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Introduction

The purpose of this article is to study the foundation of finite mathe-

matics from the viewpoint of hereditarily finite sets. (Roughly speaking,
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finite mathematics is that part of mathematics which does not depend on

the existence of the actual infinity.)

We shall give a formal system for this theory and develop its syntax

and semantics in some extent. We shall also study the relationship

between this theory and the theory of primitive recursive arithmetic, and

prove that they are essentially equivalent to each other. (To be more

exact, the latter can be conservatively embedded into the former.)

Relation to the so-called "effectivity in number theory" will also be

discussed.

When one considers finite mathematics, the following problems would

be basic:

1°. What are finitary objects?

2°. What are finitary operations (and methods)?

3°. What are finitary proofs?

Philosophers may consider these problems philosophically. But let us

consider them mathematically here. We seek mathematical formulations

of the above three kinds of things. Here mathematical formulation is of

course to give exact mathematical definition of what is seemingly mathe-

matical, by abstraction and idealization.

1°. What are finitary objects?

Natural numbers, symbols, finite sets and sequences of such things

etc., are usually regarded as finitary objects. But it would be too com-

plex and inconvenient to treat all of them in different types. It would

be a reasonable mathematical way to choose some basic type of objects

and represent others by these.

Natural numbers or finite sequences of some symbols are usually

taken as basic, and it is well-known that other objects are represented by

them via Godel numbers or a kind of coding.

So there would be nothing more to say about the possibility of

mathematical formulation of finitary objects. We shall however adopt

hereditarily finite sets (for the definition see Section 1) as basic finitary

objects in this article, because of their fine structure.

2°. What are finitary operations?
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Finitary operations may operate on infinite objects (such as sets of

natural numbers). But here we confine ourselves to consider only those

finitary operations which operate on finitary objects.

Finitary operations, which are also called algorithm, are finite

methods by which any given finitary objects (of a specified kind) are

transformed to other finitary objects.

It is well-known that the mathematical formulation of this concept

were achieved in 1930's by Herbrand-Godel, Church, Turing and Post,

almost independently. (See e.g. Davis [1].)

When natural numbers are taken as basic, finitary operations are

defined to be recursive functions. (Church's thesis). When hereditarily

finite sets are taken as basic, they are defined to be 11 -definable func-

tions. (See below.)

3°. What are finitary proofs?

Among various kinds of mathematical proofs, finitary (finistic, effec-

tive or constructive) proofs have been distinguished often since late 19th

century.

Some mathematicians take these finitary proofs as the only mathe-

matically true proofs. Some accepts other proofs but less authentically

than finitary proofs. And some others are indifferent to such descrimi-

nation.

In this article we would like to give a mathematical formulation of

finitary proofs in a fairly strong sense (we call them strict finitary

proofs). That is to say, we will define them to be formal proofs in the

formal system FCS we are going to present.

Our formulation of finitary proofs excludes the use of double induc-

tion unless it is reducible to the primitive induction (see below). Strictly

speaking, the double induction here means the double induction applied

to effective (i.e., 2^) predicates and is equivalent to simple induction

applied to 7I2-predicates and also to transfinite induction of co2-type

applied to 11-predicates. (Primitive induction is the simple induction

applied to effective (i.e., Z^-) predicates. We cannot further confine it

to that applied only to decidable (i.e., AJ predicates without assuming

other elementary functions than the one we shall adopt, for we need our
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primitive induction to prove the existence of the values of primitive

recursive functions.)

We do not think double induction (or equivalently, simple induction

applied to I72-formula) to be a strictly finitary method of proof. For,

suppose we want to prove VzVx3_y^4(z, x, y), where A is a decidable

predicate, by proving

(i) Vx3jM(0, x, j;)

and

(ii) VxBj;A(n, x, y) > Vx3j; A(n + l,x,y).

Then the assumption Vx3yA(n,x,y) in (ii) is very infinistic, because it

assumes, for every x, the existence of y such that A(n, x, y). In some

cases this assumption may be used for only a few values of x to prove

the conclusion of (ii) so that the proof may be reduced to simple induc-

tion (applied to Zl-predicate). But it is not the case in general. From

this observation one thinks natural to exclude such a proof from the

scope of finitary proofs. Our formulation will coincide with this intui-

tion.

As we show later, almost all theorems in elementary number theory

such as fundamental theorem of arithmetic, Fermat's small theorem,

quadratic law of reciprocity etc., can be proved strictly finitarily (in the

above sense).

As for theorems on logic, Gentzen's Hauptsatz for LK is proved

using double induction. So the proof itself is not strictly finitarily.

However this theorem can be proved strictly finitarily (and hence in FCS)

by a combined use of Herbrand's theorem and Ackermann's consistency

theorem, both of which can be proved strictly finitarily.

Incidentally it would be interesting to ask whether Fermat's conjec-

ture (or other unsolved problems in number theory) can be proved in

FCS. It may be possible that the conjecture itself is true but not

provable in FCS.

Finally, it should be noted that it is not our intention of this article

to conclude that finite mathematics is the only mathematics, because we

believe that infinite mathematics exists as its own right.
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1. Informal Theory of Hereditarily Finite Sets

For each natural number n, let Rn be defined as follows:

R0 = 0 (the empty set), and Rn+1=P(Rn) (P for the power set opera-

tion). Then we put Rm=\jnRn. Elements of Rco are called hereditarily

finite sets. The #,/s have the following properties:

1.1. RH<=Rn+J,

1.2. Rn is finite,

1.3. Rn is transitive, that is, xeRn and yex imply yeRn.

From these we see that Rto consists precisely of finite subsets of Rm.

That is,

1.4. ueR^ou^Rfo and u is finite.

Indeed R^ is the least set satisfying this condition, that is:

1.5. If X is a set such that X contains every finite subset of X,

then R^X.

1.6. There is no infinite descending sequence such that R<DBal

3

1.7. The structure (Rm, e) is a model of Zermelo-Fraenkel axiom

system for set theory except the axiom of infinity, and is called Ackermann's

model.

This comes easily from the facts that

( i ) The power set of a finite set is finite,

(ii) the union of a finite set of finite sets is finite, and
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(iii) The range of a finite function (i.e., a function whose domain

is a finite set) is finite.

On account of 1.7, we can develop a finite set theory. For example,

an ordered pair (and more generally, an n-tuple) is defined by

<a, by = {{a},{a, b}} .

A finite relation is defined to be a set in R^ such that every element of

it is a pair. A finite function / is a single-valued finite relation ((u, w>,

<z>, w>e/=>w = i;). The domain and the range of/ are:

, W>G/} and rang (/) = {i/ 1 BW<H, w> e/} .

Both of these are elements of R^ whenever / is, etc.

Now we define a binary operation # on Rm as follows: for a, b

eR^, a#b = a \J {b}, that is, a#b is the set a added by a single element

b. This extremely primitive operation will be taken as basic in our for-

mal theory of hereditarily finite sets below.

Now, RU is generated from 0 by this # operation,*) that is,

1.8. If X is a set such that OeX and that a,beX imply a#beX9

then Rm^X. Indeed we can show by induction that Rn^X9 using the

fact that

{fli,..., flm}=(-(0#fl1)#-)#O.

1.8 will be taken as an induction principle in our formal theory (named

primitive induction).

Let N denote the set of all natural numbers: JV={0, 1, 2,...}.

Let D be the bijection from N onto PCO(N) (the set of all finite subsets

of N) defined by

1.9.

where w l s . . . , nk are distinct and n = 2ni+2"2-] ----- h2"fc, i.e., the right-

From now on the empty set 0 is identified with 0.
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hand side is the binary expansion of n. Then a bijection t from N

onto Rlo is defined by induction thus;

1.10. r(w)( = nO = WOI'eD l i}.

This function is well defined, since if ieDn then i<n. This function

is really 1-1 onto, as can easily be shown by induction. It gives a

canonical 1-1 coding of h.f. (hereditarily finite) sets into natural numbers.

By definition we have

1.11. x* e y*ox e Dy, for any x,yeN.

The predicate Ax, y(x e Dy) is primitive recursive. Also the function

/be, y-t~1(xt#yt) is primitive recursive. Since the function t and its

inverse P1 are very simple and to be effectively calculable, it is natural

that relations on RCQ and functions on R^ to JRW are defined to be primi-

tive (general) recursive iff they are so when they are transferred into re-

lations on N and functions on N to N via t. For instance, if R(a, b)

is a relation on R^, then R is primitive recursive iff the relation Rr

defined by R'(x, y)oR(x*, y*) is primitive recursive, and if f(a) is a

function on R^ to R0), then / is general recursive iff the function /' on

N to N defined by f ' ( x ) = t~ 1 (/(xf)) is general recursive.

According to the above, natural numbers are regarded as hereditarily

finite sets (via t operation). In spite of it, this coding of natural num-

bers (into RU) might be somewhat unnatural and hard to treat. It would

rather be preferable to define natural numbers (in the theory of heredi-

tarily finite sets) as von Neumann ordinals (since we only treat finite

sets, we have only finite von Neumann ordinals). Thus a h.f. set is a

natural number (in symbol Nat(x)) iff x is transitive and every element

of x is transitive. (This definition of von Neumann ordinals is due to

Shoenfield [1].) Thus natural numbers are regarded as a special kind of

h.f. sets. Starting from this definition elementary number theory can be

developed.

Finite sequences (of h.f. sets) are a special kind of finite functions

(defined as above and which itself is a h.f. set) i.e., a function whose

domain is a natural number i.e. the set of natural numbers less than it).

Thus, formulas (of a Unitary logic) may be expressed by h.f. sets,
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as finite sequences of certain symbols, where these symbols are in turn

preassumed to be special h.f, sets.

But they can also be coded by the method of cumulative construc-

tion. For example, formulas of the usual prepositional calculus are

defined in the theory of h.f. sets as follows:

(i) <0, n> is a formula;

(ii) if A is a formula, then <1, Ay is a formula;

(iii) if A and B are formulas, then <2, A, By is a formula;

(iv) the only formulas are obtained by (i)-(iii).

Intuitively, <0, n> stands for the nth prepositional variable, <1, Ay for

-\A9 <2, A, By for Ay B. Then Af\B is, as usual, defined to be —\(~\A

V-\B)9 i.e., <1, <2, <1, A), <1, J5>». Note that the usual convention for
using and abbreviating parentheses is naturally accepted in this case.

Moreover, the notion of formal proofs (in a finitary logic), in which-

ever style it is formulated, can be reformulated in the theory of h.f.

sets in an obvious way. Thus the theory of a finitary logic can be sub-

sumed into the theory of h.f. sets.

A composition is a set with repetition. For instance, in a compo-

sition (ppqpq), which is the same as (pqpqp), p occurs three times and q

occurs twice, provided p and q are different. Thus a composition is

represented by the function whose domain is the set of objects that occur

at least once in this composition and whose value at an object is the

number of occurrences of the object in the composition. In particular

a finite composition of h.f. sets is coded by a h.f. sets:

Cb (/)<=>{/ is a finite function} A Vx e rang (/) (Nat (x) A x ^ 0).

Suppose / is a finite composition of natural numbers. Then we can

refer to the sum If and the product IIf (as natural number). If n

= J7/, then / is said to be a factorization of n. In addition, if / is

composed of prime numbers, then / is said to be a prime factorization

of n. In this framework we can state the fundamental theorem of ele-

mentary arithmetic as follows; if n is a positive natural number, then

there exists one and only one prime factorization (in the above sense)

of it. This formulation of the fundamental theorem is much more
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natural than other formulations of it, as in Skolem [1] (in which only
the existence-part of the theorem is formulated) and in Goodstein [4]

(in which the uniqueness-part of the theorem is not formulated as a

single theorem but a metatheorem (including function variables)), etc.

Moreover, within the theory of h.f. sets, we can go beyond natural

numbers to integers, rational numbers, algebraic numbers (integers),

polynomials with coefficients from objects already defined, and so on, in

an obvious way. (Although the classification method does not apply

since it must make use of infinite sets, a finite counterpart of it is readily

available.) One can then develop elementary theories of such objects

(e.g. such algebraic theory of numbers as Kronecker programmed (e.g.

Weyl [1], Reid [1]).

Remark. Primitive recursive relations and functions on Rv) have
been characterized e.g. by Redding [1] (finite) set-theoretically and by

Candy etc., with such definition schemata as Klecnc's. General recursive

relations and functions are characterized as ^-definable one e.g. by the

author [2]. These characterizations are all semantical. Any characteriza-

tion of general recursive functions is inevitably semantical and non-

constructive on account of Goclcl's consistency (i.e., the second incom-

pleteness) theorem. Indeed, given a kind of syntactical standpoints (or

even any of formalizable theories, e.g. ZF set theory), we can construct

a general recursive function which cannot be proved to be general recur-

sive within the system. To prove this let T be a formula in the given

system, say 5, which defines general recursive functions e.g. the one like

T-prcdicatc of Klccnc. General recursive functions (say, of one variable)

are then defined in the system 5 by the predicate

which says that computation always halts. (All the variables are assumed

to range over natural numbers.) Let

be an enumeration of formal proofs in S. Let g be defined by
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9(n) =

[/G«}'r((n)i, «, y))+l, if P(n)o is a proof of
v^rtf/i)!,*,?),

0, otherwise.

(Notations are as in Kleene [1].)

g is clearly general recursive. But if it were proved to be general recur-

sive in S, in other words, if there were a number e such that e represents

the general recursive function g and t-sGr(e), then there would be a

proof of Pp of Vx3yT(e,x,y) and so letting n = 2p3e
9 we would have

g(n)=U(^yT(e, n, yJ)+\ =g(n)+ 1, a contradiction.

On the other hand, primitive recursive functions are characterized

by an effective method. In this paper we shall characterize them in a

formal system named FCS. Roughly speaking it takes the following

form: {cpe\ \-FCSVx3y T(e, x, y)} is just the set of all primitive recursive

functions, where (pe is the function with Godel number e.

2. Formal Theory of Hereditarily Finite Sets? Introduction

In the monograph of P. J. Cohen [1], page 23, a formal system,

named Z2, of hereditarily finite sets is presented. His system is equiva-

lent to the usual axiom system for Zermelo-Fraenkel set theory excluding

the axiom of infinity and including, instead of it, an axiomschema of

mathematical induction on (von Neumann) ordinals.

It is also equivalent to the following simpler system which is com-

posed of the axioms;

(i) extensionality: VxVj;(Vz(z G x-^z e y)-^Vu(x e u-^y e w)),

(ii) empty set: BxVy-ryex,

(or rather, using the constant 0, "iy—>-y e 0),

(iii) addition: VxVy3zVw(w E Z ^ U E X V u = y),

(or rather, using the function symbol #,

VxVyVu(uex#y^±uexVu = y)), and the axiomschema;

(iv) induction: <p(0) A VxVy(<p(x) A cp(y)-*(p(x # y))-*Vx(p(x),

where cp is a formula of set theory (possibly with constants 0 and #).

The meaning of these axioms is clear on account of preceding chapter.

Such axioms as sum-set, power-set, and replacement-schema are
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derivable from this system. In the proof of it the last induction princi-

ple plays an essential role.

As is indicated in Cohen [1], these systems are essentially equivalent

to the first order arithmetic and also, as indicated in Jensen-Karp [1],

they have a technical advantage of "ease of coding", as we have oc-

casionally seen in preceding chapter.

So far, it has tacitly been assumed that the underlying formal logic

upon which each theory is constructed is the first order classical predicate

calculus. But evidently, the same things as mentioned above are true
with the first order intuitionistic predicate calculus.

However, we seek a formal theory of hereditarily finite sets with

more restrictive and effective kind of axioms. One of the motivations to

this direction is the so-called 1^-restricted replacement schema that

appeared in the theory of admissible sets in Kripke [1] and Platek [1].
As most of elementary effective part of set theory can be developed with

this weak replacement schema, it would be natural to consider that most

of elementary number theory and finite mathematics could be developed

with ZVinduction principle, i.e., (iv) above with cp restricted to Z\-

formulas, keeping (i)-(iii) unchanged. Also from the viewpoint of effec-

tivity preference in finite mathematics, it would be desirable to take as

the underlying logic the first-order intuitionistic predicate calculus instead
of the classical one.

Let us call this modified system FS. FS still contains any first-

order formulas as meaningful, e.g. we can speak of provability of these

formulas. But most of notions that actually appears in the elementary

development of number theory and of h.f. sets are recursive, or at least

recursively enumerable. Thus, by the characterization of general recursive

predicates mentioned in preceding chapter, these notions are expressed
by I1 -formulas in the sense of Levy [1]. For example, the relation

z = x U y is expressed by a restricted formula: Vw e x(u e z) A Vw e y(u e z)

A Vw 6 z(u E x V u e j;). Then, the existence of the union of two sets is

described as a rrfomiula: 3z(z = x U y ) (see sections), with free vari-

ables x, y as symbols expressing arbitrary h. f. sets. Indeed, most of

theorems proved in elementary number theory are of this form. For

more examples, the notions (and theorems) introduced in the informal

theory in previous chapter are all of this form.
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From these observations we see it would be interesting to formulate

a formal theory which contains, from the outset, only ^-formulas.

These motivations have led us to formulate the formal system FCS

(for finite combinatorial set theory), which will be presented hereafter.

3- The Formal System FCS

3.1. Formal symbols of FCS.

3.1.1. Countable lists of free variables and of bound variables.

Usually, a, b, c, d, a1? bi9 cl9 dl9 etc. shall stand for free variables and

x, y, z, u, sl5 vl9 zls MU etc. stand for bound variables. The set of free

variables is denoted by F and the set of bound variables by B.

3.1.2. A function symbol # (of two variables) and a constant 0.

3.1.3. A binary predicate symbol e.

3.1.4. Logical symbols: -r ,V, A, —s V, 3.

3.2. Terms are defined by the following inductive definition. (The

extremal clause i.e., the least set condition, will always be omitted in each

inductive definition hereafter.)

(i) 0 is a term;

(ii) Free variables are terms;

(iii) If s and t are terms, then #st is a term.

3.3. Semi-terms are defined as follows:

(i) 0 is a semi-term;

(ii) Variables (both free and bound) are semi-terms;

(iii) If s and t are semi-terms, then #st is a semi-term.

3.4. Restricted semi-formulas (abbreviated RF') are defined as fol-

lows:

(i) If s and t are semi-terms, then Est is an RF';

(ii) If cp is an RF', so is —r<p\

(iii) If cp and \// are RF"s, so are V cp\l/, /\cp\l/ and -*<p\l/9

(iv) If x is a bound variable, t a semi-term and cp an RF', then

3xEtc and Vxet<p are RF"s.



A FOUNDATION OF FINITE MATHEMAIICS 589

3.5. r-semi-formulas (abbreviated £F') are defined as follows:

(i) RF"s are £F"s;

(ii) If A and B are £F"s, so are V AB and A AB.

(iii) If <p is an RF' and B is a £F', then --(?£ is a £F';

(iv) If x is a bound variable, t a semi-term and A a £F', then

ndVxeL4 are EF"s;

(v) If x is a bound variable and A is a XF'5 then 3x/4 is a

r, 5, r etc. will stand for semi-terms, cp, \j/, % etc. for restricted semi-

formulas and A, B, C etc. for I-semi-formulas.

Note that —rA is not a ]TF' in general.

3.6. To each semi-term and to each Z-semi-formula, a finite set

of variables is assigned as follows:

(0) K(0) = </>

( i ) V(w) = {w}, if vv is a variable,
( i i )

(iii)
(iv)

( v )

(vi)

(vii) V(3xA)=V(A)-{x}.

Tlie assignment K is wcll-delined on account of the uniqueness of con-

struction of the so-called Polish notation. Note that every RF' is £F'

and hence the cases (i)-(vii) of this definition cover all cases.

If a variable is in K(s) or V(A), then we say the variable occurs

free in 5 or in A, respectively.

3.7. A restricted semi-formula cp is called a restricted formula (ab-

breviated RF) if V((p) n B — 0, and a I-semi-formula A is called a I-

formula (abbreviated £F) if V(A)nE = 0.

Thus a RF'(ZF') is a RF(£F) iff the bound variables occurring in

it are actually bound by quantifiers in it.

3.8. Let r be a term, v a (free or bound) variable, s a semi-term
and A a ]TF'. Then a semi-term s(r/t>) and a ^F'9 A(r/v) arc defined
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by the induction on s and on A as follows:

( i) oov^o,
( i i ) v(r/v)xr,

(iii) w(r/v) xw, if w is a variable other than v9

( iv ) (#st) (r/i?) - # ~s(r/iO(r/t;),

( v ) (e st) (r/v) ^ G ~s(r/v)~t(r/v),

(v i ) (^)(r/iO^->(r/i»,

(vii) (V AS) (r/v) ^ V ~A(rlvTB(rlv),

(viii) ( A AS) (r/i;) ~ A ~A(rlv)~B(r/v)

( i x ) (^q>B)(rlv)^~q>(rlvrB(rlv),

(x) (3xetA)(rlD)^3xe~t(rlvy*A9 if x is i;,

x3xe*t(rlv)*A(rlv), if x is not y,

(x i ) (yxetA)(rlv)>tfxe~t(rlv)~A9 if x is 0,
>^fxe^t(rlv)^A(r/v), if x is not t;,

(xii) (3x^4) (r/y)>=: 3x^4, if x is y,

x3x""y4(r/t?), if x is not t;.

In this definition, >< denotes symbolic identity and ~ denotes con-

catenation.

s(r/v) and A(rjv) are thus the results of replacing each free occurrence

of v in s and A by r. We could more generally define the simulatneous

substitution A(rl9...9rjvi,..., vn) in the similar way.

In spite of the presence of the above rigorous definition and notation

of substitution we shall often use it conventionally.

3.9. Convention.

We adopt the following conventions.

#st, est, VAB, f\AB, -»q>B are usually written s#t,set9AVB9

p-^B, respectively. Moreover, (p^ty is an abbreviation of (cp-^ij/)

p). These symbols #, e, —,, V, A3 -^, ^ then become operations

on (restricted or Z-) formulas. So the usual convention on parentheses

is naturally accepted.

