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Stability and Convergence of a Finite Element Method
for Solving the Stefan Problem1'

By

Masatake MORI*

abstract

A finite element method based on the time dependent basis functions is presented
for solving a one phase Stefan problem for the heat equation in one space dimension.
The stability and the convergence of the method are studied, and a numerical example
is given.

§ I. One Phase Stefan Problem In One Space Dimension

We consider the following one phase Stefan problem in one space

dimension. The main equation describing the dynamics of the system is

the heat equation

(1-1) = ( j L i n 0<.r<O 0 0 ,
dt dx*

associated with a free boundary condition given below. s(t) denotes the

position of the free boundary. (7 is assumed to be a positive constant, and T

is an arbitrarily fixed positive number. At the boundary x = 0 we assume

a Dirichlet type boundary condition and at x = s(t) we assume u = Q:

(1-2)
«(0,0 =0(0

for 0<t<T.

To the initial condition we assign

(1-3) u(x,fy=f(x)^0 for 0<:,r<:&, & =
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The free boundary moves according to the following equation called the

Stefan condition:

(1-4) *L=-Kuf(s(£),£) for 0<t<T,
at

where K is assumed to be a positive constant. Furthermore for the initial

data we make

Assumption A. ®^f(x)<LB(b — x),

where B is a positive constant.

It has been shown by Cannon and Hill [2] that the Stefan problem

(1-1)^^(1-4) has a unique solution under Assumption A. Many approx-

imating methods have been presented for solving the one phase Stefan

problem in one dimension numerically. Landau [6] applied a variable

transformation in order to change the varying interval 0<J.r<Is(£) into

a fixed interval and employed the finite difference method. Douglas and

Gallic [3] and Nogi [9] proposed finite difference methods in which an

equi-distant space partition is employed and the time variable is discretized

in such a way that the free boundary always coincides with a mesh point.

Kawarada and Natori [5] combined the penalty method and the finite

difference method. Bonnerot and Jamet [1] partitioned the space-time do-

main into quadrilateral elements and applied the two dimensional finite

element method.

In the preceding paper [7] we presented a finite element method

(FEM) for the problem (1 • 1) ~ (1 • 4) based on the time dependent basis

functions. In the present paper we shall study the stability and the

convergence of the method.

§ 2, Application of the Finite Element Method and the Scheme

Consider the domain O^x^j(^) at time t. We partition 0<^.r<^5(£)

into n subintervals in accordance with some rule in such a way that the

end point of partition always coincides with the free boundary, and denote

each node as xf.

(2-1) 0
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Although s(t) is an unknown function of t which should be determined

simultaneously together with u(x, £), we compute 5(2^) and n(x, t) alter-

natively in the actual process of computation by means of a similar tech-

nique to the idea of "retarding the argument" by Cannon and Hill [2],

and hence we write sn(t) instead of s(t) in order to show explicitly

that it is an approximation.

We construct piecewise linear basis functions {ff>j} for FEM as shown

in Fig. 1:

(2-2) x

0 ; otherwise.

s(t)

0 b

Fig. 1. The basis function (j)j(x,l).

For 0o and (j)n we take the components of (2-2) in 0<^x<^x1 and xn-l

<^x<^xn, respectively. 0/(.r, t) depends on time t through .?„(£), and

its derivatives with respect to x and t are given as

(2-3)

i-l<X<*J

0 ; otherwise,
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(2-4) °™ =
dt

; otherwise,

where

J dt '
Henceforth we partition 0<^.r<^57l(£) into n equal subintervals for sim-

plicity :

(2-5) x}=jhn(f), A. (0 =-*.(*)•
n

Now we apply the Galerkin method based on the basis functions

\(j)j} just constructed above. We expand the approximate solution un(x, t)

of (1-1) ̂ (1-4) in terms of a linear combination of 0y(.r, £)'s:

(2 - 6) un (x, 0=11 a, (0 0y (x, t) ,
^ = 0

where

(2-7) fl.(0=(7(0, fl»(0=0

in accordance with the boundary condition (1 • 2) . Then we substitute

(2-6) into u of (1-1), multiply 0f, and integrate over 0<.r<On(£). Then

we have a system of ordinary differential equations

(2 - 8)
at

where a,(f) is an (w + 1) -dimensional vector defined by

(2-9) o(0= I

The first and the last elements of (2 • 9) are known functions of t as

seen from (2-7). M, K and AT are time dependent (n — Y) X (w + 1) ma-

trices, the elements of which are given as follows for z" = l, 2, • • - , » — 1;
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p«B(0
(2-10) MU= \ (/)i(f)j

