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On a Non-Linear Semi-Group Attached to
Stochastic Optimal Control

By
Makiko NISIO*

§ 1. Introduction

In [6] we introduced a non-linear semi-group attached to the sto-
chastic control of diffusion type, by the following way. Let I" be a
g-compact subset of R, called by a control region. Let a triple (2, B, U)
be an admissible system where £ is a probability space, B is an z-dimen-
sional Brownian motion on £ and U is a [ '-valued B-non-anticipative
process on &£. For an admissible system (£, B, U) we consider the fol-

lowing 7z-dimensional stochastic differential equation
ey, dX (t) =a(X(2),U(8))dB(¢) +r(X(2), U(8))dt

where a(x,#) is a symmetric #z X #-matrix and 7(x, #) an 7n-vector. Un-
der the condition of smoothness and boundness of the coefficients & and
7, there exists a unique solution X, which is called the response for U.
By C we denote the Banach lattice of all bounded and uniformly
continuous functions on R" endowed with the usual supremum norm and
the usual order. Let c¢(x,#) be non-negative and f(x, %) real. We as-
sume that both ¢ and f are smooth and bounded. For any ¢=C we
define Q, by
@ Q@ =_sw E [en{- [cx®, U0

adm, syst.

X [(X(5), U<s)>ds+exp{— |, ‘a(X(m,U<0>>de}¢<X<z>>,

where X is the response for U, starting at X(0) =x. Then Q, is a

strongly continuous non-linear semi-group on C, which is contractive and
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monotone. Moreover the generator G of Q, is given by

3 Go= sup [A“g+1“]
“ -1 2 0%
@ A% (x) = 5 1,2] ot (x, u)q; s (z)

FY @0 2@ e 0 @)
for ¢ whose first and second derivatives are in C. The right side of
(3) can be found in the famous Bellman equation, [2], [4]. Furthermore
the least Q;-excessive majorant has a close relation to the optimal stopping
problem, [3], [4].

In this note we shall discuss a similar problem in a more general
set-up. Let A" be the generator of a Markov process. We seek a semi-
group of operators acting on L. (R", #) whose generator is an extension
of G¢:sgp(A”¢—i—f”). Such a semi-group (with generator G) will be

obtained as the envelope of the semi-groups
L
T =P+ JPo"f‘de uel
0

whose generators are
G'p=A+r*, ucsl

respectively, as we can image from the fact that G is the envelope of

G*, ucsI’. In fact we will prove the following theorem in § 3.

Theorem 1. Let A* be the generator of positive contractive and
strongly continuous linear semi-group P,* on L,(R", u). We assume
the following conditions (Al)~(A3).

(A1) If ¢.€L.(R", 1) is an increasing sequence tending to ¢ L.,
(R*, ) y—a.e., then P¢, increases and tends to P ¢ u—a.e. for
every ucl’ and every t=0.
(A2) Let D(AY) denote the domain of the generator A*. The subset
D of L.(R" u) defined by

D={pe (1 D(A*); sup |4 <o)
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is strongly dense in L,(R", u).

(A3) sup [ << oo .

Then there exists a unique non-linear semi-group S, on L.,(R", i) sat-
isfying the following conditions (0)~ (vi):

(0) semi-group property: S,=identity, S, ,0=3S,(S,$) =S,(S,%),

(i) monotone: S,p<S,p, whenever ¢4,

(ii) contractive: ||S.¢—S,|<||¢— ¢,

(iii) strongly continuous: |S,¢6—S,¢|—0, as £—0,

@Gv) Pro+[i P f*d0<S,p, for Yt and u, where the integral stands
Sor the Bochner integral,

(v) the generator G of S, is expressed by

() Gp=sup[ A"p+f*] for d=D(G)ND,
(vi) minimum: if S, is a non-linear semi-group with (i)~ @iv), then

Sip<S.p.
In §4, we shall show the existence of the least S,-excessive function.