3.10. The inference rules of FCS are as follows. (PCS does not

contain any axiom.) We shall express them in the following charts as in

Gentzen's system NJ. The exact meaning of them will be explained
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after that. In the following, r, s, t stand for terms, q>, \j/ for RF's, A, B

C for £F's and D for £F' with K(D)nB£{x}. Moreover, r^s stands

for Vx1er(x1es) and r = s for r^

(iv) - (#E) (v)

(vii) - - C v i i ) (viii) 'Cvn) (ix) AvB
c
c C

( V E)

( x ) - - ( A I ) ( x i ) - - ( A E l ) (xii)

a> , _. , . je/- D(slx)
^ -

D(ajx) aer

(xvi) '

(xx) (3E) (xxi)

The last inference rule is also called the inference of primitive induc-

tion.

3.11. What we wish to define precisely is the notion of derivation

and that of derivability . We define the notion P : T \-A (to be read, P

is a derivation of A from F), where F stands for a finite set of £F's,

A a £F and P a finite object as defined inductively as follows, (r, s,
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t, (p, i//, A, B, C, D are the same as above.) Clauses (i)-(xxi) correspond
to the above inference rules.

(0) If AeF, then A\F\-A. (This means intuitively that A standing
alone is a proof of A from F provided A e F.)

( i ) If P: F KreO, then -£: F \-A.

(ii) If P: Ft-res, then r 6 # f

(iii) If P: Fh-r = /9 then : r i-rej#/.

(iv) If P: F\-res#t9 Q: F [ j { r e s } l ~ A and R: r\J{r = t}\-A,

then P ^ R'.r\-A.A

( v ) If P: TU (*//] {-ip and 2-" ^U (i//j I- — ̂ , then ^-^: F\ — r<p.

( vi) If P: r\-y and Q: rf— ^<^, then ^-^: rH>4.^

(vii) If P: F\~A, then ^g: r\-A\/ B.

(viii) If P: rh-£3 then -

( ix ) If F: F\~A\/B, Q: F U {A} h-C and /? : F U {B} h-C3 then

( x ) If P: Fh-A and g: F\~B, then ~ •" r\~A/\B;
A f\ o

( x i ) I f P : Fh-^A^, then - :

(xi i) I f P : Fh-JA£9 then - :

(xiii) If P: FU {9} h-^5 then -^5: T\-y

(xiv) If P: r\-(p-*B, and g: Fh-(p, then

(xv) If P: F \-szr and Q: Fh-DO/*), then :

(xvi) If P:F|-3xerD and Q : F U {a 6 r, Z)(a/x)} h-^4, then ^^-:

Fh- ^4, provided none of r, A, D, F contain the free variable a, i.e., a$V(r)

U V(A)UV(D)\)V(r), where F(F)= U {F(C)|CeF};

(xvii) If P: FU { a e r } h-D(f//x), then : F^XE rDj Provided
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(xviii) If P: Fh-VA-erD and Q : F h ~ s e r , then P
 (s,^

: r\-D(slx).

(xix) If P: Fh-DGs/x), then -^-: Fh~3xD.

(xx) If P: Fh-3xD and g: Fu (D(a/x)] h-£, then £-=£-zj
provided a $ V(D) U F(B) U V(F) .

(xxi) If P:F|-D(0/x) and Q: F U {D(a/x), D(fc/x)] \-D(a#blx\ then

^ : F \-D(rjx\ provided a and 5 are distinct free variables and
D(rlx)

a, btV(r)\)V(D).

3.12. Suppose P: Ft-A. If F is empty, then we simply write P: \-A

and say P is a derivation (or a proof) of A.

Also we write F\~A and say /I is derivable from F if there exists a
P such that P:F\-A. If in addition F is empty we simply write \-A

and say A is derivable or provable or a formal theorem (of PCS). This

notion of derivability F \—A could be defined also by omitting the P-part
of the definition of P: F\-A. So we can prove some theorems by the

induction on F\-A, which we shall use without reference.
A\-\B stands for A \-B and B\-A. Moreover, expressions such as

A, F \-B or F, A \-B abbreviate {A} U F h-5.

This completes the description of the system FCS.

4. Syntax of FCS; Basic Theorems and Metatheorems

In this and subsequent sections we shall develop the syntax of the
system FCS and prove various formal theorems and metatheorems about

the system. (Strictly speaking, formal theorem A is a metatheorem 1—^4.)

Formal theorems are designated by Tl, T2, etc., while metatheorems are

designated by Theorem 1, Theorem 2, etc. It is tacitly assumed that

in the following the different syntactical variables a, b, c etc., for variables
occurring in the same context express different variables.

Theorem 4.1.
(i) // }-A, then
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(ii) If T\-A, then r(t/a)t-A(t/a).

(iii) 1/Fc/Z and r\-A, then U h- A.

(iv) If T\-A and IJ\-B for each BeT, then II \- A.

(v) // Fh-A and {A} U A h-B, then Fu

Outline of proof. First we prove (ii). For this we define a modified

notion F|— nA9 where n is a natural number. The definition of it is

obtained from the definition of T\-A by attaching the subscript n to h-

in the consequence of each clause and subscripts fc, I, m etc., to h- in

the hypotheses and adding hypothesis k<n, l<n, m<n etc., in each

clause. For example, (i) becomes

(i)' if AeF, then A: Fh- nA (for each ri)9 and (x) becomes:

(x)' If P: r\-kAVB9 (?: FU {v4}HC, R: r\j{B}\-mC and k<n, l<n,

m<n, then P Q R
:r\-nC.

*+s
Then it is obvious that F\-A iff F|— nA for some n. Then prove

4.1.1. If F\-nA, then r(tld)\-HA(tla\

by the induction on n. The trouble with quantification can then be

overcome by changing variables twice or more using induction hypo-

thesis. For further detail see the proof of Theorem 2.1 in Takahashi

[3]. (ii) is an immediate consequence of 4.1.1. (i) is a special case of

(ii). (iii) and (iv) can be proved by the induction on Th-^4, making use

of (ii) in case of quantification, (v) is an immediate corollary of (iv).

q.e.d.

Theorem 4.2. If A is a ^¥ and at the same time is an instance

of tautology of intuitionistic propositional calculus, then \—A.

Proof. This theorem is obvious since FCS includes all the inference

rules of the intuitionistic propositional calculus NJ of Gentzen [1].

T.4.3. (i) a^a.

( i i )

(iii) a = a.

(iv) a = b-

( v )
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( v i ) a =

(vii) a^

(viii) a =

( i x ) a =

x ) a =

Outline of proof of T4.3.

(i) is just ^ / x 1 E a ( x 1 E o ) . It is provable as follows:

beah-bea by (identity)

\-^xlEa(xiEa) by (bVI).

(ii) is Vxj. 6 a(Xi e fo) V Vxj e b(xl e c)-^^x1 e a(x^ e c) .

We have easily

, a^b/\b^c^-Mx1Ea(x1eb) (id and A El)

and

dEa, a^b /\b^c\-dEa (id)

Hence

dea, a^bAb^c\-dEb (bVE)

But

dEa, a^b A f o ^ c h - V x j Eb(x1Ec) (id and AE2)

Hence

dea, a^b /\b^c\-dec (bVE)

Hence

a^b/\b^c H-Vxj e a(xl E c) (bVI)

So

£ b A & £
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(iii) is obvious from (i) by (A I).

(iv) a^b

This is an instance of a theorem of intuitionistic propositional calculus,

i.e., A/\B-^Bf\A and hence provable in PCS.

(v) (a^

This comes from (ii) and the fact

AAB-*C,A'A B'-C h-(A A A') A (B A J3')-(C A C) .

(vi) It easily follows from a^b, cEa\-ceb.

(vii) By (bVI) and (-*!), it suffices to prove

dea#c, a^

By (#E) this comes from

(1) dea#c, a^

(2) rfe

(3) d = c, d<=a#c, a^

(1) holds by (id), (2) holds by (#11) from

dea, dea#c, a^bt-deb (bVE)

and (3) holds by (#12) from

d = c, dea#c, a^b\-d = c (id).

(viii) comes easily from (vii).

(ix) It suffices to prove

(4) dec#a, a =

But it is obvious that

dec,

and also we have
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snce

by (v) and Theorem 4.1 (iii). Thus we have (4).

(x) We make use of (PI), the inference of primitive induction. Let

A(c) be the formula aec-^bec.

By (PI), to prove (x) it suffices to prove

(5) a

and

(6) aed-*bed, aee-^bee, a — b\—aed#e-^bed#e.

(5) follows from aeQ, a = b \-beQ (OE) .

(6) follows (by (--I) and (#E)) from

(7) a e d, aed-^bed, a ee-^hee, a = b\-beJ#e

and

(8) a = e, aed-^bed, aee-^bee, a = b\-bed#e.

(7) comes easily from aed, a 6 d-^be d\- be d,

and (8) from a = e, a = b[-b = e and b = e\-bed#e. q.e.d.

Theorem 4.4.

(i) a = bt-r(alx) = r(blx),

(ii) a = b9D(a/x)t-D(b/x),

where F(r)nBc{x} and 7(D)nBc{x}.

Outline of proof, (i). We prove (i) by the induction on the length of

r. The induction can easily be carried out using Theorem 4.1 (viii) and

(ix) as well as the facts

a = b \-a-b,



598 MOTO-O TAKAHASHI

(ii). If we prove the theorem for prime formula D, then by the induction

on the length of D we can easily prove theorem for all D. Thus it

suffices to prove

a = fo, r(ajx) e s(a/x) \- r(b/x) e s(b/x)

But it is easy to infer it using (i) and TA3 (vi), (x).

Theorem 4.5, If z$V(A)9 then

( i ) 3x3yA(x, j/)H3z3x e z3y E zA(x, y) ,

(ii) Vxea3yA(x, y)W3zVxea3yezA(x, y),

and more precisely,
(Hi) Vx e a3yA(x, }OH3z(Vx e a3y e zA(x, y) A Vj; e z3x e aA(x9 y)) .

Outline of proof, (i) is obvious from

A(a, b) h-3x 6 (0 # a) # bly e (0 # a) # bA(x9 y) .

We prove (iii). Let B(b, c) be the formula

Vx e h3 y e Cv4(x, _y) A Vj £ c3x e fe^4(x, y) ,

and C(6) be the formula b^a-^3zB(b, z).

If we prove

(9)

and

(10) C(d\ C(e)9

then by (PI) we have

that is,

Vx 6 a3yA(x, y) \~a £ a-*3zB(a, z) ,

from which we have (iii).
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(9) is obvious since h-J3(0, 0).

(10) can be proved thus:

First we can easily have

B(bl9 cj, A(b2, d)\-B(b1#b29 c,#d).

So we have

Vx e a3j;X(x, y)9 b1#fe2c f l , B(bl9 c1}\-3zB(b1#b2, z).

Thus

Vx G fl3^(x, y)9 b1#b2^a, b^a^B(bl9 cJh-BzB^^^, z).

Hence

VxealyA(x9 y)9 C(bl)\-bi#b2^a-*lzB(bi#b29 z).

Hence

Vx e alyA(x, y\ C(bJ HC(6i # 62) .

Hence by Theorem 4.1 (iii) we have (10). q.e.d.

5. Some Set-Theoretic Operations

In order to treat elementary set-theoretic operations in FCS, we shall

make the following observation. Let us consider, for example, the opera-

tion of set-theoretic union u . The fact that c = a\jb can be expressed

in the language of FCS as

Vx e a(x e c) A Vx e b(x e c) A Vx e c(x e a V x e b) .

Let us call this formula Cu(c, a, b). Then for fixed a and fe, the exist-

ence and the uniqueness of c satisfying Cu(c, a, b) are expressed by

(1)

and

(2) CK(CI, a9 b\ Cu(c2, a,
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They are of course provable in PCS. The uniqueness proof is easy.

For the existence proof we make use of the inference of primitive induc-

tion on account of the facts

0UO = a and a U (b1 #b2}^(a u b1)#b2.

To be more detailed let A(b) be the ]£F: 3xCy(x, a, b), which we want

to prove. Then by the primitive induction it suffices to prove

(3)

and

(4)

(3) follows from Cu(fl, a, 0) and (4) follows from

l9 a, b), Cu(c2, a9 b)\-Cu(c1#b2, a, bl#b2).

But these are obvious.

As for the power set operation, the fact t£b = P(a)" does not seem

at first glance to be able to be expressed by a ]TF. (The standard

description of it is Vxefo(xea) A Vx(x^a-*xeb), which is not a £F.)

But if we notice that a is a finite set, we can easily express "& = ?(#)"

by a £F (indeed, by a RF) as follows:

Vx 6 b(xcfl) A 0 e b A Vx e bMy <=a(x#yeb).

Call this formula CP(fo, a). Also in this case

h-3zCP(z, a) and CP(b l5 a),

are provable. Although the uniqueness proof is easy, the existence proof

is more complicated than the previous one. We must use the primitive

induction twice. The proof is motivated from the following equations:

P(0)(={0}) =

Roughly speaking, we first define Q(c, d) = {x#d\XEc} in FCS by the

equations :
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0(0, <o=o,

Q(Cl#c2, J)( = Q(Cl, «/)U{c2#d}) = Q(c1, d)#(c2#d),

and then rfe/ine P(a), using the above, by

P(0) = 0#0

P(fl1#a2)=P(a1)uQ(P(fl1),fl2).

More precisely we proceed as follows. Let CQ(?, c, d) be the RF

V.x e c(x#rf E e) A Vj' e rfx e c(x#d = y).

The existence and the uniqueness condition are:

(5) h-3wCQ(M, c, c/) and CQ(e1? c, d), CQ(e2, c, rf)H^1 = ^2-

The former follows, by the primitive induction, from

(i) CQ(0,0,£/),

and

(ii) CQ(e1? cl5 rf), CQ(c2, r2, rf)h-CQ(el#(c2#cf), c l#c 2 , d)-

The latter also follows easily.

Now that (5) has been proved, we can prove, using the primitive

induction again, the existence and the uniqueness condition thus:

(i) Cp(0#0,0),

(ii) CP(bl9 aj, Cp(fe2, a2), CQ(e, bl5 a2), Cu(/, blf

Moreover we can prove

T.5.1. CP(b, a) h-c £ a^±c e b.

We need to show

(i) CP(&, fl)h-ccfl_-cefo,

and

(ii) CP(fc, a) h-c e b-^c £ a.
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(ii) is obvious by the definition of CP.

(i) follows, by the primitive induction on c for the formula c^

from

CP(6,

and

CP(fr, 0), cl c a-^cl e b H-C! #c2^

Both of these are easily proved,

6. The Existence and the Uniqueness Condition

Now we turn to the general treatment of the existence and the

uniqueness condition. Let D be a £F' such that V(A)nM^{x}. Then

3xD is a Z-formula which expresses the existence condition for D. The

standard expression for the uniqueness condition for D, that is,

D(al/x)AD(a2/x)^a1 = a2, is however not a T-formula. Instead of it

we use the condition

(1) D(ailx}JD(a2/x)\-a1 = a29

where a^ and a2 are distinct free variables not occurring in D. The

existence condition is of course h-3xD. To clarify impression these con-

ditions are abbreviated 3lxD. If we please, these conditions could be

relativized to the assumption F.

Remark, We can find a I-formula whose derivability is equivalent

to (1). Such a formula is obtained as follows.

Let C be a free variable not occurring in D and distinct from ax

and a2 (a^ and a2 are as above), and let Dc be the RF obtained from

D by replacing each occurrence of unbounded quantifier 3y by bounded

quantifier 3yec. Then the desired formula is

(2) D^aJxJ/^D^/x^a^a^

To prove the equivalence mentioned, we make use of the following

facts, whose intended meaning might be clear and which will be used
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later again.

Theorem 6.1. Let A be a £F, let c, cl9 c2 be distinct free vari-

ables not occurring in A and let y be a bound variable not occurring

in A. Then

(i) c^c29 ACl[-AC2.

(ii) AC\—A, (or equivalently, \—Ac-^A)

(iii)

We show that the equivalence mentioned above is an easy consequence

of this last theorem.

Suppose first that (2) is derivable. Since

yi(allx} and D(a2/x) \-3y2Dy2(a2/x) ,

by (iii) of Theorem 6.1, where yl9 j ; 2eB— V(D), we have

\ D(a2!x) \-3y

by (i) of Theorem 6.1 (Intuitively take y to be y{ U j'2, for instance.)

From this and the hypothesis we obtain (1).

Suppose next that we have (1). By (ii) of Theorem 6.1 we have

Dc(ajx) A Dc(a2lx) \-D(aJx) A D(a2/x} .

From this and the hypothesis we see (2) is derivable.

We now prove Theorem 6.1. (i) and (ii) can be proved by using

the induction on the length of formula A on account of the facts

and

3x 6 cC(x

As for (iii), 3yAy\-A is an immediate consequence of (ii). We also prove

A \-3yAy by the induction on A.

1°. If A is a restricted formula, then the assertion is clear since
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Ay is just A.

2°. If A is B\/C, then the assertion comes from the fact

3uBttV3vC0\-\ly(ByVCy),

as well as the induction hypothesis.

3°. If A is B A C, then the assertion comes from the fact

(by (i) of Theorem 6.1), as well as the induction hypothesis.

4°. If A is 3x e sB, then the assertion comes from the fact

3x e s3yBy(x)\-\3y3x e sBy(x)

and the fact that 3xes(By) is just (3xesJ5)r as well as the induction

hypothesis.

5°. If A is 3xB, then the assertion is proved similarly to the previ-

ous case.

6°. If A is Vx 6 5J5, the assertion is proved as follows. By (ii) of

Theorem 4.5,

Vx e s3uBJtx)\-\3vVx e s3u e i;BM(x) .

So if we prove

(3) 3i?Vjc e s3M e vBu(x) h-Bj^x e sBJx) ,

we have the assertion. Let Cu(d, c) be the formula

Vx e d3y e c(x e y) A Vj; e cVx e y(x e d) .

This formula expresses the fact that d= 0 c = {u\3yEc(uey)}. The ex-

istence and the uniqueness condition that

h-3zCu(z3 c) and

can be proved as in 5. Since

Cu(W,

we have, using (i) of Theorem 6.1,
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Vx e s3w e cBtt(x), Cu(d, c) h-Vx e sBd(x} .

From this and the existence condition for Cy we obtain (3). This com-

pletes the proof of Theorem 6.1. q.e.d*

7. Alternative Versions of Induction Principle

Let Trans (z) ("Trans" for transitive) be the RF' : Vx e zVy E x(y e z).

Then we have

T.7.1. 3z(fl6zATrans(z)).

Proof. Let A(d) be the ^F to be proved. We prove it by the

primitive induction. It suffices to show

(i)

and

(ii) A(ai),A(a2)[-A(ai#a2).

(i) follows from

OeO#OATrans(0#0) .

and (ii) from

a ̂  e/?! A Trans f^), a2eb2 ATrans(&2)> Cu(c, fel5 fc2)

^ai#a2£c#(al#a2)f\ Trans (c#(a±# a2)) ,

by (1) in the section 5. q.e.cL

The following versions of induction principle hold:

Theorem 7.2. (i) // Vx e aA (x), F \-A(d), where a occurs neither

in A nor in F, then F\-A(t)9 where t is any term.

(ii) // Vx e flVj 6 bA(x, y), F h- A(a, b\ where a and b are distinct

free variables occurring neither in A nor in F, then F\-A(s, t\ where

s and t are terms.

(n'i) If Vx e aA(x, b), VyEbA(a, 3'), r\-A(a, b), with the same restric-
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tion on a, b as above, then F \-A(s, f).

Proof, (i) Suppose that Vx E aA(x), F \— A(a\ where a occurs neither

in A nor in F. If we have

(1) F|-Vxe(L4(x),

and

(2) Vx e MOO, Vx e MOO, F h-Vx e b1 # b2A(x) ,

where b{ and b2 are new free variables, then we shall have

r\-Vxet#tA(x),

by the primitive induction and hence have, by (bVE),

r\-A(i>,

since \-tet#t.

So it suffices to prove (1) and (2). But (1) is obvious (use (OE) and

(bVI)). In order to obtain (2) it will suffice to show

(3) c e bi # b2, Vx e M(*)> Vx e MOO HX(c) .

But obviously, we have

(4) c E bl9 Vx e MOO. v^ e b2A(x)9 F \-A(c) .

Moreover, by hypothesis (using the substitution theorem (Theorem 4.1 (ii)))

we have

Vxeb2A(x)9r\-A(b2).

From this and the equality theorem (Theorem 4.4) we have

(5) c = b2, Vx e MOO, Vx e MOO, r \-A(c) .

Now (3) follows from (4) and (5) by (#E).

(ii) Suppose that

Vx e aVy e bA(x9 y\ F \-A(a, ft) .

We easily have
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Trans (c), bec,Vxe aVz e cA(x, z), F h-Vx e aiy e bA(x, y) .

It follows from the last two facts that

Trans (c), b e c, Vx £ aVz e c^4(x, z), F \-A(a, b) .

Hence by (bVI),

Vx e aVz e cA(x, z), Trans (c), F h-Vz e c^4(a, z) .

Then we can make use of (i) of this theorem to show

Trans (c), F h-Vz e cA(a, z) .

From this by (bVE) we have

b e c, Trans (c), F \-A(a, b) .

Now F\-A(a, b) follows from T.43, by (3E). Finally, by the substitution

theorem we have F \-A(s, t).

(Hi) We have

c^xe aMy e cA(x, y) h-Vx e aA(x, b) ,

and

b E c, Trans (c), Vj; e b(y E c-^A(a, y)) h-Vj e bA(a, y) .

Hence by the assumption

b E c, Vx e aVj; e cA(x, y), Trans (c), Vy e b(y e c-*A(a, y)) ,

r\-A(a,b).

Hence

Vx e aMy e c^4(x, j)5 Trans (c), Vj; e ^7(3; e c-^A(a9 >')) »

By (i) of the theorem we obtain

Vx e flVy e cA(x, y), Trans (c), F\-be c-*A(a, b) .

By (bVI),
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Vx e cNy e cA(x, j>), Trans (c), F \—Vy E cA(a, y) .

By (i) of theorem again,

Trans (c), F h-Vy e cA(a, y) .

But since h-3c(5ec A Trans (c)), we have

F\-A(a, b).

