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On a Non-Linear Semi-Group Attached to
Stochastic Optimal Control

By

Makiko NlSIO*

§ I. Introduction

In [6] we introduced a non-linear semi-group attached to the sto-

chastic control of diffusion type, by the following way. Let T be a

Cf-compact subset of Rk, called by a control region. Let a triple ($, B, U)

be an admissible system where Q is a probability space, B is an ^-dimen-

sional Brownian motion on Q and U is a /"-valued 23-non-anticipative

process on J2. For an admissible system ($, B, U) we consider the fol-

lowing 72-dimensional stochastic differential equation

(1) dX(f) =a(X(t},U(t))dB(t} + r(X(0, U(f»dt

where a(x, u) is a symmetric nX ^-matrix and y{x,ii) an ;z-vector. Un-

der the condition of smoothness and boundness of the coefficients OC and

7, there exists a unique solution X, which is called the response for U.

By C we denote the Banach lattice of all bounded and uniformly

continuous functions on Rn endowed with the usual supremum norm and

the usual order. Let c (x, 11) be non-negative and f(x9 u) real. We as-

sume that both c and / are smooth and bounded. For any 0eC we

define Qt by

r \ rs
(2) Q,0 O) == sup jEx I exp { - I «

adm. syst. Jo 1 Jo

where X is the response for [7, starting at -X"(0) =j:. Then Q£ is a

strongly continuous non-linear semi-group on C, which is contractive and
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monotone. Moreover the generator G of Qt is given by

(3) G0= sup [

(4) A*j (x) =
2

for 0 whose first and second derivatives are in C. The right side of

(3) can be found in the famous Bellman equation, [2] , [4] . Furthermore

the least Qrexcessive majorant has a close relation to the optimal stopping

problem, [3], [4].

In this note we shall discuss a similar problem in a more general

set-up. Let Au be the generator of a Markov process. We seek a semi-

group of operators acting on L00(R
n, ju) whose generator is an extension

of G0 = sup(Au0-f/"). Such a semi-group (with generator G) will be
u

obtained as the envelope of the semi-groups

whose generators are

respectively, as we can image from the fact that G is the envelope of

In fact we will prove the following theorem in §3.

Theorem 1. Let Au be the generator of positive contractive and

strongly continuous linear semi-group Pt
u on L^ (ItP, //) . We assume

the following conditions (A1)~(A3).

(Al) If (f)n^L00(R
n, fj[) is an increasing sequence tending to fi^L^

(Rn,/jt) jU — a.e., then Pt
u$n increases and tends to Pt

u(f) ji — a.e. for

every u^F and every t>0.

(A2) Let D(AU) denote the domain of the generator Au. The subset

D of L^ (IT, /O defined by
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is strongly dense in L^ (J?w, fji) .

(A3) sup ||/1<oo .
u

Then there exists a unique non-linear semi- group St on LCJ (R
n, IJL) sat-

isfying the following conditions (0) ~ (vi) :

(0) semi-group property: SQ = identity, St + g(f) = St(Sd(f)) =S0(St(f)) ,

(1) monotone: St(j)<St(lj, -whenever 0<(/>,

(ii) contractive: \\St<f> — St(f)\\<i\\(f> — 0||,

(iii) strongly continuous: \\St(f> — Sg<f>\\— >0, as £— >0,

(iv) P"<l> + llP"f*dO<St(l>, for v^ a^J H, -where the integral stands

for the Bochner integral,

(v) the generator G of St is expressed by

(5) G0-sup[AM0+/u] for 0
u

(vi) minimum: if St is a non-linear semi- group -with (i)~(iv), then

St(/)<Strf) .

In § 4, we shall show the existence of the least /Srexcessive function.

Theorem 2. Suppose that there exists a positive c such that

\Pt
u\<^e~ct f°r any u- Then, for any g^L03(R

n, //) , there exists a

unique v^L00(R
n

yJu) such that

(i) St-excessive majorant of g: Q<^v and Stv<v V^I>0

(ii) least: if V is an St-excessive majorant of g, then v<V.

In § 5 we will mention two simple examples as applications of our

results. Since we formulate control problems in terms of non-linear semi-

groups on Z^ (U71, fJl) in this note, the stochastic control of diffusion type

does not lie in our framework, but some optimal controls can be treated

in our way, as we shall see in § 5.