Theorem 2. Suppose that there exists a positive ¢ such that
IPY <e™® for anmy u. Then, for any g€ L.(R", u), there exists a
unique ve Lo (R", 4) such that
(1) S;-excessive majorant of ¢g: ¢g<v and Sw<v V=0

(i) least: if 'V is an S,-excessive majorant of g, then v<{V.

In § 5 we will mention two simple examples as applications of our
results. Since we formulate control problems in terms of non-linear semi-
groups on L. (R", #) in this note, the stochastic control of diffusion type
does not lie in our framework, but some optimal controls can be treated
in our way, as we shall see in § 5.

The author wishes to express her sincere thanks to Professors K. Ito

and S. Watanabe for their valuable suggestions.
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§ 2. Preliminaries

Let u# be a 0-finite measure on R". Let L(=L.,(R", 1)) denote the
set of all Borel measurable, essential bounded functions, defined x—a.e.
on R". L becomes a complete Banach lattice by the usual norm and

partial order, [cf. 7], ie.
[¢ll=ess.sup. ¢ (z)!
TER™

and “¢<¢” is defined by “¢(x)<<¢(x), #—a.e” A subset {¢,} of L
is said to be O-bounded, if there exist ¢ and ¢ in L such that

$<¢.<F, Va.

Hence a subset {¢,} of L is O-bounded, if and only if “sup [|¢,]|<lo0”.
When ¢,< L increasingly tends to ¢ =L, we say ¢=0;—1lim ¢,. Hence,
if ¢=0;—1lim ¢,, then “sup |¢,]|<c0”. In this note we often use the

following well-known facts,

Proposition 1. For any O-bounded set {J,} of L there uniquely
exist ¢* and ¢~ in L such that
@) Pa<¢", Y
(i) of ¢ satisfies “P.<¢p, Y, then HT<(,
and
@ ¢ <du,
G’ if ¢ satisfies “P<¢, Y&, then Pp<¢~,
sup, and inf), are denoted by * and (™ respectively.

Moreover,
inf(¢a— Slja) -—\/_SUP ¢¢z— sup szz.-<—sup (¢n - (pba) .
[sup $o—sup gof <sup [Ba— al -

Let T,p be strongly continuous in t. Then T, has a (t,x)-Borel

measurable version which is continuous in t.

Proof. Let {r;} be countable and dense in [0, o©) and @(r;, -)
a Borel measurable version of 7',,¢. Then the set 2 of {z& R"; |0 (7, x)
—O0(ry, )| <|T,,6—T, 8| Vij} is p-full. On the other hand, for any

positives ¢ and [/, there exists a positive § such that
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1T —T,p|<e whenever |[£—0/<0 and 0<z 0<L

Hence, for x&2, @(r;, x) is uniformly continuous on {r;} C[0,7]. Thus,
@(-,x) can be extended to a continuous function @ (-, z) on [0,7]. Let-

ting / tend to oo, we get our wanted version @.

The Bochner integral [} 7Ty¢d0 can understood as the usual Rieman
integral [i@ (0, x)db.

Let P, be a positive, contractive and strongly continuous linear semi-

group on L. Define T, for f&€L by
t
e Tg=Pg+ |Pota, geL.

Then T, is a mapping from L into L and has the following properties
(TO) semi-group property: Ty =0, T, =T, (T,0) =T,(T,p),

(T1) monotone: T,¢<<T,) whenever ¢<¢,

(T2) contractive; |T,¢6—T.YI<|¢—d|

(T3) strongly continuous: |T,¢—T,4|—0 as t—0

(T4) the generator G of 7,: Let A be the generator of P,. Then
D(G) =D(A) and

@) Gp=Ad+f
(T5) Th—p— fPeGqsde v D(G).

Proof. Since (T1), (T2) and (T3) are obvious, we shall only
show (TO0), (T4) and (T5).

t+0 t+0 0
(TO)- Tt+a¢:Pz+e¢+ j; PsdeZPo(Pz(ﬁ) + L P, fds+ j;Psde

_P, <P,¢+ f P, fds> + L "Pofds=P,(Tup) + L "Pufds=Ty(T'p).