So we have (iii) by substitution. q0e8d.

80 The Law of the Excluded Middle

Let us recall here that the underlying logic for FCS is intuitionistic

but not classical, and so the law of the excluded middle cannot be as-

serted from the outset. It cannot even be stated. (Recall that the nega-

tion of r-formula is not always a I-formula.)

However, as is expected, for restricted formulas this law can be

stated of course and does hold!

Theorem ILL For each RF <p9 we have

To prove this we shall make use of the following two lemmas.

Lemma 8.1.1. For RF's (p and i// we have

(i) CpV-r(p\ -- r(pV-r-r(p,

(ii) cp V -r(p, \l/V-r\l/ \-((p MJ/)V -r(<p A \l/) ,

(iii) cp V -r(p, il/V-ril/ \-(q> V\I/)V -r(9 V ̂ ) ,
(iv) Vx e a((p(x) V —r(p(x)) h-Vx e acp(x) V -^Vx e acp(x) ,

( v ) Vx e a(<p(x) V -r<p(x)) h-3x e a<p(x) V -^3x e acp(x) .

Proof, (i)-(iii) are tautologies of the intuitionistic prepositional

calculus. To obtain (iv) we shall prove

h-Vx 6 a(<p(x) V -r<p(x))-*(Vx e a<p(x) V --Vx e a<p(xj) ,

by the primitive induction on a. Then we shall readily have (iv). Let
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%(a) be the formula lo be proved. Then it suffices to show

(i) H*(0) and (2)

(1) follows from the fact that |-Vx e 0<p(.\), by (V l l ) and (--I). On the
other hand (2) will follow from the following facts

(3) Vx e al # a2(q>(x) V -r<K*))H Vx e a^x) V -r<p(x)) A (<p(a2) V -r(p(a2)) ,

(4) Vx e al#a2q>(x)\-\Vx e flt<p(x) A <p(a2) .

Indeed from (3) we have

Vx e al #a2((p(x) V -"<p(x)),

^0 h-(Vx e av(p(x) V --Vx 6 fl ̂ (x)) A (<p(a2) V -^<p(fl2)) -

Hence by (ii) of this lemma

Vx e al # a2(<p(x) V -r<p(x)) ,

/(«i) H(Vx e fl^Cx) A rp(fl2)) V --(Vx e fl^(x) A (p(a2)) .

So by (4) we obtain

Vx e al #a2(cp(x) V -r<p(x)), x(«i) l~Vx eal#a2cp(x) V --Vx e ^ #a2(p(x) ,

from which (2) surely follows.

As for (v) we can prove it similarly to the previous case.

Lemma 8.1.2. (i) t-a = b
(ii) \-aebV a$b.

and a$b are of course abbreviations of —r(a = b) and —r(aeb)

respectively.)

Proof. To prove (i) we utilize the induction principle of Theorem

7.2 (ii). We have only to show

This comes from the fact that

e b(x = y) A Vy e fo3x e a(x = yj)
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with repeated use of the previous lemma, (ii) then follows from (i)
and the fact

together with the previous lemma. q.e.d.

Proof of Theorem 8.1. We prove the theorem by the metamathe-

matical induction on the length of <p. But this can easily be carried out

using the previous two lemmas. q.e.d.

Corollary 8.2. For restricted formula cp(a), we have

( i ) -Wx e a(p(x)^3x e a-r(p(x) ,

(ii) -^3x 6 0<p(x)
(iii) -,-r(t>^q>9

(iv) <pt-\l/ iff -ri

By the same method as used to prove Lemma 8.1.1, we can prove

Theorem 83. (i) Vx e a(A(x) V B(xJ) h-Vx e aA(x) V 3x 6 aB(x) .

(ii) Vx 6 cNy e b(A(x, y) V B(x, y)) h-Vx e aly 6 bA(x, y) V 3x e aVy

EbB(x9y).

Proof. We shall prove by the primitive induction on b that

Vx e a(A(x) V B(x)) h-6 £ fl—Vx e bA(x) V 3x e fe^(x) .

Then (i) follows by taking a as b. It suffices to prove

Vx e a(A(x) V B(x))9 b1 c a-Vx e MOO V 3x e ft^Cx)

l-hj # b2 s fl-^Vx e fcj # MOO V 3x e ftx # fo2

This follows from

b1#b2^a \-b1 <^a/\b2ea9

Vx 6 a(/i(x) V B(x))5 b2 e a H^(62) V B(62) ,

Vx E b,A(x) V 3x e fo^fx), X(fc2) V B(b2) h-Vx e 6j
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(ii) can be proved by using (i) twice:

VxeaVyeb(A(x,y)VB(x,yy)

h-Vx e a(3y e bA(x, y) V Vy e bB(x, 3;))

I- Vx e 03 j; e M(x, j) V 3x e flVy 6 6B(x, y) . q. e. d.

9. ^-Formulas

It would be interesting to consider how one can describe the situa-

tion that the law of the excluded middle virtually holds for a Z-formula

A which is not necessarily a restricted formula. We shall do this by the

use of pairs of Z- formulas.

Definition 9.1. A pair (A, B) of I-formula is called a ^-formula

(abbreviated AF), if

\-AvB and

where A is an identically false formula, e.g. OeO.

Thus, saying that (A, B) is a J -formula is that the Z-formula A

has the negation which is provably equivalent of another Z-formula B.

For example, let q> be a restricted formula. Then both cp and —r(p

are Z-formulas and we have

\-(pV-^cp and <ph-r<p\-A.

Hence the pair (<p9 —r<p) is a ^-formula. Similarly (-r<p, (p) is also a

^-formula. Moreover we have

Theorem 9.L (i) // (Al9 BJ and (A29 B2) are A-formulas, then

so are (Bl9 AJ, (At /\A29 B^ V52) and (A1 M A2, Bl AB2), which we shall

denote by -r(Al9 BJ, (Al9 BJ A(A2, B2) and (Al9 BJV(A29 B2) respec-

tively.

(ii) Suppose that A and B are £F"s such that V(A) fl B, V(E) n B

c{x}, that a$V(A)()V(B) and that t is a term. Then if (A(a/x*),
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B(a/xJ) is a AF, so are (A(t/x)9 B(f/x)), (3x 6 tA(x)9 Vx 6 tB(x)) and

(Vx e tA(x\ 3x e tB(x)\ which we shall denote (A, B) (r/x), 3x e t(A, B)

and VxE*04, B), respectively,

Proof, (i) If (Al9 Bx) and (A2, B2) are ^-formulas, we have by

definition,

Now the first two results follow from the following tautologies:

AlVBl9A2VB2\-(A1hA2)V(B1vB2),

The last result of (i) follows similarly.

(ii) Suppose that (A(a\ B(d)) is a AF. Then by substitution theorem

we easily have that G4(0> B(t)) is also a AF. To prove that (3x e L4(x),

VxetB(x)) is a AF, use Theorem 8.3. qeeacL

Definition 9.2. For a AF (A(a), B(a)), we define 3x(^(x), B(x)) to

be the ^F: 3xA(x).

Theorem 9,2, (i) A A B h- A iff -»(AC A Bc),
where c is a free variable occurring neither in A nor in B.

(ii) // (A, B) is a AF, then At- A iff HB (and BHA (f
(iii) // (Alt BO flnd (42, B2) are AF's,

^ih-^ iffB2\-Bl9

and hence

A,\-\A2 iff B,HB29

(If the latter is the case we may write (Al9 Bl)\-\(A2, B2).)
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The proof of this theorem is obvious and hence is omitted here.

The notion of A -formulas can be generalized to the notion of parti-

tion.

Definition 93. An n-tuple (X l 9 . . . , An) of £T'S *s a partition (an

^-partition) iff

and

for all /,j = l, . . . ,«; i^j.

Theorem 9.3. // (Al9..., An) is a partition and if {/1 5 . . . , ik] U

js] = {!,..., w), where /15 . . . , ik,j\,. ..,./s are distinct, then

is a AF (2-partition).

(ii) // (/4j , . . . , /4J flwrf (B ls. ..,£„,) are partitions, then

is a partition.

(iii) If (A19B^...9(AH9B^ are AFs,

Bl/\B2/\ ••• ABB_! A^n, Bj A JB2 A ••• A Bn_! A5n) constitutes an (n + 1)-

10. Expansion by Definition of Predicates

Let (C, D) be a AF such that V(C) U 7(D)c{fllJ..., aj. Then we can

expand the system FCS (or an expansion of FCS) by introducing a new

predicate symbol, say P, and letting

and

D(al9. .., flj I — rP(al9...9an)
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as defining postulates. (Then we easily have the converse directions

and

since (C, D) is a AF.)

This kind of expansion can of course be repeated and it is strongly

conservative in the sense that (i) each Z-formula in the expanded lan-

guage is equivalent to a Z-formula in the previous language and (ii)

the derivability of ^-formulas in the previous language does not alter

through this expansion, i.e., if F is a finite set of XF's in the previous

language and A a XF in the previous language, then F^-A in the

expanded language, iff F \-A in the previous language. (We say an ex-

pansion is conservative if (ii) is satisfied.) Since this kind of expansion

is not so standard, we shall outline the proof of this fact below. For

convenience9 sake we refer to the expanded system as FCS'.

We shall first describe PCS' a bit more precisely. Semi-terms and

terms of FCS' are the same as those of FCS. RF' in PCS' is defined by

adding to the corresponding definition in FCS the following clause:

(v)P If tl9...,tn are semi-terms, then P^---^ is a RF'. (Instead of

P*i— *„ we also write P(tl9...9tJ.) The definition of £F' in FCS' is

the same as before up to the meaning of RF'. Note that according to

definition —rP(tl9..., tn) is RF' and hence £F' in our new sense while

—rC(t 19...9 tn) is neither RF' nor ]£F' in our old sense although these

two formulas are intuitively equivalent.

Moreover we define

in addition to the corresponding definition of V in FCS. Then RF and

are defined as in FCS. The substitution is defined with

in addition to the previous cases. The notion of derivation F: F\-A is

defined as before with the additional clauses:
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(xxii), If P: n-C(/lt..., t,,), then pr
 P . : n-P(/,, /.),

j : v* ! » • • • ) «M^

and

(xxiii)P If P: r K/>(/i, ..., /„), then pr
 P - -y: Tl — ,P(/ l9..., fB).— rr(/ l5..., rj

Now we prove

Theorem 10.1. The expansion from FCS to FCS' fs conservative.

Proof. Let 00, t;l5... be the list of bound variables and let m be

such that bound variables occurring in C and D are among vQ9 vi,...,

t?m_!. Then we define [t]+m for each semi-term t in FCS' by [0]+m>:0,

M+mxt> f+m , [fl]+m«i (a: free variable) and [#sf]+m>c#~[s]+m^K]+m.
We first assign to each RF> in FCS', a pair of £F' in FCS,

= (M + » M-) as follows:

1°. <esO = (6^[s] + m^M+m, -,6^[s]+m^[r]+m),
2°. <Pr1...fn>=(C([r1]+n,..., [rj+ J, DCPJ^,..., [rJ+M*)),
3°.
4°.
5°.
6°.

7°.

Then it can easily be seen by Theorem 9.1 that if <p is an RF in FCS',

then

<(?> is a AF in FCS.

Next we assign to each £F, A in FCS' a £F9 «x» as follows:

1°. «<?»-!>] + , for RF',
2°.

3°.

4°. «-^»x

* The substitution operation must be generalized.
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5°.

6°.

As is expected, «^4» does not contain any of bound variables u0,...,

*>«-!•

Now we observe that

(i)

by the induction on A. This shows that each ]TF in PCS' is equivalent

to a J]F in FCS. Moreover we can show that

(2) If r\-A in PCS', then «F» h-«X» in PCS, (where «F»

= {«,4»|,4eF}) by the induction on F\-A. Then, in particular, letting

T be empty and A be in FCS, we have that if \-A in PCS', then \-A

in FCS, since «/4» is, in this case, obtained from A merely by some

change of variables. Since another direction is obvious we conclude that

the expansion under consideration is conservative. q.e.d.

Remark. Note that all the metatheorems proved so far are valid

in an expansion of this kind.

Remark. Of course we could also consider conservative expansion

by the definition of a ^-predicate (i.e., a predicate defined by a ]TF).

11. Expansion by Definition of Function

We can also expand our system FCS by introducing function sym-

bols. In general, when we have

h-3!xD(x, flj,..., an),

where D is a £F jn PCS (or an expansion of FCS) such that V(D)

c{x, al9..., an}, we introduce a new function symbol, say /, of n vari-

ables and adopt

D ( f ( a l 9 . . . , a n ) , al9...9an)

as the defining postulate for /.
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Through this expansion such syntactical notions as ^-formula, deriva-

bility are naturally changed. Although how they are to be changed is
almost apparent, we explain it briefly. First the definition of terms is

so changed that the following clause (iv)j is added to the previous ones:

(iv)j If *!,..., tn are terms, then /*!•••?„ is a term.
Similarly for semi-terms. The definition of RF' and £F' are not

changed up to the meaning of semi-terms, and the definition of deriva-

bility is not changed up to the meaning of RF and ]TF.

This kind of expansion (called an expansion by definition of function)

can also be repeated. It is conservative, too. We omit the detail of

proof of it since it is standard and somewhat similar to the proof of

Theorem 10.1. We only note here that e.g. Vxe/(0-("-) is equivalent to

Theorem 11.1. An expansion by definition of function is conserva-

tive.

Theorem 11.2. If 3!xD(.v, ai9..., a,,) and if (A(x), B(x)) is a AF,
then

AD(x, r / 1 ? . . . 5 a,,)))

ib a AF. In particular

(0(0, 0 lv.., «„), 3x(x^OAD(x, a l s..., a,,)))

is a AF.

Proof is omitted.

12. Finite Set Theory

We have already defined the set-theoretic notions such as "Trans (a)"

and operations such as "a U 6". In this section we shall define many

other such notions and operations and develop a rudimentary part of

finite set theory, in our system. In order to indicate expansions, we

shall only give the defining postulates of new concepts. They will be
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listed as "D.12.1", "D.13.2", etc. There will also be a kind of meta-

definitions which provide a uniform method of giving (infinitely many)

defining postulates. They will be distinguished as "Definition".

D.12.1. (i) c = {a,

(ii) c = <a, fc>-c =

These are justified by the fact that \-3ly(y = f)9 where t does not contain

y.
As usual we have

T.12.1. (i) rfe{a, b}^d = aVd = b,

(ii) <a, fo> = {{a,a}5{fl, &}},

(iii) <a, 5> = <c, dy^a = c/\b = d.

More generally we define

Definition 12.2. (i) c = <a1>^c = a1,

(u) for n>l, c = <fl1? a2,...,^+1>^c = <a1,<«2v..3 «„+!»•

From T.12.1 follows

Theorem 12.2. <a l v . . , an) = (bi9..., 6n>--a1 = &1 A — /\an = bn.

Now we prove the following comprehension theorem:

Theorem 12.3. (i) Let <p(&) be an RF. Then

1-3 ly(y £ a A Vx e a(x e j^<p(x))) •

(ii) Let 04(&), fl(fr)) be a AF. Then l\y(yca A Vx 6 a((x e y--^(x)) A

Proof. Since (i) easily follows from (ii), we only treat (ii). Since the

uniqueness is obvious we only prove the existence of y. Let C(a, c) be

the formula:

c c a A Vx e a((x e c-^A(x)) A (x i c--J5(x))) .

By primitive induction we have only to prove
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(1) K3jC(0, y)

and

(2) lyC(a,y)\-3yC(a#b9y)

(1) is obvious since C(0, 0), while (2) follows easily from

and

C(a, c)/\B(b)\-C(a#b, c). q.e.iL

Theorem 12.4. Suppose F(b, ai9...,an) is a term in an expansion

of FCS by definition. Then one can define an expansion by definition

of function f(b, a^..., an) such that

l9...9(3) KVje/(65 a l5..., an)lzEb(y = F(z, al9

AVzGfe(F(z, fl l v . . ,an)6/(6, a l 5 . . . ,an)).

Moreover swc/1 a function is essentially unique, i.e., if fi and f2 satisfy

(3) then

l-Mb, alv.., an)=/2(&, fli,..., ̂ ).

FFe s/ia// denote f which satisfies (3) 63; F". (T/n's ca/z 5^ a/50 con-

sidered as replacement theorem.)

Proof. Prove

z9 a1?..., ajec),

by the induction on b. Then we can define the function / as required.

q.e.d.

The following is the axiom of foundation in the axiomatic set

theory.

T.12.5. (i) Vxea33;eaVzea(z £3;),
'ii) a^a,
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(iii) —r(a e b A b e a).

Proof. First we prove

Vj> e a3z e a(z e y) h-5 $ fl

by the primitive induction on *<£«. Then by reductio ad absurdrem

(corollary 8.2 (iv)) we have

be a \-3y e aVz £ 0(z $ /),

from which (i) follows, (ii) and (iii) follow from (i) by substituting

0#a and (0#a)#6 for a, respectively. q.e.d.

Next theorem asserts the existence of sum set.

Theorem 12.6. 3\y(Vx e y3z e a(x e z) A Vz e aVx e z(x e j;)).

Proof. Let C(5, a) be the formula

Vx e Wz e fc(x e z) A Vz e aVx 6 z(x e fe).

We can easily show h-3>'C(j, a), by the primitive induction, from the

facts

(4) h-3j<r(v?0) (for hC(0,Q)),

and

(5) 3yC(y,d)\-3yC(y,a#b).

(The latter follows from

C(c9 a)t-C(c\jb,a#b).)

The uniqueness proof is obvious. q.e.d.

Thus we have proved in FCS most of the axioms of elementary set

theory, i.e., the axiom of power set, pair set, sum set, extensionality,

RF-comprehension (or Al-comprehension), 2^-replacement and founda-

tion. (But of course we cannot prove the axiom of infinity.)

So we can do most of elementary set-theoretic constructions within
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FCS.

D.12.3. (i) c = U a^Vx e c3z e a(x e z) A Vz e aVx e z(x e c) ,

(ii) c = a n b^c^a A Vx ea(x GC^X G ft),

(iii) c = n a^c ^ U a A Vx G U fl(x e c^Vj; e c(x e yj) ,

(iv) c = a — b^c^a A VA; e a(x ec^x^b).

The definition (i) is justified by T.12.5. (ii)-(iv) are justified by Theorem

12.3 of comprehension.

T.12.7. (i) d E U a^3x(d e x A .x e a) ,

( i i ) deb A be a^d G U a,

( iii ) J e a n fr^rf G a A rf G ft,

( iv ) a ^O-Kc/ G n a^±Vx G «(rf G x)) ,

( V) no=o,
( vi ) dea — b^d ea /\d$b,

(vii) a()b=U{a, b} ,

(viii) a n 6= n {a, ft] .

Proof, Immediate from definition.

D.12.4. (i) b =

b c u U a A V.x G U U a(.x e 6^±3j' e U U «« v, .x> e a)) ,

b^ U U a A V.x e U U a(x G 6^3}' e U U a«.x, j'> G a)) ,

(iii ) c- = axft^±ccpp(au ft) A
VA- G PP(a U ft) • (A- G c^±3j' G «3 r G ft(x - <j'3 z») ,

( i v ) f r = / r ^ & =

(v) f t=ra-ft = r

( v i ) ft =/ 'a^b=U (/"{«}),*>
( vii ) ^ =/- x ̂ ±g c dom (/) x rug (/) A

VA- G dom (/) x rng (/) • (x G g^^y G dorn (/) • 3 z G rng (/) •

(x = <y, z > A < z ? 3 ; > G / ) ) .

(viii) h = g°f^±h^n\g(g) x dom(/) A

Vx G rng (0) x dom (/) • (A- G /?^3« e dom (/) • 3u G rng (/) •

*) This definition differs from Coders.
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3w e rng (g) «tni> ef A <vw> e g A x = <wu»).

All the definitions in D.12.4 are justified by the comprehension theo-

rem.

T.12.8. (i) < & c > e a — cedom(a),

(ii) cedom(a)— ̂ XCyc) ea),
(iii) <bc> ea-^be rng (a) ,

(iv) ft e rng (a)— 3X<&V> E a) ,
(v) c = axb^VzEc3xEa3yeb(z =

; e &3z e c(z =

Proof, Obvious from definition.

D.12.5. (i) Rel (r)^Vx e r3j; e x3u E ylv e X^ = <w, u» ,
( ii ) Fnc (/)^Rel (/) A Vw e dom (/) • Vt; e rng (/) • Vw e rng (/) •

(O, w > e / A < w , u>e/--t? = w),

(iii) /Fna^Fnc(/)Adom(/) = a,
( iv) [/:a-»6]^/FnaArng(/)c:b5

( v ) [/: fl-iH^fo]-/Fna Arng(/) = 6,

(v i ) [/la-i^

(vii) [/:flJ^

(viii) 0~Z? = 3/

Theorem 12.99 Rel (r)H Vx e r3w3i;(* = <M, t>»

T.12.10. (i) Rel (ax 6),

(

( iv )

( v ) Fnc (/) A a E dom (f)^f'a E rng (a) A </;fl, a> G

( vi ) Fnc(/)A<&5a>e/-^=/'a5

(v i i ) /"as rng (/),
( viii ) Rel (/)-/ r dom (/) =/ A /" dom (/) = rng (/) ,

( ix )
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( x i i )

( xiii ) a c dom (/)-*dom (/ \ a) = a,

( xiv ) Fnc(/)^[/: dom(/)--L,rng(/)] ,

( xv ) Fnc (/) A Fnc (g) A a £ dom (/) A a c dom (#)

( xvi ) Fnc (/) A Fnc (g) A dom (/) = dom (g) A

V* G dom (/) (f'x = g'x)^f=g,

(xvii) 0£a-3/(/FnaAVxGfl(/'xG;c)),

(xviii) (f°g)°h=f°(goh),

( xix ) a ~ a,

( xx ) a~b-^b~a,

(xx i ) a~b /\b~ c^a^ c,

(xxii) a ̂  b-*—r(a ~ b) .

(xxiii) V/e c Fnc (/) A V/e cV^ e c(/ f (dom (/) n dom (gr))

= ^f t (dom(/) n dom (#))-- Fnc ( U c) .