The author wishes to express her sincere thanks to Professors K. Ito

and S. Watanabe for their valuable suggestions.
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§ 28 Preliminaries

Let {JL be a (T-finite measure on Rn. Let L(^L00(R
n, jU)) denote the

set of all Borel measurable, essential bounded functions, defined p. — a.e.

on Rn. L becomes a complete Banach lattice by the usual norm and

partial order, [cf. 7], i.e.

and "0<</>" is defined by "(f> C*0 <0 O) , V-a.e" A subset {0a> of L

is said to be O-bounded, if there exist 0 and 0 in Z/ such that

Hence a subset {0a} of L is O-bounded, if and only if "sup ||0a|K°° "•
a

When (fjn^L increasingly tends to <p^L, we say 0 — O$ — lim 0n. Hence,
n

if (fj = Oi — lim (/;„, then "sup ||0J|<^oo ". In this note we often use the
u

following well-known facts,

Proposition 1. For any O-bounded set {</>a} of L there uniquely

exist </>+ and </T in L such that

(i) 0a<</,+ , va

(ii) if ([j satisfies "0tt<0, va",

(ii)' if (ft satisfies "(/;<</;«, va"5 then

sup0a <2^fi? inf</;a are denoted by 0+ a^<^ </T respectively.

Moreover,

inf (0a — 0a) <sup 0a — sup 0a<s

||SUP 0«~ SUP 0J|<SUp \\(f>a — 0«|| -

e strongly continuous in t. Then Tt$ has a (t, x) -Borel

measurable version which is continuous in t.

Proof. Let {r^ be countable and dense in [0, oo) and 0(riy •)

a Borel measurable version of Tr.0. Then the set I of {x^Rn\ \(0(ri9 x)

-0(ry, ̂ )|<||Tr.0-Tr.0|| v£/} is ^-full. On the other hand, for any

positives £ and Z, there exists a positive 5" such that
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||Tt0-7>||<e whenever t-6\<d and 0<t, 6<l.

Hence, for x^2, $(rt-, x) is uniformly continuous on {r |̂ C [0, /]. Thus,

0(-,.r) can be extended to a continuous function 0(-,.r) on [0, /]. Let-

ting I tend to oo, we get our wanted version 0.

The Bochner integral So Tg(f>dO can understood as the usual Rieman

integral H®(0,x)dd.

Let Pt be a positive, contractive and strongly continuous linear semi-

group on L. Define Tt for f^L by

(1) Td = Pt<f>-{- [*P9fd09 0eL.
Jo

Then Tt is a mapping from L into jL and has the following properties

(TO) semi-group property: T00 = 0, Tt + d(f> = T t ( T d ( f ) ) =T0(Tt(f>),

(Tl) monotone: Tt0<T«0 whenever 0<0,

(T2) contractive; ||T^-Tt0||^||0-0||

(T3) strongly continuous: ||Tt0 — Te0||— >0 as £-^0

(T4) the generator G of T"t: Let A. be the generator of Pt. Then

D(G)=D(A) and

(2) G0 = A

(T5) Tt(/)-(j)= r
Jo

Proof. Since (Tl), (T2) and (T3) are obvious, we shall only

show (TO), (T4) and (T5).

(TO). T(+,0 = Pl+,0+ pVjifo = P.(P(0)+ f+Vs/^+ f
Jfl J0 Jo

Pe(Tt<j>)+ (epsfdS =
Jo

(T4). For £>0, there exists a positive d such that ||P0/— /||<e for

, Hence

1 [PefdO-f = 1 \\Ptf-r>dd
t Jo £ Jo

<- r'||P./-
it Jo

for
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Therefore lim — (Tt<f> — 0) exists if and only if lim — (Pt(f) — 0) exists.
tjo t Uo t

Moreover (2) is valid.

(T5). For any (f>€=D(A), we have

-0 = Pt0-0 + f
Jo

fVjw<9- r
Jo Jo

Proposition 28 Suppose (Al) #7*^ (A3). Tf 0 = Ot — lim

(3) sup T,"0 = Ot ~ lim sup Tt«0n.

. Since T,w satisfies (Tl) and (T2), we have Tt
u(/)n<Tt

u(t>n+1

and

(4) ||T," |̂|̂ ||rt"0n-Tt"0|| + ||T,"0||^||^|H-sup||/-||<.