(T4). For >0, there exists a positive § such that |P,f—f|<e for
0<<0. Hence

i Jipsan=s|= |5 s -pa

S% Lt||P9f—fHd0<e for t<0.



518 MAKIKO NIsIO

Therefore lim%(T,qS—qS) exists if and only if lim%(PtQS*([)) exists.
40 tL0

Moreover (2) is valid.

(T5). For any ¢ D(A), we have

Tip—¢=Pip— ¢+ ﬁtngd(i

- fn ‘P, Agdl + ngfdﬁ - J:Pa (Ag+£)d.

Proposition 2. Suppose (Al) and (A3). If ¢=0;—1lim ¢, then

3 sup 1,*¢ =0;—lim sup T,*@,.

Proof. Since T,* satisfies (T1) and (T2), we have T,"¢,<<T,"“@,:

and
4) T bl < T 0 — T Ol + | T, O <||@all + sup [/ ]I2 -

Thus sup 7,*¢, is increasing as n—>oo and the set {sup 7,"¢,, n=1, 2, :-:}
n u

is O-bounded. Therefore

) 0;— linm sup Tt“¢n£s1:p Tp.

On the other hand, from (Al) we can derive, for any u
(6) T ¢ =Oi—linm T ¢, <O;— li:n sup T ¢, .

By (5) and (6) we conclude Proposition 2.

§ 3. Proof of Theorem 1
We shall construct our required semi-group S,. Define J=J(N) by
(D) J¢:Slip TYowd, p=L.
Then J is a mapping from L into L. Define J* by
J =T (J*¢) and JP=¢.
Lemma 1. J* has the following properties,

Jo)y Jle=J(J'9) =T (Jp),
(J1) monotone: J¢<J*) whenever ¢,
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(J2) contractive: |J*¢— JY|<||¢— ||

U3 W= gl= Guplag|+swls) for peD,
a9 T <J,
Jbs) Jp=0,—lim J*¢, if ¢=0,—lim¢,.

Proof. Since 7T,* is monotone, we have
Jo<J) whenever ¢<¢.

Hence we can show (J1) by induction.

1

Put 4 2—2—N. The following evaluation is clear,
176 — Jgll =llsup Ts*6 —sup T'*¢l|<sup|T'*¢ — T dl<[d — ]l .
Thus if we assume that (J2) holds for &, then
[T — TG = [T (T*B) — T (T Q< T ) — T <[ 6 — ¢
namely (J2) holds for Z2+1.
Put K(¢) =sup|A*@||+sup||/|. Recalling (T5) we have, for p= D
T 4—g— j P AYGdD + rPf,"f“de .
0 0
So
|76 — ¢l <sup|Ts*¢ — ¢ <4K(¢).
Therefore by (J2) we see
L] . . k : i
[T — ]l << 21 [Fé—J gl = Zl [ P71 (Jg) —F ')
i= i=
<K|J§—B|<kd-K($).

This completes the proof of (J3).
By the definition of J we get

T <Jp YyeL.
Hence, if we assume that (J4) holds for %, then

T =T (Teap) <T /S (J¢) <J(J¢) =T,
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namely (J4) holds for £-1.
For £=1, (J5) is Proposition 2 in §2. If (J5) holds for %, then

JH g =J(J* @) =J(0;—1lim J*¢,) = O;—lim J(J*¢,) =0O;—lim J**'¢, .
Therefore we get (J5).

Put S,Mg=J*(N)¢ for t=%, £=0,1,2,---.

Lemma 2. S, is increasing as N—oo, i.e.

@) SOG<S NG for 1=

2N

Proof. Put 4=1/2""'. Recalling (T0) and (T1), we have
3) T3p=T,* (T ¢) <T/ (S, "p).

Taking the supremum of both sides, we get

4) SEPS, N (SN ) =S8,
namely (2) is valid for 2=1. If (2) holds for &, then
(5) S2((11vcv)+1)4¢ = S2{4N) (Sa(lcl\?(ﬁ) SS&V ) (S2(1ﬂ+1)¢)

<8IV (SHV) =St ap
This completes the proof of Lemma 2.