Jo
dx ; mass matrix

(2-11) Kt,= x i r ; stiffness matrix
Jo dx dx

f'n-W fU

(2-12) JV,y = fax^dx • velocity matrix.
Jo dt

Since the matrix N corresponds to the apparent velocity of the nodes,

we gave it a name "velocity matrix". In usual FEM, we take away

the first and the last columns from M and K, and call thus obtained

square (n — 1) X (n — V) matrices the mass matrix and the stiffness matrix,

respectively.

The above definition of M is for the consistent mass system. For

the lumped mass system characteristic functions

(2-13) 2

0; otherwise

are used instead of $j(x, t) in the definition of M, i.e.

r*n(*>
(2 • 14) Mij = \ (bitijdx .

Jo

The explicit forms of the elements of the matrices are as follows:

Lumped mass system

(2-15) Mij = ~2 Xi+l Xi~l ~ln' J~l

0

1 1

(2-16)

; otherwise
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(2-17)

n . . T
—± ; .7 = 1-
at

dhn—

0 ; otherwise.

Consistent mass system

In this case only the mass matrix should be changed as follows:

JLfc -x ) =_IA . -=i-i
6 Xi Xi~l 6 n ' J

(2-18)

_2_
3'

— O*+i - *i) = —
6 6

0 ; otherwise.

In the next step we discretize the time variable t, i.e. we partition

<^<^T into m equal subintervals with a constant mesh size At:

(2-19)
m

We replace the time derivative of a(£) by the time difference:

,„ 9m do (kAf) ^_ a (A JO - a ( (A - 1) At)
I ^ ' £j\J J — —

A J^

and we write

(2-21) ajk = aj(kdi).

In this way we have a system of linear equations with respect to a(kAt)

corresponding to (2-8). If we employ the values at t=(k~ Y)At in

a(£) of the right hand side of (2-8), we have a forward difference

scheme. If we employ, on the other hand, the values at t = kAt, we have

a backward one. In actual computation we can mix them in the ratio

6:1—6 by introducing a parameter 6, 0<I0<=1, as will be shown later.
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We compute the increment Asn of sn(0 from t= (k — Y) At to t = kAt

by approximating the right hand side of (1 • 4) by the gradient of the

approximate solution un(x,t) at the free boundary x = sn(t), and by re-

placing the left hand side of (1 • 4) by the time difference AsJAt. For

the computation of the velocity matrix N9 we employ an approximation

(2-22) ^ = Ax-^.
dt n At

We summarize here the whole scheme obtained in the above proce-

dure. 6 is fixed to a value between 0 and 1 throughout the computation.

Initial routine

"=/(*/), j=09I,.~,n

(2-23)

General routine

Repeat the following process for & = 1, 2, • • • , in. Compute M, K and N

at t = kAt using the values of sn(kAt) and Asn(kAt), and solve the follow-

ing simultaneous linear equations for a (kAt):

(2-24) {M+OAt(GK+N)}a(kAt)

= {M-(l-0)At(aK-\-N)}a((k-T)At).

Then compute Asn((k + \)At) and s7l((/e + l )At) according to the following-

equations using the known data a((& — V)At) and a(kAt):

(2 - 25) Asn ((k + l)At)=-£-\ ~"=1-— + a"-1—1 At
^ } n^ } } 2 UB((*-1)JO hn(kAt)\

(2-26) 5n((A + l) JO =5B(AJO +^((4 + 1) JO-

The reason why we adopted the mean value of the data at t= (k — 1)

• j£ and ^J^ in (2-25) is in order to make sn(0 eC1 as seen later (see

(4-9)).
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§ 3. Stability

In this section we discuss the stability of the scheme given in § 2.

For simplicity we use the following notations:

(3-1) g>—

For the moment we confine ourselves to the case of the lumped

mass system. The stability of the scheme of the consistent mass system

will be referred to at the end of this section.