Thus sup Tt
u(f)n is increasing as n^>oo and the set {sup Tt

u(j)nj n = l, 2, •••}
n u

is O-bounded. Therefore

(5) Oi — lim sup Ti"0n<sup Tt
u(j) .

n u u

On the other hand, from (Al) we can derive, for any u

(6) Tt
u(j) = 0,- lim Tt"0B^0< - lim sup Tt"0B .

n n u

By (5) and (6) we conclude Proposition 2.

§ 3. Proof of Theorem I

We shall construct our required semi-group St. Define J=J(N) by

(1) J0 = sup Ti/2w0 , ^ e L .
M

Then «7 is a mapping from L into Z/. Define Jk by

and JV = 0-

Lemma 1. Jfc /z.^5 £Ae folio-wing properties,

(JO) Jt+^ = J*(/0)=Ji(J*0),

(Jl) monotone-. Jfc0<Jfc0 whenever
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(J2) contractive: ||J*0

(J3) ||J^-0||<(SUp||A^|| + sup||/l) /or
Z M W

(J4)

(J5) J^O.-HmJ*^ z/ ^

Proof. Since Tf
w is monotone, we have

whenever

Hence we can show (Jl) by induction.

Put d= — — . The following evaluation is clear,
LJ

Thus if we assume that (J2) holds for k, then

Hj*+^ _ j*^u = n J( j*w _ j(j*0) ||<js j*0 _ j^]|<jj0 - 0||

namely (J2) holds for ^ + 1.

Put j£(0) =sup||AM0|| + sup||/u||. Recalling (T5) we have, for
u u

T/0-0= ('pe
uAu(

Jo

So

Therefore by (J2) we see

<k\\J<t>-<t)\\<kA-K(<l)).

This completes the proof of (J3) .

By the definition of J we get

Hence, if we assume that (J4) holds for &, then
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namely (J4) holds for k + 1.

For k = l, (J5) is Proposition 2 in § 2. If (J5) holds for k, then

= J(Oi — lira Jk^n) = Of — lim J(<7fc0n) = O^ — lim Jk+1(/)n .

Therefore we get (J5).

Lemma 2. St
(m is increasing as N—>oo, i.e.

£
(2) 5,'

Proof. Put // = l/2ff+1. Recalling (TO) and (Tl), we have

(3) TW = T/ (T/0) <T/ (S,W+I)0) .

Taking the supremum of both sides, we get

(4) S^0<S,(N+1) (S^°<fi =5ff +1V ,

namely (2) is valid for k = 1. If (2) holds for k, then

(5)

This completes the proof of Lemma 2.

Hereafter we put 7z = sup ||/"||. By virtue of (J2), putting A — —J-
u 2

and t = kd we have

(6) ||5(
on«5||^||5,<m«i-5,

and

||^W)0||<sup|| f
U JO

Suppose ||5K'O||<^A. Then

(7) \\S$»,0\\ = \\S^ (5.̂ 0) ||< sup

Hence we have
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This implies that, for any fixed binary f = ~, the set {5^0, N>1} is
£

O-bounded. So we can define St by

(9) 5,0 = O, - lim S™(f) for binary t.
n

St has the following properties :

Lemma 3. For binary t and 6,

(50) Sd = t,
(51) monotone: St(?><St(lj, whenever $<</>,

(52) contractive: \\St</> - St({j\\<,\\<j> - (fj\\

(53) \\Srf- Sgt\\<\t-6\K(<t>) for

(S4)

Proof. From the definition of St and Lemma 1, these properties

clear. We shall

any N>1, we have

are clear. We shall only show (S3). Put t = — and 6 — -^-, (j<i). For
£ £

Since St
{m(f) — S9

{N)(f> converges to St(/) — Sg(j) JLI — a.e. as N—*oo, we get

||S£0-Se0||< lim ||5«{W0-5,CW0||^| t-d\K($).
N->oo

Using (S3) we can define St(f>9 ^>0, by

(10) St0 = limSt|0

where {^} is a sequence of binary times approximating t. (S3) implies

that the left side of (10) does not depend on the special choice of {tt} .

Moreover (S1)~(S4) hold.

