iii) addition: VxVydzVu(uez=2uexVu=y),
(or rather, using the function symbol #,
VxVyVu(ue x# y=uexVu=y)), and the axiomschema;
(iv) induction: @(0) A VxVy(p(x) A o(¥)—e(x# y))—Vxe(x),
where ¢ is a formula of set theory (possibly with constants 0 and #).
The meaning of these axioms is clear on account of preceding chapter.
Such axioms as sum-set, power-set, and replacement-schema are
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derivable from this system. In the proof of it the last induction princi-
ple plays an essential role.

As is indicated in Cohen [1], these systems are essentially equivalent
to the first order arithmetic and also, as indicated in Jensen-Karp [1],
they have a technical advantage of ‘‘ease of coding”, as we have oc-
casionally seen in preceding chapter.

So far, it has tacitly been assumed that the underlying formal logic
upon which each theory is constructed is the first order classical predicate
calculus. But evidently, the same things as mentioned above are true
with the first order intuitionistic predicate calculus.

However, we seek a formal theory of hereditarily finite sets with
more restrictive and effective kind of axioms. One of the motivations to
this direction is the so-called ZX,-restricted replacement schema that
appeared in the theory of admissible sets in Kripke [1] and Platek [1].
As most of elementary effective part of set theory can be developed with
this weak replacement schema, it would be natural to consider that most
of elementary number theory and finite mathematics could be developed
with X -induction principle, i.e., (iv) above with ¢ restricted to ZX,-
formulas, keeping (i)-(iii) unchanged. Also from the viewpoint of effec-
tivity preference in finite mathematics, it would be desirable to take as

the underlying logic the first-order intuitionistic predicate calculus instead
of the classical one.

Let us call this modified system FS. FS still contains any first-
order formulas as meaningful, e.g. we can speak of provability of these
formulas. But most of notions that actually appears in the elementary
development of number theory and of h.f. sets are recursive, or at least
recursively enumerable. Thus, by the characterization of general recursive
predicates mentioned in preceding chapter, these notions are expressed
by X,-formulas in the sense of Lévy [1]. For example, the relation
z=xUy is expressed by a restricted formula: Vuex(uez)AVuey(uez)
AVuez(uexVuey). Then, the existence of the union of two sets is
described as a ZX,-formula: 3Jz(z=xUy) (see section 5), with free vari-
ables x, y as symbols expressing arbitrary h.f. sets. Indeed, most of
theorems proved in elementary number theory are of this form. For
more examples, the notions (and theorems) introduced in the informal
theory in previous chapter are all of this form.
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From these observations we see it would be interesting to formulate
a formal theory which contains, from the outset, only ZX,-formulas.
These motivations have led us to formulate the formal system FCS
(for finite combinatorial set theory), which will be presented hereafter.

3. The Formal System FCS
3.1. Formal symbols of FCS.

3.1.1. Countable lists of free variables and of bound variables.
Usually, a, b, ¢, d, a, by, ¢;, dy, etc. shall stand for free variables and
X, ¥, Z, U, Sy, ¥y, Zq, Uy, etc. stand for bound variables. The set of free
variables is denoted by F and the set of bound variables by B.

3.1.2. A function symbol # (of two variables) and a constant O.

3.1.3. A binary predicate symbol €.

3.1.4. Logical symbols: —,V, A, —,V, 3.

3.2. Terms are defined by the following inductive definition. (The
extremal clause i.c., the least set condition, will always be omitted in each
inductive definition hereafter.)

(i) O is a term;

(i1) Free variables are terms;

(iii) If s and t are terms, then #st is a term.

3.3. Semi-terms are defined as follows:
(i) O is a semi-term;
(ii) Variables (both free and bound) are semi-terms;

(iii) If s and t are semi-terms, then #st is a semi-term.

3.4. Restricted semi-formulas (abbreviated RF’) are defined as fol-
lows:

(i) 1If s and t are semi-terms, then est is an RF’;

(ii) If ¢ is an RF’, so is —o;

(iii) If @ and Y are RF”’s, so are VoY, Aoy and —oy;

(iv) If x is a bound variable, ¢ a semi-term and ¢ an RF’, then
dxetep and Vxetp are RF"s.
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3.5. Z-semi-formulas (abbreviated Y F’) are defined as follows:

(i) RF’’s are > F'’s;

(ii) If A and B are Y F'’s, so are VAB and A AB.

(iii) If ¢ is an RF’ and B is a > F’, then —¢B is a > F’;

(iv) If x is a bound variable, t a semi-term and 4 a > F’, then
dxetd andVxetd are 3 F'’s;

(v) If x is a bound variable and A is a > F’, then 3x4 is a Y F'.

r, s, t etc. will stand for semi-terms, ¢, ¥, x etc. for restricted semi-
formulas and A4, B, C etc. for X-semi-formulas.
Note that —A4 is not a > F’ in general.

3.6. To each semi-term and to cach Z-semi-formula, a finite sct
of variables is assigned as follows:

(0) V(0)=¢

(i) V(w)y={w}, if wis a variablc,

(i) V(#sH=V(s)U V(1),

(iii) V(=9)=V(9),

(iv) V(VAB)=V(AAB)=V(A4A)U V(B),

(v) V(=¢B)=V(p)U V(B),

(vi) V@ExetAd)=V({xetd)=(V(A)—-{x})U V),

(vii) V(@ExA)=V(A)—{x].

The assignment F is well-defined on account of the uniqueness of con-
struction of thc so-called Polish notation. Note that cvery RF’ is Y F’
and hence the cascs (i)—(vii) of this definition cover all cases.

If a variable is in V(s) or V(A4), then we say thc variable occurs
free in s or in A, respectively.

3.7. A restricted semi-formula ¢ is called a restricted formula (ab-
breviated RF) if V(p)nB=g, and a X-semi-formula A is called a 2-
formula (abbreviated > F) if V(4)nB=g.

Thus a RF'(3ZF’) is a RF(XZF) iff the bound variables occurring in
it are actually bound by quantifiers in it.

38. Let r bc a term, v a (frec or bound) variable, s a scmi-term
and A4 a X F'. Then a semi-term s(r/v) and a > F', A(r/v) arc defined
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by the induction on s and on A as follows:
(1) 0(r/v)=0,
(ii) o(rfv)=r,
(iii) w(r/v)=w, if w is a variable other than v,
(iv)  (#s)(rfv)=#"s(r[v)"1(r/v),
(v) (es)(rfy=e"s(rlv)"«r/v),
(vi) (=) (r/v)=—=""0(r|v),
(vil) (VAB)(rfv)y=<V " A(r/v)"B(r|v),
(viii) (A AB)(r/v)=<A"A(r/v)”B(r/v)
(ix) (—B)(rfv)=<—""0(r/v)"B(r|v),

(x) (@xetAd)(r/v)=<Ixe"t(r/v)"A, if x is v,
=dx e " t(r/v)"A(r/v), if x is not v,

(xi) (Vxetd)(r/v)=Vxe " i(r/v)"A4, if xis o,
=Vx e " t(r/v)” A(r/v), if x is not v,

(xii) (IxA)(r/v)=<3xA, if xis o,
=3IxTA(r/v), if x is not v.

In this definition, =< denotes symbolic identity and — denotes con-
catenation.

s(r/v) and A(r/v) are thus the results of replacing each free occurrence
of vin s and A by r. We could more generally define the simulatneous
substitution A(ry,..., #u/Vq,..., b,) in the similar way.

In spite of the presence of the above rigorous definition and notation
of substitution we shall often use it conventionally.

3.9. Convention.

We adopt the following conventions.

#st, est, VAB, AAB, —@pB are usually written s#t,set, AVB,
A AB, p—B, respectively. Moreover, o=y is an abbreviation of (¢p—y)
A(@—¢). These symbols #, €, —, V, A, —, = then become operations
on (restricted or 2-) formulas. So the usual convention on parentheses
is naturally accepted.

3.10. The inference rules of FCS are as follows. (FCS does not
contain any axiom.) We shall express them in the following charts as in
Gentzen’s system NJ. The exact meaning of them will be explained
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after that. In the following, r, s, t stand for terms, ¢,y for RF’s, 4, B
C for > F’s and D for > F’ with V(D)nB<{x}. Moreover, r<s stands
for Vx, er(x,es) and r=s for r&SsAscr.

. re0 .. res r=t
(1) 5 (0E) (ii) ;e—s%(#“) (iii) m(#u)
res r=t Voo
(v) EHL AL m) (v) LT2En (i) EF2-E)
48
(vii) ﬁ(vn) (viii) “ﬁF(VI-’-) (ix) AV—BCC——C(VE)
A B ANB AANB

(x) —gap(AD (xi) “Z(AED  (xii) “5—(AE2)

4

i) Zp =D @iv) LoEPem) v 220 ey

aer D(a/x) acr
(xvi) 3xerD A.A. (b3E) (xvii) \’_/))Ei/j‘l))(bvn
(xiii) V—xf)’(fT)“”(bVE) (xix) Da(;ﬁ)x) @A

D(al) D@lx) D/
xx) X2 2 B3 (xxi) 200/ D(ﬁg#é/") (P1)

The last inference rule is also called the inference of primitive induc-
tion.

3.11. What we wish to define precisely is the notion of derivation
and that of derivability. We define the notion P:I'—A (to be read, P
is a derivation of A from I'), where I' stands for a finite set of Y F’s,
A a 2 F and P a finite object as defined inductively as follows. (7, s,
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t, o, ¥, A, B, C, D are the same as above.) Clauscs (i)-(xxi) correspond
to the above inference rules.

(0) If Aerl, then A: I'A. (This means intuitively that A4 standing
alone is a proof of 4 from I' provided AeT.)

(i) If P: I'+re0, then f—: I'—A.

A
. ) P .
(ii) If P: I'+~res, then res#L I'res#t.
(iii) If P: I' —r=t, then res &L I —res#t.
(iv) If P: I'~res#t, Q: T'U{res}A4 and R: I'U {r=t}+A4A,
then i-g—li: I'—A.

(v) P TUW}t¢ and Q: T'U (Y] ——¢, then P—(PQ—: I'——.

(vi) If P. I'~¢p and Q: I'+——¢, then PAQ: I'+—A.

(vii) If P: I'—A, then : I'—~4V B.

_P

AV B
P

(viii) If P: I'—B, then AVE I'—AV B.

(ix) If P I'=AV B, Q: TU{A}-C and R: I'U {B} —C, then

P R O,
—c r-c.

h

(x) If P: I't~4 and Q: I'B, then I'—ANB;

R
&

/\

(xi) If P: ['—AAB, then g; A

(xii) If P: ['—AAB, then 5; I'-B.

(xiii) If P: ['U{p} B, then Kgﬁ [ —¢p—B.

(xiv) If P: '¢—B, and Q: I' ¢, then EB—Q—: I'—-B;

. . . P 0. D -

(xv) If P: I't~ser and Q: I' —D(s/x), then IxerD " I'+—3dxerD;

(xvi) If P:T+3xerD and Q:TU{aer, D(a/x)} 4, then T AQ:

I' A, provided none of r, A, D, I' contain the free variable a, i.e., a¢ V(r)
UV u V(D)u V(I'), where V(I')=U {V(C)ICeF}'

(xvii) If P:I'U{aer]~D(a/x), then I'=VYxerD, provided

VED
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agV(ru vV(D)u V).

T s . ) . P 0. .
(xviii) If P: T't+=VxerD and Q: I'tser, then DGJx) I'+D(s/x).

P
dxD

(xix) If P: I't=D(s/x), then : I'—3xD.

(xx) If P:T+3xD and Q:TU {D(a/x)} —B, then ‘DBQ:FI—B,

provided a¢ V(D)U V(B)U V(I).
(xxi) If P: '+=D(0/x) and Q: I U{D(a/x), D(b/x)}+—D(a#b/x), then

P 0
D(r/x)

a, b¢ V(I) U V(D).

: I't+=D(r[x), providled a and b are distinct free variables and

3.12. Suppose P:I'+—A. 1If I' is empty, then we simply write P: A4
and say P is a derivation (or a proof) of A.

Also we write I'—A and say A is derivable from I’ if there exists a
P such that P:I'~A. If in addition I' is empty we simply write A4
and say A is derivable or provable or a formal theorem (of FCS). This
notion of derivability I'—~A could be defined also by omitting the P-part
of the definition of P:I'+A4. So we can prove some theorems by the
induction on I' —A, which we shall use without reference.

AHB stands for A+—B and BRA. Moreover, expressions such as
A, T'+—B or I', AB abbreviate {A} U T +B.

This completes the description of the system FCS.

4. Syntax of FCS; Basic Theorems and Metatheorems

In this and subsequent sections we shall develop the syntax of the
system FCS and prove various formal theorems and metatheorems about
the system. (Strictly speaking, formal theorem A is a metatheorem A.)
Formal theorems are designated by T1, T2, etc., while metatheorems are
designated by Theorem 1, Theorem 2, etc. It is tacitly assumed that
in the following the different syntactical variables a, b, ¢ etc., for variables
occurring in the same context express different variables.

Theorem 4.1.
(i) If +A, then —A(t/a).
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(ii) If T'+A, then I'(t/a)—A(t/a).

(iii) If I'cIl and I'—A, then Il —A.

(iv) If '+A and II+B for each BeT, then Il —A.
(v) If I'—A and {A}UAVB, then ' U A-B.

Outline of proof. First we prove (ii). For this we define a modified
notion I'+—,A, where n is a natural number. The definition of it is
obtained from the definition of I' A by attaching the subscript n to
in the consequence of each clause and subscripts k, I, m etc., to  in
the hypotheses and adding hypothesis k<n, [<n, m<n etc, in each
clause. For example, (i) becomes

(i) if Aerl, then A: '+, A (for each n), and (x) becomes:

x)Y If PiI'+— AVB,Q:TU{A}—,C,R: TU{B}},,C and k<n, I<n,

m<n, then #: I'—,C.

Then it is obvious that I'~A iff I'+—, 4 for some n. Then prove
41.1. If I',A, then I(t/a)r,A(t/a),

by the induction on n. The trouble with quantification can then be

overcome by changing variables twice or more using induction hypo-

thesis. For further detail see the proof of Theorem 2.1 in Takahashi

[3]. (i) is an immediate consequence of 4.1.1. (i) is a special case of

(ii). (iii) and (iv) can be proved by the induction on I'+—A, making use

of (ii) in case of quantification. (v) is an immediate corollary of (iv).
g.e.d.

Theorem 4.2. If A is a > F and at the same time is an instance
of tautology of intuitionistic propositional calculus, then A.

Proof. This theorem is obvious since FCS includes all the inference
rules of the intuitionistic propositional calculus NJ of Gentzen [1].
g.e.d.

TA43. (i) aca.

(ii) acsbAbsc—ace.
(iii) a=a.

(iv) a=b—-b=a.

(v) a=bAb=c—a=c.
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(vi) a=bAcea—ceb.
(vil) acb—a#c<b#c.
(viii) a=b—a#c=b#c.
(ix) a=b—c#a=c#b.
(x) a=bAaec—bec.

Outline of proof of T4.3.

(i) is just Vx, ea(x, €a). It is provable as follows:
beatrbea by (identity)
VYx;ea(x;ea) by (bVl).

(i) is Vx, €a(x; eb)V Vx, eb(x; €c)—Vx,€a(x;€c).
We have easily

dea,acbANbccHVx,ea(x,eb) (id and AEI)
and

dea,acbAbcctdea (id)
Hence

dea,acbAb<cideb (bVE)
But

dea,acbAbScHVx,eb(x;€c) (id and AE2)
Hence

dea,acbAbccidec (bVE)
Hence

acbAbsScHVx,ea(x,€c) (bVD)
So

FacbAbcSc—ace.
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(iii) is obvious from (i) by (AT).
(ivy acbAbca—bcanach.

This is an instance of a theorem of intuitionistic propositional calculus,
i.e., ANAB—=BA A and hence provable in FCS.

(v) (acbAbca)A(bsScAcshb)—(asScAhc<sa).
This comes from (ii) and the fact
AAB—C, A/ ANB'—C'—(ANA)A(BAB)—=(CAC).

(vi) It easily follows from a<bh,cealceb.
(vii) By (bVI) and (—1I), it suffices to prove

dea#c,acbidebs#ec.

By (#E) this comes from

1) dea#c,acbrdea#c,
2 dea,dea#c,acbrdeb#c,
3) d=c,dea#c,acbl-deb#c.

(1) holds by (id), (2) holds by (#I1) from
dea,dea#c,acbrdeb (bVE)
and (3) holds by (#12) from
d=c,dea#c,acShl-d=c (id).

(viii) comes easily from (vii).
(ix) It suffices to prove

4) dec#a,a=brdec#b.
But it is obvious that
dec,dec#a,a=bldec#b.

and also we have
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d=a,dec#a, a=bdec#b,
since
d=a,dec#a, a=bl-d=b,

by (v) and Theorem 4.1 (iii). Thus we have (4).
(x) We make use of (PI), the inference of primitive induction. Let
A(c) be the formula aec—bec.

By (PI), to prove (x) it suffices to prove

(5) a=blae0—-bel
and
(6) aed—bed,ace—bee,a=bl-acd#e—bed#e.

(5) follows from a€0,a=b-be0 (OE).
(6) follows (by (—I) and (#E)) from

@) aed,aced-—>bed, ace—bee, a=bl-bed#e
and
®) a=e,acd—bed, ace—bee,a=bbed#e.

(7) comes easily from aed, aed—bedibed,
and (8) from a=e, a=brb=e and b=erbed+#e. g-e.d.

Theorem 4.4.
(i) a=brr(a/x)=r(b/x),
(ii) a=b, D(a/x)+—D(b/x),
where V(r)nB<{x} and V(D)nB<{x}.

Outline of proof. (i). We prove (i) by the induction on the length of
r. The induction can easily be carried out using Theorem 4.1 (viii) and
(ix) as well as the facts

a=bla=b,

a=blv=v,
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a=b0=0.

(ii). If we prove the theorem for prime formula D, then by the induction
on the length of D we can easily prove theorem for all D. Thus it
suffices to prove

a=b, r(a/x)es(a/x)r(b/x)es(b/x)
But it is easy to infer it using (i) and T.4.3 (vi), (x).

Theorem 4.5. If z¢ V(A), then
(i) 3IxIyA(x, y)HIzIx e zAy e zA(x, y),
(ii) VxeadyA(x, y)HIzVxeadyezA(x, y),
and more precisely,
(iii) VxeadyA(x, y)H3z(VxeadyezA(x, y) AVy e zix e aA(x, y)).

Outline of proof. (i) is obvious from
A(a, b)3xe(O#a)#bdye(0#a)#DbA(x, ).
We prove (iii). Let B(b, ¢) be the formula
VxebdyecA(x, y) AVyecixebA(x, y),

and C(b) be the formula b=a—3zB(b, z).

If we prove

® Vx e adyA(x, y) —C(0)

and

(10) C(d), C(e), VxeadyA(x, y)-C(d#e),

then by (PI) we have
Vx e adyA(x, y)+—C(a),
that is,
Vx € adyA(x, y)a<a—3zB(a, z),

from which we have (iii).
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(9) is obvious since +B(0, 0).
(10) can be proved thus:
First we can easily have

B(b,, ¢,), A(by, d)=B(b; #b,, ¢, #d).
So we have
VxeadyA(x, y), by #b,<a, B(by, ¢;)—3zB(b,#b,, z).
Thus
Vx eadyA(x, y), by #b,=a, b<a—B(b,, ¢;)—3zB(b,#b,, z).
Hence
Vx € adyA(x, y), C(by) b, #b,=a—3zB(b, #b,, z).
Hence
Vx eadyA(x, y), C(b;)—C(b, #b,).

Hence by Theorem 4.1 (iii) we have (10). g.e.d.

5. Some Set-Theoretic Operations

In order to treat elementary set-theoretic operations in FCS, we shall
make the following observation. Let us consider, for example, the opera-
tion of set-theoretic union U. The fact that c=aUb can be expressed
in the language of FCS as

Vxea(xec)AVxeb(xec)AVxec(xeaV xeb).

Let us call this formula Cy(c, a, b). Then for fixed a and b, the exist-
ence and the uniqueness of c satisfying Cy(c, a, b) are expressed by

1) —3IxCy(x, a, b),
and

(2) Cu(cl, a, b), CU(027 a, b) '—c1=C2-
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They are of course provable in FCS. The uniqueness proof is easy.
For the existence proof we make use of the inference of primitive induc-
tion on account of the facts

alUO0=a and aU(by#b,)=(aub,)#b,.

To be more detailed let A(b) be the > F:3IxCy(x, a, b), which we want
to prove. Then by the primitive induction it suffices to prove

3) +A(0)
and
4 A(by), A(by) —A(b, #b,).

(3) follows from Cy(a, a, 0) and (4) follows from
CU(Cls a, b)9 CU(CZa a, b)'_CU(cl #bzy a, bl#bZ)'

But these are obvious.

As for the power set operation, the fact ““b=P(a)” does not seem
at first glance to be able to be expressed by a > F. (The standard
description of it is Vxeb(x<Sa)AVx(xSa—xeb), which is not a }F.)
But if we notice that a is a finite set, we can easily express ‘‘b=P(a)”
by a > F (indeed, by a RF) as follows:

Vxeb(x=a)AOebAVxebVyea(x#yeb).
Call this formula Cp(b, a). Also in this case
+3zCp(z, a) and Cy(b,, a), Cp(b,, a)t=b;=b,

are provable. Although the uniqueness proof is easy, the existence proof
is more complicated than the previous one. We must use the primitive
induction twice. The proof is motivated from the following equations:

P(0) (={0})=0#0,
P(a, #a,)=P(a,) U {x#a,|xeP(a,)}.

Roughly speaking, we first define Q(c, d)y={x#d|xec} in FCS by the
equations:
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Q(0, d)=0,
Q(ey#¢s, d)(=Qeyn ) U {c, #d})=Qlcy, d)#(c, #d),
and then define P(a), using the above, by
P(0)=0#0
P(a,#a,)=P(a,) U Q(P(a)), a,).
More precisely we procced as follows. Let Cgfe, ¢, d) be the RF
Vxec(x#dee)AVyeedxec(x#d=y)).
The existence and the uniqueness condition are:
(5) F3uCqu, ¢, d) and Cgyley, ¢, d), Coley ¢, d)-e;=e,.
The former follows, by the primitive induction, from
(i) C0,0,d),
and
(1) Cgley, ¢y, d), Coleg, ¢z Y=Coley #(ca#d), ¢y #cy, d).