The lumped mass scheme can be explicitly written as follows:

(3-3) -0(ak-it3k)a
k-1+{

j = l, 2? • • - , TZ — 1; k = l, 2, • • - , m,

where a* = g(kA£) and an
k = 0 are known. For the later convenience

we introduce the following operator PL:

(3-4) PL(k,j;dt,sn(kAt), Asn (kAt) ; 6) w? = PL (k, j) Wj*

jft) w1_, + {1 + 2Qak} -oof - 6 (ak +.;

)(«* -^)wj=i- {1-2(1-0) a.}^*-

Evidently the scheme (3-3) is written as PL(k

Lemma I (Lumped mass system). If

(3-5) «|<9 0.. .
2(1-6)

then the scheme

(3-6) Pi(*,j)«'/*=^/. .7 = 1,2, ...,»-l

satisfies the following maximum principle locally at each
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m:

(3 • 7) min («;„*, wn
k, ^mTn) < w/*<Jmax (ze;0

fc, wn*, w^) +/>/ ,

.7 = 0,1, .-. ,»,

(3 • 8) Wmhi1 = min wk~l and Wmai = max wk~l

Proof. The left inequality in (3-7) is trivial if te;/ attains the

minimum at j = Q or at j = n. Suppose iVjk attains the minimum at j = M

,;z). From (3-5) it is evident that a!(±j\^k\>0 and 1-2(1

0, so that we have

+ 26ak} wM
k = 6 (ak -j^ rv^ + 0 (ak +j

+ (l-^)(afc-j^^

+ (1 - 0) (ak +J0J w

Hence the left inequality in (3-7) is valid.

Similarly, the right inequality in (3 • 7) is trivial if "Wjk attains the

maximum at j = Q or atj = n. Suppose ivf attains the maximum at j = M'

(Af^O, ;z). Then we have

{1 + 26ak} zvM
k^20ak-wM

k + w*£ +Pjk ,

and so the right inequality in (3-7) also holds. Q.E.D.

Now we introduce the following quantities:

(3 • 9) A = max (— max g(t)9B

(3-10)

(3-12)

In addition to Assumption A, we make the following ones:
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Assumption J$0 4

d
Assumption C.

A<

6 f f n 2 / - 2(1-0)

2ff?7

"(I-6} tc At

Lemina 2 (lumped mass system). Under Assumptions A, B and

C, we have

(3-13) 0<

Proof. By definition we have

(3-14) PL(kJ

We define (see Fig. 2)

(3-15) djk^

Sn(k4t)
)sn(k^t)

Fig. 2,

It is easy to see that djk satisfies

(3-16) Pz (*, .;)#=/>/,

where
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(3 • 17) pf = AAsn (* JO jl - (1 - 0) J- X ̂ ^\ .
I n sn(kAf) >

In place of (3-13) we shall prove

(3-18) 0<i<5ll ( JO <«. (2 JO <-<*.(* JO

(3-19) 0<a,*, 0<d/, >=0,1,...,»-1

by induction with respect to k. It would be clear that (3 • 18) and (3 • 19)

imply (3-13).

For k = Q, (3-18) and (3-19) are trivial because of 6 = sn(0)>0,

(1 • 3) and Assumption A.

Suppose that (3-18) and (3-19) hold for 03 1, • • - , k-l. Since

sn(kAt)^>Q from (2-23) and (2-25), (3-18) follows from (2-26). Now

we claim that

(3-20)
At

When k = l, this is evident from (2-23). When /€^>2, we put j = n — \

in (3-13) which is assumed to hold for k — 2 and k — 1. Then (3-20)

follows from (2-25). Hence we have

{1-(1-

by the second inequality of Assumption C. Here we apply Lemma 1 to

(3-14) and (3-16). What is left to be done is to show w/9* <<£*< - - -.
— 0)

Note that sn(kAf)<,b + KAkAt<^l from (3-20), Then

(3-22) «.-,&= -
s n ( k A t ) s n ( k A f )

follows from the first inequality of Assumption C. Furthermore from

(3-20) and Assumption B we have

(3-23)
2(1-0) - &b Kb 12(1-0) h

All the inequalities appearing in the assumptions of Lemma 1 are

guaranteed by (3-21), (3-22) and (3-23), so that we can apply it.
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First note that aQ
k = g(kAt)l>Q, an

k = Q, and that a/'^O by the assumption

of induction. Then apply Lemma 1 to (3 • 14) , so that we have <Z;fe^>0,

j = I,2, • • • , rc — 1. Next note that

d0
k = Asn (Mt) - « 0*;> Ab - g (kAt) ;>0 , dn

k = 0 ,

and that dj
k~1^0 by the assumption of induction. Then the application of

Lemma 1 results in *Z/2>0, .7 = 1,2, • • • , » — ! by (3-21), verifying (3-19)

with k increased one. Q.E.D.