1

Hereafter we put hA=sup |f*|. By virtue of (J2), putting AZEF

and £=kd4 we have
(6) IS: P ¢lI<|IS, ™ ¢ — S, Ol + ]IS, ™ Ol <<[|¢] + ]S, Ol
and

1S, Ol <sup]| rPﬂufudﬁﬂédh.
U 0
Suppose [|S&O|<<k4h. Then
@ 18§72 401 =S5 (SEPO) |< sup 1T “(SEPO) ||
<[S&O|+ 4r=<(k+1) 4h.

Hence we have
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(8 I1S: ™ gI<lgll + ¢ .

This implies that, for any fixed binary tz-él—l, the set {S,™¢, N=>1I} is

O-bounded. So we can define S; by

9 S,p=0;—1im S,”¢  for binary ¢

S, has the following properties:

Lemma 3. For binary t and 0,

(50) Sep=6¢,

(S1) monotone: S,p<S,p, whenever ¢,
(82) contractive: ||S,0—S|<|lp—¢|

(S3)  [ISip—Sepl<It—0| K(¢) for ¢ D,
(84) TrH<S9.

Proof. From the definition of S, and Lemma 1, these properties
are clear. We shall only show (S83). Put t=—2£l-and (9:—2]7, (j<i). For
any N>/, we have

1S, ™ ¢ —S, ™ B =S,™ (S3e) — S, MBI <|Ssp — B <| £ — 0| K ().
Since S,"¢—S,™M$ converges to S;p—S,p y—a.e. as N—»00, we get

1Suh —SoflI< Lim IS, ¢ — S, gl <| 2 — 0| K (¢).

Using (S3) we can define S,¢, £=>0, by
(10) S¢p=1m S, ¢, p=D,

where {#;} is a sequence of binary times approximating z. (S3) implies
that the left side of (10) does not depend on the special choice of {#}.
Moreover (S1)~(S4) hold.

Lemma 3’. For 0,t=>0 and ¢,$=D,
(81)" monotone: S,p<S,y whenever Pp<¢,
(82)"  contractive: |S,p— S, p|<|d—l,
(S3)" [ISip—Sep|<<! £ —01 K(8),

(54)" T, ¢<S.
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Recalling (A2) and (S2)’, we can extend S; on L by
(11) S;p=lim S,;¢,, 4L,

where {¢,} is a sequence of functions in D approximating ¢.

Proposition 3. S, has the following properties
(1) rmonotone: S,$<S;¢ whenever ¢<¢,
(ii) contractive: |S.¢—S,¢|<|d— ¢,
(i) strongly continuous: |S;p—S,|—0 as t—0,
Gv) T<S¢.

Proof. First we shall show (ii). Take ¢,&D and ¢, D approxi-

mating ¢ and ¢ respectively. Hence
[S:p — S,(/)”Slim [|S: b — stbnllélinm [6n—all =lld— .

(i). For e>0, we take an approximation ¢,(¢) €D to ¢ —e. Let €D
approximate . Then, for large 7.
Pn (&) <¢n.
Hence, by (S1)’,
Si6,(e) <S¢, for large n.
Therefore tending 7z to oo we have
S, (p—e) <S¢

On the other hand ¢ —¢ converges to @, so (ii) implies S;¢=1im S,(¢—¢).
elo

Hence
S;p<S,¢ .
(iii). For €>0, we take ¢ €D such that |[p—¢||<e. Then we have
1S:¢ — SeBI <IS: — Subll + Sep — Sopll + 1Sep — b
<2+ |Sip—Sel|<2¢ +| £ —0| K(¢).

Hence there exists a small positive 0 =0(¢@, €) such that [|S,¢—.S,0|<3e
whenever ;2—0|<6.
(iv). By (54)’ we have T.*¢,<<S,$, where ¢,&D tends to ¢. Let-
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ting 7n tend to oo, we get (iv).
Proposition 4. S, is a semi-group on L.