The latter also follows easily.
Now that (5) has been proved, we can prove, using the primitive

induction again, thc existence and the uniqueness condition thus:
(i) Cp0#0,0),
(i) Cp(by, ay), Ce(by, az), Cole, by, az), Cu(f, by, ©=Co(f, ay #ay).
Moreover we can prove
T.5.1. Cp(b, a)l-cSa=ceb.

We need to show
(i) Cp(b, a)l-cca—ceb,
and

(i) Cpb, a)l-ceb—cZu.
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(ii) is obvious by the definition of Cp.
(i) follows, by the primitive induction on ¢ for the formula cca—ceb,
from

Cp(b, a)-0ca—0¢€b,
and
Cp(b, a), c,Sa—cieblc,#c,Sa—c,#c,€b.

Both of these are easily proved.

6. The Existence and the Uniqueness Condition

Now we turn to the general treatment of the existence and the
uniqueness condition. Let D be a Y F’ such that V(4A)nB<{x}. Then
dxD is a Z-formula which expresses the existence condition for D. The
standard expression for the uniqueness condition for D, that is,
D(a,/x) A D(a,/x)—a;=a,, is however not a ZXZ-formula. Instead of it
we use the condition

(1) D(a,/x), D(a,/x)a,=a,,

where a; and a, are distinct free variables not occurring in D. The
existence condition is of course 3xD. To clarify impression these con-
ditions are abbreviated 3!xD. If we please, these conditions could be
relativized to the assumption I

Remark. We can find a XZ-formula whose derivability is equivalent
to (1). Such a formula is obtained as follows.

Let C be a free variable not occurring in D and distinct from a,
and a, (a, and a, are as above), and let D, be the RF obtained from
D by replacing each occurrence of unbounded quantifier 3y by bounded
quantifier 3yec. Then the desired formula is

(2) DJfa;/x)ADJa,/x)—a,=a,.

To prove the equivalence mentioned, we make use of the following
facts, whose intended meaning might be clear and which will be used
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later again.

Theorem 6.1. Let A be a Y F, let c,c,, c, be distinct free vari-
ables not occurring in A and let y be a bound variable not occurring
in A. Then

(i) ciccy, A, A,
(ii) A.+A, (or equivalently, —A,—A)
(iii) AH3yA,.

We show that the equivalence mentioned above is an easy consequence
of this last theorem.
Suppose first that (2) is derivable. Since

D(a,/x)3y,Dy,(a;/x) and D(ay/x)+3y,D,(az/x),
by (iii) of Theorem 6.1, where y,, y, e B—V(D), we have
D(ay/x), D(a,/x) =3y(D(a/x) A Dy(a,/x)),

by (i) of Theorem 6.1 (Intuitively take y to be y,Uy,, for instance.)
From this and the hypothesis we obtain (1).
Suppose next that we have (1). By (ii) of Theorem 6.1 we have

D (a;/x) A D(a5/x)=D(a,/x) A D(a,/x).

From this and the hypothesis we see (2) is derivable.

We now prove Theorem 6.1. (i) and (ii) can be proved by using
the induction on the length of formula 4 on account of the facts

¢ S¢,, Ixec;C(x) —Ix € c,C(x),
and
Ix € cC(x) —3xC(x).

As for (iii), 3yA4,-A4 is an immediate consequence of (ii). We also prove
A3yA, by the induction on A.
1°. If A is a restricted formula, then the assertion is clear since
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A, is just A.

2°. If A is BV C, then the assertion comes from the fact
JuB, Vv IC,HIy(B,Vv C,),

as well as the induction hypothesis.
3°, If A is BAC, then the assertion comes from the fact

JuB, A 3wC,H3y(B,AC,),

(by (i) of Theorem 6.1), as well as the induction hypothesis.
4°. If A is dxesB, then the assertion comes from the fact

dx e s3yBy(x)H3yIx € sB(x)

and the fact that dxes(B,) is just (3xesB),, as well as the induction
hypothesis.

5°. If A is dxB, then the assertion is proved similarly to the previ-
ous case.

6°. If A is VxesB, the assertion is proved as follows. By (ii) of
Theorem 4.5,

Vx € suB,(x)H3vVx € s3u € vB,(x).
So if we prove
(3) JvVxesduevB(x)-IyVxesB(x),
we have the assertion. Let Cy(d, ¢) be the formula
Vxedlyece(xey)AVyecVxey(xed).

This formula expresses the fact that d= Uc={u|dyec(uey)}. The ex-
istence and the uniqueness condition that

I—‘HZCU(Z, C) and CU(dls C), Cu(dz, C) ““d1=d2
can be proved as in 5. Since
Cu(d, c)Vxec(x=d),

we have, using (i) of Theorem 6.1,
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VxesduecB,(x), Cu(d, ¢)-YxesByx).

From this and the existence condition for Cy, we obtain (3). This com-
pletes the proof of Theorem 6.1. g.e.d.

7. Alternative Versions of Induction Principle

Let Trans(z) (“Trans” for transitive) be the RF':VxezVyex(yez).
Then we have

T.7.1. 3Jz(aez ATrans(z)).

Proof. Let A(a) be the > F to be proved. We prove it by the
primitive induction. It suffices to show

(i) HA0)
and
(i) A(ay), A(ay) —Alay#a,).
(i) follows from
0e0#0A Trans(0#0).
and (ji) from
a,€ by ATrans(b,), a, € b, A Trans(b,), Cy(c, by, by)
ba,#a,ec#(a #a,) ATrans (c#(a, #ay)),

by (1) in the section 5. g-e.d.

The following versions of induction principle hold:

Theorem 7.2. (i) If VxeaA(x), '+—A(a), where a occurs neither
in A nor in I', then I —A(t), where t is any term.

(ii) If VYxeaVyebA(x, y), [+—A(a, b), where a and b are distinct
free variables occurring neither in A nor in I, then I —A(s, ), where
s and t are terms.

(i) If VxeaA(x, b),VyebA(a, y), I'=A(a, b), with the same restric-
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tion on a, b as above, then I —A(s, t).

Proof. (i) Suppose that VxeaA(x), '+—A(a), where a occurs neither
in A nor in I'. If we have

(1) I'+—VYxeO0A(x),
and

(2) Vxeb,A(x), Vxeb,A(x), T —Vxeb,#b,A(x),
where b, and b, are new free variables, then we shall have
I'Vxet#tA(x),
by the primitive induction and hence have, by (bVE),
T'+—A(Y),

since Htet#t.
So it suffices to prove (1) and (2). But (1) is obvious (use (OE) and
(bVI)). In order to obtain (2) it will suffice to show

(3) ceb,#b,, VYxeb,A(x), Vx € b,A(x) —A(c).
But obviously, we have
(4) ceb;, Vxeb A(x), Vx e b,A(x), I —A(c).

Moreover, by hypothesis (using the substitution theorem (Theorem 4.1 (ii)))
we have

Vx € byA(x), I' —A(b,).
From this and the equality theorem (Theorem 4.4) we have
(5) c=b,, Vxe b A(x), Vx € b,A(x), I' —A(c).

Now (3) follows from (4) and (5) by (#E).
(ii) Suppose that

VxeaVyebA(x, y), [ —A(a, b).

We easily have
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Trans(c), bec, VxeaVze cA(x, z), [ —VxeaVye bA(x, y).
It follows from the last two facts that
Trans(c), bec, VxeaVzecA(x, z), [ —A(a, b).
Hence by (bV1),
Vx e aVz e cA(x, z), Trans(c), I' —VYz € cA(a, z).
Then we can make use of (i) of this theorem to show
Trans(c), ' —-VzecA(a, z).
From this by (bVE) we have
bec, Trans(c), I' —A(a, b).

Now I' —A(a, b) follows from T.4.3, by (3E). Finally, by the substitution
theorem we have I' —A(s, t).
(iii) We have

bec, VxeaVyecA(x, y)-Yx e aA(x, b),
and
bec, Trans(c), Vye b(y e c—A(a, y)) =Yy e bA(a, y).
Hence by the assumption
bec, VxeaVyecA(x, y), Trans(c), Vy e b(y e c—A(a, y)),

I'+A(a, b).

Hence
VxeaVyecA(x, y), Trans(c), Vy € b(y e c—A(a, y)),
I'~bec—A(a, b).
By (i) of the theorem we obtain
VxeaVyecA(x, y), Trans(c), ' —bec—A(a, b).

By (bVl),
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VxeaVyecA(x, y), Trans(c), [ —Vy e cA(a, y).
By (i) of theorem again,
Trans(c), '—VyecA(a, y).
But since 3c(becATrans(c)), we have
I'~A(a, b).

So we have (iii) by substitution. g.e.d.

8. The Law of the Exciluded Middle

Let us recall here that the underlying logic for FCS is intuitionistic
but not classical, and so the law of the excluded middle cannot be as-
serted from the outset. It cannot even be stated. (Recall that the nega-
tion of Z-formula is not always a X-formula.)

However, as is expected, for restricted formulas this law can be
stated of course and does hold!

Theorem 8.1. For each RF ¢, we have
I_(p V d 8
To prove this we shall make usc of the following two lemmas.

Lemma 8.1.1. For RF’s ¢ and  we have

(i) oV—=0pF—0pV——0,

(i) @V—=o,¥yV—=yr@APV—(pAY),

(i) V=0, yV—=UH@VY)V—=(eVY),

@iv) VYxea(p(x)V —e(x))FVxeap(x)V —Yxeap(x),
(v) Vxea(p(x)V—o(x))—3Ixeap(x)V —Ix e ap(x).

Proof. (i)-(iii) are tautologies of the intuitionistic propositional
calculus. To obtain (iv) we shall prove

FVx e a(p(x) V —o(x))—(Vx € ap(x) V —Vx € ap(x)),

by the primitive induction on a. Then we shall readily have (iv). Let
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¥(a) be the formula to be proved. Then it suffices to show

(1) Fx0) and (2) ya,)x(a,#a,).

(1) follows from the fact that —VxeO¢(x), by (vVI1) and (—1). On the
other hand (2) will follow from the following facts

(3) Vxea;#a)(o(x)V —o(x)HVx € a,(p(x) V —o(x)) Alp(az) V —¢(as)),
(4) Vxea, #a,p(x)HVYx € a,0(x) A p(a,).
Indeed from (3) we have
Vx e a; #a5(e(x) V —p(x)),
xa) —(Yx e a,p(x)V —Yxea,p(x) A(p(a) vV —o(ay)).
Hence by (i) of this lemma
Vx ea; #a)(p(x)V—o(x)),
2a,) =(Vx e a,p(x) Ap(az)) V —(Vx € a,0(x) A ¢(a,)) .
So by (4) we obtain
Vxea, #a@(x)V —o(x), x(a,) FVx€a, #ap(x)V —Vx € a, #a,p(x),

from which (2) surely follows.
As for (v) we can prove it similarly to the previous case.

Lemma 8.1.2. (i) +—a=bVa#b.

(i) FaebVvadb.
(a#b and a¢b are of course abbreviations of —(a=b) and —(aeb)
respectively.)

Proof. To prove (i) we utilize the induction principle of Theorem
7.2 (ii). We have only to show

VxeaVyeb(x=yVx#y)a=bVa#b.
This comes from the fact that

a=b=2(Vxeadyeb(x=y)AVyebixea(x=y))
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with repeated use of the previous lemma. (ii) then follows from (i)
and the fact

Faeb=3zeb(a=2z)
together with the previous lemma. g.e.d.

Proof of Theorem 8.1. We prove the theorem by the metamathe-
matical induction on the length of ¢. But this can easily be carried out
using the previous two lemmas. g.e.d.

Corollary 8.2. For restricted formula ¢(a), we have
(i) —Vxeap(x)=Ixea—op(x),

(ii) —3Ixeap(x)=Vxea—o(x),

(i) ——o=0,

V) orY iff =Y F—0o.

By the same method as used to prove Lemma 8.1.1, we can prove
Theorem 8.3. (i) Vxea(A(x)V B(x))-VxeaA(x)V3IxeaB(x).
(i) VxeaVyeb(A(x, y)V B(x, y)) -VxeadyebA(x, y)VIxeaVy
€ bB(x, y).
Proof. We shall prove by the primitive induction on b that
Vxea(A(x)V B(x)) b<a—VYxebA(x)VIx e bB(x).
Then (i) follows by taking a as b. It suffices to prove
Vx e a(A(x) V B(x)), b; ca—Vxe b, A(x)V Ix € b, B(x)
b,#b,ca—Vxeb,#b,A(x)Vixeb,#b,B(x).
This follows from
b,#b,cal-b;caAb,ea,
Vx € a(A(x)V B(x)), b, e at-A(b,) V B(b,),

Vx € b, A(x)V Ix € b, B(x), A(b,)V B(b) —Vx € b, #b,A(x)
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Vixeb,#b,B(x).
(ii) can be proved by using (i) twice:
VxeaVyeb(A(x, y)V B(x, ¥))
—VYxea(3y e bA(x, y)VVyebB(x, y))

VYxeadyebA(x, y)VIxeaVyebB(x, y). g.e.d.

9. 4-Formulas

It would be interesting to consider how one can describe the situa-
tion that the law of the excluded middle virtually holds for a Z-formula
A which is not necessarily a restricted formula. We shall do this by the
use of pairs of Z-formulas.

Definition 9.1. A pair (4, B) of Z-formula is called a A-formula
(abbreviated AF), if

AVB and AABRA,

where A is an identically false formula, e.g. 0€0.

Thus, saying that (4, B) is a A-formula is that the Z-formula A
has the negation which is provably equivalent of another X-formula B.

For example, let ¢ be a restricted formula. Then both ¢ and —¢
are Z-formulas and we have

FeV—¢ and @oA—@H A.

Hence the pair (¢, —¢) is a A-formula. Similarly (—¢, @) is also a
A-formula. Moreover we have

Theorem 9.1. (i) If (A4,, B,) and (A,, B,) are A-formulas, then
so are (B, A;), (A, AA,, B,V B,) and (A;V A,, B; AB;), which we shall
denote by —(A,, B,), (A, By)A(A,, B;) and (A,, B))V(A,, B,) respec-
tively.

(ii) Suppose that A and B are 3 F'’s such that V(A)nB, V(B)NB
c{x}, that a¢V(A)UV(B) and that t is a term. Then if (A(a/x),
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B(a/x)) is a AF, so are (A(t/x), B(t/x)), (3x € tA(x), Vx € tB(x)) and
(Vx etA(x), Ix e tB(x)), which we shall denote (A, B)(t/x), 3xet(A, B)
and Vx e€t(A, B), respectively.

Proof. (i) If (A, B;) and (A4,, B,) are A-formulas, we have by
definition,

FA; VB, AyAB A, A,V B,, A;AB, - A
Now the first two results follow from the following tautologies:
A VBB, VA,
BiANA A AB;y,
Ay VB, Ay VB -(A; AAy) V(B V B,y),
By, A{NA,-A, A By,
By, AiANA;—A, A B,

The last result of (i) follows similarly.

(ii) Suppose that (A(a), B(a)) is a AF. Then by substitution theorem
we easily have that (A(f), B(t)) is also a AF. To prove that (IxetA(x),
VxetB(x)) is a AF, use Theorem 8.3. g.e.d.

Definition 9.2. For a AF (4(a), B(a)), we define 3x(A(x), B(x)) to
be the Y F: 3xA(x).

Theorem 9.2. (i) AABH A iff —(A.AB,),

where ¢ is a free variable occurring neither in A nor in B.
(ii) If (A, B) is a AF, then A+ A iff =B (and B A iff FA).
(i) If (A,, B,) and (A,, B,) are AF’s, then

A, A, iff BBy,
and hence
A HA4, iff BiHB,,

(If the latter is the case we may write (A,, B;)H(A,, B;).)
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The proof of this theorem is obvious and hence is omitted here.
The notion of 4-formulas can be generalized to the notion of parti-

tion.

Definition 9.3. An n-tuple (4,,...,4,) of > F's is a partition (an
n-partition) iff

FA V- VA,
and

A;NAEA for all i, j=1,...,n; i#j.

Theorem 9.3. If (A,,..., 4,) is a partition and if {iy,..., ;3 U {jps--»

Jja={1,...,n}, where i,..., iy, j1,.... j are distinct, then
(A;, V- VA, Aj, V-V A;)

is a AF (2-partition).

(i) If (A,...., A,) and (B,,..., B,,) are partitions, then

m

(Al /\Bh Al /\EZ"-~: AH/\Am)

is a partition.

@iii) If (A4, By)s..., (4,, B,) are AF’s, then (A, BiAA,, BiABy,AAs;,...,
BiAB,A---AB,_{ANA,, BIAB,A---ANB,_{ AB,) constitutes an (n+1)-
partition.

10. Expansion by Definition of Predicates

Let (C, D) be a AF such that V(C)u V(D)={a,,..., a,}. Then we can
expand the system FCS (or an expansion of FCS) by introducing a new
predicate symbol, say P, and letting

C(ay,...,a)—P(ay,..., a,)
and

D(ay,..., a,)——P(a,,..., a,)
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as defining postulates. (Then we easily have the converse directions
P(ay,..., a,)—C(ay,..., a,)
and
—P(a,,...,a,)-D(ay,..., a,),

since (C, D) is a AF.)

This kind of expansion can of course be repeated and it is strongly
conservative in the sense that (i) each X-formula in the expanded lan-
guage is equivalent to a ZXZ-formula in the previous language and (ii)
the derivability of Z-formulas in the previous language does not alter
through this expansion, i.e., if I' is a finite set of > F’s in the previous
language and A4 a X F in the previous language, then I'-A in the
expanded language, iff I'A4 in the previous language. (We say an ex-
pansion is conservative if (ii) is satisfied.) Since this kind of expansion
is not so standard, we shall outline the proof of this fact below. For
convenience’ sake we refer to the expanded system as FCS'.

We shall first describe FCS’' a bit more precisely. Semi-terms and
terms of FCS’ are the same as those of FCS. RF’ in FCS’ is defined by
adding to the corresponding definition in FCS the following clause:

e If t4,...,t, are semi-terms, then Pt,---t, is a RF’. (Instead of
Pt,---t, we also write P(#y,...,t,).) The definition of Y F’ in FCS’ is
the same as before up to the meaning of RF’. Note that according to
definition —P(t,,...,t,) is RF’ and hence > F’ in our new sense while
—C(ty5..., t,) is neither RF’' nor Y} F’ in our old sense although these
two formulas are intuitively equivalent.

Moreover we define

V(Ptl"'tn)=V(t1) u--u V(tn)’

in addition to the corresponding definition of ¥V in FCS. Then RF and
>'F are defined as in FCS. The substitution is defined with

Pty (r/v) <Pt ,(r/v) - t,(r/v),

in addition to the previous cases. The notion of derivation P:I'-A4 is
defined as before with the additional clauses:
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(xxii)p If P. I'-C(4,...,1,), then : T'HP(24,t,),

P
Py, 1))

and

(xxiii)p If P: I'-D(t4,...,¢,), then : T'=—=P(ty,..., t,).

P
_’P(t],..., tn)
Now we prove

Theorem 10.1. The expansion from FCS to FCS' is conservative.

Proof. Let vy, vy,... be the list of bound variables and let m be
such that bound variables occurring in C and D are among vy, Uy,...,
Uy—1. Then we define [t],, for each semi-term t in FCS' by [0],,=O0,
[V 4 m=Vism [a)im=<a (a: free variable) and [#st],,<# " [)im Ltlsm

We first assign to each RF'¢ in FCS’, a pair of YF' in FCS,
<@>=([¢l+, [@]-) as follows:

1°. Cesty=(e " [slem [lim — € [s1um [t1sm)s

2°. (Pt 1> =(C([t1 s moe- > (BT 4 m)s D([t; 1+ mse-s [tad ™)
3% L=o>=([e]-, [o]H),

4°. (voyy=(v el Wls, ATle]l-"TY1o),

55 (Ao =(A"Tel "Y1, VT Llel-"T¥1-),

6°. (Fuiete)=@viyme [im [0]ss Y0iime  [11n [0]-),
7. KV, €t0) =01 € [t]1m [@1ss 0iime " [tlrm [e]-)-

Then it can easily be seen by Theorem 9.1 that if ¢ is an RF in FCS’,
then

{p) is a AF in FCS.
Next we assign to each > F’, 4 in FCS’ a Y F’, <{4)) as follows:

1°. Ke>)=[e],, for RF’,

2°. KV AB)) =V (KA)){(B)),
3% KKAABY)Y = A LAHKB)),
4. (=eB))=—-""[p]-TKB)),

* The substitution operation must be generalized.
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5°. KAv;etAyy=Av; € T[]y (KA,
6°. (Vv €td)y=Vv;, € [t]sn (A,
70' <<HUiA>>XBUi+mA<<A>>-

As is expected, {{A))> does not contain any of bound variables uvy,...,
Vpe 1
Now we observe that

(1) AHLKLA,

by the induction on A. This shows that each > F in FCS’ is equivalent
to a > F in FCS. Moreover we can show that

(2) If T'A in FCS’, then I))H<LAY> in FCS, (where <I'>)
={{(A))|AeT}) by the induction on I'A. Then, in particular, letting
I' be empty and A be in FCS, we have that if —A4 in FCS’, then A4
in FCS, since ({A>) is, in this case, obtained from A merely by some
change of variables. Since another direction is obvious we conclude that
the expansion under consideration is conservative. g-e.d.

Remark. WNote that all the metatheorems proved so far are valid
in an expansion of this kind.

Remark. Of course we could also consider conservative expansion
by the definition of a X-predicate (i.e., a predicate defined by a Y F).

11. Expansion by Definition of Function

We can also expand our system FCS by introducing function sym-
bols. In general, when we have

F31xD(x, ay,..., a,),

where D is a 3 F' in FCS (or an expansion of FCS) such that V(D)
c{x, a,,..., a,}, we introduce a new function symbol, say f, of n vari-
ables and adopt

D(f(al"": an); als---a an)

as the defining postulate for f.



A FOUNDATION OF FINITE MATHEMATICS 617

Through this expansion such syntactical notions as Z-formula, deriva-
bility are naturally changed. Although how they are to be changed is
almost apparent, we explain it briefly. First the definition of terms is
so changed that the following clause (iv), is added to the previous ones:

@iv), If t,,...,t, are terms, then ft;---f, is a term.

Similarly for semi-terms. The definition of RF’ and Y} F' are not
changed up to the meaning of semi-terms, and the definition of deriva-
bility is not changed up to the meaning of RF and } F.