Lemma 2 says that under Assumptions A,B and C the assumption

(3 • 5) of Lemma 1 is satisfied. Therefore we conclude that at each time

step our scheme satisfies the maximum principle in the same sense as in

Lemma 1. Hence for stability we have

Theorem 1 {Lumped mass system) . Under Assumptions A, B

and C, the scheme

(3-24) Pz(*, j)«/ = 0 , j = \, 2, -.., n-l

is stable in the sense that at each time step & = 1, 2, • • • , ra (3-24)

satisfies the following maximum principle;

(3-25) 0^/^max(^0
ft, ^max), .7 = 1, 2, • • - , n-l .

In the similar way we can show that Theorem 1 holds for the scheme

of the consistent mass system

(3 • 26) {1 - 66 (ak -.;&) }**_,+ {4 + I29ak} of + {1 - 66 (ak

= {1 + 6(1-0) (ak -j-&)}*5=i+ {4-12(1-0) a.

y = l, 2, • • - , «-l; ^ = 1, 2, • • - , w,

if we replace Assumptions B and C by the following ones:

Assumption B.
6 = 3 ( 1 - 0 )

KlA\
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b

Since ^i<C^6> 0 must satisfy 1/3<^6.

Assumption B is alwa}^s essential both in the lumped and the

consistent mass system, while Assumption C becomes trivial as At—.>0 and

n—>oo. Note that Assumption B corresponds to the stability condition

given by Fujii [4] in FEM for the normal heat equation with a fixed

boundary.

§ 4. Convergence

This section is concerned with the convergence of the scheme, i.e.

we shall show here that un(x, t) of (2-6) converges to the solution of

(1-1) ^(1-4) as dt—>Q and TZ-^OO. Henceforth we shall confine ourselves

to the lumped mass system with 0 = 1, i.e. to the scheme

(4-1) -(a,-^)a*-i+(l + 2aOfl/-(a.+jA)fl*+i=«/"1.

First we assume that the limit At—>0 or ;z^oo is taken under the

following constraint condition:

Assumption D8 A& — —-— = constant.

Furthermore for the initial and the boundary data we make

Assumption E.
/(0)=0(0),

If we put j = n — 1 in (3-13) we have

(4-2) o^-^1— <A.- ~ ~

From this inequality, (3-20) and Assumption D, we have estimates for

ak and ffk:
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(4-3) h * *

(4-4) fc
2 v < T

/,2

(4-5) L .
Ot?

We extend the approximate solution un(x,t), which is given only

at the discrete points t = kAt, to that given also at intermediate values

of t, i.e. at (k — 1) At<^t<^kAt, by interpolating the gradient of un(x, t)

in the following fashion. First we define zn(^t) which corresponds to

the gradient of un(x, t) at x = sn(t) by linear interpolation:

z -nW

A = l, 2, "-,w.

Next we define sn(t) at (^ — 1) At<^t<LkAt based on the similar idea to

that of retarding the argument [2], i.e.

An(0)
(4-7)

£ = 2, 3, " - , w .

If we put l = kAt? we have

r kdt

(4-8) zB(r-JO^r = j5B(*JO, ^ - 2 J 3 3 - - - ? wj(*-i)^«

which is consistent with (2-25). It is clear from this definition that

sn(£) is differentiate. In addition to that, the derivative of sn(t)

(4-9)

is continuous on 0<?t<LT because of the continuity of zn(t). Since sn(t)

is defined at every i, we can construct the basis functions <f>j(x, t) for

any t by dividing the interval 0<^x<,sn(t) into n equal subintervals.
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By linear interpolation of the gradient of un(x, t) in each interval (j — 1)

Xhn(t)<^x<^jhn(t) based on the values at t— (k — V) At and kAt, we have

the extended solution un(x, t) for any value of x and t.