Lemma 3'. For 6, t>0 and 0,

(SI) r monotone\ S^^S^ 'whenever 0<^</>,

(S2)' contractive-. ||St0-Sf0||<||0-0||,

(S3)'

(S4)7
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Recalling (A2) and (S2) ', we can extend St on L by

(11) S,0 = limSA, <I>^L,

where {(f)n} is a sequence of functions in D approximating 0.

Proposition 3. St has the folio-wing properties

(i) monotone: St^><St(f} 'whenever 0<0 ,

(ii) contractive-. ||5;0-5£0||<||0-0||,

(iii) strongly continuous: ||5f0 — Se0||-^>0 as ^— >0 ,

(iv) 770<5,0 .

Proof. First we shall show (ii). Take 0neZ) and 0neD approxi-

mating 0 and 0 respectively. Hence

(i). For £>0, we take an approximation 0n(e) GE-D to 0 — e. Let

approximate 0. Then, for large n.

Hence, by (SI)',

5A(e)^S,0n for large w.

Therefore tending ^ to oo we have

On the other hand 0 — £ converges to 0, so (ii) implies St<j) = lim St (0 — e) .
£ 4 0

Hence

(iii). For £>0, we take 0eD such that ||0 — 0||<Ce. Then we have

Hence there exists a small positive 8 = d((f>,£) such that \\St<f> — Se(f)\\<^3e

whenever \t — d\<^d.

(iv). By (S4)r we have Tt
u^n<St^n where (f>n^D tends to 0. Let-
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ting n tend to oo, we get (iv).

Proposition 4. St is a semi-group on L.

Proof. Let t and 0 be binary, say t — ~ and 0 = -^-. For N>19
Zj Zj

we have

(12)

(13)
N

and

(14) 5,+,0 = 0,-lim5£J0.
N

Hence

(15) 5.+,^0<-Km5.(*'(5(0) =5, (5,0).
N

On the other hand, for l<in<N, we see

and recalling (J5) of Lemma 1 we have

" (5,0) = O, - lim 59
("' (5,

Therefore, for n>l,

Tending ?z to oo, we get

(16)

From (15) and (16) we have

(17) Sg(St(j>) =S6+t(j> for binary t and 0.

Let tn be a binary approximation to t. Then for any binary

S0(Stn(f>) =Sd+tn(j).

So appealing to (ii) and (iii) we get

(18) Se(St(f>} =Sg+t(t) for binary 0.



524 MAKIKO NISIO

Again by virtue of (iii) we obtain the semi-group property of St.

Let G be the generator of St, namely

G0=l im—
no t

and

D(G) = 10 eL, lim— (3^-6) exists].
( «|o t J

Proposition 5.

(19) G0 =

Moreover, if fu^D(Au} and sup HA

(20)

Proof. In the case /M=0 for any &, we denote *% by yit. Put

and ^ = ~. Recalling (T5) we have for
2

(21) 5^un«i-# = sup (T/^-^) =sup f
ti M JO

<sup r'pe"
u Jo

Moreover

(22) S^<t>- S™$ -sup T/(5/w#) -sup

f \A0d9) = {'At+,A4dO= r ' AQAcj)dO.
J o / J o J ^

Suppose iSfcj^ — 5[21 i)j0 ^JffcLi) ^ AQA(j)dd. Then, by the similar calcula-
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tion, we see

Hence taking the summation for k we get

(23) St
(^0-0< ^AeA(/)dd for t = -±j- .

«y 0 ^

Tending N to oo we have

(24) St0-0< \ AQA(j)dd for binary t and 0eZX
Jo

Since the both sides of (24) are continuous in t, (24) holds for any

. Furthermore

(25) _ ( S t 0 - 0 ) <
£

where 1 is the unit in L. On the other hand, by virtue of (T5) and

(iv) of Proposition 3, we have

(26) l(^0-0)> 1(77-0) =- fp/G"0^>-||GM0|ll.
t t t Jo

Therefore the set \ — (St(p — 0) , £>0> is O-bounded. Hence inf sup —

X (St(p — 0) , i.e. O — lim — (St(f) — (p) exists, and sup inf — -(^0 — 0), i.e.
« i 0 ^ 5>0 £>f9 t

O — lim — (St(/) — 0) , exists. Since
TJF £

(27) l im—
tio t Jo

and

(28) l im—
no ^

we have by (25), (26), (27) and (28),

(29) O -Urn — (5,0 - 0) < A0
no £

and

(30) O-lim-i(5£0_0)>Gii0



526 MAKIKO NISIO

Hence

(31) O - Hm — (St(/> - 0) > sup Gu<{> = A<f> .
8 JO t «

From (29) and (31) we have

O-Iim— (S,0-0) =O-l im—

Thus, for 0e£>(G) 0 A we have

G0 = lim — (5,0-0) = O-lim — (5,0-0) =A0.