Sketch of proof, (xi) can be proved by formalizing the usual method

by the induction on (the cardinality of) a. (xvii) can also be obtained

by the induction on a. (xxii) is a corollary of (xi). The proofs of others

are omitted. q.e.d.

Remark, (xvii) of this theorem is the finite choice theorem.

Definition 12.6. (i) dom<°> (/)=/,

(ii) dom(»+ 1}(/) = dom (dom<">(/)), (n>0)

(iii) doml+1(/) = rng(dom('>(/)), (f>0)

(iv) Let n be a permutation on {I,..., n}.

Then we define

Vx e domB(1)(/) x ••• x dom^Cf) • (x e g^±

( / ) • • • • • 3 y n e d o m n ( f ) - ( ( y l 9 . . . , yny e/ A
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(v) y = aix-..xan^y = ((a1xa2)X'-)x

(vi) RelnOO^rcdonijO^x ••• xdom,t(r)

(vii) Fncn (.fl^ReU t (/) A Fnc(/) .

Theorem 12.11. (i) Rdtt(r)\-\^xer3yl'"3yn(x = ̂ yl9...9 yn»,

(ii) Convid(/)=/ n (doml(f)x ••• xdomn(/)), where id is the identi-

ty map on {1, 2,..., n}9

(iii) Conv, 0, (/) = Conv, (Conv, (/)) ,

(iv) <a1?..., any e/^<a7c(1),..., aw(B)> e Convw(/),

(v) FncB(/)-RelB(dom(/)).

Proof. Obvious.

Definition 12,7e For each non-negative integer n we define the

constant n (function of 0 variables) as follows:

(i) 0 = 0,
(ii)

Moreover for each hereditarily finite set s we define the constant s*

as follows:

(iii) s* = (...(0#s?) = .»)#tf),

when s = {slv.., s;j} and si<s2<--<sn in the standard ordering.

Theorem 12.12. Let r and s be /;./. set:*

(i) if res, then h-r*es*,

(ii) if r£s, then h-r*^s*,

(iii) if r^s, then h-r*^s*.

(O/ course, if r = s9 then h-r* = s*.)

(iv) if n<m, then {-nem.

(v) if n>m, then \-n$m.

Proof, (i) easily follows from the definition of s* by the inference

I# and TA3.

(ii) follows from (iii) by the fact

(6) If s = {sl3...5sj, then
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(iii) can be proved by the induction on the maximum of the ranks

of r and s, with the use of TA3. q.e.d.

Theorem 12.13.

Vx e al\>A(x, y) h-3/(/Fn a A Vx e aA(x, /'x)) .

Proof. Prove

b <= 0— 3/(/Fn b A Vx 6 M(x, /'x)) ,

by the primitive induction on b, under the assumption Vx £ a3yA(x, y).

q.e.d.

D.12.8. (i) 1=0#0,

(ii) c = a0^c = ({0} x a) U ({1} x b),

(iii) c = *fl^cc

(iv) c = flr!
( v ) c = I(fl)^±c Fn # A Vx 6 n(c'x = x) .

T.12.14 (i)

( i i i ) O e l ,
( iv) flEl-*fl = 0,

( v ) /6ba-[/:a->5],

(v i ) /e«!^[/:a^^a],

(vii) /ea! /\g ea\-^f°g eal A/ -1 ea!

A /- J o/= I(fl) A /o/- J = I(fl) A /o I(fl) =/ A I(a) o/=/,

(viii) b$a f\d$ c-±(a ~ c^±a #b~c#d),

( i x ) a~b/\c~d

Theorem 12.15. 3!/(/Fna A Vxea(/'x = F(x)), w/7^re F(x) /s

term of a conservative expansion of FCS described above.

Proof. Use primitive induction on a. q.e.d*

D.12.9. (i) I/={</,7>l7edom(/)A/6/ ' j}

(ii) nf={g: dom(0)-dom(/)AVxedom(/)(0'xe/'x)}.

(iii) £ F(x, fli,..., an) = SF f (b, a lv.., aj
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(iv) UF(x, a,,..., an) = /7F r (b, a,,..., an)

(v) J>l={f:b±i+a}
(vi) 0C6 = {*Sa:x~b}

T.12.16. (i) Fnc(/)AFnc(0)Adom(/)=dom(0)A

( i i ) ae&=
( i i i ) ax

( i v ) £0

( v) l/=U{/'ax{a}|aedom(/)}

( vi ) Fnc (/) A Fnc (g) A dom (/) n dom (g) = 0

(vii)

(viii) J7{<a,;>}~a
( i x )

£ & U C JC£b JC€C

n c=o
xeb

f(x
xebUc xeb

(xii)
jceG(y)

*•(*)- IK n
) yec xeG(

(xiv) £ CF(jc)0G(jc))~ S ^W© Z

( xv ) n (F(x) x G(x)) ~ S F(x) x 0 G(x)
xeb xeb xeb

(xvi) £ 2F(x,y)~ Z FCx.j')
xeb yec <x,y>eb*c

(xvii) nnf(x,y)~ n ̂ ,y)
xeb yec <x,y>eb*c

xeb yec febc xe
UF(x,f'x)
xeb

Te12.178 // F is a term of an expansion of FCS as mentioned

above, then
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(i) Trans(vv)h-3!/(/FnwAVxew(/ /x=:F(/ fx ) ) .

(ii) // G(/, #!,..., an) is a function (or term) in an expansion of

FCS, then one can define a function F(al9...,an) such that

t-F(al9..., an) = G(F [ (al9..., an), al9..., an).

(F I is the function obtained from F as in Theorem 12.15.)

Proof. Let

V(f, w)oTrans (w) A /Fn w A Vx e w(/'x = F(f [ x)) .

Then we first show

(7) V(f, w), V(g, w'), flSw, flsw'h-/ \a = g \ a.

This follows from

(8) V(f, w),

by using (xv) of T.12.10.
(8) is shown by the induction (theorem) on a with the use of T.12.10

(xv) again.

Next we show that

(9) 3/7(/,Tc(a)),

by the induction on a. We have only to prove

(10) Vx e algV(g, Tc(x)) h-3/F(/, Tc(a)) .

Now by

(11) Vxea30F(0,Tc(x))h-

3z(Vx e alg E zV(g, Tc(x)) A V0 e z3x 6 aV(g, Tc(x))) .

But we easily have

(12) Vx 6 alg e cV(g, Tc(x)) A V^ e c3x e aV(g, Tc(x))

h-F(Uc,Tc(a)).
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Moreover we have

(13) V(k,Tc(a))i-V(k'9Tc(a)),

where k' denote feu {<F(k f a), ay}.

From (11), (12) and (13) follows (10). Hence we have shown (9). Now

Vxew3/F(/,Tc(x)),

and hence

3c(Vx e w3/e cV(f, Tc (x)) A V/e c3x e wF(F, Tc (x))) .

By the same way as above we have

Vx e w3/e cV(f, Tc(x)) A V/e c3x e wF(/, Tc(x)))

h- F( U c, w), and hence

Uniqueness follows from (7), q.e.d.

Elementary theory of finite groups can be formalized in FCS. For
instance, the homorphism and the isomorphism theorems are proved in
FCS with their usual proofs. For more example, the theorem that

every finite abelian group is a direct product of cyclic groups, is usually
proved using free abelian group, so that the proof is infinistic. However,

this can obviously be avoided and the theorem is proved in FCS.
One could further define in FCS, various algebraic notions such as

finite fields, finite lattices, finite partially ordered sets, etc., and develop
theories about these notions which do not use the infinite methods. It

would be interesting to see how far the extent of these theories will be

formalizable in FCS.

13. Natural Numbers and Number Theory

According to the program mentioned in Section 1? natural numbers

are here regarded as (finite) von Neumann ordinals.
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D .13.1. (i) Nat (fl)«=>Trans (a) A V.x e a • Trans (x) ,

(ii) ft = S(«>t>/> = fl#fl,

(iii) « < /x^Nal (a) A Nat (6) A a £ />,

(iv) b>a<&a<bi

( v ) 0 < ftoNat (a) A Nat (ft) A (fl e ft V fl = ft) ,

(vi) b>aoa<b.

Since Nat (a) is an RF, we have

T.13.1. Nat(0)V--Nat(a).

Moreover we have

T.13.2. (i) Na t ( f l )Af t ea—Nat ( f t ) ,

( i i ) Nat(O),

( i i i ) Nat(fl)--Nal(S(0)),

( i v )

( vi ) a<b/\b< a-^a = b/\ Nat (a) ,

( vii ) a < b A b < c-* a < c,

(viii) a<b l\b< c-^a < <?,

( ix) N a l ( f l ) A N a t ( f c ) - ^ f l < f t V f l = = f c

( x ) Vx 6 a • Nat (x) A a ^ 0--3jc e aVy e a(y < x) ,

( xi ) Nat (a) A fl ̂  0— 3b(Nal (ft) A a - S(ft)) .

Proof, (i) Obviously we have

( 1 ) Nat (a), ft 6 « h-Trans (ft) .

So, Nat (a), be a, e e f t h - f ea, and hence

Nat (a), be a, ceb h-Trans (c) .

Therefore,

(2) Nat (a), ft G a h-Vx e ft • Trans (x) .

From (1) and (2) we have (i).

(ii) is immediate.
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(iii) It can be easily proved that

(3) Trans (a) h-Trans (S(a)) .

Moreover, since eeS(0)h-c = a Vcea, we have

Nat (a), c G SO) h-Trans (c) .

Therefore,

(4) Nat (a) h- Vx e S(a) • Trans (x) .

From (3) and (4) we have (iii).
(iv) Evidently,

= b#b\-a€b#b/\bea#a.

Hence,

But, by T.12.5 (iii), I — r(aeb/\bed). So we must have

(v) Immediate from definition of <.

(vi) Use T.12.5 (iii).
(vii), (viii) Use the fact that Nat (c) h-Trans (c).

(ix) We use Theorem 7.2 (iii). Let D(a, b) be the formula

Nat (a) A Nat (b)-*(a ebVa

We have to show

Vx e 0D(x, 6), My 6 bD(a, y) \-D(a9 b) .

On account of (i) of this theorem it is enough to show that

(5) Nat(fl), Nat (5), Vxea(xeb Vx = b V b e x ) ,

Vj e b(a eyV a = yV ye a) \-aebV a = bV be a.

This can be proved as follows:
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), cea, c = bv bec\-bea'9

a$b, Nat (a) h-Vx e a(x ^ b A b <£x);

a £ fe, Nat (a), Vxea(xebVx = bVbex) h- Vx e a(x 6 b) ,

here we used the law of excluded middle for RF's. Similarly,

b$a, Nat(b), Vy E b(a e y V a = y V y e a) h-Vy e b(j; E a) .

Hence,

a$b, b$a, Nat (a), Nat (ft), VxEa(xeb Vx = b V bex),

Vy e b(a

from which (5) follows. (The law of excluded middle is used again.)
(x) By primitive recursion, we can easily show

h-Vx 6 a - Nat (x) A a •£ 0-^3x e aVy e a(x e y V x = y) ,

by using (ix).

(xi) In view of (x) and (i), it is sufficient to prove

Nat(fl), bea, Vyea(yebVy

But this is obvious since Nat (a) h- Trans (a). q.e.dL

Theorem 13.3. (Primitive induction on natural numbers.)

(i) // r 1-4(0), and if Nat (a), A(a\ F \-A(S(d)\ where a is a free

variable which does not occur in F or in A(x), then Nat (£), F \- A(i),

for any term t\

(ii) (course-of-values induction) if Nat (a), Vx e aA(x)9 F \-A(a), where

a is a free variable which does not occur in F or in A(x), then Nat(£),

r\—A(f), for any term t.

Proof. We shall prove

Fh-Nat (0—4(0 ,

by the induction of Theorem 7.2 (i). It suffices to prove

Vx e fl(Nat (x)-4(x)), r h-Nat (d)-*A(a) .
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By the assumption it follows easily that

a = 0, V.v e fl(Nat (x)--^(x)), F h-Nat (d)-*A(a) .

So it suffices to prove

a * 0, Vx e fl(Nal (x)^A(x)), F h-Nat (a)-*A(d) ,

snce \-a =

Now by assumption

Nat (6), A(b\ r\-A(S(b)).

So,

0 = S(ft), Nat(fl),

and hence

« = S(6), Nat(fl), V^e^(Nat(x)--X(jc)), r\-A(d).

But by Te1302 (xi),

Nat (a\ a * 0—3x(a = S(x)) .

Therefore, we have

Vx 6 a(Nat (x)--/l(x)), r h-Nat (fl)--X(fl) .

To prove (ii), use (i) with the formula VxeaA(x) instead of A, and

then use T.7.1. (Another way to obtain (ii) is to apply Theorem 7.2
(i) directly.) q.e.cL

By T.13.2 and Theorem 13.3, we obtain Peano axioms with mathe-
matical induction restricted to £F'S (primitive induction). But the primi-

tive induction is not so weak as might seem at first sight. Indeed,
almost all the theorems of elementary number theory are provable with

the use of this induction.
Incidentally, we prove some more variants of primitive induction.

Corollary ISA // we have

Nat (a), A(f(a)\ F\-A(d)
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and

a ̂ 0, Nat (a), r\-f(a)<a,

where a does not occur in F or in A(x), then we have F \-A(a).

Proof. Immediate from Theorem 13.2 (i). q.e.d.

Remark. This also holds when < is replaced by some standard

ordering isomorphic to oj2 or even to co". This is shown by Tait [1]

and Guard [I], for different (but essentially equivalent) systems.

Next we shall introduce various number theoretic functions and

predicates in our system. To do this we wish to extend our system by

definitions of these functions and predicates. Since these functions are

defined only over natural numbers but not over all h.f. sets, we adopt

the convention that these functions take 0 as value for arguments which

are not natural numbers. In case of a number theoretic predicate we

also adopt the convention that it takes the true value only for natural

numbers.

For notational simplicity we introduce the new variables ranging over

natural numbers:

A, //, v, A1? nt, v l v . . .

For example, 3A/1(A) means 3x(Nat (x) A A(x)), VA e yA(X) means Vx e

v(Nat(x)-^/l(x)) and VA<jL/^4(A) means V.xe/iy4(x). Moreover

A,n *!,..., .vm) means

l 5 , . . 5 yn, x l v . . ,xm)5

or what is the same,

Nat G^),..., NatOgh-^tF!,..., yn, xl9..., jcj.

Now suppose that

(6) and

D(b, a l 3 . , . 3 aj
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Let D'(b9ai9...9aJ be

D(b, alv.., an

Then we easily obtain

So by Section 11, we can introduce a new function symbol, say p, such
that

'(p(ai9...,anl ai9...,an).

This is characterized by

and

^(Nat(fl1)A-ANat(fl l l))|-p(a1,...,flII) = 0.

This is a general method of introducing number theoretic functions into

the system.

However, number theoretic functions are often defined recursively

but not explicitly as (6). As is well-known, recursive definitions can be

reduced to explicit ones in usual number-theoretic formal system such

as first-order number theory. The same is true for our system FCS,

which is logically weaker than the first-order number theory. This is

stated as follows:

Theorem 13.5. Suppose G(alv.., an) and H(b, c, a1?..., an) are given

function symbols or terms in some expansion of FCS by definition.

Then one can introduce a function F(b, a lv.., an) in some expansion of

FCS by definition, such that

(\-F(Q9al9...9aJ

(7) I KF(S(v), al5..., an) = H(v, F(v, al9...9 an\ al9...9 an)

Moreover such an F is essentially unique in the sense that if both F
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and F' satisfy the above conditions, then

\-F(b, al5..., an) = F'(b, a l5..., an) .

Proof. Let W(f, b, alv.., an) be the formula

We can prove

by the induction of Theorem 13.3. Moreover we have

b^c, W(f9 b, 015..., an\ W(g, c, a l9..., an)^f^g.

Now let D(c, fo, a !,..., an) be the formula

3/(Pf(/, b, als..., an)Ac=/'6)V(-Nat(6)Ac = 0).

Then

h-3!cD(c, fo, a l v . , ,«„).

So by Section 11, we may introduce a function symbol F such that

\-D(F(b, «!,..., an\ b, al9..., an).

Now it is obvious that F satisfies the required condition. Next suppose

F and Fr satisfy the condition (7). Then we can prove

by the induction (by Theorem 13.3) on b, and also

since -r Nat (b) \-F(b, al9..., an) = Q and the same for F'. In view of

T.13.1 we have the uniqueness of F. q.e.d.

Example. The addition A = /x + v can be defined explicitly by
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3/(/Fn S(v) A /' 0 = /* A V£ < v(/'S(£) = S(/'0) A A =/' v) .

(We adopt however another definition of the addition, c.f. D.13o4,
below.)

In the above theorem, G and H may not be number-theoretic func-

tions (i.e., those functions which take natural numbers as values for natu-

ral number arguments and 0 otherwise).

But if both G and H are number-theoretic, then resulting F is also

number-theoretic and is the one obtained by the usual primitive recur-

sion. Since other schemata to define primitive recursive functions (i.e.,

successor, constant, projection and composition) arc all at hand in our

system, it follows that all the primitive recursive functions are definable

in PCS (by ^-formulas).

Furthermore, each instance of the inference rules of primitive recur-

sive arithmetic (abbreviated PRA) given by Goodstein [2] or Curry [i]

is easily provable in FCS. (PRA was first introduced by Skolem [1].)

It follows that PRA is embeddable into FCS. We state these results as

theorems :

Theorem 13.6. Every primitive recursive function is definable in FCS

by a Z-fornnila, and every primitive recursive predicate is definable in

FCS by a A-formula.

Proof, The first part of the theorem was mentioned above. To be

more detailed,

D(b, a)

defines the successor function,

D(b, fl1,...,aB)

defines the identically-0 function,

D(b, a^..,an)

defines the z-th projection (of n arguments), and
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A-- A/y>m> " i , - - - , «,,)AC(6, A- !,..., xm))

defines the composition (of the function defined by C and those by J5/s).

The second part of the theorem follows from the first part, since

if a primitive recursive predicate P is defined by a primitive recursive

function F informally by

lv.., /O = 0,

and if F is defined by a Z-formula D of our system:

then P(ai,...,an) is defined by the J -formula (U(tf l s . . . , «„), C(tf t, ...,«„)),

where

)A- ANat(«n)AD(0, a l v . . , a,,)

and

That (£, C) is a AF would be an easy exercise. q.e.d.

Theorem 13.7. Via the above interpretation, all the equations

provable in PRA are provable in FCS,

We omit the detailed proof of it.

We could proceed to develop number theory along the line of PRA

(cf. Goodstein [2], Hilbert-Bernays [1]). But we adopt another way,

which will turn out to be more natural and simple for our system.

We begin by defining the cardinality of sets:

D.13.2. C(n, d)$=$a - n A Nat (n) .

T.13.8. 3!flC(n, a).

Proof. By T,12.9 (xxii), v^ juh-V 'V^. But, as is easily seen, v</ i

^u. So,

v<u l-v-v//.
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From this with T.13.2 (ix), it follows that

Hence

CQi, a), C(v, a)Hu = v.

Uniqueness is proved. Obviously,

bea\-a#b = a.

Hence

(8) b E a, C(n, a) h- C( n, a#b).

On the other hand we easily verify that

So,

(9) C(n,a), &*flh-C(S(n), a #6).

Using (8) and (9) with \-bea\l b$a, we have

But |-3nC(n, 0) is clear. So, by the primitive induction we have 3nC(n,

a). q.e.cL

By T.13.8, we can delSne a by

D.13.3. C(a, a) .

We are now in a position to define addition, multiplication etc. of

natural numbers:

D.13A

(iii) ji* = >;



A FOUNDATION OF FINITE MATHEMATICS 639

( iv ) fJLl=n\;

(v) ju-v = 0-v;

f/ 'v, if vedomCO,
(v i ) (/),=

1.0, otherwise;

(vii)

( ix ) /i|v
( x) A=
(x i ) rem(/i, v)=ju-Qt/v].v;

(xii)

(xiii) a = fc(ra)«=>rem (a, m) = rem (fc, m) .

(These definitions should be interpreted as such define functions whose

values for natural number arguments are as in their definitions and 0

for other arguments.)

T.13.9. ( i )

iv

v

( vii )

( viii )

( ix )

( x )

( xi )

( xii )

( x i i i )

( xiv )
( XV )

( xvi ) /*v--v = v / / . / i ,

( xvii ) v = [v//z] - n + rem (v,

( xviii ) v > 0-* v > rem (^, v) ,
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x x

( xx ) 01 = 1,

( x x i ) (S/i)!

n\= n v= n
( xxiii)

( xxiv)

S)-(S)-'-

(xxvii) a = flf(m) A (a = b(m)-^b = a(m)) ,

A (a = b(m) /\b = c(m)-*a = c(m)) ,

(xxviii) m + 0— ̂ (a = 0(m)^m|a) .

Proof. For (i)~(xi), use T.12.14. For others one can also prove

them as usual. q.e.cL

Although the above definitions are obvious, the following one is

somewhat technical.

D.13.5, ( i ) Cb(/)<=»Fnc(/)AVx6rng(/)(Nat(x)AA-^0),

( ii ) // =f&gt==>Fnc (h) A dom (/?) = dom (/) U dom (y)

A V.x e dom (/) n dom (g) • (h'x =f'x + g'x)

A Vx e dom(J)-dom(g) - (h'x=f'x)

A Vx e dom (g) — dom (/) . (h'x = g'x),

( H i ) 11/11= S f'x,
xedom(f)

( iv ) «a» = {<l ,a>},

( v ) fc = J(^)«==»Fnc(A)Adom(fc)= U {dom(/)|/edom(0)}

A Vx e dom (h) . (h'x = E (/^) • to'/)) ,

( vi ) ft = rg (/)4=»ft Fn rng (/) A Vx e dom (/») . (h'x =f~ l {x})

( vii ) Fcr (/)«=»Cb (/) A Vx e dom (/) (Nat (x) A x / 0) ,

(viii)

( x )

.XGdom(/)

//*/= n x''*,
xedom(/)
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Then we easily obtain

T.13.10. ( i ) Cb(/)-Nat (I / ID,

( i i ) Cb(0)A||0||=0.