By the definition (4-6) and from (4-2) we have

Lemma 3 (lumped and consistent mass system} . Under Assump-

tions A, B and C,

(4-10)
dt

From this Lemma we see that { s n ( f ) } is uniformly bounded on

O<;*<:T, i.e.
(4-ii) &^sn(o<#+A;AT=j for O<;*<;T

and equi-continuous, so that we can select a subsequence from {sft(£)}

that converges, i.e., if we write this subsequence as {sn(t)} again, we

have for any £>0

(4-12) k,(0-*»(OKe,

where s ^ ( f ) is a limit function.

We consider next a solution u(x,t) of the heat equation (1 • 1) ~

(1-3) in which the boundary s(f) is supposed to be given and fixed as

SOD (f) . The present purpose is to show that tfn(x7 t) converges to u(x, t)

uniformly as dt->0 (w->oo) in 0<^T, 0^^:<500(^). For that object

we introduce an auxiliary function vn{x, t) which is a solution of (1-1)~

(1-3) having a fixed boundary sn(t) instead of Soo(£). Note that vn(x, t)

and u(x,t) exist because sn(t} and s^^) are uniformly Lipschitz contin-

uous functions as seen from (4-10) (see e.g. [10]).

We compare first u(x,t) with vn(x, t) , and secondly vn(x, t) with

un (x, t) . For the first step we use

Lemma 4 (Cannon and Hill [2]). Let s(t) be a monotonic non-

decreasing function, and u(x, t} be a solution of (1 -1)^(1 -3). Then

under Assumption A

(4-13) O^TX^W -P, f)^A
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for all 0<,t<,T, 0<p<£.

Lemma 2 is nothing but a FEM version of this Lemma 4.

We extend u and vn in such a way that they are identically equal

to zero outside the boundaries s^(t) and sn(t) , respectively. Note that

& and 77n have common initial and boundary data. For any £>0 let

p = e/A. For sufficiently large n we have

from (4-12). Then using Lemma 4 and from the maximum principle

[2]5 we have

(4-14) \vn(x, 0 -K(O;, OI^Ap = e

in 0<^x<^max(5n(£) , $ « > ( £ ) ) » Q^t<^T, which shows the convergence of

vn to &.

In the second step we compare vn(x,t) with un(x,t). In order to

prove that \un(x, t) —vn(x, O l<e in 0^x<500(^), 0<^T for sufficiently

large n^ we shall show it in the domain

(4-15) D,^{(

for any arbitrarily small 5>0. We define

(4-16)

and prove that \un — vn\ <£ in ZV since the inequality |«n — vn\ <^S in £)tf/

implies that in Ds. Let ^0 be a sufficiently large integer. Then there

exist such $l5 O^C^^cT, and JO for any ;z>^0 that

(4-17) ^(AJO -r<^/<^(^JO -0i, Xjk = —
n

(4-18)

for all & = (), 1, • • • , 77Z. (see Fig. 3). What we plan to do is to show that

for sufficiently large n

(4-19)

for xf^-s^kAt); j = 0,l, •••, J; k = l,2, --,m. Note that =, % and
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Fig. 3.

f$U C$ U
^r~-> -^— «, where u is the limit function of vn, are uniformly continuous in
dt ox2

DSl if we fix 8, (see e.g. [10]).

Let vf be the value of vn at the node Pj(x = —sn(kAi), t = kAt\, i.e.

(4-20) vf=vn(x,

and define the difference

(4-21) £/=a/-V.

Since the initial and the boundary data are common, we have

(4-22) e0* = 0, e/ = 0.

For the difference in the neighborhood of the free boundary we use

Lemmas 2 and 4, and obtain an estimate

(4 • 23) j £/| <;max (un (x*9 kAt), vn (xf, kAt) )<e

from (4-16) and (4-18).

It is easy to check that £/ satisfies

(4-24) PL(kJ\ At, sn, Asn; l)e/= -PL(k, j; AL, sn, Asn\ V)vf .