Next we shall show (20). From (25)

— (5,0 - 0) - A0 <— [^
t t Jo

By (27) the right side converges to 0 as t— >0. Hence, for £>0, there

exists a positive d = 8(e), such that

(32) ess. sup. T— (St$ - 0) (x) - A<j) (x) 1 <£ for ^ e (0, S) .

On the other hand, by (26) we have

(33) — (5,0 - 0) - A0> sup — rP&
uGu<pdd - A(f>

For 0GE0, we have GU0EED(AM) and

P/GM0 - GM0 - [*P
Jo

Thus

-GM0-— fV fV/AuGM

t Jo \ Jo

So we have

(34) 1 P

t Jo

Therefore by (33) and (34) we have



NON-LINEAR SEMI-GROUP ATTACHED TO STOCHASTIC OPTIMAL CONTROL 527

(35) ess.inf. [— (St<p- 0) -A<f i \> -sup||Au(AM0) + Aufu\\t.
x [_ t J u

Hence (32) and (35) complete the proof of (20).

Remark 1. If St(j) is differentiable in /^>0 and St(f> belongs to D,

then

j dt
II o j j

This is the so-called Bellman equation. So St is called a Bellman semi-

group.

Remark 2. If each Au is a bounded operator on L and

(36) sup ||A"||<oo ,
U

then sup ||AM/1K°° and ® = L. Moreover St(j) is differentiable in t and

satisfies the Bellman equation.

Proof. Since Au is a bounded linear operator on L,

1
fc=o £|

and D(AU) =L. Hence fu^D(Au) and sup||AM/li||<sup||AM||/z<oo. More-

over sup||Aw0||<oo, for any 0eL. Thus D = L. Since sup||Aw(A"0)||
M U

<(sup||AM||)2||0||, we have ® = L.

For the proof of the latter half, we apply the same method as for

linear semi-groups. Since D(G) D® = L, the right derivative of 8$,

J+ r 1.*3t0 = lim — I
dt no 0

exists and, by ® = L,

—Sf0= sup (A
^^ M

Hence, for any FtEL', we have
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dt I no 6 at

On the other hand by (36) we get

t$ ~ ASe0||<sup|| AuSt$ - AUSM

Therefore ASt(j) is continuous in t. So F(AStfy is a real continuous

function of t, namely the right derivative of jP(/5£0) is continuous. There-

fore F(St$} is differ entiable and its derivative - ^ ^ is continuous.
dt

Therefore

(37) F (5,0 -j)=

= F( {'\ Jo

Since F is arbitrary, (37) implies

(38) St(f>-$= ('A
Jo

By the continuity of AS9(p, (38) implies the differentiability of St(j). There-

fore by Remark 1 St(j) satisfies the Bellman equation. In fact the operator

St thus obtained is identical with etA in the sense of [1],

Proposition 6. If St is a semi-group on L satisfying the con-

dition (i)~(iv), then for any t>Q and

Proof. Putting J = — — , we have
£j

(39) S/m0 = sup
U

Suppose

(40)

Then
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Hence, for any k, we have (40).

This implies for any binary t

St™(t><St(f) for large n.

Therefore for binary t

Since the both sides are continuous in t, we complete the proof of Prop-

osition 6.

For any constant c>Q, we replace Pt
u by e'ctPt

u. Then we can

easily show the following,

Corollary. Theorem 1 is still valid, -when we replace (iv) and

(5) respectively by

(iv) ' e~ctPt
u

o

and

(v)' G0 = sup(AM0-^+/i), for
u

For positive c, we denote the semi-group of Corollary by St.