( i i i ) Cb(/)-/AO=/,

( i v ) Cb(«f l»)A«fl» = l,
( v ) ^0-Cb({a, fl»)A ||{<A, fl>}||=A,

( vi ) Cb(/) A Cbfo)-Cg(/a<7) A/A» = ffA/ A H / A 0 H = l i / i l + \\g\\ ,
( vii) Cb (/) A Cb (0) A Cb (/0-K/.0)A/, =/A(<?A/,) ,

(viii) Cb(0)AV/edom(0)-Cb(/)-Cb(/l(0))A|M(<7)|| = £ ||
/edom(0)

( ix ) Cb (/) A Vx e dom (/) • Nat (x)-Nat (I*/) A Nat (/I*/) ,

( x ) Cb(/)ACb(0)AVxedom(/)-Nat(x)

A Vx 6 dom (g) - Nat (x)-- Vx e dom (f*g) - Nat (x)

( x i )

A77*0=l
(xii)

(xiii) Fnc(/)-dom(/)=||rg(/)||,

(xiv)

(xv)

A77*{<A1 9

D.13.6. (i)

(ii) PFtr (/)«=»Ftr (/) A Vx e dom (/) Prime (x) .

T.13.11. (Factorization theorem).

Proof. Existence proof is as usual and by course-of-values induction

on A. Of course, we use the fact that

Prime (A) A -^Prime (A) .

It holds since "Prime" is an RF in some conservative expansion of FCS.

Then, we proceed as usual:
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Prime(A)->PFtr(«A»)AA=77*«>l».

1 / 0 A A T4 1 A --Prime (A)--3/i < A3 v < A(A = /iv) ,

PFtr(/)APFtr(0)AM = n*/

A v=77*0--PFtr (f*g) A }iv=n*(f*g) .

From these

3/(PFtr (/) A // = 77*/)

3/(PFtr (/) A 1 = 77*/) ,

and the course-of-values induction is complete.
To prove the uniqueness we shall follow a simple proof due to

T. Takagi [1]. First it is obvious that

In view of this it suffices to prove

1 > 2-- V/e P(l x 1) • Vgr 6 P(A x A) • (PFtr (/)

A PFtrfo) A )i=n*f=n*g-^f=g) .

Denote this £F by Aty). We prove it by course-of-values induction on

A:

Now

Hence

Cb (/) A 1 = n+f A A > 2 l-Hpa.ACCb (0) A Prime (p) A A = p . 77 */i) •

So it suffices to prove
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A Prime (p) A Prime (q) H«P»

Denote the left-hand side formula by B.

Hence using V^<L4(^), we have

(10) Bhp = q[-p = qAfl

On the other hand

Let the left-hand side be F. Using Vju<>L4(ju) again, we have

r \-p*h' = h^g1 \-p e dom (h) V p e dom (^j) .

But we can easily show

p<qA Prime (p) A Prime (g) A q - p = J7*/i h-jp # dom (ft) .

Hence

Hence

(ID r h-302(Cb (^2) A ̂  =

Hence
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Using Vn<A.A(ii) once more, we obtain

Thus

r, 3fif2(Cb (02) A 0! =

By (11)

So by (3E)

(12)

Similarly

(13)

(11), (12), (13) with T.13.2 (ix) show

as was to be proved. q.e.d.

D.13.7. (i)

( ii ) GCD (A, fj.) = vo v \ I A v \n < Prim (A/v, /i/ v)

(iii) LCM (A, 0) = A/j/GCD (A, /*)

T.13.12. (i)

(ii) Prim(A, ^)-^3v13v2(Av1

(iii) GCD (A, M)|A A GCD (A,

(iv) v|AAvLu^v|GCD(A, p)

(v) A|LCM(A,

(vi) A|vA/j|v-LCM(A,
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Proof is omitted.

Now, Format's small theorem:

Prim (p) A X ^0 (mod.p)-^-1 == 1 (mod./;),

can be proved in FCS with its usual proof (e.g. group theoretic one,

since classification of elements of a finite set is available in FCS).

The existence of primitive root congruent modulo a prime:

Prim(p)— ̂ (A^EEl (mod .p )AV/<p- l (A '^ l (mod.p))),

can also be proved by a similar method. The same holds in case of

prime power.

Lagrange's theorem:

as well as other similar results concerning the sum of two or three

squares, can be proved in FCS. (e.g. the proofs of these theorems in

Landau [1] can be formalized into FCS without difficulty.)

Wilson's theorem and the quadratic law of reciprocity can be proved

in FCS, because they can be proved by finite combinatorial methods.

The theory of quadratic diophantine equations and quadratic forms

(e.g. of two indeterminates) can be formalized in FCS.

14. Recursion Theorem

We shall prove a form of recursion theorem. Before stating the

theorem we shall define the notion of a Z-formula with Z-predicate

variable X with n argument places, which we shortly call a Z+-formula

or a £+F.

14.1. Inductive definition of I+ -semi formula (abbreviated ]£+F').

1° Every RF is a £+F.

2° // t l 9 . . . 9 t H are semi-terms, then Xt^-^ is a Z+F'.

3° If A and B are £+F, then V AB, t\AB are £+F.

4° // A is a Z+F' and t is a semi-term, then VxEtA,

IxetA and 3xA are E+F'.
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Now that we have defined the notion of r+-semiformula, we define

I+-formulas just the same way as we defined Z-formulas from X'-semi-

formulas. Z+-formulas contain the predicate variable X only in their

positive parts. We shall write also X(t 19...9 tn) instead of Xt^-t^

14.2. Let v09 vl9... are enumeration of bound variables. Let m be

a non-negative integer.

For a semi-term t or an RF' cp, we define t+m or cp+m as follows:

1° 0+w^0,

2° (vj+mxvi+m9

3° a+mxa9 where a is a free variable,

4° (#st)+m^#~s+nrt+m,
5° (esf)+mxe s+m t+m,

6° (^<p)+m~^~(p+m,
r (

10°

11°

Namely, t+m or <p+m is obtained from f or cp, respectively, by

replacing each bound variable vt by vi+m.

14.3. Next we define the substitution of £F C(alv..,an) (or rather

Afl^-a^fl!,..., an)) for X in a ~Z,+¥' A in the following obvious way

(the result of substitution is denoted by yl[C]): Suppose the bound

variables in C are among v0,...,vm_i.

1° If <p is an RF', then cp[C] is (p+m.

2°

4° ( A AB) [C] ̂  A

5° (

6° (

7° (

8° (

Moreover we define A\_a], where a is a variable, to be
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Lemma 14.1. (i) // C(fl1?..., an), r\-D(al,..., an), where al9...,an are

not in F, then ^4[C], F\- A[D~], in particular,

(ii) ac:b9A{_a\

(iii) A[C] h-3x(Rel;i(x) A^[x]

and hence,

(iv)

Proof, (i) It is obvious since X occurs in A only in its positive

parts. Formally, use the induction on A.

(iii) We also use the induction on A. For the sake of brevity we

prove it only for w = l, that is,

A\C\ l-lx(A[x] A My e Tc(x)(y 6 x^C(y))) .

Let us denote by A*(x) the formula A[x] A Vj/6Tc(x) (yex-*C(y)).

1° If A is an RF, then A does not contain X. So we may take 0

as x. Since in this case A[C]xA[x]xA, we easily have

A[C\ \-A[0] A Vj> e Tc (0) (y e 0- C(><)) .

2° ^ is J^r. Then ^[C] is C(t) and X[x] is rex. The assertion

follows from the fact that

C(0 l-X[{r}] A Vj; 6 Tc ({t}) (y E {t}-C(y}) .

3° A is V^.i^2. Then A[C\ and ^.[x] are V">11[C]^^2[C] and

A1[x]^^42W» respectively. By the induction hypothesis we have

^fCXi) and h-3x2^2(->c2)- From these we easily have the assertion.

4° A is A^!v42. Then A[C] is A^^1[C]^yl2[C] and X[x] is

>li[x]^y42[x]. Using (i) we can easily prove

i A ̂ 2)*(^i U x2) .
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So we have the assertion since \~-3xlAf(x1) and \-3x2A%(x2) by the in-

duction hypothesis.

5° A is -*<pA2. Similar to the case 3°.

6° A is tyetA&d. Then A[C\ is 3i? /+M6r+MX1(i; /+J[C]. By the
induction hypothesis, we have

From this the assertion easily follows.

7° A is 3iY<41(0i). Similar to the last case.

8° A is VviGtA^Vi). By the induction hypothesis we have

Hence by (restricted) generalization,

Vi> l+w e t+m(Al(vi+m) [C]) t-Vvl+m £ t

So by Theorem 4.5 (iii),

A\C\ h-3z(Vi>,+M e t+m3Xl e

A Vxx e z3t;i+III 6 r+m

Then

e f+w3x, e

m e * U4 ^ +„,))*(* i)) I-A*( U d) .

So we have the assertion, (iv) is an immediate consequence of (iii).

q.e.cL

Now we are in a position to prove the following recursion theorem:

Theorem 14.2. Let A(al9...,an) is a S+F. Then there can be found

a £F C(a1?..., an) such that

14.2.1. (A(a1,...9 an))[C] \-C(al9..., an), and such a C is essentially

unique in the sense that

14.2.2. for any ^F D(a ,,..., an), if
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where fll3..., an are distinct free variables not in F, then

r, C(al5..., an)\-D(al9..., an),

in particular, we have

14.2.3. (A(ai,...,aMC]\-\C(ai,...,aJ.

14.2.4. // another C\(fl !,..., an) satisfies the conditions 14.2.1 and

14.2.2 with C1 in place of C, then

14.2.5. C(fl1,...,an)HC1(a1,...,a l l).

Proof. The proof of this theorem is a modification of the proof

of corresponding theorem in Platek [1] and Takahashi [1]. (Of course

some cares are needed because our underlying logic here is intuitionistic.)

For notational simplicity, we only prove the case where /?=!.

Let

Formal definition of it is

>' = UA(w, /•)<=>.)' £ w A V:: e w(z e j»;?Mw(z) [r]) .

By Theorem 12.3 it defines a function. U4 is monotonic, i.e.

w c w', r £ rf h- UA(w, r) c l/x(w', r;) .

Now

Trans (iv) H3!/(/Fn w A Y* e w(/'f = C/^w, U (/"O))) .

Let F(/, w) be the formula

Trans (w) A/Fn w A W e w(/'f = UA(w, U (/"O)) •

Then we have the following monotonicities :

and
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The proof is by induction, using the above-mentioned monotonicity of

UA.
Now we put

C(a)«=»3/3w3x 6 w(F(/? w) A a ef'x).

We have only to show that the C(a) is the desired ]TF. First we
prove

A(a)\C\\-C(a).

By Lemma 14.1 (iii)

(1) A(d) [C] \-lu(Aq(a) [u] A Vj; e uC(yJ).

Using the theorem of replacement (Theorem 4.5 (ii)) we have

Vj' e uC(y) (—3/<;Vj> e «3/e /c3w e klx e w

(Trans(w)AK(/, w)A)>e/ ' jc) .

From this with the use of the monotonicities and the uniqueness of /,

we have

(2) Vv e uC(y) h-3/3wVj> e w3x e w

(Trans (w) A V(f, w)/\y ef'x A w 3 g A fl e w).

We claim

(3) Trans (w), K(/, w), My e u3x e w(y ef'x), Aq(d)[u],

q^w, aew, V(g, w#w)h-aeg 'w.

Since Vv e w3x e w(y e/'x), by monotinicity

yef'x^g'x.

Hence from the assumptions we have \/yeu(ye U (fif^w)), i.e., wc u (gf"w).

Since ^(fl)[w], g£ W c w # w and tt£U(fif"w), we have ^4w(fl)[ U to"w)].

Since a e w c w # w , by the definition of UA, ae UA(w#wy U (g"w)) = g'w>

This proves (3). Hence on account of (1) and (2), we have
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A(d) [C] h-3#3w(Trans (w) A V(g, w # w) A a E g 'w) .

From this it follows that

Next let

(4) F,(^(a))[Z

We claim that

(5) V(f, w), r He E w--Vx E/'C£(X) .

In order to prove it by the induction on c, we prove

V(f, w), T, Vj; E c(j e w-Vx zf'yD(x)) \-c E w-Vx e/'cD(x) .

It suffices to prove

(6) F(/, w), r, c e w, Vj; e cVx ef'yD(x) h-Vx e/'cD(x) .

Now

F(/, w), c e w, Vy e cVx e/'j^(^) F-Vj; e U (/"c) • D(y) .

Hence

F(/? w), F, c e w, Vj e cVx e/>D(x), Aw(a) [ U /"c]

Here we have used the assumption.
On the other hand, by the definition of /'c,

!/(/, w), c E w, a E/'C H^w(fl) [ U /"c] .

Thus,

V(f, w), r, c e w, Vy e cVx ef'yD(x), a ef'c \-D\ci] .

From this, (6) and hence (5) follows.

By (5) we can easily obtain
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T, C(«)HD(a).

This proves 14.2.2. In order to obtain 14.2.3, let D(al9..., an} be A(al9...9
]• Then by 14.2.1,

D(ai9...9an)\-C(al9...9an).

Hence by Lemma 14.1 (i),

A(al9...,aJlD']\-A(ai,...,all)lC]9

that is,

So, by 14.2.2 with F empty,

C(al9...9an)t-D(al9...9an)9

that is,

This with 14.2.1 yields 14.2.3. 14.2.4 is obvious from 14.2.1 and 14.2.2.

q.e.d.

Let A(ui9.. 9 a n ) be a £ + F\ Then by Theorem 14.2 we can define

a ]TF CCfli,. . . ,«„) satisfying 14.2.1 and 14.2.2. We denote the rela-

tion between A and C by

and say that C is inductively defined by this equivalence (as its least

solution). For instance by the equivalence

a ZF C(a) is defined (up to the equivalence).

15. Miscellaneous Development

By Theorem 12.16, we can define
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D.15.1. ( i ) R(x) = U (P"(R f (*)))( = U {PROOb'Gx}).
( ii ) Ra (x) = U (S"(Ra \ (x))) ( = U {S" Ra (y)\y E x}) .

( iii ) S trans (a)<^=^Trans (a) A Vx e aVy e P(x) (y e a) .

T.15.1. ( i ) R(0) = OARa(0) = 0,

( i i ) Nat(Ra(a)),

( i i i) S trans (R(a)),

( i v )

( v )

( v i )

( vii ) R Ra (a) = R (a) A Ra R(a) = Ra (a) ,

(viii) Nat (fl)-^Ra (a) = a.

( i x ) 3x(Nat(x)AaeR(x)).

( x ) ae

( x i ) a^

(xii) 6e

(xiii) R(v)cR(S(v)).
(xiv) v =

We omit the proof of T815919

Theorem 15.2. // A(ci), T t-3x E aA(.\), where a is not in A(\) or

in r, then A((t), Fh-A-

Proof. Define S(ii, fc, v; a, A) inductively by

S(/i, 6, j; a, x)<^4(/? = OA& = a A>' = x)

V 3m3c3z(/i = S(/?i) /\becf\ Ay(b) A S(m, c, z ; a, x)) .

(Ay(b) is the notation introduced in Section 6.) First we claim that

(1) F, ^(a) 1-363X5(71, b, y; a, x) A Ay(V) A Ra (6) + n < Ra (a)) ,

by the induction on n.

F? AA(«)h-3fc3XS(0, fr, j; r/3

is obvious. We have to show
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F, Ax(a\ 3b3y(S(n, b, y, a, x) A Ay(b) A R a ( b ) + n<Ra(a))

h-3d3u(S(S(n), d, ii; a, x) A A^d) A Ra (d) + S(n) < Ra (a)).

This follows from

F, Ax(a\ S(n, fo, y\ a, x), Ay(ft) l-3x e fc3w;4M(x)

(by assumption) and

F9 ^(a), S(n, fo, y-9 a, x), de f t , ^w(d), Ra (b) + n < Ra (a)

h-S(S(n), d, ii; a, x) A ̂ 4M(rf) A Ra (d) + S(n) < Ra (a).

Now we have (1). Then, taking n = S(Ra(a)), we obtain

F, Ax(a)\-3b3y(S(n, b, y; a, x) A Ay(b) A Ra (b) + S(Ra (a)) < Ra (a)).

But obviously we have

-^Ra (fo) +S(Ra (a)) < Ra (a),

since —r(l4-n + l<n). So r,^(a)|— A and hence r, ^(a)h-A- q.e.d8

Corollary 15.3. // A(a, b), Fh-3x£a3y€bA(x9 y), where a and b

are distinct and not occurring in A(x9 y) or in F, then A(a, b), F h- A •

Proof. The same as the theorem.

These theorem and corollary provide us with a method of proving
some uniqueness results.

Corollary 15.4. //

A(cl9 b) A A(c2, b) A q ^c2, F \-3y e b3x13x2(^(x1, y)

/\A(x2, y)/\x1^x2),

then F, A(cl9 b), A(c2, b)\-c1 = c2. (The proof is omitted.)

We can prove the following variations of inductive schemata, the

meaning of which are obvious.
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Theorem 15.5.

9 r\-A(b)

bea,
r\-MxeaA(x)

n A(a),

f ivl g » ^ } , F\-A(b}
^ }

n Th-J(Q) and b^a, A(b), T \-3yea(y

The proofs of these schemata are omitted.

D.15.2. (i)

(ii)

Then we have

Theorem 15.6. (i) \-a-<bMb<a

(ii)

words, (0-<fr, b^a) and (b^a, «•<£>) constitute zIF's.

Proof, (i) By the induction principle of Theorem 7.2 (iii). It

suffices to prove

b-<a.

This follows from

Vx E aiy eb(x<y\/ y-<x) \-3y e bVx e a(x-< j;)

V Vj; e 63x e aCy^x) .

Now we show (ii) by using Corollary 15.3. It suffices to prove

«<& A b-<a \-3x G a3y e b(x<y A Jj<x) .

But this comes easily from the facts that
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a -< b h-3j> e bVx e a(x-< j/)

and that

b-< a \-Vy e b3x e a(y -< x) . q* e. dL

Now that we see (a-<b, b~<a) is a AF, we can expand our system

by definition of -<. Then we may well use such formulas as

a-<b-*a-<b. The same holds for

T.15.7. ( i ) a<b-*a-<b

( )

( iv )

( v )

( vi )

( vii )

( viii ) a-<b

( ix )

( x )

( xi )

( x i i )

(xiii)

(xiv)

( xv )

(xvi )

(xvii)

(xviii) a ̂  0-^3 j; e aVx 6 a(x-<3;) A 3j; e

Theorem 15.8, (i) // A(d) is a £F and //

V^ 6 p R (ft) . (x-<b--A(x)), r\-A(b) .

Then F \-A(s), for each term s.

(ii) // (p(a) is an RF in an expansion of FCS by definition, then

3x(<p(*) A V^ e PR(x) .
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(iii) // A(nl9 a), A(n2> a), w, = £ H 2 » r

h-3x3m137/?2(x-<fl /\A(ml, x) /\A(m2, x) A m 1 ^ m 2 ) ,

then we have

A(n^ a), A(n2, fl), r\~nl=n2-

Proof. Similar to that of Theorem 15.2.

Theorem 15.9. (Uniformization theorem). Let A(a, b) be a ]TF.

Then there exists a £F B(a, b) such that

(i) B(a9b)\-A(a,b),

(ii) lyA(a,b)t-lyB(a,b),

(iii) B(a9b1)9B(a9b2)}-b1=b2.

Proof. As usual. Let B(a, b) be

lu(Au(a, fr)AVxePR«w, b»-Vj;ePR«M, b»-

«x, y>«u, b>-*-,Ax(a, y)).

Note that Ax(a, y) is an RF. q.e.d.

D.15.3. (i) J(w, fl)<=r=>V/?i e n3x(x<a A J(m, x))

3wenJ(w, x)).

T.15.10. (i) h-3!nJ(n, a)

(ii) J(n, fl)h-Nat(n)
(iii) Nat(n)h-3!aJ(n, fl).

Proof, (i) 3w J(M, a) is proved by the induction on a along -<

(Theorem 15.8 (i)), as follows.

i, x))

f-3n(Vx e PR(a)3m e n(x<a-^J(m, x))

i, x))
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h-3n(Vm 6 n3x(x-<a A J(m, x))

A Vx e PR(0)(x<fl--3m 6 «J(m, x)))

h-3nJ(n, a),

The induction is complete.

On account of Theorem 15.8 (iii), the uniqueness, i.e.,

J(nl9 a), J(n2, a)h-n1 = n2

will follow from

J(w l5 a), J(n2,a\ n^n2

H3x3m13m2(x<fl A J(m1? x) A J(m2, x) Am

We prove the latter as follows:

nl ^ n2 h-3x((x 6 n^ A x$n2) V (x# wx A x e w2))

J(nlf a), m j e n i , m^n2

f-3x(x-<a A J(ml9 x))

b^fl I— 3m2 6 H2J(m2, x)

2, J(ml5 ft), m2e«2 , J(m2, fe)

h-J(ml9 b)AJ(m2, fc)Am1^m2

J(nl5 a), J(n2, a), mlGnl, ml$n2

h-3x3m13m2(x-<fl A J(mj, x) A J(m2, x) A mj =£ m2) .

Similarly

h-3x3m13m2(x-<fl A J(ml9 x)AJ(m2,

So

J(nl9a\ J(n2,a)9 n
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H3x3m13m2(x-<fl A J(ml9 x) A J(m2, x) Am1

Now the proof of (i) is complete.

(ii) First we prove

J(n, a) \- Trans (n) ,

i.e.

J(n, a), men, lem\-len.

By the recursion theorem

J(n, a), men h-3x(x-<a A J(m9 x))

J(m, b\ lem f-3Xj<fc A /(/, y)}

, J(n, a) h-3/c 6 nJ(k, c)

ken, J(l, c), J(k, c)\-l = k/\len\-len.

Hence

J(/, c), c-<b, h-<fl, J(n,a)\-len.

Hence

fc<fl, J(m, b), I em, J(n,a)\-len

J(n, a), men, le m \-l e n,

as desired.
(iii) Similar to (i) but use Theorem 13.3 (ii) and Corollary 15.4.

q.e.d.