We denote the point x = ̂ -sn((k — 1)At)7 t = kAt as Ps as is shown in

Fig. 4, and put

(4 • 25) v / ^ j—^v1^ i + vf — j—V / J ** c\ J -1 J J c\

as an approximate value of vf. v* is the mean value of the linear

interpolation of vn(xy t) based on the abscissas Pj-i and Pj and that based
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on Pj and Pj+1 in Fig. 4. The difference between vn at Pj and Vjk is

given as

(4-26)

by the error formula for the Lagrange interpolation, where -^—^ and -^—^
_„ C/JC OX
U Uare values of -^-—9 at certain points in the interval of interpolation and
dxz

are uniformly bounded in D8l. On the other hand, since Asn~=O^At) by

(3-2) and (4-3), we have for any £>0

(4-27) \vn(P^-vf\<eAt

for sufficiently large n. Furthermore, if we write the right hand side

of (4 • 24) explicitly, we have

(4-28)

Note that —^ and -= — ̂ - are uniformly continuous in DSl, so that for
dt dx*

sufficiently large n we have

= M^^I At \ 6ffn2 At> hn
2(kAt) \

dt At

and

for any £>0. Since 77n satisfies (1-1), we have from (4-27)

(4-29) | PL(kJ\ At, sn, Asn-, l)s

for sufficiently large n. Therefore by Lemma 1 together with (4-22)

and (4-23) we have

(4 • 30) e,*| - ! vn (V, JO - un (.r/, AC) \ <e , j = 0, 1, • • -, J,

showing that \un(x, f) — vn(x, Ol<e in 0^a:<500(0, 0<t<LT as
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O->oo).

From (4-14) and (4-30) we conclude that the approximate solution

un(x,t) converges to u(x,t) in 0^.r <$«,(£), 0<^t^T as At— >0 (n— >oo).

What is left to be proved is that u(x, t) , which is the solution

of (1-1) ̂ (1-3) with the boundary s^^t), satisfies the Stefan condition

(1-4). For that purpose we define the second difference of a*:

(4-31) c/ = ̂ i_^!±^±i, .;=1,2,. .-,,1-1.
hn

2 (kAt)

We need the following two lemmas.

Lemma 5 (lumped mass system -with 0 = 1). Under Assumptions

A, B, C and E, {<;/} is uniformly bounded, i.e.

(4-32) \

Proof. We extend the definition of the scheme (4-1), which was

originally defined only for l^J^^ — 1, to j — Q and ?z, and define a*Li and

a-n+i consistently. By this extension cQ
k and cn

k can also be defined.

Putting j = 0 in (4-1) and dividing it by At, we have

the left hand side of which is uniformly bounded by Assumption E.

As to the right hand side we have from Assumption D and (4-5)

(4-33)
n

so that r0
fc is uniformly bounded:

(4-34) ko'

Putting j — n in (4-1) and dividing it by h»(kAt), we have

(a, - ;ift) -? + (a, + *&) -t- = 0

since a?7
fc:=<2??

fc~1::=0. a^^i/hn(kAf) is uniformly bounded from (4-2), and

hence we see that an + i/hn(_kJf) is also uniformly bounded from bzXb/l
2

and ak — }i^k^ak — /5A./3^A&. If we put J^T? again in (4-1)
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and divide it by hn
2(kAt), we have

which shows, by n(ik/ ' {akhn(k A £)}<=,& Al2/ (2tf&2) , that cn* is also uniformly

bounded:

(4-35)

Furthermore, from Assumption E, we have

(4-36) max
i^y^n-

Now if we compute the identity

(4-37) {PL(kJ-Va^-2PL(k,

using (4-1), we obtain the following scheme similar to (4-1) satisfied

by { c f } :

(4-38) - {a, -C/ -!)&}*;_! +{1+2 to

= (l-2/9fc) V"1 , J = l, 2, • • - , Ti-1 ; * = 1, 2, -, m .

Let

(4-39) cM
k

If c/ =^=|co*l, ^n f c!> we have

(4-40)
1-4&

from (4-38) under Assumption A, 5 and C. For sufficiently small At,

there exists jU^>0 such that

(4-41) (l--2/? fc
2

Hence, if we take into account the case where cf\ attains the maximum

at j = 0 or j = n, we have

(4-42) t/^maxd^l, k/ , (1+^0 <>*-')
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Putting t = kAt, we conclude from (4-34), (4-35) and (4-36) that

(4 • 43) Cj
k\ ^efltmax (M,, M,, M3) ̂ e"rmax (M,, M,, M3) .

Q.E.D.