Proposition 7. There exists a unique v^L such that

lim St(j) = v for any

Proof. Using e~ctPt
u instead of Pt

u, we define J (N) and S(m by the
~ ~ 1

similar way. Then, putting J=J(N) and A = — — , we have
£1

\\J<f>-
U

Moreover we can show (41) by the induction,

(41) ||JV-JVII<<rc*V -</>!!.

On the other hand we can easily see the following inequality



530 MAKIKO NISIO

l|J?5||<<r<10|| + -(!-*-")
c

and moreover, we have (42) by the induction,

(42) II^II<«-'"W + -(!-«-'
C

k
(41) and (42) mean, for t — — — ,

and

Therefore, for binary £, we have (43) and (44),

(43) ||3,0-3,0KHm ||3^V-3t
wVII<e-"||0-</,

#

and

(44) I - ' —

Since the both sides of the above inequalities (43) and (44) are

continuous in t, we have

(45) \\St+rf - 3,011 = \\St (3,0) - 3,011 <e~ct (2||0|| + A) .
\ c i

Hence there exists lim St<t>9 say v$. By virtue of (43) , we can see
£-»00

that 770 does not depend on 0.

Corollary* Stv = v for any t>Q, and if v belongs to D, then

§ 4. Proof of Theorem 2

For any £>0 and Q^L we define

Then we have

(2) ||r,
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and its generator Gu*g is as follows

For simplicity we omit g in Tt
u*9 and Gu*g for the moment, if any confusion

does not occur. In order to prove Theorem 2, we apply the same method

as [4], namely we take jTX[0, oo) for the control region. Appealing

to (2), we can define J=J(N) by

J(f) = sup
ui

and

Then Lemma 1 is easy.

Lemma 1. Putting A — - , •we have
2"

(JO) J*+V
(Jl) J*$<J*</i -whenever

(J2) ||JV-<A/'l!<e-c*V

e"CJ3)
c

( J4) 0 = O,- lim 0n zmpfoV J Jfc0 = Ot - lim
n n

(J5) gr<J^ .

Proof. We show (J3) by the induction. For & = 1, (J3) comes from

(2) . Suppose (J3) holds for k. Then we have

(3) II^IHlW^sup ||T/'(J*?5)!| .
MA

Recalling (2) we see

(4) ||T/VV)||<^+'>1JVII + -(i-<?-cO + (i-c

From (3) and (4) we have (J3) for k + l.

We have, for any u^F and
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Hence (J5) is valid.

Define St
(N> by St^<t> = Jk (N)(/> for * = -^p Then St™(f> is increas-

£j

ing as JV—»oo. Moreover we have

Lemma 2. //" </><ig, £/ie« S(
w)0 zs increasing as t-*oo.

Proof. Putting J = l/2* we get by (J5)

(5)

Hence, by (Jl),

(6)

(J3) means the following (7).

(7) ||S |̂|<e-10|| + -(l -<r°') +II0II.
c

Therefore, for binary t, the set {S£
W)05 N large} if O-bounded. Hence

we can define St by

St<j) = Oi-limSt
(m(t> for binary ^.

/r

From (J4) we can again see, for binary £,

(8) Sl0 = O<-UmSA if 0 = O i-Um0n .
71 71

Therefore we can derive the semi-group property on binary parameter.

St+e^ = St(Sd(l)) =SG(St(f)) for binary t and 6,

Again, by (7), we have

0)

Hence the set {8$, binary t} is also O-bounded.

Lemma 3. If 0<(7, ^A^^ S«0 is increasing in t and Ot — lim St(f>t
exists, say v$. Moreover
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(10) g<v, .

Proof. By Lemma 2 we have for

Hence St(j) is increasing as binary £— >oo. (10) is clear by (J5).

For simplicity we put v = v^ if any confusion does not occur.

Lemma 4. v is St-invariance, i.e.

(11) Stv = v for binary t.

Proof. By the definition of v and (8),

Proposition 8. v is an St-excessive major ant of g, i.e. v>g and

(12) Stv<v, v^>o.

Proof. By the definitions of St and St, we have

St^^St^ V binary t and

Hence by Lemma 4

Namely we get (12) for binary t. Since Stv is continuous in t, (12)

is valid for any t. Recalling (10) we complete the proof.

Proposition 9. For any 0<<7, v^ is the least St-excessive ma-

jor ant of g.