D.15A J(T(a), a).

This definition is justified by T.15.10 (i). By T.15.10 (i), (ii) and (iii),
T maps Rw onto natural numbers. This is a formalization of the

function t introduced in Section 1.

By T. 15.10, we have
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T.15.11. (i) Nat(T(fl)),
(ii)

(iii)

16. Formalizing Formal Systems into FCS

According to the program suggested in section 1, we shall consider

in this section the problem of formalizing formal systems (especially

finistic logical calculi) into FCS. To examplify this let us adopt, as

the formal system to be formalized, just this system FCS under con-

sideration.

As suggested in section 1, let us assume that formal objects of FCS

such as terms, formulas and proofs are h.f. sets. To fix the idea, semi-

term 0 is the h.f. set <0, 0> ( = {{0}} and denoted also by f~cp), free

variables are h.f. sets of form <1, x>, where x is an arbitrary h.f. set,

bound variables are of the form <2, x>, and #st is < r#n, s, f>, where
r#~] is 3 (1 ,2 ,3 are von Neumann ordinals as h.f. sets). Hence semi-

term (which we denote by Term') is defined inductively as follows:

(1) Te rm ' ( a ) (3x ) (3 j ; ) ( 0 = <0s 0>

V (a = <3, x, j;> A Term'(x) A Term'(jO)) -

Here boldface 3, V, A are the logical connectives in the metalanguage.

Term' is defined as the least solution of this equivalence. Note that

this is an informal definition of semi-term (in the informal theory of

h.f. sets and should not be confused with a formal definition (in the

formal theory FCS of h.f. sets). Nevertheless the right-hand side of (1)

would become a ]£+F (c-f- Section 14) if the boldfaces are replaced by

lightfaces. Then by the recursion theorem in FCS, the modified (1)

defines a £F, say Term'*(a) up to the equivalence. This Term'*(«) is

called the formalization of the notion of semi-term.

For each of other notions we can proceed similarly, as far as it is

defined by the same form as a £F explicitly or a ^+F inductively.
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It would be confusing if each informal notion and the corresponding

formal notion were denoted by the same symbols. So we distinguish

them by boldfaces and lightfaces. That is, informal notions are written

in boldfaces and formal notions are written in lightfaces. However, we

shall sometimes use ^ to indicate formal notions when lightfaces were

already used for informal notions. Moreover when no confusion seems

to arise, two corresponding notions may be written by the same letters

or symbols. (0, 1, 2, 3, etc. are such examples.)

We shall write down only formal definitions, because the correspond-

ing informal definitions are then obtained automatically.

Also, for the sake of notational simplicity, we shall omit writing

the left-most existential quantifiers in the right-hand side of each defini-

tion. This convention will be used in both formal and informal defini-

tions and only in definitions. For instance, the formalized (1) is written

simply :

D.16.1. Term'O) <^> (a = <0, 0>

V (a = <3, x, r> A Term'(x) A Term'(r))) .

Term, constant (Const), free variable (FV), bound variable (BV) and

variable (Var) are defined by

D.16.2. ( i ) Term ( a ) < > a = <0, 0>

Vfl = <l, x>

V (a = <3, .x, v> A Term (x) A Term (>•))

(ii) Const (fl)4^W-<0, 0>

V (a = <3, x, v> A Const (x) A Const (y)) ,

RF' and £F' are defined by

(iii) RF'(fl)^0 = <r e n, x, yy A Term' (x) A Term'(y))
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V(a = <r-/\ x>ARF'(x))

V (a = <r A n, x, yy A RF'(x) A RF'GO)

V (a = <r V i, x, y> A RF'(x) A RF'GO)

V (fl = <r_^-\ x, ^> A RF'(x) A RF'GO)

V (a = W x, y, z> A BV(x) A Term'GO A RF'(z))

V (a = <TT; x, y, z> A BV(x) A Term'(y) A RF'(z))
where r6n = 4, r_n = 5i rA-i = 6> rv- i= = 7 j r_-i = 85

rvn=9, ran=io.

(iv) 2;F'(fl)<^>RF'(a)

V (a = <r A i, x, y> A SF'(x) A

V (a = <r V i, x, >•> A ZF'(x) A

V (a = (r-"1, x, yy A RF'(

V (fl = <rV^, x, y, z> A BV(x) A Term'Cv) A SF'(z))

V (a = <r3i, x, y, z> A BV(x) A Term'Cv) A £F'(z))

V (fl = <r3.n, x, y> A BV(x) A EF'OO) ,
w/iere r3.n=ll.

Next we define the predicate V(p, a) that a is a semi-term or a

and p is the set of all the variables occurring in a as free.

D.16.3. (i) V(p, a)4^.(fl =

V(Var(a)A.p={fl})

V(a = <r#n, y, z> ATermXy) ATerm'(z) A 9(plt y)

V (a = <r e ~\ y, z> A Term'W A Term'(z) A V(Pi,

V (fl = <T^, >•> A RF'GO A V(P,

V (fl = <r V n, y, z> A

A %i, J»)A f(p2,

V (fl = <r A ->, y, z> A

V (a = <r-^, y, z> A RF'W A Z F'(z)

A PCPi. 3»)A P(p2, Z ) A P = P! Up 2 )
V (a = <rVn, y, z, u> A BVCy) A Term'(z)
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V (a = <r3~\ y, z, w> A BV(y) A Term'(z)

A ZF'OO A ?(Pi, ^) A P(p2, z) A P = (p2 - {y}) U Pl)
V (fl<r3.^ >>, z> A BVCv) A EF'(z)

A P(PI, z) A P = Pi -{>>])•

RF 0/td £F flre defined by

(ii) RF(0)^>RF'(fl) A P(p, a) A Vx e pFV(x) .

(iii) ZF(fl)<=>ZF'(fl) A F(p, fl) A Vx 6 pFV(x) .

Note that

T.16.1. 7(p, a) HTerm'O) V ZF'(fl)) A Vx e p(FV(x) V BV(x)) .

Proof. Let ^I(p, a, K) be the X+F which has defined V inductively
above, and let V' be the right-hand side formula of 16.1. Then it is
easy to verify that

Hence by the recursion theorem,

as was to be proved.

D.16.4. Seq (r)«

Let us define

D.16.5. ( i )

( ii) r6s = <re"", r, s>,
(iii) ^ = <r_nM>j

( iv ) >!VB = < r V " I , X , f l >

(v) ^AB = <r-An , A, B>

(v i ) ^-B = < r-^^,B>

(vii) VxeM = <rV^, x, r,

(viii) 3x e rA = <r3n, x, r,

( ix)
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o o o o
( x) r£s = Vxsr(xEs), where x — <2, 0>,

(x i ) (r = s) = (rs

D.16.6. (i) Sb(y4', A; t, x) (A1 is the result of substituting t for x

in ^)<=>Var (x) A Term'(0 A ((A = r(T A A' = /I)

= B # C) A 04' = B' # C) A Term'(B) A Term'(C)

ASb(B', B;t, x)ASb(C', C; t, x))

= B e C) A 04' = B' € C') A Term'(B) A Term'(C)

ASb(B', B;t, x)ASb(C', C; t, x))

V (04 = -^B) A (X' = -B') A RF'(B) A Sb (B', B ; t , x))

V(04 = BV C) A04' = BV C') A EF'(B) A ZF'(C)

A Sb(B', B; I, x) A Sb(C', C; f, x))

V ((A = B A C) A (A1 = B A C') A E F'(B) A SF'(O

ASb(B', B ; f , x)ASb(C', C; t , x))

B^C) A(X' = B'-C') A RF'(B) A ZF'(O
ASb(B', B;(, x)ASb(C', C ; f , x))

= Vx e uB) A (^' = Vx I u'B) A Term'(u) A S F'(B)
ASb(u', M; f, x))

V (04 = 3°x e MB) A (A1 = 3x e i/'B) A Term'(u) A SF'(B)

ASb(u', u, t, x))

= 3xB) A A' = X A S F(B))

= Vj; e MB) A (A1 = Vy 6 «'B') A y * x A BV(y) A Term'(w)

A ZF'(B) A Sb(u', u ; r, x) A Sb(F, B; r, x))

V ((A = 3y e MB) A (A1 = 3y e w'B') A 3; ̂  x A BV(j) A Term'(u)

A EF'(B) A Sb(M', i/ ; t, x) A Sb(B', B; t, x))

V ((A = Ij>B) A (^' = ^B') A y ̂  x A BV(y)

AZF'(B)ASb(B', B;t, x)).

(ii) r H^«^=4.Seq (F) A ZF(^) A Term (r) A Term (s)

A Term (t) A RFfo>) A RF(i/r) A £F(B) A SF(C) A
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V ((f h-r e s # 0 A (F U {r s} h-X) A (r U {r = 0

v ((r u {«M HP) A (r u W H-

v ((r u {B} HX) A (r u {
V (f H/4 A 5)

v (r KB A /i)
V ((r Hfi) A (f HC) A (A = 5 V C))

V ((r Hs e r) A (A = 3x e rD) A (T h-/X) A Sb(D', £) ; a, x))

V ((f K3x e ;-£)) A Sb(£>', D; a, x) A (r u {D'J HX))

U {fl 6 r} h-C') A Sb(D', D ; a, x) A (A = V.x e rD))

h-Vx e r/)) V (f h-s e r) A Sb(X, D; s, x))

V((rHD')ASb(D', D; s, x )A(X = 3xD))

V ((f HlxD) A Sb(Z>', D, a, x) A (r U {D'} H/l))

V «T h-D') A (r u [D", £>"'] HD"") A ZF(£) A Sb(D', E, rOn, x)

A Sb(D", E, a, x) A Sb(D'", E, b, x) A Sb(D"", E,a#b, x)

^Sb(A,E,r,.^))).

Now we have completed defining the system PCS within PCS itself.
What we have to do next is to prove in PCS the metatheorems (includ-

ing particular theorems) about the system PCS which we have proved

above. Indeed, all of formalizations of these metatheorems will turn out

to be provable in PCS.

For instance the formalization of T.4.3 (i) is:

T.16.2. FV(a)--h-aSa.

Proof. This is provable as follows:

FV(a) A FV(b) f\a±b \-({b I a} Ab 6 a) ,
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o o o

FV(a) A FV(fo) A a * b h-( h-Vx e a(x e a)) ,

FV(a) h-3fc(FV(a) A FV(6) A a ^ fo) ,

By the same way it is clear that the formalization of each particular

theorem of FCS is provable in FCS. (A proof is an h.f. set!) Before

considering formalization of metatheorems, we need to prove formaliza-

tion of somewhat trivial facts such as

T.163, (i) V(p,

(ii) (Term'G4) V

(Hi) V(p,A}

(iv) SbC4', A, t, x)-((Term'G4') A Term'G*)) V

A ZF'W))) A Term (t) A Var (x) .

(v) (Term'(,4) V ZF'M)) A Term (t) A VarOc)-*3A'Sb(4', >4; f, x)

(vi) Sb (X', X ; f , x) A Sb (Xw, X, f , x)-^' = '̂;.

Proof, (i) is by induction on V. (ii) is by induction on £F'. por

(iii) use Corollary 15.4. Similarly for (iv), (v) and (vi). q8e0dL

Next let us consider e.g. the formalization of metatheorem 4.4 (i),

that is,

T.16.4. FV(a) A FV(6) S\a^bh BV(a) A Term'(r)

A V(p, r)AVzsXBV(z)-z = x)ASb(x, r, a, x)

A Sb(f, r, ft, x) h-({a = 6} h-s = 0 •

Proof. We can show this as follows:

T(r; a, ft, x)<=»3p(f(j?, r) A 3s3f(Sb(s, r; a, x) ASb(r, r; fc, x)

Then T.16B4 will follow from

(2) FV(a) A FV(6) A a * b A BV(x) A D(r, T) H T(r; a, fr, x) ,
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where !D(r, T) is the X+F which expresses the inductive definition of

Term'. The proof of (2) is straightforward. q.e.d.

For 4.4 (iii) some difficulty may arise concerning the use of double

induction. But in this case it would be overcome easily.

By almost obvious ways we can also prove the formalization of

other metatheorems: Theorems 4.4, 4.5, 6.1, 7.2, 8.1 (with Lemmata

8.1.1, 8.1.2, Corollary 8.2), 8.3, 9.1, 9.2.

Moreover we can define in FCS the formalization of expansions by

definition of predicates and functions described in Sections 10 and 11

and prove that they are conservative extensions (Theorems 10.1 and 11.1).

Also we have in FCS Theorems 11.2, 12.2, 12.3, 12.4 and so on to the

results of this section. The first formalized metatheorem, which is im-

possible to prove in FCS, will be the plausibility theorem for FCS itself

of the next section. (It is actually impossible by Coders consistency

theorem below.) This will be discussed below. Those theorems in later

sections which are impossible to prove formally in FCS will be marked

by *.

17. The Standard Model R^, Plausibility and Completeness

Theorems

R(IJ has been defined in the introduction.

Definition 17.L Let A(ai1..,, an) be a £F whose free variables are

among al9...,#„. Let ki9...9kn be h.f. sets. Then Rwk=A[kl9..,, kj

#!,,..,«„], or shortly Rm\=A[kl9...9 /c;f], means that A is true in Rw when

the variables al9...,an are interpreted as /c l5..., kn, respectively. R0} is a

model of FCS (called the standard model of FCS), that is,

Theorem 17.11" (Plausibility theorem), (i) // \-A(a^..., an), then R^

A[ki9...9 /<„] for every kl9...9kneRm9 and

(ii) If r(al9...,an)\-A(al9...9an)9 then if Rm\=r[ki9...9 /cj, (i.e., #ro

NB[fc lv.., fcn] for all BET), then Rmt=A[kl9...9 fcj for every kl9...9 kn.

Proof. We can prove (ii) by the induction on F\-A. In the case of

primitive induction we must also use an informal induction on h.f. set
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a. (i) is a special case of (ii). q.e.d.

For later use we give here a formalized inductive definition of truth.

Ass (/)4=>Fnc (/) A Vx e dom (/) • Var (x).

Vali (p, r, /)4^Term'(r) A Ass (/)
A V(v, r) A u 5= dom (/) A ((r = r(T A p = 0)

V(Var(r)Ap=/'r)

V(r = s#tAVal1(p1 , s , f ) A Val^, t , f ) h p =
Val2(p, <p,/)«^RF'(4»)AAss(/)

A K(f, <p)Ai>£dom(/)

= r l sAVal 1 (p 1 ) r, /) A Val^, s,/)

A Val2(p!, V> /) A (p= 1 -

Val2(Pl, iA, /) A Val2(p2, /,/)

1, iA, /) A Val2(/72,

A ((V« e Pl Val2( I , >/s (/ t (dom(/)- {.x})) U {<<?, x>}) A p= 1)

e PJ Val2(0, .//, (/ f (dom (/)- {*})) U {<«, x») A p = 0)))

al1(p1, r,/)

l, «A, (/ I (dom(/)- [x})) U {<?

O, <//, (/ t (dom (/) - {x})) U {<«,

A ^(u, ,4)Au^dom(/)

V ((A = B V C) A (Tr (B, /) V Tr (C, /)))

V ((A = S A C) A Tr (B, /) A Tr (C, /))

V ((A = p-lq A (Val2(0, cp, /) V Tr (C, /)))

, (f r(dom(/)~{x}))U
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ep-Tr(£, (/ f (dom (/)-{*])) U {<«, x>}))

Lemma 17.2. Let r and s be constants in FCS. Then,

(i) If Rm\=rEs, then h-res;

(ii) If Rm\=r^s9 then h-rc5;

(iii) If Rco^=r = s, then \-r = s.

Proof. Let us recall that the following (intuitively) true statements

hold in FCS:

1°
2U

3°
4°

5° f =

Hence we can prove the lemma by the induction on the complexity of r

and s. q.e.cL

Theorem 17.3. (Completeness theorem). Let A be a ^¥ without

free variables. If jRut=/l, then t-A. (This kind of completeness theorem

was first obtained by Myliill.)

Proof. First we prove this theorem for RF A. This can be done by

the induction on the complexity of A with the use of Lemma 16.2

and the fact that the following true statements hold in FCS:

6° h-Vxe04

7° Vx e r#s4HVx 6 rA A A(s/x)

8°

9°

Then we prove the theorem for general ^F A. Again this is done by

the induction on the complexity of A but with the use of the fact that if

3x^4 is true, then A(s/x) is true for some constant 5. q.e.cL

We remark here that this metatheorem can be formalized and it is

provable in FCS. The fact will play an important role in the proof of

Codel's theorem on consistency in the next section.
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T.17.4. Tr(,4, 0)HHA (Here A is a variable.)

(Note that by our definition of Tr, we have

Outline of Proof. The formal proof of this formalized theorem is almost

obtained by formalizing the above proof of Theorem 17.3 (with Lemma

17.2). It should be noted that apparent need of double induction sug-

gested in 7° and 9° above can be eliminated, for we can use instead

(the formalization of) the following general equivalence:

7°' If r is a term of the form (•••(0#s1)# •••)#«„, then

(Similarly for 3xerA.) q.e.d.

However, as mentioned before, the formalization of the plausibility

theorem (Theorem 17.1) cannot be proved. The reason is because it

essentially uses a double induction (see the above outline of proof of it).

Theorem 17.5. It is not the case that

F(p, a) A Ass (/) A p £ dom (/) A ( Ha) HTr (a, /)

and a fortiori not that

V(p, a) A V(q, b) A Ass (/) A p U q £ dom (/) A (a Hb)

A Tr (a,/) HTr (&,/).

Proof. Use the Godel theorem of next section. q.e.cL

Theorem 17.6. (i) // r(fl l 5 . . . ,aw) is a semi-term whose variables

are among ai,,..,an, then

Valifo r*,/)HAss(/)AK,..., a*}sdom(/)

A /> = K/'<". J'a*).

(ii) // <?(«!,..., an) is an RF' w/iose variables are among alt...,an,
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then

Val2(p, <p*,/)HAss(/) A {«!,..., a*}sdom(/)

(iii) If A(a l9...9 an} is a £F' whose variables are among al9...9an,

then

Tr(A*,/)HAss(/)A{fl?,...,a*}sdom(/)

(iv) // A is a Z-sentence, then

hence

Proof, (i) By the induction on the complexity of r(al9...9 an).

(ii) By the induction on the complexity of <p(ai9...9 an).

(iii) By the induction on the complexity of A(ai9...9 an).

(iv) If A is a Z-sentence, then ^4HTr(^4*, 0) is a special case of

(iii), and we also have Tr(^4*5 0)h-(K4*) already by 17.4, and hence

A\-(£-A*). q.e.d.

18. Godelization and GodePs Theorems

D.18.1. Nm (fe, a)<^>(a = 0 A b = 0*)

ANm(w, d)ANm(i?, c)Ab

Intuitively, Nm(ft, a) means that fe is a canonical constant expressing a.

T.18.1. (i) h»3!6Nm(6, a).
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(ii) Nm (6, a) (-Const (b) A Val^a, b, 0) .

Proof. The proof of (i) is similar to that of Theorem 15=10 (i) and

so we only prove (ii).

(ii) Let Nm'(fr, a) be Const (6) A Val^a, b, 0). By the recursion theorem

we have only to show

(xX c)

A Nm'(w, d) A Nm'(«>, c)/\b = u#v) h-Nmf(fe, a) „

This will follow from

(1) Const (0*) A Val^O, 0*, 0) and

(2) Const (ii) A Const (v) A Vai^d, u3 0) A Val^c, v, 0)

both of which are obvious. q.e.cL

By Section 11 we can define a function Num as follows:

DA®,2. (i) Nm(Num(a), a).

Num is a formalization of * defined in Section 14.

We have immediately

T.18.2. (i) Const (Num (a)),

(ii) Val1( f l,Num(a)30)3

(iii) Fnc (/) A Vx 6 dom (/) • Var (x)- Val^a, Num (a), /) .

Lemma 18.3* (Godel). Let A(d) be a ^¥ with only free variable a.

Then there is a Z-sentence G such that

Proof. Let z be a fixed variable. We consider the formula

3X^00 A Sb(j;, z, Num(z), rz^*)).
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Call this formula B(z). Let c = B(z)*. (Here we are considering formulas

(and also other objects) as h.f sets.) Let G be the Z-sentence B(c).

Then by direct computation we have

HSb(B(c)*, B(z)*, c*,rz"i*),

that is,

h-Sb(G*, c, c*9
 r2n*).

But we also have

Now

A(G*)\-A(G*) ASb(G*, c, Num(c), Hf1*)

, c, Num(c), rz^*)

h-G.

On the other hand

G 1-3X^00 A Sb (j;, c, Num (c), rzn*)) ?

h-^OOASb(v, c, Num(c), rz^)ASb(G*, c, Num(c-), rz~i*)

\-A(G*).

Hence Gh-^(G*). Hence GH>1(G*). q.e.d,

Now we are ready to prove GodePs incompleteness theorem and the

consistency theorem for our system.

Theorem 18.4.f (GodeVs incompleteness theorem). There exists a

Z-sentence G such that neither \-G nor Gh-A-
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o
Proof. Use the last lemma with a h- A * as A(d)9 to obtain a I-

sentence G such that GHG*HA*.

Suppose we have

Gh-A.

Then we must have h-G*h-A* and hence h-G. So we have both h-G

and Gh-A and hence h-A- But A is not true and hence not provable.

This contradiction shows that Gh-A is not the case. Moreover since
o

we have just shown that G*h-A* is not true, G is not true and hence
not provable. q.e.d.

Corollary 18.5. There is an RF cp(a) with a as its only variable

such that it is valid in Rc,3 (by any assignment of h.f. sets to a) but not

Proof. Let G be a I-sentence such that neither h-G nor G h - A »

Then,

where Gy is defined in Section 6.

Let (p(a) be the RF9 --^Gfl. In R^ G is false and hence 3yGy is false

so that cp(a) is true for any assignment. But if h-<p(a), then we would

have

and

Gh-A.

This is contrary to the assumption. So *K<p(a). q.e.cL

We can proceed further. The consistency of FCS can be stated as

"A is not provable". This can be formalized as



A FOUNDATION OF FINITE MATHEMATICS G75

o
(This means HA* I- A is not the case.) (We cannot negate the formula

HA* directly since HA* is a £F but not an RF.