This kind of expansion (called an expansion by definition of function)
can also be repeated. It is conservative, too. We omit the detail of
proof of it since it is standard and somewhat similar to the proof of
Theorem 10.1. We only note hcre that e.g. Yxef(¢)-(---) is equivalent to

yp(y=f()AVxEY(-)).

Theorem 11.1. An expansion by definition of function is conserva-
tive.

Theorem 11.2. If 3'xD(x, ay,...,a,) and if (A(x), B(x)) is a AF,
then

Ex(AX)AD(x, ay,..., a,), 3Ix(B(x) A D(x, ay,..., a,)))
is a AF. In particular
(DO, dy,..., a,), IX(x#0A D(x, ay,..., d,)))
is a AF.

Proof is omitted.

12. Finite Set Theory

We have already defined the set-theoretic notions such as ‘“Trans(a)”
and operations such as ‘““‘aUb”. In this section we shall define many
other such notions and operations and develop a rudimentary part of
finite set theory, in our system. In order to indicate expansions, we
shall only give the dcfining postulates of new concepts. They will be
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listed as ““D.12.17, “D.13.2”, etc. There will also be a kind of meta-
definitions which provide a uniform method of giving (infinitely many)
defining postulates. They will be distinguished as ‘‘Definition”.

D.12.1. (i) c={a, b}=c=(0#a)#Db,
(i) c=<a, b)=c=0#O#a)#(0#a)#Db).

These are justified by the fact that 3!y(y=rf), where ¢ does not contain

y.
As usual we have

T121. () de{a, bj=d=aVvd=b,

(ii) <a, b)={{a, a}, {a, b}},
(iii) <a, bY=<c,d)—a=cAb=d.

More generally we define

Definition 12.2. (i) c={a,)=c=a,,

(ii) for n>1, c=<ay, a5, Ay 1)=C=C01,{Ag5e 0 Ay 1P -
From T.12.1 follows
Theorem 12.2. <(ai,..., a,y=<{by,..., byy)—a,=b;A---Na,=b,.
Now we prove the following comprehension theorem:
Theorem 12.3. (i) Let @(b) be an RF. Then
FIly(ySaAVxea(xey=p(x))).

(ii) Let (A(b), B(b)) be a AF. Then 3ly(ycaAVxea((xey—Ax))A
(x¢ y—B(x)))).

Proof. Since (i) easily follows from (ii), we only treat (ii). Since the
uniqueness is obvious we only prove the existence of y. Let C(a, c) be
the formula:

ccaAVxea((xec—A(x)) A (x¢c—B(x))).

By primitive induction we have only to prove
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@) =3yC(0, y)
and
) 3yC(a, y)-3yC(a#b, y)

(1) is obvious since C(0, 0), while (2) follows easily from
C(a, c) NA(b)=C(a#b, c#Db)
and

C(a, ) ANB(b)=C(a#b, c). g.e.d.

Theorem 12.4. Suppose F(b, ay,...,a,) is a term in an expansion
of FCS by definition. Then one can define an expansion by definition
of function f(b, ay,..., a,) such that

(3) =Yy ef(b, ay,..., a,)3ze b(y=F(z, a,,..., a,))
AVzeb(F(z, ay,..., a,)€f(b, a,,..., a,)).

Moreover such a function is essentially unique, i.e., if f; and f, satisfy
(3) then

I_fl (b, Ayseees all)=f2(b3 Aysenes an)'

We shall denote f which satisfies (3) by F". (This can be also con-
sidered as replacement theorem.)

Proof. Prove
3leVyec3ze b(y=F(z, ay,..., a,)) AVze b(F(z, ay,..., a,) €C),

by the induction on b. Then we can define the function f as required.
g.e.d.

The following is the axiom of foundation in the axiomatic set
theory.

T.12.5. (1) VxeadyeaVzea(zé¢y),

Giy a¢a,
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(iii) —(aebAbea).
Proof. First we prove
Vyeadzea(zey)bd¢a

by the primitive induction on =x¢a. Then by reductio ad absurdrem
(corollary 8.2 (iv)) we have

bearIdyeavzea(z¢y),

from which (i) follows. (ii) and (iii) follow f[rom (i) by substituting
O#a and (O#a)#b for a, respectively. g.e.d.

Next theorem asserts the existence of sum sct.
Theorem 12.6. 3ly(Vxeydzea(xez)AVzeaVxez(xey)).

Proof. Let C(b, a) be the formula
Vxebdzeb(xez)AVzeaVxez(xeb).

We can easily show —3yC(y, a), by the primitive induction, from the

facts

4) —3yC(r, 0) (for +C(0, 0)),
and

5) FvC(r, @) FApC(y, u#b).

(The latter follows from
C(c, a)=C(c U b, a#b).)
The uniqueness proof is obvious. g.e.d.

Thus we have proved in FCS most of the axioms of elementary set
theory, i.e., the axiom of power set, pair set, sum set, extensionality,
RF-comprehension (or A,-comprehension), X -replacement and founda-
tion. (But of course we cannot prove the axiom of infinity.)

So we can do most of elementary set-theoretic constructions within
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D.12.3. (i) c=Ua=Vxeclzea(xez)AVzeaV¥xez(xec),

(i)
(iif)
(iv)

c=aNb=ccaAV¥xea(xec=2xeb),
c=Na=cS UaAVxe Ua(xec=Vyec(xey)),
c=a—b=ccaAVxea(xec=2x¢b).

The definition (i) is justified by T.12.5. (ii)-(iv) are justified by Theorem
12.3 of comprehension.

T.12.7. (i) de Ua—3Ix(dexAxea),

(ii)
(iii)
(iv)
(v)
(vi)
(vii)

(viii)

debAbea—de Ua,
deanb=deaAdeb,
a#0—(de naxVxea(dex)),
no=0,
dea—b=adeandgb,
aUb=U{a, b},

anb=n{a, b}.

Proof. Immediate from dcfinition.

D.124. () b=dom(a)=

(i)
(iii)
(iv)
(v)

(vi)
(vii)

(viii)

b= UUaAVYxe UUa(xeb=dye UU a({y, x> €a)),
b=rng(a)=

b UUaAVxe UUa(xeb=dye UU a((x, y) €a)),
c=axb=c<=PP(aUb)A
VxePP(aU b) - (xec=23yeadzeb(x={J, z))),

b=f 1 a=b=f n(mg(f)xa),

b=f"a=b=rg(f I a),

b=f'a=b=U(f"{a}),”
g=f"'=g<dom(f)xmg(f)A

Vxedom(f)xrng(f) (xeg=3yedom(f)-Izemg(f)-
(x=Ly, 2> ALz, ¥y €f)).

h=gof =h<rng(g) x dom(f) A
Vxerng(g)xdom(f) - (xeh=3uedom(f) -Iverng(f)-

+) This definition differs from Godcl's.
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Iw e rng(g) ({vu) ef A{wv) e g A x={wu))).

All the definitions in D.12.4 are justified by the comprehension theo-
rem.

T.12.8. (i) <bc)ea—cedom(a),

(ii) cedom(a)—3Iy(Kyc)€a),

(iii)) <bc)ea—berng(a),

(iv) berng(a)—3yKby)ea),

(v) c=axba2Vzecdxeadyeb(z=<x, y))
AVYxeaVyebizec(z=<x, y)).

Proof. Obvious from definition. g.e.d.

D.12.5. (i) Rel(n=Vxerdyexdueydve y(x=<{u,v)),

(ii) Fnc(f)=Rel(f)AVuedom(f) Voerng(f) -Ywerng(f)-
(v, upef Aw, uyef—v=w),

(iii) fFna=Fnc(f)Adom(f)=a,

(iv) [f:a-bl=fFnaArg(f)<b,

(v) [f:a=25b]l=fFnaArmg(f)=>,

(vi) [f:ai"sb]=fFnaAFnc(f 1),

(vii) [f:al2b]=[f: a2 b]ALf: ainb],

(viii) a~b=3feP(bxa)-[f: atib].

Theorem 12.9. Rel(r)HVx € rdudv(x={u, v))
Hr<=rng(r) xdom (7).

T.12.10. (i) Rel(axb),

(i) ccaxb—Rel(c)Adom(c)sbArng(c)=a,

(iii ) a<bARel(b)—Rel(a),

(iv) a#0—dom(axb)=b,

( v) Fnc(f)Aaedom(f)—f'aerng(a)A{f'a, a)€f,
(vi) Fnc(f)ALKb,a)ef—b=f"a,

(vii) fracmg(f),

(viii) Rel(f)—f Idom(f)=f A f"dom(f)=rng(f),
(ix) flacf,

( x) fla=fTl(andom(f),



( xi)
( xii)
( xiii)
(xiv)

(xv)

(xvi)

(xvii)
(xviii)
(xix)
(xx)
(xxi)
(xxii)
(xxiii)
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[f:asa]l=[f: al2isa],

Fnc(f)Agsf—Fnc(g),

acsdom(f)—dom(f | a)=a,

Fnc(f)=Lf: dom(f)=25rng(f)],

Fnc(f) AFnc(g) Aasdom(f) Aasdom(g)

AVxea(f'x=g'x)—~f la=g | a,

Fnc(f) A Fnc(g9) Adom (f)=dom(g) A

Vxedom(f)(f'x=g'x)—f=g,

0¢a—3f(fFnaAVxea(f'xex)),

(fog)oh=fo(g°h),

a~a,

a~b—b~a,

a~bAb~c—a~c,

aEb——(a~Db).

VfecFnc(f)AVfecVgec(f | (dom(f)ndom(g))
=g | (dom(f) ndom(g))—Fnc(Uc).

Sketch of proof. (xi) can be proved by formalizing the usual method

by the induction on (the cardinality of) a. (xvii) can also be obtained

by the induction on a. (xxii) is a corollary of (xi). The proofs of others

are omitted.

q.e.d.

Remark. (xvii) of this theorem is the finite choice theorem.

Definition 12.6. (i) dom(® (f)=f,

(ii)
(iif)
(iv)

Then we

dom@* 1 (f)=dom (dom™ (f)), (n=0)

dom;, (f)=rng(dom®(f)),  (i=0)
Let . be a permutation on {1,..., n}.
define

g=Conv,(f)=2g =dom;,(f) x --- xdom ) (f) A

Vx edom,y(f) x - xdom,,, () (xeg=
dy,edomy (f): -+ -Iy,edom, (f) (Yiseees Yu> €F A

X= <.V7r(1)s---s yn(n)>) .
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(V) y=a1x---xa,,,—_‘y=((a1xaz)x---)xa,,.
(vi) Rel,(r)=r=dom, (r)x:--xdom,(r) (n=1).
(vii) Fnc,(f)=Rel,,, (f) AFne(f).

Theorem 12.11. (i) Rel,(n)HVxerdy,; -3y, (x={V1s---> Vu>)s

(ii) Convyy(/)=f n(dom, (f)x--- xdom,(f)), where id is the identi-
ty map on {l, 2,..., n},

(iii) Conv,,,(f)=Conv,(Conv,(f)),

(iv) <ayseees @) €A r(1yse 005 Ay € Conv, (f),

(v) Fnc,(f)—Rel,(dom(f)).

Proof. Obvious.

Definition 12.7. For each non-negative integer n we define the
constant i (function of 0 variables) as follows:

(i) 0=0,

(i) n+l=iq#q.
Moreover for each hereditarily finite set s we define the constant s*
as follows:

(iii) s*=(-O#sP)=-)#sy),
when s={s,,..., s,} and s, <s,<---<s, in the standard ordering.

Theorem 12.12. Let r and s be h.f. sets
(i) if res, then r*es*,

(i1) if r¢s, then r¥*¢s*,

(iii) if r#s, then r*#s*.

(Of course, if r=s, then |r*=s*.)

(iv) if n<m, then |-iem.

(v) if n>m, then ii¢m.

Proof. (i) casily follows from the definition of s* by the inference
I# and T.4.3.
(ii) follows from (iii) by the fact

(6) If s={s;,..., 5.}, then

r*es*rt*=stv...vr¥=st.
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(iii) can be proved by the induction on the maximum of the ranks
of r and s, with the use of T.4.3. q.e.d.

Theorem 12.13.
VxeadvA(x, y)HIf(fFna AVxeaA(x, f'x)).

Proof. Prove
bca—3f(fFnbAVxebA(x, f'x)),

by the primitive induction on b, under the assumption Vx e adyA(x, y).

q.e.d.

D.128. (i) 1=0#0,

(ii) c=a®b=c={0}xa)U ({1} xb),

(iii) c=Paz=ccsP(bxa)AVfeP(bxa) (fece=[f:a—-b]),
(iv) c=al=ccaAVfeba(fec=[f: atiisa)).

(v) c¢=I(a)=cFnaAVxea(c'x=x).

T.12.14. () 01,
(ii) I(a)ea'Aa'cea,
(i) Oel,
(iv) ael—a=0,
(v) feta=[f:a-b],
(vi) fea'=[f:absa],
(vii) fealAgeal'—fogea!Af~lea!
AJ7tef=Ha) A fof 71 =(a) A fol(a)=f N1(a)f=],
(viti) béaAd¢c—(a~c=a#b~c#d),
(ix) a~bAc~d—a@c~b@®dAaxc~bxdAca~bAal~b!.

Theorem 12.15. 3!f(fFnaAVxea(f'x=F(x)), where F(x) is any
term of a conservative expansion of FCS described above.

Proof. Use primitive induction on a. g.e.d.

D.129. (i) If={, jYljedom(f)Aief’j}
(ii) IIf={g:dom(g)=dom(f)AVxedom(f)(g'xef'x)}.
(iii) ZbF(x, ag,..., a,)=%F (b, a,,..., a,)
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(iv) HF(x, ayye.., G)=IIF | (b, ay,..., a,)

(v) Pb {f: bi2lq}
(vi) Cpr={x<a:x~b}

T.12.16. (i) Fnc(f)AFnc(g) Adom(f)=dom(g)A
Viedom(f)(fli~g'i)—=2f~Zg ANIIf~Ilg,

(i) a®b=X{<a, 0, <b, 1D},

(iii) axb~II{{a, 0), (b, 1>}

(iv) 20=0AII0=1

(v) Zf=u{f'ax{a}laedom(f)}

(vi) Fnc(f)AFnc(g)Adom(f)ndom(g)=0

=Z(fUug)=ZfUZgAZfnZg=0
ANZ(fUug)~Zf®Zg
ANI(fug)~IIfxIlg

(vil) Z{(a, p}=ax{j}Aax{j}~a
(viii) IT{a, j>}~a
(ix) 2 F)=2XF)U % F(x)

xebUc

(x) bne= 0——\“2 cF(x)~ 2 F(x)® ZF(x)

(xi) A LT Fx)~TIF(x)x T1F(x)
(xit) ¥ Fx)~2 (2 Fx)

xeXG(y) yec xeG(y)
Gy J1, P~ TLC T o)

(xiv) x% FGOG)~ LFX)® X G()
(xv)  TT(FG)x GG~ 3 F(x)x T1G(x)
(xvi) ¥ XF(x )~ X  F(xy)

xeb yec <x,y>ebxc

(vi))  TT TTFCx, y)~ _ H F(x, y)

xeb yec ebxc

IT X F(x, y)~ Z LLF(x, f'x)

xeb yec

T.12.17. If F is a term of an expansion of FCS as mentioned
above, then
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(i) Trans(w) 3 f(fFnwAVxew(f'x=F(f | x)).

() If G(, a;,...,a,) is a function (or term) in an expansion of
FCS, then one can define a function F(a,,..., a,) such that

—F(ayg,..., a,)=G(F | (a,..., a,), Qq,..., ).

(F | is the function obtained from F as in Theorem 12.15.)
Proof. Let
V(f, wy=Trans(w) A fFnwAVxew(f'x=F(f | x)).

Then we first show
@) V(f,w), V(g, W), acw,acw'f [a=g | a.
This follows from
8) V({f,w), V(g, w)raewAaew —f'a=g'a

by using (xv) of T.12.10.
(8) is shown by the induction (theorem) on a with the use of T.12.10
(xv) again.

Next we show that

€)) 3IfV(f, Te(a)),

by the induction on a. We have only to prove

(10) Vx eadgV(g, Tc(x)) —IfV(f, Tc(a)).
Now by
(11) VxeadgV(g, Tc(x)) -

3z(Vx e adg e zV(g, Tc(x)) AVg e zIx e aV(g, Tc(x))).
But we easily have
(12) VxeadgecV(g, Tc(x)) AVg ecIxeaV(g, Tc(x))

—V(Uec, Tc(a)).



628 MoT0-0 TAKAHASHI
Moreover we have
(13) V(k, Tc(a) -V(K', Tc(a)),

where k' denote kU {<F(k | a), a)}.
From (11), (12) and (13) follows (10). Hence we have shown (9). Now

YxewdfV(f, Te(x)),
and hence
Ic(VxewdfecV(f, Tc(x)) AVfecIxewV(F, Tc(x))).
By the same way as above we have
VYxewifecV(f, Tc(x)) AVSfecIxewV(f, Tc(x)))
—V(Uc, w), and hence

F3fV, w).

Uniqueness follows from (7). g.e.d.

Elementary theory of finite groups can be formalized in FCS. For
instance, the homorphism and the isomorphism theorems are proved in
FCS with their usual proofs. For more example, the theorem that
every finite abelian group is a direct product of cyclic groups, is usually
proved using free abelian group, so that the proof is infinistic. However,
this can obviously be avoided and the theorem is proved in FCS.

One could further define in FCS, various algebraic notions such as
finite fields, finite lattices, finite partially ordered sets, etc., and develop
theories about these notions which do not use the infinite methods. It
would be interesting to see how far the extent of these theories will be
formalizable in FCS.

13. Natural Numbers and Number Theory

According to the program mentioned in Section 1, natural numbers
are here regarded as (finite) von Neumann ordinals.
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D.13.1. (i) Nat(a)=Trans(a)AVxea-Trans(x),
(ii) b=S(a)sb=a#a,

(iii) a<bssNal(a)ANut(b)Aaebh,

(iv) b>a<>a<h,

(v) a<beNat(a) ANat(b)A(aebVa=Dh),

(vi) b>a<-a<b.

Since Nat(a) is an RF, we have
T.13.1. Nat(a)V —Nat(a).
Moreover we have

T.13.2. (i) Nat(a) Abea—Nat(b),

(ii) Nat(0),

(iii) Nat(a)—Nat(S(a)),

(iv) S(a)=S(b)—a=bh,

(v) Nat(a)—a<ua,

(vi) a<bAb<a—a=bANat(a),

(vii) a<bAb<c—a<c,

(viii) a<bAb<c—a<e,

(ix) Nat(a) ANat(b)—a<bVa=bVb<a,
(x) Vxea-Nat(x)Aa#0—3IxeaVyea(y<x),
(xi) Nat(a)Aaz#0-—~Ib(Nat (b) A a=S(b)).

Proof. (i) Obviously we have
(D Nat(a), beatrTrans(b).
So, Nat(a), bea, ceblcea, and hence
Nat(a), bea, cebrTrans(c).
Therefore,
) Nat(a), beal-Vxeb-Trans(x).

From (1) and (2) we have (i).
(i) is immediate.

629
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(iii) It can be easily proved that
3) Trans (a) —Trans (S(a)).
Moreover, since ce S(a)c=aV cea, we have
Nat(a), ceS(a)Trans(c).
Therefore,
4) Nat (a) —Vx € S(a) - Trans (x).

From (3) and (4) we have (iii).
(iv) Evidently,

a#a=b#bracb#bAbea#a.
Hence,
a#a=b#bt(aebANa=b)A(beaVa=D).
But, by T.12.5 (iii)), ——(aebAbea). So we must have
a#a=b#bla=hb.

(v) Immediate from definition of <.

(vi) Use T.12.5 (iii).

(vii), (viii) Use the fact that Nat(c)+Trans(c).

(ix) We use Theorem 7.2 (iii). Let D(a, b) be the formula

Nat (a) A Nat(b)—(aebVa=bVbea).
We have to show
Vx eaD(x, b), VyebD(a, y)+D(a, b).
On account of (i) of this theorem it is enough to show that
) Nat(a), Nat(b), Vxea(xebVx=bVbex),
VyeblaeyVa=yVyea)laebVa=bVbea.

This can be proved as follows:
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Nat(a), cea, c=bVbectrbea;
ag¢b, Nat(a)Yxea(x#bAb¢x);
a¢b, Nat(a), Vxea(xebVx=bVbex)Yxea(xeb),
here we used the law of excluded middle for RF’s. Similarly,
b¢a, Nat(b), VyeblaecyVa=yVyea)-Vyeb(yea).
Hence,
a¢b, b¢a, Nat(a), Nat(b), Vxea(xebVx=bVbex),
VyeblaeyVa=yVyea)la=bh,

from which (5) follows. (The law of excluded middle is used again.)
(x) By primitive recursion, we can easily show

FVxea-Nat(x) Aa#0—3IxeaVyea(xeyVx=y),

by using (ix).
(xi) In view of (x) and (i), it is sufficient to prove

Nat(a), bea, Vyea(yebVy=>b)a=S(b).

But this is obvious since Nat(a)+Trans(a). g.e.d.

Theorem 13.3. (Primitive induction on natural numbers.)

(i) If I'+—A(0), and if Nat(a), A(a), I' —A(S(a)), where a is a free
variable which does not occur in I or in A(x), then Nat(¢), I —A(t),
for any term t;

(ii) (course-of-values induction) if Nat(a), Vx € aA(x), I' —A(a), where
a is a free variable which does not occur in I' or in A(x), then Nat (),
T'—A(t), for any term t.

Proof. We shall prove
I'=Nat ()—A(),
by the induction of Theorem 7.2 (i). It suffices to prove

Vx € a(Nat (x)— A(x)), I —Nat(a)—A(a).
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By the assumption it follows easily that

a=0, Vxea(Nat(x)—A(x)), I'+Nat(a)—A(a).
So it suffices to prove

a#0, Vxea(Nat(x)—A(x)), I'+—Nat(a)—A(a),

since a=0Va#0.
Now by assumption

Nat(b), A(b), T'+A(S(b)).
So,
a=S(b), Nat(a), Nat(b)—A(b), T+A(a),
and hence
a=S(b), Nat(a), Vxea(Nat(x)—A(x)), I'HA(a).

But by T.13.2 (xi),

Nat(a), a#0—3x(a=S(x)).
Therefore, we have

Vx e a(Nat (x)—~A(x)), T Nat(a)—A(a).