Proof. Let ¢ and 0 be binary, say t=i and 0=—‘27'—L. For N>I,

o
we have

(12) S =8," (S, V) <S,™ (S.9),
13) o (S:¢) = 0:—lim S, (S9),

and

(14) So1$=0;—lim Sie .

Hence

(15) So+ 80, —1lim 5, (5:8) =5, (5:8).

On the other hand, for /<n<{N, we see
Se™ (S, M) <S8, (S, B) =SS0
and recalling (J5) of Lemma 1 we have
Sy ™ (S,9) =0;— I%Vm Se™ (S, M¢).
Therefore, for n>1,
So™ (Si) <Sp s -
Tending 7 to oo, we get
(16) Sy (Si) <S58 -
From (15) and (16) we have
an Sy (S;9) =Sp.:¢ for binary £ and 0.
Let ¢, be a binary approximation to Z Then for any binary 0,
So(S:,8) =Spse,b -
So appealing to (ii) and (i) we get

(18) Sy (S;9) =Sg.,¢ for binary 0.
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Again by virtue of (iii) we obtain the semi-group property of S,.

Let G be the generator of S,, namely
.1
Gg=1lim —(S,p—¢)
tyo ¢
and

D(G) = {¢ <L, lim % (Sib— ) exists} :

Proposition 5. l
19) Gp=sup(A"p+f") for ¢=D(G)ND.

Moreover, if f*€D(A"*) and sup |A*f¥|< oo, then
(20) D(G) {9 D, A"¢=D(A") Sfor Vu
and SliP”Au(AuQS) [<loo}, (say @).

Proof. In the case f*=0 for any u, we denote S, by 4, Put
Ap=sup G*¢=sup (A’¢+f*) and A:;T. Recalling (T5) we have for
peD

4
@1) 8,7 —p=sup (Tsg—4) =sup | 'P,*Gpas
U u 0
4 4
< sup j P, Apdh< j A, Addo .
u 0 0
Moreover
(22) SE¢—S,P¢=sup T,*(S,VP) —sup T"¢
SS:P[TAM (S/P¢) =T/ *¢] =sup[P* (S, ¢) — P,*p]
= S&P[Pdu (SA(N)¢ - ¢) ] =4, (SJ(N)QS - ¢)
4 4 24
§A4<j A,A¢do> - f A,y Addl— j A, Addo.
0 0 4

Suppose ST —SE21 @<t 14 AgApdl. Then, by the similar calcula-



NON-LINEAR SEMI-GROUP ATTACHED TO STOCHASTIC OPTIMAL CONTROL 525

tion, we see

Sy ip— S <A, (S&¢— SE.48) < f S deAgdo.
Hence taking the summation for %2 we get
(23) S —g< fAeAqsdo for t=—2i7.

Tending N to oo we have
t
(24) Sp—p< j A,Addl for binary £ and ¢ D.

Since the both sides of (24) are continuous in £, (24) holds {for any
t=>0. Furthermore

(25) % (Sp— @) s% j A Agdo=<|Ag1,

where 1 is the unit in L. On the other hand, by virtue of (T5) and

(iv) of Proposition 3, we have
@) LS9 =T = | PrGHdr=— 1671,

Therefore the set {—1— (St¢—¢),t>0} is O-bounded. Hence inf sup—l—
t >0 t>0 f

X (S;gb——qb) , ie. O ——ﬁ l (S.p—¢) exists, and sup inf — (S d—¢), ie.

>0 t>6

O —lim — (Stqs $), exists. Since

Tl0

@7) lim L j A,Agdo=Ag,
t10

and

28) lim L J P*G4d0 =G,
t10

we have by (25), (26), (27) and (28),
(29) O—Tim - (S4—$) <49
and

(30) O~ lim % (Sp—H =G va.
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Hence

31) O—lim L (Sip—¢) = sup G = 4.
t10
From (29) and (31) we have
O—Iim = (S¢—4) =O—1lim > (Sp—¢) = 49,
Thus, for ¢ D(G) N D, we have
Gp=lim L(S,p—¢) =0—lim L (Sp—¢) =
tio ¢ tio £
Next we shall show (20). From (25)

—}-(S,gﬁ—qﬁ) _ag<l f Ao Agdl— Ag.