Lemma 6 (lumped mass system ivith 0 = 1). Under Assumptions

A, B, C and E,

(4-44) l*»(0-*-(*-40I^M4JfV».

Proof. Putting j=n — \ in (4-1) and dividing it by At, we have

(4-45) ak d , - ^ ^ ^
At At

Since Cn-i is uniformly bounded and

(4-46) ai
*

the first term of the left hand side of (4-45) is uniformly bounded,

so that

(» - 1) &**_, + a* _! - flJi I i <MAt .

Dividing the both sides by hn(kAi) , we have

(4 -47) i 2 (» - 1) $]C--C^— +n* hn((k-

[ h n ( ( k - l ) A f ) h n (

If we put j = 2 in (3-13) of Lemma 2 and use (4-4), we have

i ~fc
\2(n-:

From (4-3) we have

1 1

As to the right hand side of (4-47), we have an estimate
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so that for sufficiently large n we obtain from (4-47)

(4-48)

This inequality in combination with the definition (4-6) gives (4-44).

Q.E.D.

It is easy to see from Lemma 5 and from the manner in which we

extended un (x, t) from t ~ kdt to intermediate values of I that

lini - un (x9 1) and lim - u (x, t)
*->sn(0 fix ^soo(i) Qx

exist (cf. Lemma 1 of [2]). Furthermore from (4-6)

(4-49) lim -K®2*(x,f)=zn(t) (uniformly in 0<*<T),
*-*n(o dt

so that we have

(4 - 50) lim zn (0 = - K— (X (0 , 0 (uniformly in 0<£<T) .
7l-^oo Qx

By the definition (4-7), on the other hand, we have

(4-51) sn (0=4+ K-^~^t + f ' *, (t ~ At) d?
A » 0 J ^ «

If we let At— >0 in (4-51), we have

(4-52) ^(0=4-* f
Jo

—
Qx

from Lemma 6 and (4-50), and so we conclude

(4-53) =-*«(,. . (0,0.

We proved the convergence of the scheme so far, but we also proved

existence of the solution of (1-1)~(1 -4) under Assumptions A and E.the existence of
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Cannon and Hill [2] proved the uniqueness of the solution of (1 • 1)

^^(1-4), so that we have the following convergence

Theorem 2 (lumped mass system ivith 0 = 1). Under Assump-

tion A, B, C, D and E, the approximate solution obtained by (2-23)

~(2-26) converges to the unique solution of the Stefan problem (1-1)

~(l-4) as Jt-^0

§ 5. Numerical Example

We shall show here a numerical result of the application of the

present scheme to the following model problem:

(~ T} ®U — ®~u Q<^ ^-(ft
dt 5Lr3'

(5-2) M(0, 0={/(0=1-— t,

(5-3) u(x,V)=f(x)=\-x, £ = 5(0) =1

(5-4) dL=-Ur(s(t),t).
J dt V W' ;

The actual computation was carried out using the lumped mass s}^stem

with 0 = 1. We employed n = S, 16, 32, 64 and ;?z = 4;z2, i.e. At = \/(krF).

In this example, A = ~L, 1 = 2, A6 = l/16 and A/=1/4, so that all Assump-

tions ^1, B, C, D and E are satisfied except—f~(0) =—^(0). Fig. 5 repre-

sents the solution un(jc, t) for n = 16, 7?z=1024, and Fig. 6 represents s n ( f ) .

\

Fig. 5. Approximate solution un (x, t).
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t .

t .
sn(t),n=16

1

Fig. 6. The change of the free boundary

In order to see the speed of convergence, we show the differences

between the results for ;/=8, 16, 32 and that for ;/=64 in Table 1.

Both the rate of convergence of sn(t) and that of «n(jr, t} seem to be

approximately of the order of I/;/.

Table 1. The rate of convergence. un(j,l) and u9t(j, 1) are the valuer at x

and J = l, and At is equal to !//;*.

n

8 256

16 1024

32 • 4096

max \iin(j, 1) — uei(j, 1) |

3.

1.

0.

34 XlO-4

55 XlO-4

539X10-4

max \sn(kdt} — s64

15.4 XlO-3

6. 41 XlO-3

2. 11 XlO-3

Finally we note that the present idea is easy to apply to the two

phase problem or to problems in higher space dimension [8].
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