To prove (ii), use (i) with the formula VxeaA(x) instead of A4, and
then use T.7.1. (Another way to obtain (ii) is to apply Theorem 7.2
(i) directly.) g.e.d.

By T.13.2 and Theorem 13.3, we obtain Peano axioms with mathe-
matical induction restricted to > F’s (primitive induction). But the primi-
tive induction is not so weak as might seem at first sight. Indeed,
almost all the theorems of elementary number theory are provable with
the use of this induction.

Incidentally, we prove some more variants of primitive induction.

Corollary 13.4. If we have

Nat(a), A(f(a)), I'—A(a)
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and
a#0, Nat(a), I'—f(a)<a,

where a does not occur in I' or in A(x), then we have I —A(a).
Proof. Immediate from Theorem 13.2 (i). g.e.d.

Remark. This also holds when < is replaced by some standard
ordering isomorphic to w? or even to w”. This is shown by Tait [1]
and Guard [1], for different (but essentially equivalent) systems.

Next we shall introduce various number theoretic functions and
predicates in our system. To do this we wish to extend our system by
definitions of these functions and predicates. Since these functions are
defined only over natural numbers but not over all h.f. sets, we adopt
the convention that these functions take 0 as value for arguments which
are not natural numbers. In case of a number theoretic predicate we
also adopt the convention that it takes the true value only for natural
numbers.

For notational simplicity we introduce thc new variables ranging over
natural numbers:

A) [l: \’, /]“15 “13 \'1,... .

For ecxample, J1A(A4) mcans dJx(Nat(x)A A(x)), Vie y4(4) means Vxe
y(Nat(x)—A(x)) and VA<pA(L) means YxepuA(x). Moreover HA(y,...,
Aoy X 5.-05 Xp,) MICANS

FNat(y ) A ANat(y,)—= A 155 Vs X1seor Xm) 5
or what is the same,
Nat(y1),..., Nat(y,) AV (55 Vi Xgsenes X -
Now suppose that
(EI!vD(v, Hisenes 1)
6) } and

1 D(b, ay,..., a,)-Nat(b) A Nat(a,;) A --- ANat(a,).
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Let D'(b, ay,..., a,) be
D(b, ay,..., a,)V(b=0A —(Nat(a,) A --- A Nat(a,))).
Then we easily obtain
AyD'(y, a,,..., a,) .

So by Section 11, we can introduce a new function symbol, say p, such
that

'—D’(p(als---a an)9 Ayse.ns au)'

This is characterized by

FNat (p(i1s--os ) AD(P(H1s--o5 Bds Biseess Bn)

and
_'(Nat(al) A A Nat(an)) l_p(als---s an)=0'

This is a general method of introducing number theoretic functions into
the system.

However, number theoretic functions are often defined recursively
but not explicitly as (6). As is well-known, recursive definitions can be
reduced to explicit ones in usual number-theoretic formal system such
as first-order number theory. The same is true for our system FCS,
which is logically weaker than the first-order number theory. This is
stated as follows:

Theorem 13.5. Suppose G(a,,...,a,) and H(b,c, ay,...,a,) are given
function symbols or terms in some expansion of FCS by definition.
Then one can introduce a function F(b, a,...,a,) in some expansion of
FCS by definition, such that

—F(, ay,..., a,)

@) +~F(S(v), ai,..., a,)=H(v, F(v, ay,..., a,), ay,..., a,)

—Nat(b) -F(b, ay,..., a,)=0.

Moreover such an F is essentially unique in the sense that if both F



A FOUNDATION OF FINITE MATHEMATICS 635
and F' satisfy the above conditions, then
—F(b, a,,..., a,)=F'(b, ay,..., a,).
Proof. Let W({, b, aj,..., a,) be the formula
Nat(b) A fFnS(b) A f'0=G(ay,..., a,)
AVyv<b(f'SW)=H(, f'v, ay,..., a,)).
We can prove
Nat(b)—3fW({, b, ay,..., a,)
by the induction of Theorem 13.3. Moreover we have
bsce, W(f, b,ay,...,a,), W(g,c, a...,a,)—f<g.
Now let D(c, b, a,,..., a,) be the formula
AfW(f, b, agy..., a)) Ae=f'b)v(—Nat(b)Ac=0).
Then
+3leD(c, b, ay,..., a,).
So by Section 11, we may introduce a function symbol F such that
—D(F(b, ay,..., a,), b, ay,..., a,).

Now it is obvious that F satisfies the required condition. Next suppose
F and F’ satisfy the condition (7). Then we can prove

Nat(b)—F(b, ay,..., a,)=F'(b, ay,..., a,)
by the induction (by Theorem 13.3) on b, and also
—Nat(b) —F(b, a,,..., a,)=F'(b, ay,..., a,)

since —Nat(b)—F(b, a,,..., a,)=0 and the same for F’. In view of
T.13.1 we have the uniqueness of F. g.e.d.

Example. The addition A=u+v can be defined explicitly by
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f(FEnS) A [O=p AVE<V(f'S(O=S(f"ONAA=f"V).

(We adopt however another definition of the addition, c.f. D.13.4,
below.)

In the above theorem, G and H may not be number-theoretic func-
tions (i.e., those functions which take natural numbers as values for natu-
ral number arguments and O otherwise).

But if both G and H are number-theoretic, then resulting F is also
number-theoretic and is the one obtained by the usual primitive recur-
sion. Since other schemata to define primitive recursive functions (i.c.,
successor, constant, projection and composition) are all at hand in our
system, it follows that all the primitive recursive functions are definable
in FCS (by Z-formulas).

Furthermore, each instance of the inference rules of primitive recur-
sive arithmetic (abbreviated PRA) given by Goodstein [2] or Curry [1]
is easily provable in FCS. (PRA was first introduced by Skolem [1].)
It follows that PRA is embeddable into FCS. We state these results as

theorems:

Theorem 13.6. Evcry primitive recursive function is definable in FCS
by a X-formulu, and every primitive recursive predicate is definable in
FCS by a A-formula.

Proof. The first part of the theorem was mentioned above. To be

more detailed,
D(b, a)e=(Nat(a) A b=S5(a)) V (—Nat(a) A b=0)
defines the successor function,
D(b, ay,..., a,)==b=0
defines the identically-0 function,
D(b, ay,..., a,)=b=aq;
defines the i-th projection (of n arguments), and

D(b, ay,..., a)&=>3x - Ax(By(xy, ay,..., dy)
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/\ ot A Bm(xm, al’ "y all) /\ C(b’ ‘Xl""’ x"l))

defines the composition (of the function defined by C and those by B/’s).

The second part of the theorem follows from the first part, since
if a primitive recursive predicate P is defined by a primitive recursive
function F informally by

P(I»h,---, /-111)<2>F(:“13"'5 ,u,,)=0,
and if F is defined by a 2-formula D of our system:
b=F(ay,..., a,) =D, ay,..., a,),

then P(a,,..., a,) is dcfined by the d-formula (B(d,,..., a,), C(ay,..., d,)),
where

B(ay,..., a,)==Nat(a,) A --- A Nat(a,) A D, a,..., a,)
and
Clay,..., a,y=Nat(a;) A --- ANat(¢,)—3Ix(x#0A D(x, a,..., a,)) -

That (B, C) is a AF would be an casy cxcrcisc. g-e.d.

Theorem 13.7. Via the above interpretation, «ll the equations
provable in PRA are provable in FCS.

We omit the detailed proof of it.

We could proceed to develop number theory along the line of PRA
(cf. Goodstein [2], Hilbert-Bernays [1]). But we adopt another way,
which will turn out to be more natural and simple for our system.

We begin by decfining the cardinality of sets:

D.13.2. C(n, a)&>a~n A Nat(n).
T.13.8. 3!nC(n, a).

Proof. By T.12.9 (xxii), v&ukvapu. But, as is casily scen, v<p
—Fv&u. So,

V-
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From this with T.13.2 (ix), it follows that
HFEV Uy,
Hence
Cu, a), C(v, a)pu=v.
Uniqueness is proved. Obviously,
beata#b=a.
Hence
(8) bea, C(n,a)—C(n, a#b).
On the other hand we easily verify that
[f:a2n], béar[fU{n, bY}: a# b2, S(n)].
So,
9 C(n, a), bé¢aC(S(n), a#b).
Using (8) and (9) with —beaV b¢a, we have
InC(n, a) —3InC(n, a#b).

But +—3nC(n, 0) is clear. So, by the primitive induction we have InC(n,
a). g.e.d.

By T.13.8, we can define @ by
D.13.3. C(a, a).

We are now in a position to define addition, multiplication etc. of
natural numbers:

D.134. (i) putv=ud®v;
(i) pv=pxv;

(iii) w="p;
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(iv) wl=pl;

(v) p=v=p—v;
fv,if vedom(f),
(vi) (f)v=[

0, otherwise;

(vii) Tf=Zf:

(viii) TIf=117;

(ix) plve=3A(pxi=v);

(x) A=[puhle=AE<v(p=1.v+EV(=0A1=0);
(xi) rem(u, v)=p=[u/v]-v;

(xit) (4)=,C.;

(xiii) a=b(m)erem(a, m)=rem (b, m).

(These definitions should be interpreted as such define functions whose
values for natural number arguments are as in their definitions and 0
for other arguments.)

T139. (i) A+u=p+i
i) (A+w+v=i+Qu+v),
i) A-pu=up-i

iv ) (A-w-v=~4.(u-v),

v ) GA+w.v=A.v+u.v,
vi ) Amtv=]r- Qv

vii ) (uev)r=ptovh

viii ) u+0=pAu+1=5S),
ix ) p+ES)=Su+v),

) u-0=0Au-1=p,

) p-(Sv)=p-v+p,

( xii ) ptv=A—=v=~4=y,
(xiii ) p.v=AAp#0—v=[A/u],
(xiv) p<vov=p+(v=p),

( xv) v<pu—v-=pu=0,
(xvi) phv—=v=[v/p] p,
(xvii) v=[v/u]-p+rem(v, p),
(xviii) v>0—v>rem(y, v),

>

AN AN AN AN A A AN A

>
=.
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( xix )

(xx)
( xxi)
( xxii )
( xxiii )
(xxiv)
( xxv)
( xxvi)
(xxvii)
(xxviii)

Proof.
them as us
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v>0Av>pu—[u/v]=0Arem (i, v)=y,
0l=1,

(Sw!t=(Sp) - ul,
P(a)=24,
§2< > 2v>=2u— 1,

(Bi)=Go ()
a=a(m) A(a=b(m)—b=a(m)),

A(a=b(m) A b=c(m)—a=c(m)),
m#0—(a=0(m)=ml|a).

For (i)~(xi), use T.12.14. For others one can also prove
ual. g.e.d.

Although the above definitions are obvious, the following one is

somewhat technical.

D.13.5. (i) Cb(f)e=Fuc(f)AVxermg(f)(Nat(x)Ax#0),

(i)

(iii)
(iv)
(v)

(vi)
(vii)
(viii)
(ix)
(x)

h=fsg==>Fnc(h) Adom (h)=dom (/) U dom(g)
AVxedom(f)ndom(g)-(I'x=f'x+g"'x)
AVYxedom(f)—dom(g).(h'x=f"x)
AVxedom(g)—dom(f).-(I'x=g'x),

Ifll= > f'x
xedom( f)
Kayy={1, a>},

h=A(g)Fnc(h) Adom (h)= U {dom (f)|fedom(g)}
AVxedom(h).-(h'x= ¥ (/'’x)-(g'f)),
xedom( f)
h=rg(f)=hFnrng(f) AVxedom(h).(h'x=f"T{x})
Fer (f)e=Cb(f) AVxedom(f)(Nat(x) Ax#0),

Iif= 3 (f'x)x,

xedom([f)

I*f= T] &I,

xedom(f)
{a}} =1, x)|xeaj.
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Then we easily obtain

T.13.10. (i) Cb(fHH)—Nat(lfI),
(ii) Cb(0)A|0]=0,
(iii) Cb(f)—f20=f,
(iv) CbLa)AKady=1,
(v) 2#£0=Cob({{4 adP) A KA ad} =14,
(vi) Cb(f)ACb(g)—~Cg(f2g)A fag=gaf Al f2gl=IfI+lgl,
(vii) Cb(f)ACb(g) ACb(h)—(fag)ah=fs(gah),
(vii) Cb(g)AVfedom(g) Cb(f)—Cb(4(g)All4(g)]= fegm(g)!lfll"'f,
(ix) Cb(f)AVxedom(f)- Nat(x)—Nat(Z*f) A Nat (IT*f),
(x) Cb(f)ACb(g)AVxedom(f)-Nat(x)
AVx edom(g)- Nat(x)—Vxedom(fag)- Nat(x)
AZ¥(fag)=2*+2*g AIT*(fog)=(IT*f) - (IT*g),
(xi) Z¥0=0AZ*U)>=AA(u#0—=2%{pu, A} =p- 1)
AIT¥O=1 AIT*LAY> =A A (u#O=TT*{ 1, 1)} =),
(xii) Cb({{a}}) A [{{a}}]=a,
(xiii)  Fnc(f)—=dom(f)=[rg(Nl,
(xiv) Cb(f)A f#0—3Ipedom(f)-3Ig(Cb(g) A f=g2p>>),
(XV) pi#P2AP1#Ps A APum i #Dy
Ady ZEOA = Ady#0=Cb({{Ays Prdseees o Pud))
ANZF{ gy P1Yseees Ky PO} =21Py+ o+ 2Dy
ANIT*{y, p1Dseeos s Pad} =ph - pim.

D.13.,6. (i) Prime(A)e=Vu<AVw<A(u - v#A)AL#OALA]L.
(i) PFtr(f)eFtr(f) AVxedom(f)Prime(x).

T.13.11. (Factorization theorem).
A#0—=3f(PFtr () A A=IT*f).

Proof. Existence proof is as usual and by course-of-values induction
on A. Of course, we use the fact that

Prime (1) A —Prime ().

It holds since ‘“‘Prime” is an RF in some conservative expansion of FCS.
Then, we proceed as usual:
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Prime (A)—=PFtr ({{ADD) A A=IT*{{A)).
A=1—=PFtr(0) A A=1IT%0,
A#OAA#]1 A —=Prime (A)—3Ju<iIv<i(A=pv),
PFtr (f) APFtr(g) A u=I1*f
Av=I*g—PFtr (fag) A uv=IT*(f »g).
From these
VYu<A(u#0—=3f(PFtr(f) A u=IT*f)
FA#0—=3f(PFtr (f) A A=IT*f),

and the course-of-values induction is complete.
To prove the uniqueness we shall follow a simple proof due to
T. Takagi [1]. First it is obvious that

PFtr(f)AA=IT*f—~fcAix A
In view of this it suffices to prove
A>2—-VfeP(Ax1):VgeP(AxA): (PFtr(f)
APFtr(g) AA=IT*f=IT*g— f=g).

Denote this XF by A(1). We prove it by course-of-values induction on

A
Vu<lA(w) —AQ).
Now
Cb(f) AA=IT*f AL=2+f#O0ACb(f)
+3pedomf3g(Cb(g) A f=g2{p>)).
Hence

Cb(f) AA=IT*f A 2>2+3p3f,(Cb(g) A Prime (p) A A= p. IT*f,).

So it suffices to prove
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Vu<lA(u) AA=p.IT*f,=q.1T*g, ACb(f;) ACb(g,)

A Prime (p) A Prime (q) ={{p))a fy =<Lq))2g;.

Denote the left-hand side formula by B.
B A p=q +IT*f; =1I*g, <A APFtr (f;) APFtr(g,).
Hence using Yu<AA(n), we have
(10) BAp=qFp=qAfi=g: =p>)>afi=Lg>>2g;.
On the other hand
BAp<qAu=(q+p)xIT*g, Aq-=p=II*h A PFtr(h)
ANIT*fy = IT*g, =IT*h' APFtr (W) p<i
Au=II*h.I1*g, =IT*(hag,)
Au=p.-(II*f; = IT*g,)=p.II*(h')
=IT*({{p>>sl).
Let the left-hand side be I Using Vu<AA(p) again, we have
I'~pah’=hag; —pedom(h)V pedom(g,).
But we can easily show

p<q APrime(p) A Prime(g) Aq=p=IT*h-p¢dom (h).

Hence
I'—-pedom(yg,).
Hence
an I'—3g,(Cb(g;) A g =<p>>2g2).
Hence

I, Cb(g,), g1 =p>>ag, -A=p - II*f,=q.p.II*g,

HIT*f, =q - IT*g, =IT*({{q))2g,) NIT*f; <A.
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Using Vu<21A4(p) once more, we obtain
I, Cb(g,), g, =Lp>>2g, Hfi=4L{g>>29,

Py f1=LLp>>adKq>)2g,

=<{q)>a{<p>)2g,
=<{g>>29,.
Thus
', 3g,(Cb(g2) A g1 =<{p>>2g2) HLpddafi=<{Kg)>2g;.
By (11)
F=pdoafi=Kad>>eg,.
So by (3E)
(12) B, p<q=Xp>>sf1=X{a)>29,.
Similarly
(13) B, p>q HL(p>)afi=LLq>>2g;.

(11), (12), (13) with T.13.2 (ix) show
Bpdrafi=LKq>>29,,

as was to be proved. g.e.d.

D.13.7. (i) Prim(4, w<—Iv<A1<vAV[AA VW
(ii)) GCD (4, p)=v<>v|A Av|u<Prim (4/v, p/v)
(i) LCM (4, w)=2u/GCD (4, p)

T.13.12. (i) 3Fv,3v,3v v, IEQv, —uv, =8 AA=v3E A pu=v,E)
(ii) Prim(4, p)—3v,3v,(Av, = puv,=1)

(i) GCD(A, wlAAGCD(4, piu

@iv) VAAYu—v|GCD(4, )

(v) ALCM@, p) Apu|lLCM (4, p)

(vi) AlvAplv=LCM(4, w|v
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Proof is omitted.
Now, Fermat’s small theorem:

Prim(p) A A#£0 (mod. p)— 22~ ! =1 (mmod. p),

can be proved in FCS with its usual proof (e.g. group theoretic one,
since classification of elements of a finite set is available in FCS).

The existence of primitive root congruent modulo a prime:
Prim (p)—3A(AP~1=1 (mod. p) AVi<p—1 (2i#1 (mod. p))),

can also be proved by a similar method. The same holds in case of
prime power.
Lagrange’s theorem:

34,32,3053 0, (u=23+ A3+ 13 +22),

as well as other similar results concerning the sum of two or three
squares, can be proved in FCS. (e.g. the proofs of these theorems in
Landau [1] can be formalized into FCS without difficulty.)

Wilson’s theorem and the quadratic law of reciprocity can be proved
in IFCS, because they can bc proved by finite combinatorial methods.

The theory of quadratic diophantine equations and quadratic forms

(e.g. of two indeterminates) can be formalized in FCS.

14. Recursion Theorem

We shall prove a form of recursion theorem. Before stating the
theorem we shall define the notion of a ZXZ-formula with ZX-predicate
variable X with n argument places, which we shortly call a X*-formula
or a Y *F.

14.1.  [nductive definition of X*-semiformula (abbreviated Y *F').
1° Every RF' is a Y "F'.
2° If ty,..., t, are semi-terms, then Xt---t, is a X *F'.
3° If A and B are Y. *F', then V AB, ANAB are Y TF'.
4° If A is a X*F' and t is a semi-term, then VxetA,
dxetA and IxA are Y TF.
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Now that we have defined the notion of Xt-semiformula, we define
Z*-formulas just the same way as we defined X-formulas from X-semi-
formulas. X*-formulas contain the predicate variable X only in their
positive parts. We shall write also X(¢,,..., t,) instead of Xt,---,.

14.2. Let vy, vy,... are enumeration of bound variables. Let m be
a non-negative integer.

For a semi-term t or an RF’ ¢, we define ¢, or ¢,, as follows:

1° 0,,=<0,

2° () +m=Vitm

3° a,,=a, where a is a free variable,

4° (#S) em=#"Som tims

5° (€S im=€ " Sim tim

6° (=0)im=—"0im

7 (VO 1 m=V " Osm Vim

8 (AP sm=A"Osm Yim

9 o) im=—"0im Vim

10° @v€10) s m=<F0i4m€ tim Pim

11° (Y0, €t0) 4 =<V, 4 m €t s Pt

Namely, t¢,, or ¢,, is obtained from t or ¢, respectively, by
replacing each bound variable v; by v;,,,.

14.3. Next we define the substitution of > F C(ay,...,a,) (or rather
Aa;---a,C(ay,...,a,)) for X in a Y*F' A in the following obvious way
(the result of substitution is denoted by A[C]): Suppose the bound
variables in C are among vy,..., Up_1-

1° If ¢ is an RF’, then @[C] is ¢,

2° (Xt;-t,)[CI=C(t5...5 1,).

3° (VAB)[C]=V TA[C]"B[(C].

4° (ANAB)[CI=A_ A[C]™B[C].

50 (=eA)[CI=—"9[C]"A[C],

6° (Vy;etA)[CI1=Vv; €ty A[C],

7° @A etd)[Cl=Tv; metim ALC],

8° (I A)[Cl=3v;, . ALC].

Moreover we define A[a], where a is a variable, to be
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A[Ab,b(<b,,..., b,Y € a)].

Lemma 14.1. (i) [ C(a,,...,a,), ' +—D(a,,..., a,), where a,...,a, are
not in I', then A[C], I' —A[D], in particular,

(i) acbh, A[a]—A[b],
(i) A[CT—3Ix(Rel,(x) A A[x]AVy, € Te(x)---Vy, € Te(x)
Kyt Y €x=C(Y15ees YD)
and hence,
(iv) A[C]H3x3d(Rel, (x) A A[x]AVy, € Tc(x)---Vy, e Te(x)
KYises Y €X=C(Y s, Y-

Proof. (i) It is obvious since X occurs in A only in its positive
parts. Formally, use the induction on A.

(iii) We also use the induction on A. For the sake of brevity we
prove it only for n=1, that is,

A[CT—3x(A[x] AVy e Te(x) (y e x—=C(y))).

Let us denote by A*(x) the formula A[x]AVyeTc(x) (yex—C(y)).
1° If A is an RF, then 4 does not contain X. So we may take 0
as x. Since in this case A[C]=A[x]=A, we easily have

A[C]—A[0]AVy e Tc(0)(y e 0—=C(y)).

2° A is Xt. Then A[C] is C(t) and A[x] is tex. The assertion
follows from the fact that

CORAL{BIAVy e Te({) (y e {1 —=C()).