Theorem 18.6. (Godel's theorem on consistency). The consistency

of FCS cannot be proved by a method formalizable in FCS; in other

words,

Proof. Let G be the sentence having the property

GHG*HA*,

as constructed in the last theorem. We proved there that
o

Now assume that H A * H A • Then we would have a contradiction

as follows.

GHHG* (by Theorem 17.6 (iv)).

But also we have

GHG*HA*.

Hence

GHHG*AG*HA*
o

HHA*

HA.

So we have G H A , contrary to the fact we have already seen. q.e.d.

We wish to generalize these results in the rest of this section.

First we note that we have proved in the proof of the last theorem that

GHh-A*

# o

whenever G satisfies GHGHA*. In this case the converse HA*HG

holds since

HA*HG*HA*HG.
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o

So it follows that if G satisfies GHG*h-A*5 then G is equivalent to
o

I- A*- And there exists such a G. So by substitution we obtain

that is,

Theorem 18.7. For any I-sentence A,

iff

Theorem 18.8. (Lob), (i) Let A be a I-sentence. If (-A*)\-A,

then \-A.

(ii) If (B*h-A*)\-A, then BV-A.

(iii) ((.

(iv) ((B*

(v) Let

ES(fl)«=>EF(a)AP(0, a).

T/ien

(vi) ZS(a) A IS(fo) A ((ft h-a)* Hfl) K&
(v) ««rf (vi) are formalizations of (i) and (ii).

Proof. We prove only (i). Suppose (h-y4*)h-A Let J be a I1-

sentence such that

(3)

Then, since J h- h- J* (T.17.6 (iv)),

Hence by the assumption that \-A* \-A, we obtain

(4) J \-A.

o
Then since h- numeral wise represents h-5 we have
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Hence by (3) we have h-J and hence by (4) \-A, as desired. q.e.cL

As an application of the well-known proof of Rossor form of in-

completeness theorem we can prove

Theorem 18.9. (Rosser). (i) Let A and B be Z-sentences and

assume B^A. Then there Is a Z-sentence C such that B^C and C^A.

Moreover, if A \-B In addition, then, the above C can be taken such

that A\—C and C\—B. (In other words, C lies strictly between A and B.

So the pseudo-order relation \— is dense.)

(ii) There exist I-sentences A and B such that A^B, B^A and

A/\B\-\. (So, there are incomparables in the pseudo-order relation

i-O

Proof. The first part of (i) comes from the second part of (i). So

assume A\-B. By Lemma 18.3, let R be a £S such that

(5) #H3>'((B* A R* h-X*), A Vx e P(R(y))

where the notation Dx was introduced in Section 6. Let C be (B/\R)

V A, (since it is equivalent to B/\(RVA), by the modular law, we may

write B A f l V / 4 ) . Then it is obvious that A[~C and C\-B.

Suppose B\-C. Then B\-RV A. Hence for some h. f. set n we have

So by (5) we have

(6) RH3y(y<n* A (B* A R* £-A*)y) .

But for every h.f. set k<n, we have

(7)

for, otherwise we have 5 A R 1-̂ 4 and hence B\-A (since we have also

B \-RVA). This contradicts the assumption. We also have
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(8) y^

where kl,...,kr are all h.f. sets preceding n. From (6), (7), and (8) we

have

and hence, using B\-R V A, B\-A. This again is a contradiction. This

shows B^C.

Suppose C\-A. Then B/\R\-A. Hence for some h.f. set n we have

But we also have

for each h.f. sets k and hence by (5) above we have \—R. But if so we

must have B\-A, since B/\R\-A. This is a contradiction. So C'KA

q*e*cL

19. Characterization of Primitive Recursive Functions

As mentioned in Section 1, a function fiR0}-*Rco is primitive recur-
sive ifft~1ofot: N-+N is primitive recursive. In this section, we identify

RU with N via t. We shall characterize primitive recursive functions as

provably recursive functions in FCS. (A similar characterization is

announced by Mint [1].)

Definition 19.1. We write |=n^4[ml5..., mfc], if it is true when each

unbounded quantifier 3x in A is interpreted as 3xx<M (but bounded

quantifiers are interpreted with their original meaning, e.g., 3xea is

not interpreted as ^xx^(xea A •••))•
It is obvious from the definition that

(1) If n<l and (=n^4[m l5..., mk], then |=/y4[m l9..., mk] and R(0\=Alm1,..,9
mfe], and

(2) If Rm^=A[ml9t..9 mj, then there exists an n such that (=H^[m1?...,m&].

Note that, for an RFp, \=ncp iff R^q), since these two interpreta-
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tions coincide.

We shall prove the following theorem:

Theorem 19.1.* (i) // t-3yA(al9..., ak, y), where V(A)c{al9...,ak9

y}, then A represents a primitive recursive function, that is to say, there

exists a primitive recursive function f(ml9..., mk) such that

(3) R t o ] f = A [ m l 9 . . . 9 m k 9 f ( m l 9 . . . 9 mk)]

for all natural numbers m1?..., mk.

(ii) // in addition ±-3lyA(aly..., ak, y), then such f is unique.

To prove this theorem we need the following lemma.

Lemma 19o2.T // r\-A9 where V(r)vV(A)^{al9...9ak}9 then there

exists a primitive recursive function p of one variable such that n<p(n)

for every n and that for every n and ml9...9mk<n9

(4) Nwr[m1,...,mk]=^t=p(W)^[w l !)...3 mj,

where t=nr[ml9...9mk"] means k=nB[inL9...9 mk~] for all BeF. (We call

such a primitive recursive function p a major ant for F\~A.}

We first prove the theorem by the aid of this lemma. If \-1yA(a{9

..., afc, .y), then by the lemma, there exists a primitive recursive (ab-

breviated p.r.) function p such that for every neJV and m l 9 . . . , m f c < n ,

we have ^= p^yA[ml9...9 mfc], that is, there exists an l<p(n) such that

(5) (=p(w)^[m1,...,mfc, /].

But (5) is a primitive recursive predicate of n, m^..., mfe, I (see later

Section 20, D.20.1). Hence, if we define

f(ml9...9 mk) = wy<gt=gAlml,...9 mk, y~\,

where g = g(ml9..., mk) = p(max(m1?...? mk)), then / is primitive recursive

and satisfies

l9..., mk,f(ml9...9 mk)']9

for all mls...? mkeN. q.e.cL
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Proof of Lemma. We prove this lemma by the induction on F\-A.

Case (0). AeF. In view of (4), we may take as p any primitive

recursive function such that p(n)>n, e.g., p(n)~n.

In the following cases,

,., - .... F\-r€s .....
(i) , (11) T. (m)

n — ̂  ' r\-A

where each of the lower expressions is identical with Ft- A, we may also

take as p arbitrary as the above case, since in Cases (ii), (iii) and (v), A

is an RF and in Cases (i) and (vi), the hypothesis (i.e., |=MF[a1?..., akj)

cannot hold.

{res}vr\-A {r = t}VF\-A-

Suppose that for each of three upper expressions our lemma holds. Then

there exist majorants n, T, a for F\-rEs#t, {res} U F\-A, and {r = t}

(jF\-A9 respectively. Then we define p(w) = max (r(n), o(n)). Clearly,

p(n)>n. Now suppose

1,..., mk/al9...9 ak~\).

Then

\=nF[ml9..., mk, 0,..., 0/fl,,..., ak, fe,,..., fej,

where {bl9...9 bh} = V(res#t) — {al,..., ak}. Since TC is a majorant for

rh - res#f , it follows that

1,..., mk, 0,..., 0/al9...9 ak, bl9...9 ft J .

Since res#t is an RF,

Thus, we have either fl^resC/W!,..., wft, 0,..., 0] or else I?fl,t=r = f[m1,...,

mfc, 0,...,0]. Hence |=Bres[m lv.., mk, 0,..., 0] or NBr = t[mlv.., mk9 0,...,
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0]. If the former is the case, since T is a majorant for {r e s} U T K-./4,

we have

t=t(IIy4[m lv.., mk, 0,..., 0],

and hence

Npoo^O?!,..., ™^ 0,..., 0].

Similarly, we have the same result also when the latter is the case.

From this it follows that p is a majorant for F\-A.

Cases (vn) - , (via) _, (xi)

where it is assumed that the lower expressions are F\~A. By the induc-

tion hypothesis there exists a majorant % for the upper expression in each

of these inference rules. Then we may take this i as majorant for the

lower expression, since obviously we have

(6) hrOoBOi, . . . , 7??J =>t= t(n)^VC[77I l v . . , 7HA] ,

(7) KdoCIX,..., 77/J == > N r ( l l ) 0 V r [ / 7 7 l v . . , 777 J,

(8) t= r ( ,0^AC[/?? l v ,

Blmi,...,ink].

r> I o i"" i f~i
Case (x). L^l-L^C9

where A is B/\C. Let T and cr be majorants for Fh-J3 and Fh-C,

respectively. Then p(n) = max (1(77), (j(7i)) is a majorant for Fh-BAC,

since Nr(,,)B[ni l5..., mj and i=ff(,0C|>lv,., mfc] imply ^p(n}BAC[m1?.,.,
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Let TT, T, <T be majorants, for which the lemma holds for F \-B V C9

{5}UFh-,4 and {C} u F \-A, respectively. Then we define p(n) =

max(T(7r(n)), (j(7r(n))). Suppose NnF. Then \=n(n)BvC. Hence !=*(„)£ or
t= ,(II)C. Since rc<7<«), N „(„){£} UF or K(,0{C}UF. Hence N^^

or t=ff(Jt(ll))4. So t=pWA.

Case(xiv). r

Let T and a be majorants for F\-(p-*A and Fh-<p, respectively. This it

is obvious that p = t is a majorant for F\-A.

Case (xv). -

Let T and a be majorants for F h-s e r and F \-3x e rl>9 respectively.

Then p = a is a majorant for Fh-BxerD, since \=a(n)Ser and \=a(n^D(s/x)

Case(xvi). - { f ler ^
I I — A

Let T and a be majorants for F \—3x E rD and for {a e r, D(a/x)} U

Let 0,. is a p. r. function defined for each semi-term r by

(n) = n, where t; is a variable,

Then p(n)==(7(max(T(n), 0r(
w))) serves as majorant for FHA For suppose

m^..., mk<n and t=nF[ml5...? mk]. Then |= t(ll)3 jc e rD[m !,..., wfc]. Hence

there exists an mer[ml9...9mk'] such that |=t(n)D[ml5...3 mfc, m/a l 9 . . .5 afc,

x]. Since F(r)c{a1?..., afe} and m1?...5 mk<n, it is seen from our coding

of h.f. sets that r[m1? .., mfc]^#rO) by the induction on r. Hence

(n\ 9r(n)).
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Also, m i , . . . , mk <n< max (T(W), 9r(nJ) ,

and

F'maxCtOO.Mn))* '

Since p is a majorant for {a e r, D(a/x)} U T h-y4, it follows that

N^maxCrOO.flrOi)))^'

This shows that p is a majorant for F h-A

Case (xvii)Case (xvnj.

Let T be a majorant for the upper expression. Let p(n) = i(0r(ny). We

have to show that p is a majorant for the lower expression. Clearly,

p(n)>n. Now suppose that m1 ? , . . , mk<n and \=nr[ml9...9 mk"]. It

suffices to prove

for all me ?•[/??!, ..., mj. Since w l 3 . . . , mk<n, it follows that m<9r(n).

Therefore,

(Note that n<0r(n).) So we have

Nt(er(,,))0(0/x) [HI !,..., mk, m/a^..., afc, a],

that is, t=p(,,)£["? ! , • • - , ^^ w/fl ivj ^ ^]-

Case (xviii).

Let T and cr be majorants for T \-Vx E rD and r \-s E r, respectively.

Then p = i is a majorant for Fh-£(s/x). For suppose t=BF[m l9..., mk],

where mi9,..9mk<n. Then (= t (n)Vxe rD^ii,..., mk] and s[m1,..., mk] e
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r[w !,..., mfc]. Hence

NT(,0D[>i,..., mkJ s[m l5..., mfc]],

that is,

Casecase

Let r be a majorant for r\-D(s/x). Then p(n) = max(i;(n), 9s(nJ) is a

majorant for F\-3xD. For suppose N,/Iml5..., 7T?fc]. Then [= T(n)D(s/x)
[m l5..., mfe], i.e.,

and a fortiori

But s[mlv.., 7nk]<0s(n)^p(n). So

Let T and a be majorants for rh-3x/) and {D(a/x)} \J F\-A. In this

case, let /?(7i)=E(j(T(n)). To prove p is a majorant for r\-A, suppose

i=, tr[/?7 l5..., mk/a{,..., afc]n where /? i l 5 . . . , ;?^ < n. Since a ^ F(F) U F(/4)

U V(3xD\ we may assume a^lfl!,.. . , ak}^> V(F) U K(A) U K(3xD). Then

^= t (w)3xD[777 l5..., mfc]. So there exists an m<t(n) such that |=T(,f)D[7n !,...,

7wk, wi/fl!,..., flfc, x], or equivalently N^^a/x)^!,..., mfc, m/a l v . . , afc, a].

Also (= t (w)r[m l5..., mfe, m/a1?..., afc, a]. It follows that 1=^^^^!,...,

mk9mlal9...,ak,a] and hence that Nff(t(,t))^[>ii,..., mklal9..., afc]. This
proves that p is a majorant for FI-/4.

Let T and a be majorants for rh-D(0/x) and (D(a/x), D(b/x)} U Fh-

D(a#b/x). We define cr(/, /) by o-(/, 0) = r(?) and a(i, ./> l) = d((7( /,./))-*- 1.

Note that j<a(ij). Let p(n) = a(n, 9r(n)). We shall prove that /? is a
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majorant for F[~D(r/x). Suppose \=nr[ml9...9 mk~]9 where ml9...9mk<n.

Then r[m l5..., m,J<Or(n). We shall show by the induction that ]F a(nii)D[m l9

..., mk, /] for all /. If / = 0 it is is obvious from the hypothesis since

er(??5 O) = T(H). If f ^ O , then there exist y and / less than i such that

i=j#l. By the induction hypothesis we have \=a(nj)D[ml9...9 m/v, j] and

t=<r(Bi/)I>[m1,..., m/t, /]. Since j<i- I, / c</ - l , we have both N f f(n.i-i)D|>i,

..., mfc,7] and 1= ,(„,,•- 1)0[> !,..., m^, /]. Moreover m l 9 . . . , mfc, j, /<(j(«,

i-1). Since a(n) is a majorant for (D(a/x), D(b/x}} U r\~D(a#blx\ we

have

Since cr(a(/? ,/ — !))< cr(n, /) and < / # / = /J we have N „(„,!•)£(/" 15..., w^, /).

Thus we have, letting / = r[/?? l 5 . . .9 m/J,

Np(II)^0" lv.., mft, r[/?7 !,..., mfc])

since or(/?5 r[/??1? . , . , mj)<a(w, Or(n)) = p(n). Hence p is majorant for F

h-D(r/x). This completes the proof of the theorem. q.e.cL

Corollary 19.3. Let 3xA is a J^F which docs not have free vari-

ables. If H3x/l, then \—A(s), for some constant s.

Proof. This is a special case of Theorem 19. 1 where fc = 0. q.e.cL

Incidentally, we have an alternative proof of the plausibility Theorem

17.1 as follows.

Suppose Rw \=F\_m 1?..., /?7fc]. Then Nn/Tm !,..., wfc], for sufficiently

large n, hence taking n>m^~,mk, by Theorem 19.1, it follows that

l=p(n)^[ m i>- - -5 mk\ f°r some p.r. function p. Hence R^A^m^..., mk"].

q. e. d.

The converse of Theorem 19.1 holds.

Theorem 19.4. // /(m t,..., mk) is a primitive recursive function,

then there can be found a X^ A(a^.,., ak, y) such that
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and

R^A\_m^..., mfe,/(ral5..., mfc)],

for every m lv.., mkeRm.

And hence

Theorem 19.5. /(mls..., mk) fs primitive recursive iff there is a

(0,..., afc, j;) swc/7

and

Rm\=A[ml9...9 m

This is a characterization theorem for primitive recursive functions.

Proof of Theorem 19.4. We make use of Theorem 13.6. But there,

natural numbers are regarded as von Neumann ordinals while here they

are regarded as h.f. sets. So it is necessary to translate Theorem 13.6

using the function T introduced in D.15.4. We proceed as follows. Let

a primitive recursive function f(ml9..., mk) be given. Then, by Theorem

13.6, we can find a number-theoretic formal function F(A1,..., Afc) in a

conservative expansion of PCS. Let A(b9 a1?..., ak) be a ^F in

equivalent to

J(F(T(a,\...,T(ak)\b).

Then by T.15.11, we see,

h-NaUTXaO) A ••• A Nat(r(afc))

and hence

h-Nat (5(7(0!),..., T(ak)J).

So by T.15.10,

}-3\bA(b, «!,..., a^).
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Moreover on account of the meaning of T and J we easily obtain that

Rmk=A[f(ml9...9 mk), m1?..., mk],

for every ml5 ..9mkERm. q.e.d.

Corollary 19.6. (i) If (A(al9...,aJ, B(al9..., aj) is a AF, then the
n-ary relation Rto\=A{ml9...9m^\ is primitive recursive, (ii) Conversely,

every primitive recursive n-ary relation can be represented in this way.

Proof, (i) If (A(ai,...9 an), B(al9..., an)) is a zlF, then we have

Hence by our main Theorem 19.1, there is a primitive recursive function

/(/?7 lv.., /??„) such that

ly..., mn)

!,..., mn) =

But since (A, B) is a ^F, for every mi,...,mnERli}, exactly one of

u..., mn) and R^ B(m !,..., mn) holds. So

Therefore ^wt=^l[/ni,. ..,/»„] is primitive recursive.
(ii) If P(w1,..., /»„) is a primitive recursive ;i-ary relation, then there

exists a primitive recursive function / such that

By Theorem 19.5, there exists a £F, ^(fr, a^..., an) such that

\-3lyA(y, al9...9an)

and

Rm^A[f(ml9...9 mn)9 m l s..., mj .

But then we have a representation

P(ml9 .., /«„)«=»/?„ 1=^4(0, m l3..., m;j). q.e.iL



688 MOTO-O TAKAHASHI

The following is an application of Theorem 19.1.

Let /(m) and /i(m) be defined as follows :

, if m is not a square and x is the least

non-trivial solution of diophantine equation
/(™)= x2-my2 = l (with j>0)3

0, if m is a square.

/z(m) = the ideal class number of (?(>/ — /f t ) .

Then these functions are both primitive recursive, for the theory of

quadratic diophantine equations and the elementary theory of ideals are

formalizable in FCS so that we can prove the existence of the values

of / and h in FCS. (Then by Theorem 19.1, they are primitive recur-
sive.)

20e Equivalence to Primitive Recursive Arithmetic

For primitive recursive arithmetic (abbreviated by PRA), see Goodstein

[4]. We shall use the results in the book.

First, let [a/6] and rem (a, b) be the quotient and the remainder

function, for which

(1) « = b.[fl/b] + rein(rt, ft),

(2) 5>0 - >rcm(a, b)<fe,

and

(3) a = b>s + rhr<b - > [a/ft] = 5 A rem (a, ft) = r,

hold in primitive recursive arithmetic. (For definition of these functions,

see Kleene [1] or Goodstein [4]. In the latter these are denoted by Q

and R.)

Now we define

(4) E(a9 b)=l^rem([fr/2«], 2).

Since E(a9 b) takes only 0 and 1 as values, let us regard it as a proposi-
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tion (0 as truth and 1 as falsity). Then it says that [fo/2fl] is odd.

We have in PRA that

(5) 2° = 1,

(6)

(7)

(8)

From these it follows that

(9) £(0,

(10) £(0 + l,2c)«— »£(fl, c),

(11) £(a + l ,2c+l )<— >£(a, c).

But the following facts are also provable in PRA:

b<a - >b<2a,

b<2a - >[&/2fl] = 0,

l-rem(0, 2) = 1,

b<aVa<b.

So, we have

(12) E(a,b) - >a<b,

(13) £(a, 0), (~ is the negation symbol in PRA).

Next, we define 4 by

[ 0, if £(c, fl) ,
(14) a*c=\

(a + 2c, if £(c, a).

Then b has the similar properties as # :

(15)
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(16) £(d,fl) - >E(d,a lkO,

(17) E(d, ate) - >E(d, a)Vd = c

(18) E(d, a*c)*—*E(d9 a)Vd = c.

Proof of (15)-(18). (15) is obtained by using

(16), (17) and (18) are obtained thus:

E(c,a)VE(c, fl),

E(c,a) - >(E(d,d)

>c<dVd<c,

c<d - >d = c+l+((d^-c)^l)y

E(c, a) - »a = [a/2c+1]-2c+1+rem(a, 2C)

A a + 2C = [a/2c+ 1] • 2C+ r + 2C + rem (a, 2C) ,

(fl5 2C)<2C+1 A2c + rem(cf, 2C)<2C+1,

!] = [[>/2c+ !]/2*] • 2^ + rem ([a/2c+ ^ 2*) ,

rem([fl/2c+1],

JB(c, a) - > [a/

A t(a + 2')/2

£(c, a) - > l(a + 2C)/2C+ 1 +XJ =

E(cs a) - >(E(c+l+x, a) - >
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E(c, a)

£(c, a ) A < / < e - >(E(d,

>(E(d, a)< — >E(d, ate)),

E(d,a) - >E(d, ate),

E(d, ate) - >E(d, a)Vd = c,

E(d, a*c)< — >E(d, d)Vd = c.

We establish a theorem on binary expansion in PRA;

Theorem 20.1. a= I 2' (= E(sg(£(f, fl)))-2').
£( i ,o ) i<a

(c.f., 2.9 (page 35) of Goodstein's book.)

Proof. The following induction schema is acceptable in PRA (cf.,

6.3 of Goodstein's book).

P(0)

So it suffices to show

° = E?o2'"

a= £ 2; >2a= Z 2',

and

a= E 21' ^2^+1= S 2'.