Proof. Let V be an /Srexcessive majorant of g. Recalling the defini-

tions of Tt
u*v and Tt

u, we have

(13) T^^e-u
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and

(14) Tt
w°

Hence

(is) T£
uAFy-e-Atr

and, from (14), we see

(16) A [*e-MP9"Vdd = l (V^/Tyy- [*P,uf*ds\dB
Jo Jo \ Jo /

o

Therefore, by (15) and (16) we have

(17) Tt
u*vV=e~uT

Since "TljM0<5r
J0" and V is iSj-excessive, we have

(18) e~uTt
uV<e-uSt V<e~u V .

Combining (18) with (17) we can see

(19) Tt
u*vV<e~uV+X ^e-*QVdO=V.

Hence we have, denoting J(AT) for Tt
u*v by J (N) ,

(20) J(N)V<V and Jk(N)V<V.

This tells us the following inequality,

(21) StV<V for binary t.

Appealing to "g<V" and the definition of Tt
uXg, we have

Hence

J(N) 0< J (N) 0 and ^0<-S,0 .

So, by (21), we have for binary t,
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St<t><Stg<StV<StV<V .

Tending t to oo? we can derive

v<V.

Corollary. v^ = vg

Proof. Since the least ^-excessive majorant of g is unique, v^vg.

§ 5. Examples

We will show two simple examples of control problems related

Markov processes with exponential holding times, [cf. 5].

Example 1. Let Au = (au (z, j) ) be an I X Z-matrix. Suppose
i

au(ij}>$ for i=£j and ^au(ij} = 0. Then Au is the generator of the
y=i

transition semi-group Pt
u= (Pt

u(i, J)) =etA.

Put //{*}=!, * = 1, •-, Z and ^(^-{1,2, ••-, /}) -0. Then Au be-

comes a boimded linear operator on L = L00(R
1
9ju") and Pt

u a positive

contractive and continuous semi-group on L. Assume

(1) sup\au(i,f)\<oQ, Vy = !,...,/.
M

Thus supH^IKoo. Let sup\fu(i)\<oo for z = l, • • - , I. Then we can
u u

construct Bellman semi-group St for {Au,fu}. Moreover, for 0eL, St(f)

is a solution of the following Bellman equation,

0 - sup [l] a" (f , j ) 5.0 0") +/" (0 1 ? f =!,-,/,
« b=i J

i) = $ (i) .

Example 2. Let Xu be a 1-dimensional Levy process of pure jump

type with finite Levy measure nu

X(t)=x+ f ['zN^dsdz)
Jizi Jo

and ENu(dsdz) =dsnu(dz). Thus every point of R1 is an exponential
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holding point.

Suppose that nu has the density, say nu(dz) =nu(z)dz. Put Yu(t)

= $RillzNu(dsdz). We denote its z-th jump time by T;M, r0
M = 0, and

Yu(tiU} — Yu(^-i) by CiW- For simplicity we skip the suffix u if any

confusion does not occur. We have the following well-known facts,

(1) "Ci — ti-i, f = l, 2, • • • , G, z = l, 2, ••• are independent.

(ii) P(rl-r,_1>0=«"" where l = n(R*).

(iii)

Hence

(2) P(Y(*) e A) =

= ̂  (O) «""

By virtue of (i) and (iii) the measure m(-,t) is absolutely continuous

w.r. to the Lebesgue measure JJL. Suppose 0 = 0 /JL — a.e. Then, for any

x where "(f)(x) =(j)(x)" holds, we see

d (x) = EJ (X(t) ) = E$ (x + Y(f) )

= (j> (x) e~u + U (x + y) ̂ ' (y,

= 0 (a;) e~u + 0 (y) m' (y - x,t) dy = P,0 (x) .

Hence the transition semi-group Pj can act on L = Lm (P1, ju) . On the

other hand we have

e-")->0 as 40.

So jPg is strongly continuous.

Thus Pt
u is a positive contractive and strongly continuous linear semi-

group on L whose generator Au is
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Since \\Au(f)\\<2\\(f>ir, this example 2 satisfies the condition (36) of Re-

mark 2, if

(3) suPr<oo.

Therefore, for fu^L with (A3), we have a solution, V(t, x) =Strt>(x},

of Bellman equation

(t,x) = g r f (y(t,
at » L JB1
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