By (27) the right side converges to 0 as #—0. Hence, for >0, there
exists a positive 0=0(e), such that

(32)  ess. sup. [% (=) (@)~ Ab(@) |<e for 1€(0,0).
On the other hand, by (26) we have
t
(33) %(quﬁ—qzﬁ) _ A= sup% f PG gdl — A
u 0
1 L1
~sup 1 j P*G 46 — sup G*¢=> mf[7 f P,"G"¢do—G“¢].
u 0 173 u 0
For ¢=®, we have G*'¢= D(A™) and
]
PrGY—Grp= f P A*G4ds.
0
Thus
1 ¢ uu e 1 ¢ o u Augu
7£ch 4d0—G ¢—;-J;<£P3A G*pds)df
So we have

(34) H% j:P(,"G"gbdo e

=|A*GTgle=[ A" (A%g) + A%F"|¢.

Therefore by (33) and (34) we have
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(35)  ess.nf, [% (Sip— ) —A¢]Z — sup| A* (A%g) + A*fH|z.
Hence (32) and (35) complete the proof of (20).

Remark 1. If S,¢ is differentiable in >0 and S,$ belongs to D,
then

(Lsg=sup(4"Sip+s*), £0,
) dt u

Sup=¢.

This is the so-called Bellman equation. So S, is called a Bellman semi-

group.

Remark 2. If each A" is a bounded operator on L and

(36) sup [A%]<oo,

then sup |A*f"|< cc and ®=L. Moreover S,¢ is differentiable in ¢z and

satisfies the Bellman equation.

Proof. Since A" is a bounded linear operator on L,

Pr=3 L (44" % —exp £A®
k=0 k!
and D(A*) =L. Hence f*D(A*) and sup|A*f*|<sup|A*|h< 0. More-
over sup|A%@|< oo, for any L. Thus D=L. Since sup|A*(A%p)|
< (sup|A*])*|¢], we have ®@=L.
For the proof of the latter half, we apply the same method as for
linear semi-groups. Since D(G) D@ =L, the right derivative of S,p,
dt .1
—d?S;qS: lalll};l —5- (St+9¢— S¢¢>

exists and, by @=1L,

d+

£ 5= sup (A"Sig+f*) = ASsp.

Hence, for any FEL’, we have
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d+

d+
— F(S:¢).

F(AS.$) =F< —

Sip) =lim L (F(Seret) ~F(Sif)) =
On the other hand by (36) we get
”ASt¢ - AS0¢H£SI;1P“AHSt¢ - AuSoQSH
=sup|A*(Sig —S,¢) [ < (SLJPHA"H) [S:6p — Syeb|..

Therefore AS,$ is continuous in ¢ So F(AS,$) is a real continuous

function of #, namely the right derivative of F'(S;¢) is continuous. There-

fore F(S,§) is differentiable and its derivative f%f& is continuous.
Therefore

t

d
G FS$=9)=FEH)—F@) = | L F(Sps

t t
- f F(ASyp) d@:Fu AS,,qu@).
0 0
Since F is arbitrary, (37) implies
(38) Sip—d= thS,¢d0.
0

By the continuity of AS,¢, (38) implies the differentiability of S;4. There-
fore by Remark 1 S;¢ satisfies the Bellman equation. In fact the operator

S, thus obtained is identical with €4 in the sense of [1].

Proposition 6. If S, is a semi-group on L satisfying the con-
dition (i)~ (iv), then for any t=0 and ¢ L,

Sp<S.¢.
Proof. Putting 4:511\7’ we have
(39) SA(N)¢:SI;I) T,*¢<8.4, v4<L.
Suppose
(40) SE$<8,s9 .
Then

SEﬂl)A(ﬁ = SAW) (Ska})¢) §S4(N) (§k4¢) SgA (Skd¢) = S(k+1)4¢ .
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Hence, for any %, we have (40).
This implies for any binary ¢

S, $<8,¢p  for large 7.

Therefore for binary 2

Sp=0;—lim S,"¢<S,¢ .