3 Ais VAA,. Then A[C] and A[x] are V™ A,[C]TA4,[C] and
V TA;[x]TA4,[x], respectively. By the induction hypothesis we have
3x,A%(x,) and +—3Ix,A4%(x,). From these we easily have the assertion.

4° A is AA;A,. Then A[C] is AT A,[C]TA,[C] and A[x] is
AT A [x]TA,[x]. Using (i) we can easily prove

Af(xy), A3(x2) (A A AR)*(x; U X5).
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So we have the assertion since 3Ix;A%(x,) and r-3Ix,4%(x,) by the in-
duction hypothesis.

5° A is —@A,. Similar to the case 3°.

6° A is dvy;etA,(v;). Then A[C] is vy, €t4,4:(0;1,,) [C]. By the
induction hypothesis, we have

(AP [CTHAx, (A1 ()*(x1)) -

From this the assertion easily follows.
7° A is dv;4,(v). Similar to the last case.

8° A is Vv;etA,(v;). By the induction hypothesis we have
(A;(©) [CT-3x, (A1 ())*(x1)) -
Hence by (restricted) generalization,
V014 m € (A1 (0340) [CD V04 € 11531 (A1 (V34 ) (X4) -

So by Theorem 4.5 (iii),

A[C=32(V0; 4y € t 43X € 2(A (V4 ) *(x1))

AVX, €230, € 1o (A1 (Vi ) *(x1)))
Then
ALC], Yoi4 € 113X € d(A 1 (014)) (X))
AVx edAv; €ty (A1 (Vi) (X)) =A*(U d).

So we have the assertion. (iv) is an immediate consequence of (iii).

g.e.d.
Now we are in a position to prove the following recursion theorem:

Theorem 14.2. Let A(a,,...,a,) is a >.*F. Then there can be found
a Y F C(ay,..., a,) such that

142.1. (A(ay,..., a,))[C1—C(ay,..., a,), and such a C is essentially
unique in the sense that

14.2.2. for any X'F D(ay,..., a,), if

I, (A(a,,..., a,))[D]+D(ay,..., a,),
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where dy,..., a, are distinct free variables not in I', then
r,Ca,,...,a,)—D(ay,..., a,),

in particular, we have

14.2.3. (A(ay,-.., a))[CIHC(ay,..., a,).

14.2.4. If another C(ay,...,a,) satisfies the conditions 14.2.1 and
14.2.2 with C, in place of C, then

14.2.5. C(a,y..., a,)HC(ay,-.., a,).

Proof. The proof of this theorem is a modification of the proof
of corresponding theorem in Platek [1] and Takahashi [1]. (Of course
some cares are needed because our underlying logic here is intuitionistic.)

For notational simplicity, we only prove the case where n=1.
Let

Us(w, nN={zewld,(2)[r]}.
Formal dcfinition of it is
y=Uw, Ne=ycwAVzew(ze y=A4,(2)[r]).
By Theorem 12.3 it defincs a function. U, is monotonic, i.e.
wew', rer U (w, U (w', 1).
Now
Trans(w) =3 f(fFnwAVte w(f't=U (w, U(f"1))).
Let V(f, w) be the formula
Trans(W) AfFnwAVte w(f't=U 4w, U(f"1))).
Then we have the following monotonicities:
V(f,w), tew, seTc(t)—f'scf't
and

V(f, w), V(g,w), wew, tewrf'tcg't.
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The proof is by induction, using the above-mentioned monotonicity of
U,.
Now we put

Cla)e=IfIwaxew(V(f, wAae[f'x).

We have only to show that the C(a) is the desired Y F. First we
prove

A(a)[C]C(a).
By Lemma 14.1 (iii)
(1 A(a) [CT3u(A(a) [u] AVy e uC(y)).
Using the theorem of replacement (Theorem 4.5 (ii)) we have
VyeuC(y)—3IkVyeudfekiwekixew
(Trans(W)AV(f, wAyef'x).

From this with the use of the monotonicities and the uniqueness of f,

we have
) VyeuC(y)-3fiwVyeudxew
(Trans(W)AV(f, WAyef'xANw2gAhaew).
We claim
(€)] Trans(w), V(f,w), Vyeudxew(yef'x), Ay a)l[u],

qsw, aew, V(g, w#w)l-aeg'w.
Since Yy eudxew(yef'x), by monotinicity
yef'xcsg'x.

Hence from the assumptions we have Vyeu(ye U(g"w)), ie., u< U(g"w).
Since A a)[ul, gswsw#w and ucs U(g"w), we have A, (a)[U(g"W)].
Since aewc<w#w, by the definition of U,, aeU, (w#w, U(g"w))=g'w.
This proves (3). Hence on account of (1) and (2), we have
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A(a) [C]—3gaw(Trans (W) A V(g, w#wW)Aaeg'w).

From this it follows that

A(@)[C]—C(a).
Next let
4) I, (A(a)) [D]+D(a).
We claim that
) V(f, w), T -cew—VYx e f'eD(x).

In order to prove it by the induction on ¢, we prove
V(f,w), I',Vyec(yew—Vxef yD(x))cew—=Vxef'cD(x).
It suffices to prove
(6) V(f,w), T',cew, Vyec¥xef'yD(x)-Vxef'cD(x).
Now
V(f, w), cew, YyecV¥xef yD(x)=Yye U(f"c) D(y).

Hence

V(f,w), I',cew,Vyec¥xef'yD(x), A, (a)[ U f"c]

A (a)[D]+—A(a)[D]+—D[d].

Here we have used the assumption.
On the other hand, by the definition of f’c,

V(f, w),cew,aef'c—A,(a)[U f'c].
Thus,
V(f,w), I,cew,VyecVxef'yD(x), acf'cD[a].

From this, (6) and hence (5) follows.
By (5) we can easily obtain
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I, C(a)—D(a).

This proves 14.2.2. 1In order to obtain 14.2.3, let D(ay,..., a,) be A(ai,...,
a,)[C]. Then by 14.2.1,

D(ay,..., a,)—C(ay,..., a,).
Hence by Lemma 14.1 (i),
A(ay,..., a,)[D]+—A(ay,..., a,) [C],
that is,
Alay,..., a,)[D]1+D(a,,..., a,).
So, by 14.2.2 with I' empty,
Clay,...,a)—D(ay,..., a,),
that is,
C(ay,..., ay)—A(ay,..., a) [C].

This with 14.2.1 yields 14.2.3. 14.2.4 is obvious from 14.2.1 and 14.2.2.
q.e.d.

Let A(dq,..,a,) be a Y *F. Then by Theorem 14.2 we can define
a Y F (C(ay....,a,) satistying 14.2.1 and 14.2.2. We denote the rela-

tion between 4 and C by
ind

Clay,..., a)=A(a,,..., a,) [C],

and say that C is inductively defined by this equivalence (as its least
solution). For instance by the equivalence

C(a)é*/x eadyexC(y),

a > F C(a) is defined (up to the equivalence).

15. Miscellaneous Development

By Theorem 12.16, we can define
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D51, (i) Rx)=UPR I (x)(=U{PRY)|yex}).
(i) Ra(x)=U(S"(Ra [ (x)(=U{S"Ra(y)lyex}).
(iii) Strans(a)eTrans(a) AVxeaVyeP(x)(yea).

T.15.1. (i) R(0)=0ARa(0)=0,

(ii) Nat(Ra(a)),

(iii) Strans(R(a)),

(iv) RS(a)=PR(a)ARaS(«)=SRa(a),
(v) RP(a)=PR(a)ARaP(a)=SRa(a),
(vi) RR(a)=R(a)ARaRa(a)=Ra(a),
(vii) RRa(a)=R(a) ARaR(a)=Ra(a),
(viii) Nat(a)—Ra(a)=a.

(ix) 3x(Nat(x)AaeR(x)).

(x) aeb—Ra(a)<Ra(b)AR(a)eR (D).
(xi) acb—Ra(a)<Ra(b)AR(a)=R(D).
(xii) beR@)=Ra(b)<v.

(xiii) R(W)ER(S(v)).

(xiv) v=Ra(a)=aeR(S(»)—R().

We omit the proof of T.15.1.

Theorem 15.2. If A(u), I'—3Ixead(x), where a is not in A(x) or
in I', then A(a), I'— A.

Proof. Define S(n, b, v; a, A) inductively by
S(n, b, y; a, x)é":]>(n=0/\ b=aAy=x)
VdmIcdz(n=S(m)AbecA A (b)AS(m, ¢, z; a, X)).
(A,(b) is the notation introduced in Section 6.) First we claim that
(1) I', A(a)—3b3y(S(n, b, y; a, x) A A,(b) ARa(b)+n<Ra(a)),
by the induction on n.
I, A,(a)-3b3y(S(0, b, y; a, x) A A,(b) ARa(b)+0<Ra(a)),

is obvious. We have to show
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I, A\(a), 3b3y(S(n, b, y; a, x) A A(b) ARa (b)+n<Ra(a))
+3d3u(S(S(n), d, u; a, x) A A,(d) ARa(d)+S(n)<Ra(a)).
This follows from
I, A(a), S(n, b, y; a, x), A(b) —3x € bAuA (x)
(by assumption) and
r, A a), S(n, b, y; a, x), de b, A(d), Ra(b)+n<Ra(a)
—S(S(n), d, u; a, x) A A,(d) ARa(d)+S(n)<Ra(a).
Now we have (1). Then, taking n=S(Ra(a)), we obtain
I, A(a)—3b3y(S(n, b, y; a, x) A A,(b) ARa(b)+S(Ra(a))<Ra(a)).
But obviously we have
—Ra(b)+S(Ra(a))<Ra(a),
since —(I+n+1<n). So I', A,(a) A and hence I', A(a) A. g.e.d.

Corollary 15.3. If A(a, b), +3xeadyebA(x, y), where a and b
are distinct and not occurring in A(x, y) or in I, then A(a, b), [+ A.

Proof. The same as the theorem.

These theorem and corollary provide us with a method of proving
some uniqueness results.

Corollary 154. If
A(cy, b) A A(cqs B) Acy#c¢,y, '3y € bAxAx,(A(xy, y)
ANA(x3, ) AX1#X),
then I', A(cy, b), A(c,y, b)cy=c,. (The proof is omitted.)

We can prove the following variations of inductive schemata, the
meaning of which are obvious.
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Theorem 15.5.

(i) r<axa, bea, Vyea({yb)er—A(y)), I —A(b)
rcaxa, ' —V¥xeaA(x)

(ii) bea, Vyealbey—A(y)), I —A(b)

I'-VxeaA(x)
v A(a), T'Ix(xEa A A(x))
(i) @), FEA
(iv) bca, VycalbEy—AW)), I =A®)
I'-VYx<aA(x)
(v) bsa Vyealy §b—A(y)), ' =A(b)
I'-Vx<ad(x)
(vi) I'—~A() and b&a, Ab), '—3yea(y¢bA A(b#y))
b<a, I' —A(b).

The proofs of these schemata are omitted.

D.152. (i) a<beLdyebVxea(x<y),
(i) a<bSVxeadyeb(x<y).

Then we have

Theorem 15.6. (i) Fa<bVb<a
() a<b, b<akA.

In other words, (a<b, b<a) and (b<a, a<b) constitute AF’s.

Proof. (i) By the induction principle of Theorem 7.2 (iii). It
suffices to prove

VxeaVyeb(x<yVy<x)a<bVb<a.
This follows from
VxeaVyeb(x<yV y<x)3IyebVxea(x<y)
VVyebixea(y<x).
Now we show (ii) by using Corollary 15.3. Tt suffices to prove
a<bAb<ar3Ixeadyeb(x<yAy<x).

But this comes easily from the facts that
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a<br3JyebV¥xea(x<y)

and that

b<arVyebixea(y<x). g.e.d.

Now that we see (a<b, b<a) is a AF, we can expand our system
by definition of <. Then we may well use such formulas as —a<b,
a<b-—a<Db. The same holds for a<b.

T.157. (i) a<b—a<b

(il ) a<a

(iii ) —a<a

(iv) —(a<bArb<a)

(v) —(@a<bAab<a)

(vi) a<bAb<a—a=b

(vii) a<b—a=bVa<b.

(viii) a<bAb<c—a<c

(ix ) a<bAb<c—a<c

( x) a<bAb<c—a<c

(xi) a<bAb<c—a<c

(xii) a<bVa=bVvb<a

(xiii) aeb—u<b

(xiv) acb—a<b

(xv) agb—a<b

(xvi) a<b—acR(b)AaePR(D).
(xvii) bé¢a—a<a#bAb<a#b.
(xviii) a#0—3yeaVxea(x<y)AdyeaVxea(y<x).

Theorem 15.8. (i) If A(a) is a 3 F and if
Vxe pR(b).(x<b—A(x)), I —A(b).

Then I —A(s), for each term s.
(i) If ¢(a) is an RF in an expansion of FCS by definition, then

Ixp(x) FIx(@(x) AVy € PR(x) - (y<x—=—0(y)) -
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(i) If A(n,, a), A(n,, a), n;#=n,, I'
FAxIm Am(x<a A A(my, x) A A(m,, X) Amy#m,),
then we have
A(n,, a), A(n,, a), I -n,=n,.
Proof. Similar to that of Theorem 15.2.

Theorem 15.9. (Uniformization theorem). Let A(a, b) be a > F.
Then there exists a Y. F B(a, b) such that

(i) B(a, b)-A(a, b),

(i) 3dyA(a, b)3yB(a, b),

(iii) B(a, b,), B(a, b,)~b,=b,.

Proof. As usual. Let B(a, b) be
Ju(A,(a, b) AVx € PR(Ku, b))-Vye PR u, b))*
Kx, y><Lu, by—=—A(a, y)).
Note that A(a, y) is an RF. q.e.d.
D.153. (1) J(n, a)¢==>VmenIx(x<a AJ(m, x))
AVx e PR(a) (x<a—3m e nJ(m, x)).

T.15.10. (i) +3nd(n, a)
(i) J(n, a)—Nat(n)
(iii) Nat(n)+3laJ(n, a).

Proof. (1) 3InJ(n,a) is proved by the induction on a along <
(Theorem 15.8 (i)), as follows.

Vx € PR(a) (x<a—3ImJ(m, x))
FVx e PR(a)Am(x<a—J(m, x))
+—3In(Vx e PR(a)Im € n(x<a—J(m, x))

AVm e nix e PR(a) (x<a A J(m, x))
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F3n(Vm e ndx(x<a A J(m, x))
AVx e PR(a)(x<a—3m e nJ(m, x)))

F3Ind(n, a).

The induction is complete.

On account of Theorem 15.8 (iii), the uniqueness, i.e.,

J(nl, a), J(nz, a) ‘_n1=n2

will follow from

J(ny, a), J(n,, a), ny+n,

FIx3Am Am,(x<a AJ(mq, x) AJ(my, X) Amy#my).

We prove the latter as follows:

Similarly

So

ny#Fn, FIx((xen, Axgny)V(x¢n, AX€eny))
J(ny, a), myeny;, m,é¢n,
F3Ix(x<a A J(m,, x))
J(ny, a), b<ak3Im,en,J(m,, x)
my¢n,, J(my, b), myen,, J(m,, b)
—J(my, ) AJ(my, D) Am, +m,
J(ny, a), J(ny, a), myen,, m;én,

F3axam 3m,(x<a AJ(my, x) AJ(my, X) Amy #£=m,).

J(ny, a), J(ny, a), myén,, mpen,

F3Ix3Am Am,(x<a AJ(my, x) AJ(my, X) Amy#=m,).

J(ny, a), J(ny, a), ny#n,
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F3AxIm Amy(x<a AJ(my, x) AJ(my, X) Amy#=m,).

Now the proof of (i) is complete.
(ii) First we prove

J(n, a)—Trans(n),
ie.
J(n,a), men, lemtlen.

By the recursion theorem

J(n, a), ment3Ix(x<aAJ(m, x))

J(m, b), lem3Iy(y<bAJ(, y)

¢c<b, b<atc<a

c<a, J(n, a)3kenld(k, c)

ken, J(,¢c), Jk,c)l=kAlenrlen.

Hence
J(, ¢), ¢<b,b<a, J(n,a)-len.
Hence
b<a, J(m,b), lem, J(n,a)llen
J(n,a), men, lemirlen,
as desired.
(iii) Similar to (i) but use Theorem 13.3 (ii) and Corollary 15.4.

q.e.d.
D.15.4. J(T(a), a).

This definition is justified by T.15.10 (i). By T.15.10 (i), (ii) and (iii),
T maps R, onto natural numbers. This is a formalization of the
function ¢ introduced in Section 1.

By T. 15.10, we have
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T.1511. (i) Nat(T(a)),
(i) T(a)=T(b)—a=bh,
@i}y 3'a(T(a)=n).

16. Formalizing Formal Systems intoe FCS

According to the program suggested in section 1, we shall consider
in this section the problem of formalizing formal systems (especially
finistic logical calculi) into FCS. To examplify this let us adopt, as
the formal system to be formalized, just this system FCS under con-
sideration.

As suggested in section 1, let us assume that formal objects of FCS
such as terms, formulas and proofs are h.f. sets. To fix the idea, semi-
term 0 is the h.f. set <0, 0) (={{g}} and denoted also by T07), free
variables are h.f. sets of form (1, x), where x is an arbitrary h.f. set,
bound variables are of the form <2, x), and #st is T #7, s, t), where
T#7is 3(1,2,3 are von Neumann ordinals as h.f. sets). Hence semi-
term (which we denote by Term’) is defined inductively as follows:

) Term'(a)€=(3x) (3y) (a=<0, 0
Va=(l, x)
Va=<{2, x>

V(a=<3, x, y> ATerm’(x) A Term’'(y))).

Here boldface 3, V, A are the logical connectives in the metalanguage.
Term’ is defined as the least solution of this equivalence. Note that
this is an informal definition of semi-term (in the informal theory of
h.f. sets and should not be confused with a formal definition (in the
formal theory FCS of h.f. sets). Nevertheless the right-hand side of (1)
would become a 3 *F (c.f. Section 14) if the boldfaces are replaced by
lightfaces. Then by the recursion theorem in FCS, the modified (1)
defines a Y F, say Term'*(a) up to the equivalence. This Term'*(a) is
called the formalization of the notion of semi-term.

For each of other notions we can proceed similarly, as far as it is
defined by the same form as a Y F explicitly or a Y. *F inductively.
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It would be confusing if each informal notion and the corresponding
formal notion were denoted by the same symbols. So we distinguish
them by boldfaces and lightfaces. That is, informal notions are written
in boldfaces and formal notions arc written in lightfaces. However, we
shall sometimes use - to indicate formal notions when lightfaces werce
already used for informal notions. Morcover when no confusion secms
to arise, two corresponding notions may be written by the same letters
or symbols. (0, 1, 2, 3, elc. are such examples.)

We shall write down only formal definitions, because the correspond-
ing informal definitions are then obtained automatically.

Also, for the sake of notational simplicity, we shall omit writing
the left-most existential quantifiers in the right-hand side of each defini-
tion. This convention will be used in both formal and informal defini-
tions and only in definitions. For instance, the formalized (1) is written
simply:

D.16.1. Term'(a) €25 (a =<0, 05
Va=<1, xp
Va=q2, x»
V(a=¢3, x, 1> A Term'(x) A Term'()"))).

Term, constant (Const), free variable (FV), bound variable (BV) and
variable (Var) are defined by

D.16.2. (i) Term(a)e=sa=<0, 0)
Va=<1, x
V(a={3, x, v> A Term(x) A Term (y))
(ii) Const(a)e™sa=10, 05
V(a=<3, x, y> A Const(x) A Const(y)),
RF' and Y F' are defined by

ind

(iii) RF'(a)e=(a=<{"€7,x, y> A Term'(x) A Term'(y))
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V(a=<{"—" x> ARF'(x))

V(a=<{ A" x, y> ARF'(x) ARF'(»))

V(a=<"V T, x, y> ARF'(x) ARF'(»))
Via={-=7x, y> ARF'(xX) ARF'()))
V(a={V7, x, y, z) ABV(x) A Term’(y) ARF'(2))
V(a=<"37 x, y, z) ABV(x) A Term'(y) A RF'(2))

where re_1=4’ l__’—|=51 ,_A_l=6, er=7, '—“"—‘=89
I"V“I=9’ m37=10.

ind

> F'(a)RF'(a)

V@a=" AT x ) AZFX)AXF()
V(@=<"V7%Lx ) AZFXAZF(QY)
V(a={"—=7,x, y> ARF'(x) A X F' ()
V(a=<V71, x, y, z) ABV(x) ATerm'(y) A T F'(2))
V(a=<"3, x, y, z2) ABV(x) A Term'(y) A F'(2))
V(a=<"3.7, x, y> ABV(X)A ZF'(»)),

where M3, 1=11.

Next we define the predicate V(p, a) that a is a semi-term or a

> F’ and p is the set of all the variables occurring in a as free,

D.163. () P(p, a)e(a=07Ap=0)

V(Var(a) A p={a})

V(a={ #7, y, z) ATerm'(y) A Term'(2) A V(p,, ¥)
A V(p2s 2) Ap=p1 U P2)

V(a={" €T, y, z) ATerm'(y) A Term'(z) A V(py, )
A V(p2, 2) ANp=Pp1 U p2)

V(a=<"=7, y> ARF'() A P(p, )

V(@@= V7%, y22AXFQ)AZF(2)

A P(p1, Y) A V(py, 2) Ap=p1 U p2)

Va={ ALy, 2 AZFO)AZF(2)

A V(py, ¥) A V(pa, 2) Ap=p, U Ps)

V(a=<"=7,y, z) ARF() A TF'(2)

AV(p1, Y) A V(py, 2) Ap=p, U P2)

Va=<{VY, y, z, u) ABV(y) A Term'(z)

AXF@) A V(py, 2)

A V(2 2) Ap=(p2—{y}) U py)
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V(a={"3", y, z, u) ABV(y) A Term'(z)

AZF W) A V(py, 2) A V(pa, 2) Ap=(p2—{¥}) U Py)
V(@37 y, 22 ABVO)A XL F'(2)
AWV(p,, 2)Ap=p,—{¥}).

Then RF and Y.F are defined by
(ii) RF(a)e=RF'(a) A V(p, a) AVx € pFV(x).
(i) Y F(a)==XF'(a)A V(p, a) AVxe pFV(x).