But these are established by easy computations. q.e.d.
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Corollary 20.2. In PRA, we have

A«(E(x, a) - >E(x, b))/\A»(E(x, b) - >E(x, a)) - >a = b,

where Aa
x is the bounded universal quantifier introduced in Goodstein's

book, p. 64. (It means "for all x less than or equal to a")

For any primitive recursive (p.r.) predicate P(x, a^..., an) in PRA,

let (Vxea)P(x, al9...9an) be the predicate

A*(E(x,a) - > P ( x , a l 9 . . . 9 a H ) ) .

Similarly, let (3xea)P(x, al9...9an) be the predicate

£;(£(*, a) AP(x, 0!,. ..,«„)).

If we replace, in an RF cp9 each expression a€b,a#b, propositional

connectives and restricted quantifiers by E(a, b), a$b, corresponding

propositional connectives and bounded quantifiers in PRA, we obtain a

p.r. predicate in PRA. We call this proposition <p.

Of course, it is impossible to correspond to each ]£F a proposition

in PRA with the same meaning. However, we can correspond to each

XF a certain proposition in PRA with a new variable, say n, as follows.

(The intuitive intention is to bound each unrestricted existential quantifier

to n.)

Definition 20.1. Let A be a £F. Let n be a variable not occur-

ring in A. Then we define y4c"] to be the proposition obtained by

replacing each unrestricted existential quantifier 3,x by E", and at the

same time by replacing aeb,a#b, propositional connectives, restricted

quantifiers by E(a, b), abb, corresponding propositional connectives and

bounded quantifiers in PRA.

Note that for an RF cp, <p[n] coincides with q> above.

By the induction on A we easily have

Lemma 20.3, n<m/\A^ - >Aim\ in PRA.

Now FCS is conservatively translated into PRA in the sense of the

following theorem:
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Theorem 20.4. (i) // F\—A in FCS, then there exists a primi-

tive recursive (derivation of a) function p(n) such that

P(ri)>n

and

fl i <n A - - - /\ak<n

are provable in PRA, where al9..., ak are all the free variables occur-

ring in F and A, and r["] is the conjunction of all Bc"] with B in F.

(ii) // h- A(al, .., an) (in FCS), then there exists a primitive recursive

(derivation of a) function f ( a l 9 . . . , an) such that

is provable in PRA.

(iii) // cp is an RF in a conservative expansion of FCS by definition,

then it is provable in FCS iff 0 is provable in PRA.

(iv) FCS is consistent iff PRA is consistent.

Outline of Proof, (ii), (iii) and (iv) are easy consequences of (i). The

proof of (i) proceeds as in the proof of Lemma 19.2 of the last section.

But we must also use the following:

(i) formal theorems of prepositional calculus and predicate calculus with

quantifier bounded, such as,

p(d)-
q ' E»xp(x) - > < / '

which are proved in Goodstein's book, and

(ii) course-of-values induction of the form

p/\A»(x<n - >q(x)) - >q(n)
p

which can easily be proved in PRA by the standard technique. q.e.d.
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21. Conservative Expansion of PRA Including AH First-Order Formulas

We consider the following system, named PRK.

1. Primitive recursive terms (PR-terms) are defined as in PRA.

(See e.g. Curry [1].)

2. PR-formula is a formula of the form r = s, where r and s are

PR-terms.

3. (First-order) formula is constructed from PR-formulas by means

of logical connectives and quantifiers.

4. Sequent is an expression of form F-+A, where F and A are finite

sequences of formulas.

5. PR-sequent is a sequent composed of PR-formulas.

6. Basic sequent is a PR-sequent which is provable in PRA (when

the sequent, say,

is construed as the PR-formula

where A, -», V are logical connectives defined in PRA, as in Goodstein's

book [4]).

7. The inference rules are as in LK.

For example, inferences on quantifiers are

r - >A9A(t) A(a), r - > A
> A, 3xA(x) 3xA(x), r - >A

>A,A(a) A(t)9T - >A
>A,VxA(x) VxA(x)9F - >A '

A sequent is provable if it is obtainable from some basic sequents

by successive applications of the above inference rules. A formula A is

provable if the sequent -+A is provable. This completes the description

of PRK.

Theorem 21.1. A-+A is provable.
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Proof. If A is quantifier-free, then it is obviously a basic sequent.

So this theorem is proved by the induction on the number of logical

symbols in A. q.e.d.

Theorem 21.2. // a sequent or a formula comes from a provable

sequent or provable formula in LK by substitution, then it is provable

in PRK. In particular, each instance of tantology is provable in PRK.

Proof. This is immediate on account of Theorem 21.1 and the infer-

ence rules of PRK. q.e.d.

Example. A V -^A is provable in PRK.

Now, by exactly the same way as Gentzen's, we can prove the following

cut-elimination theorem for PRK:

Theorem 21.3. Every provable sequent is provable without using

cut-inference.

As a corollary of this theorem we have

Corollary 21.4. PRK is a conservative expansion of PRA. i.e., If

F-»A is a PR-sequent and if it is provable in PRK, then it is provable

in PRA.

Proof. A cut-free proof of a PR-sequent in PRK does not contain

any inference on a logical connective.

So all the sequents occurring in it are basic sequents and hence

provable in PRA. q.e.d.

We state more results about PRK without proofs.

Theorem 21.5. (i) VxVyA(x, y)^VzA((z)l9(z)2) (and its dual) is

provable in PRK, where (z)M is a primitive recursive function defined

in Kleene [1].

(ii) an existential formula i.e., a formula of the form 3yP(y, a l 5 . . . ,

an) with P quantifier-free, is provable in PRK iff there is a PR-term

f(al,...,an) such that P(/(0l9..., an), a l5..., aj is provable in PRA.

(iii) an V3-formula i.e., a formula of the form Vx3yP(x, y, a1?..., an)
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with P quantifier-free, is provable in PRK iff there is a PR-term

f(x, al9..., an) such that P(x,f(x,al,...,an),al,...,an) is provable in PRA.

(iv) // a formula 3yP(y), P quantifier free, does not have any free

variable, and If it is provable in PRK, then P(n) is provable in PRK

for some numeral term n.

(v) // P(a) is a PR-formula, then the principle of mathematical

induction holds: that is,

1 °. P(0) A Vx(P(x)--P(x 4-1))- VxP(x)

is provable in PRK, and

2°. // F >A, P(0) and P(a), r >A, P(a + \)

are provable in PRK, then F-+A, VxP(x) is provable in PRK.

(vi) If 3xP(x)^±VxQ(x) is provable in PRK and if P and Q are

quantifier free then R^±3xP(x) (and hence R^±VxQ(x), too) is provable

in PRK, for some PR-formula R.

(In this case we say 3xP(x) is a decidable formula. Thus (v) holds

for decidable formulas.)

(vii) // A(a) is an existential formula and if F-*A(Q) and A(a),

Fl-^A(aJr\}, where F1 consists of existential formulas, are provable in

PRK, then F, Fl-^MxA(x) is provable in PRK.

Similarly we may consider a formal system PRJ which is like LJ

as PRK is like LK.

One difference between philosophies of PRA (or PRK) and of FCS

is that in the former system the existence of the values of primitive

recursive functions are assumed from the beginning while in the latter

the existence of them are proved, only assuming the existence of a single,

very elementary function, i.e., #.

By the way, from the results of this section it makes sense to say

that any 1st order formula is provable in (a conservative expansion of)

FCS.

22. Extensions of Number Systems

How to define in FCS negative integers and rational numbers etc.,

with their arithmetic operations are almost obvious. We follow the usual

definitions, keeping in mind not to use infinistic methods. For this we
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must exhibit a unique (finite) presentation of each object (such as inte-

gers, rational numbers, algebraic numbers, etc.). Some complexity in
defining them caused by this requirement would be inevitable. However,

we try to minimize complications in proving theorems.

(I) Integers

D.22.1. (i) Neg(fi)^>3xe U U a. (cz = <0, .x> ANat(x) Ax5*0), (Neg(a)
stands for "a is a negative integer".)

( i i ) Z(tf)<^>Nat(0) VNeg(a), (Z(a) Stands for "a is a (rational)

integer".)

<0, a>, (/' Nat (a) A a >0,

(iii) -a = 0, // fl = 0,

x, if Neg (a) A a — <0, x> .

| a, if Nat (a),

I -a, if Ncg(a).

( A - - - / / , if Nat (A) A Nat (//) A A>/ / ,

// Nat (a) A Nat (b),

f/ Nat (a) A Neg (&),
( v i )

" Ncg(«)ANat (b ) ,
;' Neg (a) A Neg (b).

' a*b, if Nat (a) A Nat (b),

-(fl.|b|), if Nat (a) A Neg (a),
(vii) a - b = i

Neg (a) A Nat (b),

Neg(a)ANeg(6).

3v<A(A-2v)AZ(a),
(viii)

All other values of functions for unmentioned arguments are as-
sumed to be 0.
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Let us agree the convention that if A<^B,f is defined on A and g

is a certain natural extension of / on B, then they shall be written

by the same symbol.

We state following basic theorems on a arithmetic without proof.

One will find their proofs easy if he tries to prove these in order.

T.22.1. (i) -r(Nat(fl)ANeg(a)),

( H i ) A -/j = <!;-
( i v )

( v )

( v i )

(vii)

(viii)

( i x )

( x )

( xi ) Z(a) A Z(ft) A Z(c)-*(a . ft) . c = a . (ft . c), A (a + ft)

(xii) Z(a)~-a.O = O A a . l = a?

(xiii) Z(a)--flAa^ = aA+" A (flA)" = a*'",

(xiv) Z(a) A Z(ft) A a ^0 A ft ̂ O-a . ft ^0.

(II) Rational numbers.

(i) Frc(a)«=»a = <l, a, /i> A Z(a) A Nat(^) A / x > 2 A Prime (|a|,

/*).
(Frc(a) stands for "a is a fractional (but not an integral) number

( i i ) Q(a)^^Z

(Q(a) stands for "a is a rational number".)

( i i i ) a-^-jS = 7^=^Z(a)AZ(/J)A^^O

A((Z(y)Aa = /?.y)

V(Frc(y)A7 = <l, 5, v> Aa- v = )

(r, if zoo,
( i v ) 7 =

[a, i/ Frc(y)Ay = <1, a, ju> .

[ 1, (/' Z(7),
(v) 7 =
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( v i ) oL + p = ( x - p + *-p) + (v>p), if Q(a)AQ()5).

(vii) a x j 8 = (a-/?)-5-(a-]8) , if Q(a)AQ(jS).

(viii) — a = ( — a)-=-a.

( i x ) a~ 1=a-=-a , z/ Q(a)Aa^O.

(X) a_£ = a + (_£ )? // Q(a)AQ(/7).

( x i ) a-r)8 = ax/J- 1 , (/ Q(a) A Q()8) A )S ^= 0.

Remark. We have defined in (iii) the division for integers and in

(xi) for rationals, and they are denoted by the same symbol.

T.22.2, (i) Q(a)~-Z(a) A Z(a) Aa

(i i) Z

(iii)

(Ill) Polynomials.

For the sake of brevity we only define here polynomials of one

indeterminate with integral coefficients. We define them as sequences of

non-vanishing coefficients. Other kinds of polynomials can be defined

similarly.

D.22.3. (i) /e ZpQ<^Fne (/) A V/ e dom (/) • Nat (f) A Vj e rng (/) .

(The symbol Z[X] suggests the set of all polynomials of one variable

with integral coefficients. But of course, it does not exist as an h.f.

set. Formally /eZ[JT] is a unary notion off.)

( i i ) deg(/)=udom(/).

( iii) /+^ = /i<=^/eZ[A^] A^7 eZ[X] A ft eZ[X] Adorn (fc)s dom (/)

U dom (g)

A Vi e dom (/) — dom (g). (i E dom (ft) A ft'/ =/'/)

A V/ e dom(0) — dom (/). (i e dom (ft) A h'i = g'i)

A Vi e dom (/) A dom (g). ((f'l + g'i^0-^ie dom (ft)



700 Moxo-o TAKAHASHI

( i v )

AV/<Gdom(/?) ( /z 'k = I f ' i - g ' j ) ,
(i,j>es

where s denotes {<i, j> edom(/) xdom(#) | /+j = /c} .

(v) Ap(/,a)= Z (/ 'O'fl ' , // /EZ[*]AZ(a).
tedom(f)

(Ap(/, a) is ff te ua/we /(a) of polynomial f at a.)
( v i ) * = {<!, !>}, A-» = {<1, n>], if Nat(«).

fO, i/ c = 0
(v i i ) [c] =

(viii) -/= sr^=>/e Z[X] A g e Z[X] A dom (/) = dom (3) A Vi e dom (/) .

(9'i =-/'').
( i x ) f-g=f+(-g) if /sZ[X]Aff
( x ) /l^ (divisibility of polynomials).

The definition of it is left to the reader.

( x i ) f = g (mod/0<=>ft|/-^-
((iii)3 (iv), (viii) arc easily justified.)

T.22.3. (i) /6Z[A]Aff6Z[A'J--/eZ[AJ

(0 as polynomial happens to be 0 as ft./, set!
( i i i ) /

( iv ) Z(c)AZ(fl)-[c]eZ[A]Adeg([c3) = OAAp([c], a) = c.
( v ) /e Z[X] A Z(a)-Z(Ap (/, a)) .
( vi ) A 6 Z[A] A deg (A) = 1 A (Z(a)- Ap (A, a) = o) .
(vii) A"eZ[A]Adeg(A") = MAP(x", A) = A".
(viii) /eZ[A] A0 eZ[A]-Ap(/+0, A)

= Ap (/, A) + Ap (g, A) A Ap (/• .9, A) = Ap (/, A) • Ap (g, A) .

( i x ) /eZ[A]A/!€Z[A]Adeg(/0>0
-3 \g(g e Z[A] A deg (g) < deg (ft) A / = (/(mod /;)) .
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(IV) Elementary theory of polynomials and linear algebra can be de-

veloped in FCS. In most cases the usual arguments can be word by

word translated into FCS. However there are cases where some care

is needed. The following is one of such cases.

(V) Irreducibilily of polynomials.

In order to explain what kind of argument is formalizable in FCS

and what kind of argument is not, we shall give two methods of deter-

mining irreducibility of a polynomial.

1°. The first idea is as follows. Given a polynomial f(x) in Z[X],

we compute from its coefficients an upper bound for the absolute values

of its roots.

Then we can compute an upper bound of the absolute values of

coefficients of any factor of /(x) (by the relation between roots and

coefficients). Hence candidates for proper factor of /(x) arc finite and

we have only lo check whether they actually divide f(\) or not (by

the usual division algorithm).

Although this method gives us a complete algorithm for deciding

whether a given polynomial is irreducible or not, it assumes the existence

of roots of f(,\) in the complex number field (i.e., the fundamental theo-

rem of algebra). So this method cannot be formalized into FCS until

the latter theorem is proved in FCS. (For an effective proof of the

fundamental theorem of algebra, see e.g., Rosenbaum [I].)

2°. The second idea is much simpler and due to Kronecker (c.f.

van der Waerden [1]). Given a polynomial /(x) in Z[x] of degree «,

say. We may assume n>\. We compute /(O),/(I),...,/(/?). If one of

these numbers is 0, then /(x) has a linear factor and hence is not ir-

reducible. Suppose all of these are non-zero. Then if there is any

proper factor g(x) of /(x), then #(0), g(\),..., g(n) must be factors of

/(O),/(l)n.,.,/(/?) respectively. Hence there are only finite number of

possibilities of the values $(()),...., g(n}. For each set of possible values

of 0(0),..., $(/?), we can compute each coefficient of g since the degree

of g is less than n. Hence there are only finite number of possibilities

of proper factors of /(x). So we have only to check them as above.

The essence of this method consists in the following two points:
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(i) To compute the value /(/') of a given polynomial f(x) at an
integer i:

(ii) To determine a polynomial g(x) of degree at most n from its
n + i values #(0)? g(\ ),..., g(n), by solving simultaneous linear equations.

Both of these can easily be done in PCS. Hence the second al-

gorithm for deciding the irreducibility of polynomials with integral coeffi-
cients can essentially be done in FCS. We shall use this to define the
irreducibility of polynomials in Z[X] in FCS.

The above consideration would suggest the similarity between for-

malizability into FCS and the so-called effectivity which is usually talked
intuitively (i.e., without any mathematical definition of it). It is my

opinion that the formalizability in FCS is a mathematical definition of
effectivity in its strongest sense. Anyway this similarity will become

clearer by more examples below.
Now we define the irreducibility of polynomials in Z[X] as men-

tioned above.

D.22.4. (i)

(Cd(/) is a set of candidates for factors of a polynomial /.)

( ii ) IW/)<=>/6 Z[X] A (deg (/) = i V (deg (/) > 1 A V. < deg (/) •
Ap (/, 0 / 0 A V0 e Cd (/) • V/i e Cd (/) . (0 < deg (g) < deg (/)

(Irzm(/) means f is an irreducible polynomial.)

(iii) Redzm(/)<=*/6 ZPQ A -i Irzm(/) A deg (/) > 0.
(Redzm(/) means f is a reducible polynomial.)

T.22.4. (i) Irz m(/)A0eZ[X]AfceZ[;r |A/=<rfc
-(deg (0) = 0 A deg (h) = deg (/)) V (deg (g) = deg (/) A deg (/.) = 0) .

(ii) 303/7(0eZ[;GA/7eZ[;GAdeg(0)^OAdeg(/t)^OA/=0/i)
HRedzm(/).

(iii) /e Z[X] -Irzm(/) V Redzm(/) V deg (/) = 0.

The factorization theorem of polynomials can be formulated by the same

way as that of natural numbers and proved by the usual method.

Next we define an algebraic number field Q(a), where a is a root of
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a given irreducible polynomial g in Z[X].

D.22.5. (i) )5eQ<^>4=»Tr2m(^)Aj8eQ[A:]AdegGS)<deg(/).
(Q[X] is de/med similarly to Z[>Y].)

Q<#> suggests the algebraic field Q(oc), where a /'s a root o/ #. O/

course Q<#> is not a se£ m FCS, fenf formally /?eQ<#> fs 0/1/3; fl

binary relation in ft and g.

(ii) j8 + ( f f )-y = j8 + y (ff te sum as polynomials), if IrZ[X](0), jg e Q<0> A

P) /^X( , )7
(mod 0) .

Next we consider the problem of effective definition of irreducibility

of polynomials in an algebraic field. Let f(X) be a polynomial in Q(oc)

\_X~\. If we assume, from the beginning, the existence of an algebraically

closed field (or at least a Galois extension of Q) containing Q(oc), then

the problem is easily solved. That is, f(X) is irreducible iff the irreduci-

ble polynomial g(X) of Q[X] which has a root in common with f(X)

has exactly the degree deg (/) 4- deg (a), where deg(a) is [Q(a): Q]. (And

we know the algorithm for computing g from /.)

However in order to extend Q(oc) (to an algebraically closed field

or a Galois field over Q) it is usually necessary to use an irreducible

polynomial in Q(oc)[X]. So if we want to do it effectively, (e.g. in our

system FCS), the notion of irreducibility of polynomials in Q(a)[X]

must be effectively defined. But this is the very problem we are consider-

ing. So we must avoid this vicious circle.

This difficulty was observed by van der Waerden [1] p. 140-144

(in its 2nd edition, which was intuitionistically written). And he over-

came this difficulty by proving the following effective criterion for the

irreducibility of polynomials:

Theorem. f(X)=f(u, X) in Q(a)[X] is irreducible in Q(a)[X] iff

one of the irreducible factors (in Q[z, M] of N/(a, z — HOC) is divisible

by /(a, z — HOC), where N/(a, Z — HOC), the norm of /(a, z — wa) should be

defined as the determinent of the matrix A whose components are in

Q[z, M] and which is defined by
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/(a, j-wa) = A = deg(a)).

(Note that this definition of norm does not use the conjugate elements

and that we can prove the necessary properties N(/. <7) = N/.N# and

/|N/ by easy computation.)

The proof of the theorem is by considering the greatest common

divisor of /(a, z — ua) and each irreducible factor of N/(a, z — wa) in
Q[z, M], For further detail, see the above-mentioned book.

On account of the effectivity of this theorem and its proof we define
the notion of the irreducible polynomials as follows.

D.22.6. (i) Irz
Adeg(/)>OA3^(Ir z < / I > [ A % y ](^)A/kMg|N/)3 where /eZ</i> [X, Y] is such

that J(X, Y)=/(X-Ya) a/u/ N/ /s

N/=dct(/ l) ,

- 1
a

and A is a matrix each of whose components is in Q[^, Y]. (Exact

definitions of them in FCS are left to the reader.)

(ii) Redzmm(/X=*/eZ<A>mA =Irz<», [JO(/)Adcg(/)>0.

Remark. In the above definition the (apparently unbounded) quan-

tifier 3q can easily be bounded.

T.22.6. (i) Redz</,>[X](/)H3/13/2(/,eZ</,>[X]

A /2 e Z</!> [X] A deg(/t)> 0 A deg(/2) V 0 A /=/t ./2).
(ii) /£Z</!> [Ar]^Irz<;,>tX](/) vRedz<A>m(/) Vdeg(/) = 0.

(i») IrZ</o[x](/) A A e Z</i> [X] A /2 e Z</i> [X]
A /=/i -/2-(deg(/O=0 A deg(/2) = deg(/))

V(dcg(/1) = dcg(/)Adcg(/2) = 0).
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This effective definition of the irreducibility of polynomials enables

us to solve the isomorphism and the embedding problems between alge-

braic fields effectively.

D.22.7, (i)

In this manner we can build in PCS the theory of algebraic numbers.

For instance, we can define ideals as finite objects and prove their unique

factorization theorem in PCS.

Some parts of analytic number theory can also be developed in

PCS.

When we try to formalize such a theory, one thing which we should

be careful of would be the projective argument, e.g. to form the range

of an effectively defined (i.e., primitive recursive) function whose values

are among some finite set, and to consider its least element. Such an

argument occasionally arises in number theory and as it stands cannot

be formalized in PCS. So, for this purpose it should be eliminated or

amended by some device (although, in most cases, this is easily ac-

complished).
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