Since the both sides are continuous in #, we complete the proof of Prop-

osition 6.

For any constant ¢=>0, we replace P,* by e “P,*. Then we can

easily show the following,

Corollary. Theorem 1 is still valid, when we replace (iv) and

(5) respectively by

(iv)’ e Pt jte_”Pg'%ngStQS ,
and
)’ Go—sup(A*d—ch+f*, for ¢=D(G) ND.

For positive ¢, we denote the semi-group of Corollary by S..

Proposition 7. There exists a unique vE L such that

lim S, ¢=v for any ¢&L.

t1oo

Proof. Using e *P,* instead of P,* we define J(N) and S by the
similar way. Then, putting J=J(N) and A=—217, we have

||j¢—j¢||ésgp le*“P ¢ —e P pll<<e”*|d—¢].
Moreover we can show (41) by the induction,

(41) | ¢ — T gl <e ¢ — .

On the other hand we can easily see the following inequality



530 MAKIKO NisIO
7 —cd h —c4
Jgll<<e™““llgll + = 1—e)

and moreover, we have (42) by the induction,

(42) ||J'°¢||§e—°“||¢||+§<1—e—°“>.

(41) and (42) mean, for t=§v~,

IS, ¢ — 8, ¢l<e ¢ — ¢l

and

||§t<N>¢z|§e-“||¢n+§<1—e-“).

Therefore, for binary ¢, we have (43) and (44),

(43) I1S.6— StsbllsnTm IS, ¢ — 8, P y<e ¢ — ¢l
and

< —ct h —ct h
(44) 1S:pl e~ 4| + ~ A—e) <|gl+ —-

Since the both sides of the above inequalities (43) and (44) are

continuous in #, we have
(45) ISecop—Sigll =115 (So) —Segl <e~ (21 + g).

Hence there exists lim S,¢, say v,. By virtue of (43), we can see

t—>o0

that v, does not depend on ¢.
Corollary. Sw=v for any t=0, and if v belongs to D, then

sup(A*v —cv+f*) =0.

§ 4. Proof of Theorem 2

For any A>0 and gL we define
t
M Tog=e P+ | e P 4 1g) b,
0

Then we have

) IT gl <e+"g| + % A=)+ A—e) 9l
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and its generator G*¥ is as follows
GMp=Ap—1p+/"+2g .

For simplicity we omit g in T,*? and G*¥ for the moment, if any confusion
does not occur. In order to prove Theorem 2, we apply the same method
as [4], namely we take I'X [0, o) for the control region. Appealing
to (2), we can define J=J(N) by

J¢=51§p Tvw¢, pL
and
Je=J(J), Jb=¢.

Then Lemma 1 is easy.

Lemma 1. Putting A=-2}N—, we have

Jo) JHg=J(T'¢) =T (J*¢),
(J1)  J¢<J whenever $<¢,
J2) |Jo—JT¢[<e g —¢l,

43 I l<e g+ 2 A e +1gl,
(J4) ¢=Oi—li;n ¢, implies Jkd):Oi—li}ln TG, .
(Js) o9=<Jg.
Proof. We show (J3) by the induction. For £=1, (J3) comes from
(2). Suppose (J3) holds for 2 Then we have
3 [T 8l = 1T (T | <sup [ T4 (J*B) -
Recalling (2) we see

@) ITATHISe g+ LA + Qe ]
Se@ror(e g+ La—em) 1gl) + 2 A —e) + Qe gl

e~ E g + 2 (e —e~c* iy 1 —e™*) +]lg]|.
c

From (3) and (4) we have (J3) for £-+1.
We have, for any <1 and £>0,
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g=1im T,“¢ .
A0
Hence (J5) is wvalid.

Define S, by S, M¢=J*(N)¢ for t=—§v—. Then S,”¢ is increas-

ing as N—>oco. Moreover we have
Lemma 2. If ¢<g, then S, ¢ is increasing as t—>oo.

Proof. Putting 4=1/2", we get by (J5)

) $<g<<S,V¢.