Note that
T.16.1. V(p, a) —(Term'(a) vV 3 F'(a)) A Vx € p(FV(x) V BV(x)).

Proof. Let U(p, a, V) be the 3*F which has defined V inductively
above, and let ¥’ be the right-hand side formula of 16.1. Then it is
easy to verify that

Ap, a, V) -V'(p, a).
Hence by the recursion theorem,
V(p, a)=V'(p, a),

as was to be proved.
D.16.4. Seq(I=VYAel'(XF(A4)).

Let us define

D165, (i) r#s=C#7,r,sd,
(i) re°s=<"e—',r,s>,
(i) A={—", 4>,
(iv) AVB=(" VT, 4, B,
(v) AAB=(TAT, 4, B),
(vi) ASB=("=7, 4, B,
(vii) Vxerd={V x, r, A,
(viii) §xe°rA=(r3—’, x, r, A,
(ix) IxA=¢r37, x, A,
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(x) r°§s=‘;xér(xés), where x=¢2,0),

(xi) (r=s5)=(rSs)A(sSr).

D.16.6. (i) Sb(A’, A;t, x) (A" is the result of substituting t for x
in A)e=Var(x)ATerm’(HA(A=T0TAA' =A)
V(A=xAA'=1)
V(Var(A) A A#x A A’ = A)
V((A=B#C) A(A’=B'#C’) A Term'(B) A Term'(C)
ASb(B', B; t, x) ASb(C’, C; t, x))
V((A=Be&C)A(A'=B' & C') A Term'(B) A Term'(C)
ASb(B', B; t, x) ASb(C’, C; t, x))
V(A=-"B)A(A'=—B) ARF'(B) A Sb(B', B; 1, x))
V((A=BV C)A(A'=BV C') A TF(B) A TF(C)
ASB(B’, B; 1, x) ASB(C’, C; 1, X))
V((A=BAC)A(A'=BAC)AXF(B)ATF(C)
ASb(B’, B; t, x) ASb(C’, C; t, x))
V(A=BXC)A(A'=B'">C) ARF(B)A T F/(C)
ASb(B’, B; t, x) ASb(C’, C; t, x))
V ((A=Vx euB) A(A'=Vx e u'B) A Term'(u) A T F'(B)
ASb(u’, u; t, x))
V((A=3x e uB) A (A’ =3x e u'B) A Term'(u) A . F'(B)
A Sb(u’, u, t, x))
V((A=3xB) A A'=A A SF(B))
V((A=VyeuB) A(A'=Yyeu'B') A y+x ABV(y) A Term'(u)
A Y F'(B)ASb(u', u; t, x) ASb(B’, B; t, x))
V((A=3yeuB)A(4'=3yeu'B’) A y+x ABV(y) A Term'(x)
A S F'(B)ASb(u’, u; t, x) ASb(B’, B; t, X))
V((A=3yB) A(A’=1yB) A y=£x ABV())
A Y F(B)ASB(B, B; 1, x)).
(i) I'~Ae=Seq(l) A T F(A) A Term (r) A Term (s)
ATerm (f) ARF(¢) ARF(Y) A TF(B) A ZF(C) A SF'(D)
ANAeTl
V([ =rero
V(T res)A(A=res#)
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V(T =r=s) A(A=res#1)

VITEres#NAT U {res) A AT U {r=t) -A4))

VT U W o) AT U (U3 - 0) A(A=—y)

V(T F9) AT F=9)

V((T'~B)A(A=BV C))

V(T ~C)V(A=BV ()

VT U{B}E-A) A U{C} A A(T-BV C)

V(I EAAB)

V(TE-BAA)

V((I' ~B) A ~-C)A(A=BV C))

V(T U {0} FB)A(A=0pB)

V(T Fo>A) AT o)

V((F=ser)A(A=3xerD) A =D') AS(D’, D; a, x))

V((I'&-3x € rD) ASB(D', D; a, x) A(F U {D'} = A))

V(T U{aer =D)ASH(D, D; a, x) A(A=VYx € rD))

V((I'-Yx € rD)V ([ F-s€ r) ASb(4, D; s, X))

V((I'=D") ASB(D', D; 5, x) A(A=3xD))

V(I E-3xD) ASH(D', D, a, x) A(I U {D"} I-A))

V(T E-D'Y AT U (D", D"} Z-D™) A S F(E) ASB(D', E, 707, x)
ASB(D", E, a, x) ASb(D", E, b, x) ASH(D", E, a#b, x)
ASb(A, E, r, X))).

Now we have completed defining the system FCS within FCS itself.
What we have to do next is to prove in FCS the metatheorems (includ-

ing particular theorems) about the system FCS which we have proved

above.

Indeed, all of formalizations of these metatheorems will turn out

to be provable in FCS.
For instance the formalization of T.4.3 (i) is:

T.16.2. FV(a)— ~a<a.

Proof. This is provable as follows:

FV(a) AFV(b) -RI(a<a) ARF(b € a),
FV@AFV(b)Aa#b({bea} -bea),
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FV(a) AFV(b) Aa+#b —(-Vx € a(x € a)),

FV(a) ~3b(FV(a) AFV(b) A a x b),

FV(a) ~( Fac a),

—FV(a)—( Fac a). g.e.d.

By the same way it is clear that the formalization of each particular
theorem of FCS is provable in FCS. (A proof is an h.f. set!) Before
considering formalization of metatheorems, we need to prove formaliza-
tion of somewhat trivial facts such as

T.163. (i) V(p, A)—(Term'(A)V X F'(4)) AVue p-Var(u),
(i) (Term'(4)V TF'(4)—3p¥(p, ),
(i) V(p, AHAV(g, A—p=4q
@iv) Sb(A’, 4, t, x)—((Term’(4") A Term'(A)) v (3 F’'(4")

A S F'(A))) A Term (£) A Var (x).
(v) (Term’(A)V X F'(A)) A Term (f) A Var(x)—3A'Sb(4’, 4; ¢, x)
(vi) Sb(4’, 4A;t, x)ASD(A", 4, t, x)—=A'=A".

Proof. (i) is by induction on ¥. (ii) is by induction on Y F’. For
(iii) use Corollary 15.4. Similarly for (iv), (v) and (vi). g.e.d.

Next let us consider e.g. the formalization of metatheorem 4.4 (i),
that is,

T.16.4. FV(a) AFV(b) Aa+#b ABV(a)A Term'(r)
A V(p, P) A¥z e p(BV(z)—z=x) ASb(x, 7, a, X)
ASb(t, 7, b, x) —({a=b} -s=1).
Proof. We can show this as follows:
T(r; a, b, x)<=3Ip(¥(p, r) A3s3(Sb(s, r; a, x) ASb(t, 7; b, x)
AVze p(BV(2)—=z=x)—({a=b} —s=1)).
Then T.16.4 will follow from

2) FV(@)AFV(b)Aa#bABV(X)AD(r, T)-T(r; a, b, x),
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where D(r, T) is the Y *F which expresses the inductive definition of
Term’. The proof of (2) is straightforward. g.e.d.

For 4.4 (iii) some difficulty may arise concerning the use of double
induction. But in this case it would be overcome easily.

By almost obvious ways we can also prove the formalization of
other metatheorems: Theorems 4.4, 4.5, 6.1, 7.2, 8.1 (with Lemmata
8.1.1, 8.1.2, Corollary 8.2), 8.3, 9.1, 9.2.

Moreover we can define in FCS the formalization of expansions by
definition of predicates and functions described in Sections 10 and 11
and prove that they are conservative extensions (Theorems 10.1 and 11.1).
Also we have in FCS Theorems 11.2, 12.2, 12.3, 12.4 and so on to the
results of this section. The first formalized metatheorem, which is im-
possible to prove in FCS, will be the plausibility theorem for FCS itself
of the next section. (It is actually impossible by Godel's consistency
theorem below.) This will be discussed below. Those theorems in later
sections which are impossible to prove formally in FCS will be marked
by 1.

17. The Standard Model R,, Plausibility and Completeness
Theorems

R,, has been defined in the introduction.

Definition 17.1. Let A(ay,...,a,) be a > F whose free variables are
among dy,...,d,. Let Kky,...,k, be h.f. sets. Then R, EA[ky,...,k,/
ai,..., a,], or shortly R,E=A[k,..., k,], means that A is true in R, when
the variables ay,..., a, are interpreted as ky,..., k,, respectively. R, is a
model of FCS (called the standard model of FCS), that is,

Theorem 17.17 (Plausibility theorem). (i) If ~A(ay,...,a,), then R, =
Alky,..., k,] for every ki,..., k,€R,, and

Gi) If I(ay,...,a,)+—A(ay,..., a,), then if R, E=TITk,,..., k,], (i.e., R,
EB[ky,..., k,] for all BeT), then R,k=A[ky,..., k,] for every ky,..., k,.

Proof. We can prove (ii) by the induction on I'A4. In the case of
primitive induction we must also use an informal induction on h.f. set
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a. (i) is a special case of (ii). g.e.d.
For later use we give here a formalized inductive definition of truth.

Ass(f)e=Fnc(f)AVxedom(f)- Var(x).
Val, (p, r, £)€~Term'(r) A Ass (f)
A V(v, »Avedom (f)A(r="0"A p=0)
V(Var(r)Ap=f'r)
V(r=s#tAVal,(py, 5, f) AVali(p, 1, f) A p=p; £ o).
Valy(p, ¢, ))EESRF(0) A Ass(f)
A Vv, ) Avedom (f)
A(@=resAVal,(py, r, /) A Valy(py, 5. f)
A(prepAp=1)V(p,¢ép, Ap=0)))
V((p=—0) A Valy(py, 0, A (p=1-p)))
V(=1 A1) AValy(py, ¥, ) A Valy(pas 1 f)
Ap=min(py, p,))
V(9= V ) A Valy(py, ¥, 1) A Valy(pa, 1, f)
A p=max(p,, p;))
V(@=y>1) A Valy(py, ¥ f) A Valy(pa, 1 f)
Ap=min(l—py, p;)
v (((p=\cf’.\’ € n) AVal(py, 1, f)
A(Yg e py Valy(1, W, (f T (dom(f)—{x}) U {{q, D} Ap=1)
V(Aq e p, Val,(0, ¢, (f [ (dom (f)—{x})) U {Kg, x>})Ap=0)))
Y (((p=§_\‘ € ) A Val(py, 1, f)
A((Fg € p,Val,(1, ¥, (f [ (dom(f)—{x})) U {<q, xD}) Ap=1)
vV (¥q e p,Val, (0, ¥, (f I (dom (f)~{x})) U {gq, x>}) Ap=0)))).
Tr (4, £)E2S S F/(A) A Ass (f)
A V(v, A) Avsdom (f)
A((RF'(A) A Val,(1, 4, f))
V({(A=BV C)A(Tr(B, f)V Tr(C, f))
V((A=BAC)ATE(B, f) ATt (C, f))
V(A=9>0) A (Valy(0, 9, )V Tr(C, )
V((A=E°b; € tB) A Val,(p, t, f)
Adqep - Te(B, (f t(dom(f)—~{x})U{{q, x>}))
V((A=Yx € tB)AVal,(p, t, f)
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AVgep-Tr(B, (f [ (dom(f)—{x}) U {g, x>}))
V((A=3xB) Adq - Tr(B, (f T (dom (f)—{x})) U {g, x3}))).

Lemma 17.2. Let r and s be constants in FCS. Then,
(i) If R,Eres, then +res;
(ii) If R,E=rc<s, then rcs;
(iii) If R,Er=s, then r=s.

Proof. Let us recall that the following (intuitively) true statcments
hold in FCS:

1° +H0cr;
2° S#ICSrHsSrAter;
3° teOH A

4° res#tHresVvr=t;
5° t=sHtSsAs<t.

Hence we can prove the lemma by the induction on thc complexity of r
and s. g.e.d.

Theorem 17.3. (Completeness theorem). Let A be a YF without
free variables. If R,E=A, then —A. (This kind of completeness theorem
was first obtained by Myhill.)

Proof.  First we prove this theorem for RF A. This can be done by
the induction on the complexity of A with the usc of Lemma 16.2
and the fact that the following truc statements hold in FCS:

6° KVxe04
7° Vxer#sAHYxerAA A(s/x)
8° Ixe0AH A

9° dxer#sAHIxerAvV A(s/x).

Then we prove the theorem for general > F A. Again this is done by
the induction on the complexity of 4 but with the use of the fact that if
dxA is true, then A(s/x) is true for some constant s. g.e.d.

We remark here that this metatheorem can be formalized and it is
provable in FCS. The fact will play an important role in the proof of

Godel's theorem on counsistency in the next section.
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T.174. Tr(4, 0)]-—|—°A. (Here A is a variable.)

(Note that by our definition of Tr, we have
Tr (4, 0) X F(4) A 7(0, A).)

Outline of Proof. The formal proof of this formalized theorem is almost
obtained by formalizing the above proof of Theorem 17.3 (with Lemma
17.2). It should be noted that apparent need of double induction sug-
gested in 7° and 9° above can be eliminated, for we can use instead
(the formalization of) the following general equivalence:

7°" If r is a term of the form (---(O#s,)#--+)#s,, then

VxerAHAG) A - ANA(s,) .-
(Similarly for 3xerA.) g.e.d.

However, as mentioned before, the formalization of the plausibility
theorem (Theorem 17.1) cannot be proved. The reason is because it
essentially uses a double induction (see the above outline of proof of it).

Theorem 17.5. It is not the case that
7(p, @) A Ass(f) A p=dom () A(+a) Tr (a, )
and a fortiori not that
7(p, a) A (g, b) AAss(f) A p U q< dom (f) A(ar~b)
ATr(a, f)=Tr(b, f).
Proof. Use the Godel theorem of next section. g.e.d.

Theorem 17.6. (i) If r(a,,...,a,) is a semi-term whose variables

are among a,..., a,, then
Val (p, r*, f)HAss(f) A {af,..., az} =dom (f)
Ap=r(f'a%,..., f'a¥).

@) If ¢(ay,...,a,) is an RF' whose variables are among ay,..., a,
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then
Valy(p, ¢*, f)HAss (f) A{at,..., ay} sdom (f)
Ao(f'at,.... f'ad) Ap=1)
V(—o(f'at,....f'ad) Ap=0),

@iii) If A(ay,...,a,) is a > F' whose variables are among ay,..., a,,
then

Tr (A%, f)HAss(f) A {a%,..., af} =dom(f)
NA(f'ak,..., f'af),
(iv) If A is a X-sentence, then
AHTr (4%, 0)
and hence
A(F-4%).

Proof. (i) By the induction on the complexity of r(ai,..., a,).

(ii) By the induction on the complexity of ¢(ay,..., a,).

(iii) By the induction on the complexity of A(a,..., a,).

(iv) If A is a Z-sentence, then AHTr(4* 0) is a special case of
(iii), and we also have Tr(A4*, 0)( IiA*) already by 17.4, and hence
A( IiA*). g.e.d.

18. Godelization and Godel’s Theorems

ind

D.18.1. Nm(b, a)=(a=0Ab=0%)
V(ax0AceanVxea(x<c)Ac¢dNa=d#c
ANm(u, d) ANm(v, c)Ab=u 7§Zv).
Intuitively, Nm (b, a) means that b is a canonical constant expressing a.

T.18.1. (i) 36 Nm(b, a).
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(i) Nm(b, a) —Const(b) A Val,(a, b, 0).

Proof. The proof of (i) is similar to that of Theorem 15.10 (i) and
so we only prove (ii).
(i) Let Nm'(b, a) be Const(b)A Val,(a, b, 0). By the recursion theorem
we have only to show

(@a=0Ab=0*)V(ax0AceaAnVxea(x<c)Ac¢d
ANmM'(u, d) ANm'(v, )Ab=u ;;ZU) —Nm'(b, a).
This will follow from
(1) Const(0*) A Val, (0, 0%, 0) and
(2) Const(u) A Const(v) A Val,(d, u, 0) A Val(c, v, 0)
Ac¢d }—Const(u#ZU) AVal,(d#c, u #Zu, 0),
both of which are obvious. g.e.d.
By Section 11 we can define a function Num as follows:
D.18.2. (i) Nm(Num(a), a).

Num js a formalization of * defined in Section 14.
We have immediately

T.18.2. (i) Const(Num/(a)),
(ii) Val,(a, Num/(a), 0),
(iii) Fnc(f) AVxedom(f)- Var(x)—Val,(a, Num (a), f).

Lemma 18.3. (Godel). Let A(a) be a 3 F with only free variable a.
Then there is a X-sentence G such that

GHA(G*).
Proof. Let z be a fixed variable. We consider the formula

3y(A(y) ASb(y, z, Num(z), "z 1%)).



A FOUNDATION OF FINITE MATHEMATICS 673

Call this formula B(z). Let ¢=B(z)*. (Here we are considering formulas
(and also other objects) as h.f sets.) Let G be the ZX-sentence B(c).
Then by direct computation we have

FSb(B(c)*, B(2)*, ¢*, [z ™¥),
that is,
—Sb (G*, ¢, c*, Tz%).
But we also have
—Num (¢)=c*.
Now
A(G*) = A(G*) A Sb(G*, ¢, Num(c), Mz )
=3Iy(A(y) ASb(y, ¢, Num(c), Tz )
B(c)
~G.
On the other hand
G =3y(A(») ASb(y, ¢, Num(c), "z ™)),
A(Y)ASb(y, ¢, Num(c), Tz *)

A() ASb(y, ¢, Num(c), "z ) A Sb(G*, ¢, Num(c), Tz )

FA(Y) A y=G*
= A(G*).
Hence G+—A(G*). Hence GHA(G*). g.e.d.

Now we are ready to prove Gdodel’s incompleteness theorem and the
consistency theorem for our system.

Theorem 18.4.' (G6del’s incompleteness theorem). There exists a
X-sentence G such that neither —G nor G A.
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Proof. Use the last lemma with ar A* as A(a), to obtain a -
sentence G such that GHG*}i)\*.

Suppose we have
GHA.

Then we must have |—G*|—° A* and hence —G. So we have both -G
and G~ A and hence —~A. But A is not true and hence not provable.
This contradiction shows that G A is not the case. Moreover since
we have just shown that G*Ii}\* is not true, G is not true and hence
not provable. g.e.d.

Corollary 18.5. There is an RF ¢(a) with a as its only variable
such that it is valid in R, (by any assignment of h.f. sets to a) but not

+o(a).

Proof. Let G be a X-sentence such that neither G nor G A.
Then,

GH3yG,,

where G, is defined in Section 6.
Let ¢(a) be the RF, —G,. In R,, G is false and hence 3yG, is false
so that ¢(a) is true for any assignment. But if ¢(a), then we would

have
—p(a) - A,
dy—o@ A,
and
G A.
This is contrary to the assumption. So *~¢(a). g.e.d.

We can proceed further. The consistency of FCS can be stated as
““ \ is not provable”. This can be formalized as

EA*NA.
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(This means = A*I= A is not the case.) (We cannot negate the formula
i—a—)\* directly since Ii/\* is a Y F but not an RF.

Theorem 18.6. (Godel’s theorem on consistency). The consistency
of FCS cannot be proved by a method formalizable in FCS; in other
words, }1A*‘F<A.

Proof. Let G be the sentence having the property
GHG* = A *,

as constructed in the last theorem. We proved there that G A.
Now assume that }—o- A*—A. Then we would have a contradiction
as follows.

G 1~G*  (by Theorem 17.6 (iv)).

But also we have

GHG* - A*.
Hence
G -G* AG* - A*
- A*
FA.
So we have G+ A, contrary to the fact we have already seen. g.e.d.

We wish to generalize these results in the rest of this section.
First we note that we have proved in the proof of the last theorem that

G A*

* -]
whenever G satisfies GHGH A*. In this case the converse — A*IG
holds since

- A*-G* - A* -G
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So it follows that if G satisfies GHG*PO—A*, then G is equivalent to
li/\*. And there exists such a G. So by substitution we obtain

AR A A,
that is,
Theorem 18.7. For any X-sentence A,
AHA*EA* iff AH A

Theorem 18.8. (Lob). (i) Let A be a Z-sentence. If (}O—A*)}—A,
then —A.
(ii) If (B*-A*)A, then BrA.
(i) (A *)* =A%) (1~ A4%),
(iv) ((B* ~A*)* =A%) (B* —A¥).
(v) Let
Y S(a)== Y. F(a) A V(0, a).
Then
TS(a) A((Fa)* F-a) - a

V) £S(@) A ZS(B) A (b -a)*-a) (b -a).
(v) and (vi) are formalizations of (i) and (ii).

Proof. We prove only (i). Suppose (lf—A*) A. Let J be a 2-
sentence such that

3) THJ* - A%,
Then, since J - —J* (T.17.6 (iv)),
Ji- A%,
Hence by the assumption that —A* A, we obtain
4 JHA.

o
Then since — numeralwise represents , we have
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S - A%,
Hence by (3) we have —J and hence by (4) A4, as desired. g.e.d.

As an application of the well-known proof of Rossor form of in-

completeness theorem we can prove

Theorem 18.9. (Rosser). (i) Let A and B be ZX-sentences and
assume B¥<A. Then there is a X-sentence C such that B¥C and C¥<A.
Movreover, if A~B in addition, then, the above C can be taken such
that A—C and C+B. (In other words, C lies strictly between A and B.
So the pseudo-order relation t— is dense.)

(ii) There exist X-sentences A and B such that AWB, B¥~A and
AAB A. (So, there are incomparables in the pseudo-order relation
~.)

Proof. The first part of (i) comes from the second part of (i). So
assume AB. By Lemma 18.3, let R be a }S such that

(5) RH3y((B* A R* - 4%), A Vx € P(R(y)) - (x<y—
~(B* -R*V 4%),),

where the notation D, was introduced in Section 6. Let C be (BAR)
V A, (since it is equivalent to BA(RV A), by the modular law, we may
write BARV A). Then it is obvious that A~C and CB.

Suppose BC. Then B—RV A. Hence for some h.f. set n we have

(B* = R*V A*),..
So by (5) we have
(6) RHIy(y<n* A (B* A R* - 4%)).
But for every h.f. set kin, we have
0 =1(B* A R* - A*),,

for, otherwise we have BAR—A and hence BA (since we have also
BIRV A). This contradicts the assumption. We also have
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(® y<n*Hy=k{V - Vy=kF,

where k,,..., k, are all h.f. sets preceding n. From (6), (7), and (8) we
have

RI-A,

and hence, using B—RV A, B—A. This again is a contradiction. This
shows B¥<C.
Suppose C+—A. Then BARIA. Hence for some h.f. set n we have

—(B* A R* - A%),..
But we also have
1(B* F-R*V A%)

for each h.f. sets k and hence by (5) above we have —R. But if so we
must have BA, since BARIA. This is a contradiction. So C¥~A.
g.e.d.

19. Characterization of Primitive Recursive Functions

As mentioned in Section 1, a function f: R,—R, is primitive recur-
sive iff t~1ofot: N> N is primitive recursive. In this section, we identify
R, with N via t. We shall characterize primitive recursive functions as
provably recursive functions in FCS. (A similar characterization is
announced by Mint [1].)

Definition 19.1. We write ,4[m,,..., m,], if it is true when each
unbounded quantifier Ix in A is interpreted as 3x,.., (but bounded
quantifiers are interpreted with their original meaning, e.g., Ixea is
not interpreted as Ix, (x€aA--)).

It is obvious from the definition that

(1) If n<!l and E,4[m,,..., m], then =,4[m,,..., m;] and R, EA[m,,...,

m,], and

2) If R,=A[m,,..., m], then there exists an n such that |=,4A[m,,....,m;].
Note that, for an RF ¢, ,¢ iff R,=¢, since these two interpreta-
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tions coincide.

We shall prove the following theorem:

Theorem 19.1." (i) If +3yA(a,,..., a, y), where V(A)<={a,,..., ai,
y}, then A represents a primitive recursive function, that is to say, there
exists a primitive recursive function f(my,..., m,) such that

3) R, E=EA[m,,..., my, f(my,..., m)]

for all natural numbers my,..., my.

(ii) If in addition +—3'yA(a,,..., ay, y), then such f is unique.
To prove this theorem we need the following lemma.

Lemma 19.2."' If I'~A, where V(I')UV(A)<{ay,..., a}, then there
exists a primitive recursive function p of one variable such that n<p(n)
for every n and that for every n and my,..., m,<n,

4) E L my,..., m]=F ,mAlm,,..., m],

where &=,l[m,,...,m;] means =,B[m,,...,m;] for all Bel. (We call
such a primitive recursive function p a majorant for I'—-A.)

We first prove the theorem by the aid of this lemma. If —3yA(a,,
...y 0y, y), then by the lemma, there exists a primitive recursive (ab-
breviated p.r.) function p such that for every neN and m,,..., m;<n,
we have k= ,,dyA[m,,...,m], that is, there exists an I<p(n) such that

(5) t:p(n)A[ml’---, mka l] .

But (5) is a primitive recursive predicate of n, my,..., m, | (see later
Section 20, D.20.1). Hence, if we define

f(mlr"a mk)=#nygFgA[mla--~’ mla y]:

where g=g(m,,..., m)=p(max(m,,..., my)), then f is primitive recursive
and satisfies

R, EA[my,..., my, f(my,..., m)],

for all my,..., m,eN. g.e.d.
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Proof of Lemma. We prove this lemma by the induction on I'—A.

Case (0). Ael'. In view of (4), we may take as p any primitive
recursive function such that p(n)>n, e.g., p(n)=n.

In the following cases,

. I'+—re0 . I't-res oy Tr=t
(D) g ) Foasgr @) Foeszr

v, ' Y, =9 I'—p I'——o
(v) - ,  (vi) T A

where each of the lower expressions is identical with I't—A4, we may also
take as p arbitrary as the above case, since in Cases (ii), (iii) and (v), 4
is an RF and in Cases (i) and (vi), the hypothesis (i.e., =,l[ay,-.., a;])
cannot hold.

I'res#t {res}Ul—A {r=t} U4

Case (iv). T4

Suppose that for each of three upper expressions our lemma holds. Then
there exist majorants =, 1,6 for I'res#t, {resjUl+~A, and {r=t}
UI'+—A, respectively. Then we define p(n)=max/(t(n), a(n)). Clearly,
p(n)>n. Now suppose

E L my,..., m](=T[my,..., mja,,..., a.]).
Then
=.[mq,...,m,0,...,0/a,,..., ay, by,..., b,],

where {b,,..., b,}=V(res#t)—{a,,...,a,}. Since n is a majorant for
I'—res#t, it follows that

Bt €s#t[my,..., my, 0,...,0/ay,..., ay, by,..., b,].
Since res#t is an RF,
R,Eres#t[m,,..., my,0,...,0].

Thus, we have either R, =res[m,..., m, 0,...,0] or else R,=r=t[my,...,
my, 0,...,0]. Hence k=,res[my,...,m,0,...,0] or E,r=t[my,...,m,0,...,
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0]. If the former is the case, since T is a majorant for {res}Ul A4,
we have

EmAlmy,..., my, 0,..., 0],
and hence

E omAlmy,..., my, 0,..., 0],

Similarly, we have the same result also when the latter is the case.
From this it follows that p is a majorant for I' —A.

.. '+—B r—c . I'=BAC

Cascs (vii) TEBVC’ (viii) TEBVC’ (x1) “TEB
. TH=BAC ... ¢, [—B

(xii) Y Aol (xiii) T+p—=B"

where it is assumed that the lower expressions are I'+—A. By the induc-
tion hypothesis there exists a majorant t for the upper expression in each
of these inference rules. Then we may take this 7 as majorant for the
lower expression, sincc obviously we have

(06) =Bl ., ] =BV Clmy,..., my],

@) EamClmy,. ., ] ==k ,,BV Clmy,..., m],

® E.wmBACny,..., ] =k »wBlm...., ;] and
EnClmy,...y my],

) (RoE=@lmy,..., m] =k (nBlm,,..., m]) =& ,(yo—
B[my,..., m].

'-B I'+—C
Case ) —Frmac
where A is BAC. Let t and ¢ be majorants for I'B and I'C,
respectively.  Then  p(n)=max (1(n), o(n)) is a majorant for I'BAC,
since k= yBlmy,..., m] and =, Clmy,...,m] imply = ,mBACImy,...,
m,].
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IT'~BVC {B}UI'+d4 {C}UTlr4
T4 ‘

Case (ix).

Let =m, 7,0 be majorants, for which the lemma holds for '—BVC,
{B}UI'+~A and {C}uUT A, respectively. Then we define p(n)=
max (t(n(n)), o(n(n))). Suppose &,I[. Then k,,BvC. Hence k=B or
FzmC. Since n<n(n), E,m{BYUT or E,,{C}UI. Hence [ (rmyd
Of Eyond. S0 = ,mA.

I—p—A4 T'o

Case (xiv). 4

Let 7 and ¢ be majorants for I'p—A and I+, respectively. This it
is obvious that p=1t is a majorant for I' —A.

F'—ser TI'—D(s/x)

Case (xv). F3xerD

Let t and ¢ be majorants for I'-ser and I +—3xerD, respectively.
Then p=o is a majorant for I' ~3xerD, since l=,,Ser and F,u,D(s/x)
= mIxerD.

I'+—3IxerD {aer, D(a/x)}UT A
IV | ’

Case (xvi).

Let T and o be majorants for I'~3IxerD and for {aer, D(a/x)} U T -A.
Let 0, is a p.r. function defined for each semi-term r by

00(") = 05
0,(n)=n, where v is a variable,
O#St(n) = es(n) + 20:(!1).

Then p(n)=o(max(t(n), 8,(n))) serves as majorant for I' —A. For suppose
my,...,m<n and E=,[my,...,m]. Then k&, ,IxerD[m,,..., m]. Hence
there exists an mer[m,,..., m] such that k. ,D[my,..., m, mla,,..., a,
x]. Since V(r)s{ay,..., a;} and mq,..., m;<n, it is seen from our coding
of h.f. sets that r[m,, .., m]<0,(n) by the induction on ». Hence

m<rlmy, .., m]<60,(n)<max(t(n), 6,(n)).
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Also, my,..., m;<n<max (1(n), 6,(n)),
E max(eon, 0,y PM 1s- -0 My Mlay,..., ag, X7,
B max(e0n),0,(n)@ € FLM 150, My, mifay,..., ay, aj,
and
':maX(r(n),Gr(n))r'
Since p is a majorant for {aer, D(a/x)} UT A, it follows that
= rr(mnX(r(n),Gr(")))A'
This shows that p is a majorant for I'—A.

{a€er} UT —D(alx)
I'—-VxerD

Case (xvii).

Let 7 be a majorant for the upper expression. Let p(n)=1(0.(n)). We
have to show that p is a majorant for the lower expression. Clearly,
p(n)>n. Now suppose that m,,...,m<n and =, ['[m...,m]. It
suffices to prove

EpmDPlmy,..., my, mjay,..., a, x]J,

for all mer{my,..., m]. Since my,...,m,<n, it follows that m<0.(n).
Thercfore,

Eo.m{aertUl)[my,..., my, mlay,..., a,, a].
(Notc that n<6,(n).) So we have
E wo,apP(alx) [my,..., my, mja,,..., a, a],
that is, =, D[m;,..., my, mlay,..., a,, x].

I'—VxerD T lser

Case (xviii). TED(/X)

Let © and ¢ be majorants for I'VxerD and I'lser, respectively.
Then p=t is a majorant for I'+—D(s/x). For suppose k,[[m,,..., m],
where my,..., my<n. Then |, VxerD[my,...,m] and s[my,..., m]e
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r[my,...,m]. Hence

EwDlmy,..., my, s[my,..., mJ],
that is,
E wmD(s/x) [my,..., m].

I'—D(s/x)

Case (xix). TaxD

Let T be a majorant for I' —D(s/x). Then p(n)=max(t(n), O(n)) is a
majorant for I'+-3xD. For suppose |=,[[my,...,m]. Then I=,,D(s/x)

[my,..., m], ie.,
EwPlmy,. .., my, s[my,..., m]la,,..., a, x],
and a fortiori
E omDPLm ..., my, sfmy,..., m]].
But s[my,..., m;]1<0(n)<p(n). So k= ,u,3IxD[m,,..., m].

I'—3xD {D(a/x)}UTl+A _

Case (xx). 4

Let ¢ and ¢ be majorants for I't=3xD and {D(a/x)}UT+—A. In this
case, et p(n)=a(t(n)). To prove p is a majorant for [ A, suppose
= LDy, mglag,..., a]. whete my,...,m < n. Since a¢ V() U V(A)
U¥(@xD), we may assume a¢{a,..., q}2V({)UV(A)U V(3IxD). Then
E «n3xD[my,..., m]. So there exists an m<1t(n) such that &= ,D[my,...,
my, mlay,..., a, x], or equivalently = ,D(a/x)[m,,..., my, mla,,..., a, al.
Also = p[[my,..., my, mlay,..., a,, a]. It follows that = updlmy,...,
My, mfa,..., a;, a] and hence that =, uyAlmy,..., m/ay,..., a]. This
proves that p is a majorant for I' -A.

I'—=D(0/x) {D(a/x), D(b/x)} UI —D(a#b/x) )

Case (xxi). I'—D(r[x)

Let v and ¢ be majorants for I'—D(0/x) and {D(a/x), D(b/x)}U T +
D(a#b/x). We define o(i, j) by e(i, 0)=1(i) and o(i, j+1)=0(c(i, j))+ I
Note that j<a(i,j). Let p(n)=0c(n, 0 (n)). We shall prove that p is a
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majorant for I'+—D(r/x). Suppose E=,[[m,..., ], where my,..., m,<n.
Then r[my,..., m]1<0,(n). We shall show by the induction that =, ;,D[m,
wey My, 0] for all i. If i=0 it is is obvious from the hypothesis since
a(n, 0)=1(n). If i>=0, then there exist j and [/ less than i such that
i=j#1. By the induction hypothesis we have =, D[m,,..., m, j] and
EemnDPlmy,..., my, 1. Since j<i—1, k<i—1, we bhave both =, ;- 1,D[m;,
co iy, j1oand = - Plmy,..., my, []. Moreover my,..., my, j, I<ao(n,
i—1). Since o(n) is a majorant for {D(a/x), D(b/x)} U T —D(a#b/x), we
have

Eoemi- 1Pl .., my, j#1].

Since a(o(n, i—1)<a(n, i) and j#l=i, we have |, ,D0my,..., my, i),
Thus we have, letting i=r[my,..., m.J],

E pmPn ..., my, v[my,..., m])

sincc o(n, r[my,..., ;])<a(n, 0(n))=p(n). Hence p is majorant for I
—D(r/x). This completes the proof of thc theorcm. g.e.d.

Corollary 19.3. Let IxA is a 2 F which does not have free vari-
ables. If +3xA, then +A(s), for some constant s.

Proof. This is a special case of Theorem 19.1 where k=0. q-e.d.

Incidentally, we have an alternative proof of the plausibility Theorem
17.1 as follows.

Suppose R, E=I'[my,..., m]. Then k=, I'[my,....m.], for sufficiently
large n, hence taking n>my,,---, m,, by Theorem 19.1, it follows that
E nAlmy,..., m] for some p.r. function p. Hence R,EA[my,..., m.].

g.e.d.

The converse of Theorem 19.1 holds.

Theorem 19.4. Jf f(my,...,m,) is a primitive recursive function,
then there can be found a 3. F A(ay,..., a, y) such that

F-~3!_]'/1((11,. ey Uiy y)
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and

R, ,E=A[mq,..., my, f(my,..., mp)],
for every my,..., m eR,,.

And hence

Theorem 19.5. f(m,,..., m,) is primitive recursive iff there is a
> F A(ay,..., a, y) such that

F3lyA(ay,..., ag y)
and
R, EA[my,..., my, f(ny,..., m)].
This is a characterization theorem for primitive recursive functions.

Proof of Thcorem 19.4. We make use of Theorem 13.6. But there,
natural numbers are regarded as von Neumann ordinals while here they
are regarded as h.f. sets. So it is necessary to translate Theorem 13.6
using the function T introduced in D.15.4. We proceed as follows. Let
a primitive recursive function f(m,,..., m) be given. Then, by Thcorem
13.6, we can find a number-theoretic formal function F(4,...,4,) in a
conservative expansion of FCS. Let A(b, ay,...,a,) be a 2F in FCS

equivalent to
J(F(T(ay),..., T(ay), b).
Then by T.15.11, we see,
—Nat(T(a,)) A -+ ANat(T(ay))
and hence
—Nat(F(T(ay),..., T(ay))).
So by T.15.10,

—31bA(b, ay,..., ap).
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Moreover on account of the meaning of T and J we easily obtain that
R, E=EA[f(my,..., my), my,..., m],

for every m,, .., m e R,. g.e.d.

Corollary 19.6. (i) If (A(ay,..., a,), B(ay,..., a,)) is a AF, then the
n-ary relation R,E=A[my,..., m,] is primitive recursive. (ii) Conversely,

every primitive recursive n-ary relation can be represented in this way.
Proof. (i) If (A(ay,..., a,), B(ay,..., a,)) is a AF, then we have
FIx(x=0A A(ay,..., a,)) V(x=1AB(ay,..., a,)).

Hence by our main Theorem 19.1, there is a primitive recursive function
f(my,..., m,)) such that

Rw':(f(’nla"'a n1n)
=0AA(my,..., m)V (f(my,..., m)=1AB(m,,..., m,)).

But since (4, B) is a AF, for every my,..., m,eR,, exactly one of R,
=A(my,..., m,) and R, E=B(n,,..., m,) holds. So

fmy,...,m)=0=R, =A[m,,..., m,].

Therefore R, F=A[m;,..., m,] is primitive recursive.
@) If P(my,...,m,) is a primitive recursive n-ary relation, then there
exists a primitive recursive function f such that

P(my,..., m,) f(my,..., m,)=0.
By Theorem 19.5, there exists a > F, A(b, a,,..., a,) such that
—3lyA(y, ay,..., a,)
and
R, EA[f(my,..., m,), mq,...,m,].
But then we have a representation

P(my, .., m)R, =40, my,..., m,). g.e.d.



688 MoTO-0 TAKAHASHI

The following is an application of Theorem 19.1.
Let f(m) and h(m) be defined as follows:

x, if m is not a square and x is the least
non-trivial solution of diophantine equation

f(m)=l x2—my?=1 (with y>0),
0,

if m is a square.
h(m)=the ideal class number of Q(/—m).

Then these functions are both primitive recursive, for the theory of
quadratic diophantine equations and the elementary theory of ideals are
formalizable in FCS so that we can prove the existence of the values
of f and I in FCS. (Then by Theorem 19.1, they are primitive recur-
sive.)

20. Equivalence to Primitive Recursive Arithmetic

For primitive recursive arithmetic (abbreviated by PRA), see Goodstein
[4]. We shall use the results in the book.

First, let [a/b] and rem(a, b) be the quoticnt and the remainder
function, for which

(N a=b.[a/b]+rem(u, b),

2) b>0—rem(a, b)<b,

and

3) a=b.s+rAr<b——[a/b]=sArem(a, b)=r,

hold in primitive recursive arithmetic. (For definition of these functions,
see Kleene [1] or Goodstein [4]. In the latter these are denoted by Q
and R.)

Now we define

4 E(a, b)=1=rem([b/24], 2).

Since E(a, b) takes only 0 and 1 as values, let us regard it as a proposi-
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tion (0 as truth and 1 as falsity). Then it says that [b/27] is odd.
We have in PRA that

&) 20=1,

(6) [b/1]=b,

(N [2¢c/207 1 ]=[c[27],

(8) [Qe+Dj2e 1 ]=[c/27].

From these it follows that

) E(0, b)—rem (b, 2)=1,
(10) E(a+1, 2¢)«—E(a, ¢),
(11) E(a+1, 2c+1)——E(a, ¢).

But the following facts are also provable in PRA:
b<a—b<29,
b<2¢——[b[27]=0,

1—rem(0, 2)=1,

b<ava<b.
So, we have
(12) E(a, b)—a<b,
(13) E(a, 0), (" is the negation symbol in PRA).

Next, we define & by

a, if E(c, a),
(14) atic= _
a-+2¢, if E(c, a).

Then 7 has the similar properties as #:

(15) E(c, afc),
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(16) E(d, a)— E(d, alc),
(17 E(d, abic)— E(d, a)Vd=c,
(18) E(d, aic)—E(d, a)Vd=c.

Proof of (15)~(18). (15) is obtained by using
[a+2%/2b]=[a/25]+1.
(16), (17) and (18) are obtained thus:

E(c, a)V E(c, a),

E(c, a)—abic=a,

E(c, a)— (E(d, a)——E(d, atc)),

E(¢, a)— (E(d, a)—c#d),

E(c, a)—>[a[2¢]=2"[a/2°*1],

ctd—c<dvd<e,

c<d—rd=c+1+((d+c)=1),

E(c, a)—a=[a/2¢*1]:2¢*1 +rem(a, 2¢)
Aa+2¢=[af2¢t1]-2¢*1 4 2¢ +rem (a, 2°),

rem (a, 2€)<2°¢t1 A2¢+rem(a, 2¢)<2¢*1,

[a/2¢*1]=[[a/2°*1]/2*] - 2% +rem ([a/2°" '], 2%),

rem ([a/2¢+1], 2%) - 2¢*1 4 2¢ + rem (a, 2°) <2t 1t

E(c, a)—[a/2e****]=[[a/2°*']/27]
Al(a+29)2¢%1**]=[[a/2¢*1]/27],

E(c, a)—[(a+29))2¢* 1 *x] =[a]2* 1 %],

E(c, a)— (E(c+1+x, a)— E(c+1+x, alic)),
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E(c, a) Ne<d—(E(d, a)—E(d, atc)),
d<c—c=d+1+((c=d)=1),
[a+24+1+x2d]=[qa[24]+2-2%,
E(e, a) Ad<c—(E(d, a)«—E(d, a%c)),
E(c, a) Ac#+d—>(E(d, a)—E(d, atc)),
c#+d—(E(d, a)—E(d, akc)),
E(d, a)— E(d, afc),
E(d, aic)— E(d, a)Vd=c,
E(d, adc)—E(d, a)Vd=c.

We establish a theorem on binary expansion in PRA;

Theorem 20.1. a= 5 2 (=3 (g (E(i, a)))-2).

E(i,a <a

(c.f., 2.9 (page 35) of Goodstein’s book.)

Proof. The following induction schema is acceptable in PRA (cf.,
6.3 of Goodstein’s book).

P(0) P(a)—> P(a) P(a)— P(2a+1)
P(a) ’

So it suffices to show

0= 2,
E(i,0)

a= Y 2i—2g= Y 2i,
E(i,a) E(i,2a)

and

a= Y 2i—2g+1= Y 20

E(i,a) E(i,2a+1)

But these are established by easy computations. g.e.d.
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Corollary 20.2. In PRA, we have
A%(E(x, a)— E(x, b)) A A%(E(x, b)— E(x, a))——a=0b,

where A% is the bounded universal quantifier introduced in Goodstein’s
book, p. 64. (It means “‘for all x less than or equal to a.”)

For any primitive recursive (p.r.) predicate P(x, a,,...,a,) in PRA,
let (Vxea)P(x, ay,..., a,) be the predicate

A%E(x, a)— P(x, a,,..., a,)).
Similarly, let (3x e a)P(x, a,,..., a,) be the predicate
E%(E(x, a) A P(x, ay,..., a,)) .

If we replace, in an RF ¢, each expression aeb, a#b, propositional
connectives and restricted quantifiers by E(a, b), atb, corresponding
propositional connectives and bounded quantifiers in PRA, we obtain a
p.r. predicate in PRA. We call this proposition .

Of course, it is impossible to correspond to each > F a proposition
in PRA with the same meaning. However, we can correspond to each
>'F a certain proposition in PRA with a new variable, say n, as follows.
(The intuitive intention is to bound each unrestricted existential quantifier

to n.)

Definition 20.1. Let A be a Y F. Let n be a wvariable not occur-
ring in A. Then we define A"l to be the proposition obtained by
replacing each unrestricted existential quantifier Ix by E", and at the
same time by replacing a€b, a#b, propositional connectives, restricted
quantifiers by E(a, b), abb, corresponding propositional connectives and

bounded quantifiers in PRA.

Note that for an RF ¢, ¢l™ coincides with ¢ above.
By the induction on A we easily have

Lemma 20.3. n<mA Al"l— A"l jn PRA.

Now FCS is conservatively translated into PRA in the sense of the

following theorem:
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Theorem 20.4. (i) If I'~A in FCS, then there exists a primi-
tive recursive (derivation of a) function p(n) such that

p(n)=n
and
Ay <HA Aag<n AT — flptn)]

are provable in PRA, where a,...,a, are all the free variables occur-
ring in I' and A, and T'™ is the conjunction of all B with B in T.
(i) If +A(ay, ..,a,) (in FCS), then there exists a primitive recursive
(derivation of a) function f(a,..., a,) such that

Alf(ai,..., an)](a]’m’ a,)

is provable in PRA.

(iii) If ¢ is an RF in a conservative expansion of FCS by definition,
then it is provable in ¥CS iff ¢ is provable in PRA.

(iv) FCS is consistent iff PRA is consistent.

Outline of Proof. (ii), (iii) and (iv) are easy consequences of (i). The
proof of (i) proceeds as in the proof of Lemma 19.2 of the last section.
But we must also use the following:

(i) formal theorems of propositional calculus and predicate calculus with
quantifier bounded, such as,

g p pla)—q

q Eip(x)—q’

4

which are proved in Goodstein’s book, and
(ii) course-of-values induction of the form

P A AY(x<n—>q(x))——q(n)
p——q(n)

’

which can easily be proved in PRA by the standard technique. g.e.d.
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21. Conservative Expansion of PRA Including All First-Order Formulas

We consider the following system, named PRK.

1. Primitive recursive terms (PR-terms) are defined as in PRA.
(See e.g. Curry [1].)

2. PR-formula is a formula of the form r=s, where r and s are
PR-terms.

3. (First-order) formula is constructed from PR-formulas by means
of logical connectives and quantifiers.

4. Sequent is an expression of form I'—»4, where I and 4 are finite
sequences of formulas.

5. PR-sequent is a sequent composed of PR-formulas.

6. Basic sequent is a PR-sequent which is provable in PRA (when
the sequent, say,

Pla“" Pm—ﬁle---; Qn
is construed as the PR-formula
Pl SRS APm‘——’Ql Vo VQm

where A, —, V are logical connectives defined in PRA, as in Goodstein’s
book [4]).

7. The inference rules are as in LK.
For example, inferences on quantifiers are

I——4, A() Ala), [— 4
T— 4, 3xA(x) IxA(x), [— 4
I— 4, Aa) A(t), T — A
IT— 4, VxA(x) VxA(x), [—4 °

A sequent is provable if it is obtainable from some basic sequents
by successive applications of the above inference rules. A formula A4 is
provable if the sequent —A is provable. This completes the description
of PRK.

Theorem 21.1. A—A is provable.
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Proof. If A is quantifier-free, then it is obviously a basic sequent.
So this theorem is proved by the induction on the number of logical
symbols in A. g.e.d.

Theorem 21.2. If a sequeni or a formula comes from a provable
sequent or provable formula in LK by substitution, then it is provable
in PRK. [In particular, each instance of tantology is provable in PRK.

Proof. This is immediate on account of Theorem 21.1 and the infer-
ence rules of PRK. g.e.d.

Example. AV —A is provable in PRK.
Now, by exactly the same way as Gentzen’s, we can prove the following
cut-elimination theorem for PRK:

Theorem 21.3. Every provable sequent is provable without using
cut-inference.

As a corollary of this theorem we have

Corollary 21.4. PRK is a conservative expansion of PRA. i.e., If
I'—A4 is a PR-sequent and if it is prorable in PRK, then it is provable
in PRA.

Proof. A cut-free proof of a PR-sequent in PRK does not contain
any inference on a logical connective.

So all the sequents occurring in it are basic sequents and hence
provable in PRA. g.e.d.

We state more results about PRK without proofs.

Theorem 21.5. (i) VxVyA(x, y)=VzA(2);, (2),) (and its dual) is
provable in PRK, where (z), is a primitive recursive function defined
in Kleene [1].

(ii) an existential formula i.e., a formula of the form AyP(y, a,,...,
a,) with P quantifier-free, is provable in PRK iff there is a PR-term
f(ay,..., a,) such that P(f(a,..., a,), ay,..., a,) is provable in PRA.

(iii) an VY3-formula i.e., a formula of the form Vx3yP(x, y, a,,..., a,)
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with P quantifier-free, is provable in PRK iff there is a PR-term
f(x, ay,..., a,) such that P(x, f(x, ay,..., a,), dy,..., a,) is provable in PRA.

@(iv) If a formula 3yP(y), P quantifier free, does not have any free
variable, and if it is provable in PRK, then P(n) is provable in PRK
for some numeral term n.

(v) If P(a) is a PR-formula, then the principle of mathematical
induction holds: that is,

1°. P(0) A Vx(P(x)—P(x+1))—VxP(x)
is provable in PRK, and

2°. If '—4, P0) and P(a), [— 4, P(a+1)
are provable in PRK, then I'>4, VxP(x) is provable in PRK.

(vi) If IxP(x)==VxQ(x) is provable in PRK and if P and Q are
quantifier free then R=3xP(x) (and hence R=VYxQ(x), too) is provable
in PRK, for some PR-formula R.

(In this case we say 3xP(x) is a decidable formula. Thus (v) holds
for decidable formulas.)

(vii) If A(a) is an existential formula and if IT'—>A(0) and A(a),
I'y—A(a+1), where I'| consists of existential formulas, are provable in
PRK, then I', I'{—VxA(x) is provable in PRK.

Similarly we may consider a formal system PRJ which is like LJ
as PRK is like LK.

One difference between philosophies of PRA (or PRK) and of FCS
is that in the former system the existence of the values of primitive
recursive functions are assumed from the beginning while in the latter
the existence of them are proved, only assuming the existence of a single,
very elementary function, i.e., #.

By the way, from the results of this section it makes sense to say
that any 1Ist order formula is provable in (a conservative expansion of)
FCS.

22. Extensions of Number Systems

How to define in FCS negative integers and rational numbers etc.,
with their arithmetic operations are almost obvious. We follow the usual
definitions, keeping in mind not to use infinistic methods. For this we
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must exhibit a unique (finite) presentation of each object (such as inte-

gers, rational numbers, algebraic numbers, etc.).

defining thcm caused by this requirement would be inevitable.

we try to minimize complications in proving theorems.

(I) Integers

D.22.1.

stands for ‘‘u is a negative integer’.)
(ii) Z(a)<>Nat(a) vV Neg(a), (Z(a) Stands for “‘a is a (rational)

integer’.)

<0, a3,
(iii) —a=(0,
X,
[u,
(iv) Jal =
l —d,
[ A=
(v) Aeopu=
1 _(/]’—-/l)v
(a+Db,
{ a—|b|,
(Vi)  a+b=
) b—lal,
—(la|+1b]),
{a-b,
.. _—(a']bl)a
(vii) a-b=
—(lal- D),
Ial'lb|a

A
(viii) a"=[ jal®

—lal%,

All other values of functions for unmentioned arguments are

sumed to be 0.

if Nat(a)Aa>0,

if a=0,

if Neg(a)Aa=<0, x).

if  Nat(a),

if  Neg(a).

if Nat(AHANat(p)A A=,

if Nat(A)ANat()Ai<p.
if Nat(a) A Nat(b),
if Nat(a)ANeg(b),
if  Neg(a) ANat(b),
if Neg(a) ANeg(b).
if Nat(a)ANat(b),
if Nat(a)ANeg(a),
if Neg(a)ANat(b),
if Neg(a)ANeg(b).
if <AA=2v)AZ(a),
if =3v<MA=2v)AZ(a).

Some complexity in

However,

(1) Neg(a)ye=dxe U Ua. (a=<0, x) ANat(x) Ax#0), (Neg(a)

as-
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Let us agree the convention that if A< B, f is defined on 4 and ¢
is a certain natural extension of f on B, then they shall be written
by the same symbol.

We state following basic theorems on a arithmetic without proof.
One will find their proofs easy if he tries to prove these in order.

T.22.1. (i) —(Nat(a)ANeg(a)),

(i) —(A=—p=p—AANi—p=i+(—p),

(ili) A—p=¢—va2i+v=~¢4y,

(iv) A=p+E—=A+O)—~(u+v),

(v) Za)—3Fu(a=i—-p),

(vi) Z(@)AZ(b)—a-+b=b+aA(—~a)+(—b)=—(a+D),
(vil)  Z(@ANZ(b)ANZ(c)—(a+b)+c=a+(b+c),

(vili)  Z(a)—a+0=aAa+(—a)=0,

(ix) (A—p-E=v)=@-C+p-v)—A-v+p-9),

(x) Z@)AZ(b)—a-b=b.-an(—a)-(—b)=a.b,

(xi) Z(@ANZb)ANZ(c)—(a-b).-c=a-(b-c), A(a+b).c=a.c+b-c,
(xit) Z(a)—»a-0=0Aa.l=a,

(xiii)  Z(a)—a*a*=a*"" A (aP)=atr,

(xiv) Z(@)AZ(b)Aa#0Ab#0—a.b#0.
(II) Rational numbers.

D.22.2. (i) Frc(a)ea={l, a, ud A Z(x) A Nat(u) Apu=>2 A Prime (||,
0.
(Frc(a) stands for ‘“‘a is a fractional (but not an integral) number
a/p”.)
(i) Q(a)==Z(a)V Frc(a).
(Q(a) stands for ‘“‘a is a rational number™.)
(iii) a+f=y==Z(@)AZPB)AB+0
AN(ZG) Aa=B-7)
V(Fre(p) Ay=<1,0, v) Aa.-v=[.9)).

) » i Z(),

(iv) 7= .
o, if Fre(p)Ay=<1,a, uy.
[ Lo if Z(y),

(v) y=

o if Fre@)Ar=<1,a p.
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(Vi) a+p=@ fHa- P+ p), i Q)AQP).
(viD) axf=@ P+ p. i QAQ).
(vii)  —oa=(—&)+a.

(ix) al=a+a, if Q(x) Ax+0.

(x) a=B=a+(=p), if QE)AQ).

(xi) a+f=axp™t, if Q)AQ(B)AB+O.

Remark. We have defined in (iii) the division for integers and in
(xi) for rationals, and they are denoted by the same symbol.

T.222. (i) Q@)—Z(@AZ@)Aa+0Aa=a=a

(i) ZWAZBAZG)AZS)APFOAS#0—(a+f=y+d=x.5=F.7)
A=) (y+6)=(a-7)-(B-9)
Aa+P)+(+0)=(x-0+B-y)+(B-9).

(i) Q) AQB)AQ()—a+f=f+ua
ANoa+pB)+y=a+B+y)Aa+(—0)=0Ax.f=f.u
Ae-B)-y=a-(B-V)A(@+p)-y=a.-7+f-yAa-0=0
Ao l=aA(@#0—a.a"t=1)A(x- f=0—a=0V [=0).

(IIT)  Polynomials.

For the sake of brevity we only define here polynomials of one
indeterminate with integral coefficients. We define them as sequences of
non-vanishing cocfficients. Other kinds of polynomials can be defined
similarly.

D.22.3. (i) feZ[X]<Fnc(f)AViedom(f) Nat(i)AVjerng(f)-
(Z()YA j#0).
(The symbol Z[X] suggests the set of all polynomials of one variable
with integral coefficients. But of course, it does not exist as an h.f.
set. Formally feZ[X] is a unary notion of f.)
(ii) deg(f)=udom(f).
(iii) fH+g=hefeZ[XINgeZ[X]IAheZ[X]Adom(h)=dom/(f)
Udom (g)
AViedom(f)—dom(g). (iedom(h)Ah'i=f"i)
AViedom(g)—dom(f). (iedom(h)Ah'i=g'i)
AViedom(f)Adom(g). (f'i+g'i#0—iedom(h)
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AWi=f"i+g )A(f'i+g'i=0—i¢dom(h)).
(iv) f.g=hefeZ[XIAgeZ[X]ANheZ[X]
Adom (h)={k|k<dom (f)+dom (g) A 0+# <l.’leksf’igq’j}
/\Vkedom(h)(h’k=(i.!Z')ESf"i-g’j),
where s denotes {<i, j> edom(f)xdom(g)|i+j=k}.
(v) Ap(fa)= 3 (f)al if [eZ[X]AZ().
(Ap(f, a) is the value f(a) of polynomial f at a.)
(vi) X={L, 1)}, Xr={l1, n)}, if Nat(n).
0 if ¢=0

(vii) [c]=1
e, 05, if Z(c)Ac#0.

(vii) —f=ge=feZ[X]AgeZ[X]Adom(f)=dom(g)AVYiedom(f).
(g'i=—f").
(ix) f-g=f+(-9) if feZ[X]IAgeZ[X].
(x) flg (divisibility of polynomials).
The definition of it is left to the reader.
(xi) f=g (modh)ye=h|f—y.
(i), (iv), (viii) are easily justified.)

T.22.3. (i) feZ[XIANgeZ[XA]—~—feZ[X]
ANf+geZ[XIANf—geZ[X]A frgellX].
(1) feZ[XIAgeZ[X]NheZ[X]
—~(f+g=g+f AN(f+g@)+h=f+(@+)A f+(=f)=0
ANfg=g fNS @) h=f(g-MA(f+g) h=fh+g-h
A [=fAf0=0).
(0 as polynomial happens to be 0 as h.f. set')
(iii) feZ[X]JAgeZ[XINf#0Ag+#0
—deg(f-g)=deg(f)+deg(g).
(iv) Z(c)AZ(a)—[cleZ[X] Adeg([c])=0AAp([c], a)=c.
(v) feZ[XIANZ(a)—Z(Ap(/. ).
(vi) XeZ[X]Adeg(X)=1A(Z(a)—Ap(X, a)=a).
(vii) XreZ[X]Adeg(X¥)=uAAp(x*, A)=2A"
(viii) feZ[XIAgeZ[X]—=Ap(f+g,4)
=Ap(f, )+Ap(g, IYAAp(f-g, )=Ap(f, 1) Ap(g, A).
(ix) feZ[XJAheZ[X]Adeg()>0
—3lg(g e Z[X] Adeg(g) <deg (W) A f=g(mod I)).
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(IV) Elementary thcory of polynomials and linear algebra can be de-
veloped in FCS. In most cascs the usual arguments can be word by
word translated into FCS. However there are cases where some care

is necded. The following is one of such cases.
(V) Irreducibility of polynomials.

In order to cxplain what kind of argument is formalizable in FCS
and what kind of argument is not, we shall give two methods of deter-
mining irreducibility of a polynomial.

1°. The first idea is as follows. Given a polynomial f(x) in Z[X],
we compute from its coefficients an upper bound for the absolute values
of its roots.

Then we can compute an upper bound of the absolute values of
coefficients of any factor of f(x) (by the relation between roots and
cocfficicnts). Hence candidates for proper factor of f(x) arc finitc and
we have only to check whether they actually divide f(x) or not (by
the usual division algorithm).

Although this mcthod gives us a complete algorithm for deciding
whether o given polynomial is irrcducible or not, it assumes the cxistence
of roots of f(x) in the complex number ficld (i.c., the [undameutal theo-
rem of algebra). So this mcthod cannot be formalized into FCS until
the latter thcorem is proved in FCS. (For an cffective proof of the
fundamental theorem of algebra, sec e.g., Rosenbaum [1].)

2°. The second idea is much simpler and due to Kronecker (c.f.
van der Waerden [1]). Given a polynomial f(x) in Z[x] of degree n,
say. We may assume n>1. We compute f(0), f(1),...,f(n). If one of
these numbers is 0, then f(x) has a linear factor and hence is not ir-
reducible. Suppose all of these are non-zero. Then if there is any
proper factor g(x) of f(x), then g(0), g(1),..., g(n) must be factors of
SfQ0), f(1),..., f(n) respectively. Hence there are only finite number of
possibilities of the values g(0),...,g(n). For each sct of possible values
of ¢(0),..., g(n), we can compute each coefficient of g since the dcgree
of g is less than n. Hence there are only [inite number of possibilities
of proper factors of f(x). So we have only to check them as above.

The esscnce of this method consists in the following two points:
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(i) To compute the valuc f(i) of a given polynomial f(x) at an
integer i:

(ii) To determine a polynomial g(x) of degree at most n from its
n+1 values g(0), g(1),..., g(n), by solving simultaneous linear equations.

Both of these can easily be done in FCS. Hence the second al-
gorithm for deciding the irreducibility of polynomials with integral coeffi-
cients can essentially be done in FCS. We shall use this to define the
irreducibility of polynomials in Z[X] in FCS.

The above consideration would suggest the similarity betwcen for-
malizability into FCS and the so-called effectivity which is usually talked
intuitively (i.e., without any mathematical definition of it). It is my
opinion that the formalizability in FCS is a mathematical definition of
eflcctivity in its strongest sense. Anyway this similarity will become
clearer by more examples below.

Now we define the irreducibility of polynomials in Z[X] as men-
tioned above.

D.224. (i) Cd(f)={glgeZ[X]Adeg(g)<deg(f)AVi<deg(f).
(Ap(f, D#OAAp(g, DIAp(f, )}, if feZ[X].
(Cd(f) is a set of candidates for factors of a polynomial f.)
(i) Irzxy(f)e=fe Z[XTA(deg(f)=1V (deg(f)>1 AVi<deg(f)
Ap(f, D#0AVgeCd(f) - VheCd(f)-(0<deg(g)<deg(f)
—~f#g-M)).
(Itzrx1(f) means f is an irreducible polynomial.)
(iii) Redzx(f)e=fe Z[XT A Tlrgx(f) Adeg(f)>0.
(Redy;x,(f) means f is a reducible polynomial.)

T.224. () Trgx(f)AgeZIXIAheZ[X]A f=g-h
—(deg(g9)=0Adeg(h)=deg(f))V (deg(g9)=deg(f) Adeg(h)=0).

(ii) 3g3h(geZ[XIAheZ[X] Adeg(g)#0Adeg(h)#0A f=gh)
HRedz;x1(f)-

(iil) feZ[X]—=Irzx(f)V Redzxy(f) v deg(f)=0.

The factorization theorem of polynomials can be formulated by the same
way as that of natural numbers and proved by the usual method.
Next we define an algebraic number ficld Q(x), where « is a root of
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a given irreducible polynomial g in Z[X].

D.22.5. () feQgre=lrzx(9) ABe QLX]Adeg(f)<deg(f).
(QLX] is defined similarly to Z[X].)
Q<Lg> suggests the algebraic field Q(x), where « is a root of g. Of
course Q<{g) is not a set in FCS, but formally [eQ<g) is only a
binary relation in f and g.

(i) B+ y=B+7 (the sum as polynomials), if Irzx(9), BeQ<g)> A
7€ Q<g>.

(i) fxgy=0=Ir,x (@) APeQLg> ANveQLg> AdeQLg) AB y=0
(mod g).

Next we consider the problem of effective definition of irreducibility
of polynomials in an algebraic field. Let f(X) be a polynomial in Q(x)
[X]. If we assume, from the beginning, the existence of an algebraically
closed field (or at least a Galois extension of Q) containing Q(x), then
the problem is easily solved. That is, f(X) is irreducible iff the irreduci-
ble polynomial g(X) of Q[X] which has a root in common with f(X)
has exactly the degree deg(f)+deg(x), where deg(a) is [Q(x): Q]. (And
we know the algorithm for computing g from f.)

However in order to extend Q(x) (to an algebraically closed field
or a Galois ficld over Q) it is usually neccssary to use an irreducible
polynomial in Q(x)[X]. So if we want to do it cffectively, (c.g. in our
system FCS), the notion of irreducibility of polynomials in Q(x)[X]
must be effectively defined. But this is the very problem we are consider-
ing. So we must avoid this vicious circle.

This difficulty was observed by van der Waerden [1] p. 140-144
(in its 2nd edition, which was intuitionistically written). And he over-
came this difficulty by proving the following effective criterion for the
irreducibility of polynomials:

Theorem. f(X)=f(o, X) in Q(&)[X] is irreducible in Q(o)[X] iff
one of the irreducible factors (in Q[z, u] of Nf(x, z—uax) is divisible
by f(a, z—ux), where Nf(a, z—ua), the norm of f(a, z—ux) should be
defined as the determinent of the matrix A whose components are in
Qlz, u] and which is defined by
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1 (1
S, z-uay= A of (n=deg(a)).
o.(n—l J o'c"‘l

(Note that this definition of norm does not use the conjugate elements
and that we can prove the necessary properties N(f.g)=Nf.Ng and
fINf by easy computation.)

The proof of the theorem is by considering the greatest common
divisor of f(x, z—ua) and each irreducible factor of Nf(a, z—ua) in
Ql[z, u]. For further detail, see the above-mentioned book.

On account of the effectivity of this theorem and its proof we define

the notion of the irreducible polynomials as follows.

D.22.6. () Irzgyx(NTrgn() A feZihy [X]
/\deg(f)>0/\EIq(IrZ(,D[X,Y](q)/\flq/\qINf'), where fe Z(hY [X, Y] is such
that f(X, Y)=f(X—Yx) and Nf is defined by

Nf=dct(4),
1 (1
* ljea
L(in—l L O.("_]

and A is a matrix each of whose components is in Q[X, Y]. (Exuct
definitions of them in FCS are left to the reader.)
(i) Red gy x(f)e==feZ) [XIA 21z 1x(f) Adeg (f)>0.

Remark. In the above definition the (apparently unbounded) quan-
tifier g can easily be bounded.

T.22.6. (i) Redzyxy(NIHIf131f2(f1 € Z<h) [X]

A S e ZChY [XT A deg(f1)>0Adeg(f2) VOA f=f;-/2).
(i) feZ{hy [XT—=Trz ¢ (f) V Redz¢hyxy(f) v deg (f)=0.
(i) Itz (N A fre Z<hY TXTA e Z<h [X]

A f=fi-fo—=(deg(f)=0Adeg(f,)=deg(f))

V (deg(f)=deg(f) Adeg(f,)=0).
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This effective definition of the irreducibility of polynomials enables
us to solve the isomorphism and the embedding problems between alge-
braic fields effectively.

D.22.77. (1)) Q> cQlgye=Tryx(f) Alrgx(9)
AIfi(fi1f Adeg(f)=1A f,€QLg> [XD).
(i) QP> =QLgy«—Qf> Q> A QLY = QLS>.

In this manner we can build in FCS the theory of algebraic numbers.
For instance, we can define ideals as finite objects and prove their unique
factorization theorem in FCS.

Some parts of analytic number theory can also be developed in
FCS.

When we try to formalize such a theory, one thing which we should
be careful of would be the projective argument, e.g. to form the range
of an effectively defined (i.e., primitive recursive) function whose values
are among some finite set, and to consider its least element. Such an
argument occasionally arises in number theory and as it stands cannot
be formalized in FCS. So, for this purpose it should be eliminated or
amended by some device (although, in most cases, this is easily ac-
complished).
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