Hence, by (J1),

©) $=SP¢=S{Pp=---ST=SFng.
(J3) means the following (7).

@ ||st<N>¢||§e-“n¢||+—f-<1—e—“> +1al.

Therefore, for binary ¢, the set {S,V@, N large} if O-bounded. Hence
we can define S, by

$,0=0;—1im 8§,;"¢ for binary ¢.
N

From (J4) we can again see, for binary ¢,

(8 80=0;—1im S,¢, if ¢=0;—limg,.

Therefore we can derive the semi-group property on binary parameter.
S, 00=8,(Se®) =8,(S,¢) for binary £ and 0.

Again, by (7), we have

—e h —c
©) IS:p]=<e ’!I¢H+7(1—e D +lgll.
Hence the set {S.¢, binary t} is also O-bounded.

Lemma 3. If ¢<g, then S,¢ is increasing in t and O;—1lim S,¢
t

exists, say vy. Moreover
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(10) 0<v,.

Proof. By Lemma 2 we have for £<0,
St¢ == O,; - lllvm S;(N)¢S0i —lim Sg(N)QS =Sa¢ .
N

Hence S,¢ is increasing as binary z—oco. (10) is clear by (J5).

For simplicity we put v=wv, if any confusion does not occur.

Lemma 4. v is S,invariance, i.e.

an S,v=v for binary t.

Proof. By the definition of v and (8),

S;'U:St (O’,,'_ liém Sg¢) :O‘L—_lim St+9¢ =7v.
0

Proposition 8. v is an S,-excessive majorant of ¢, i.e. v==g and

12) S,o<<v, Vt=>0.

Proof. By the definitions of S, and S,, we have
S;p<<S,) V binary ¢ and ¢p=L.
Hence by Lemma 4
So<lSv=wv.

Namely we get (12) for binary £z Since S,v is continuous in ¢, (12)
is valid for any #. Recalling (10) we complete the proof.

Proposition 9. For any ¢<g, vy is the least S,-excessive ma-

jorant of ¢.

Proof. Let V be an S;-excessive majorant of g. Recalling the defini-

. 14
tions of T,**Y and T.*, we have

t
(13) Ty=e P+ [P vy
0
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and
(14) T, 0 = P+ &)’P,“funw.
Hence

(15)  TA'V=e TrV 4+ ﬁ ‘P, fudp

t t
1 [lemprgar—e | Prra,
0 0
and, from (14), we see

a
(16) 2 jte“”P,“th?:/l Jte“” (T,"V— j Pﬂf"ds) 6
0 0 0

=2 J‘e"’T,"VdO— jt(e-“—e-“) Pfrds.
0 0
Therefore, by (15) and (16) we have
t
an T V=e STV [T van.
0
Since “T*p<S,p” and V is S;-excessive, we have
(18) e MTrV<e ™S, V<e™V.
Combining (18) with (17) we can see
t
(19) T V<V 42 j VA=V .
0

Hence we have, denoting J(N) for T,*" by J(N),
(20) JN)VLV and JHN)VV.
This tells us the following inequality,
(21) S,V<V for binary ¢.
Appealing to “g<<V” and the definition of 7", we have
T p<T“"y voeL.
Hence
JWNY<T(N)¢ and Sp<S..

So, by (21), we have for binary ¢,
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S.p<8S,9<S, VgSth V.

Tending ¢ to oo, we can derive

v<V.
Corollary. v,=v, V¢<g.
Proof. Since the least S;,-excessive majorant of ¢ is unique, v;=1,.

§ 5. Examples

We will show two simple examples of control problems related

Markov processes with exponential holding times, [cf. 5].

Example 1. Let A"=(a"(4,j)) be an [XIlmatrix. Suppose
a*(i,7) =0 for i5~j and zl;‘a“(i,j) =(0. Then A" is the generator of the
transition semi-group Pt“j: (P (4,7)) =€

Put p{i} =1, i=1, ---, [ and y(R*—{1,2, ---,1}) =0. Then A" be-
comes a bounded linear operator on L=L,(R', #) and P,* a positive

contractive and continuous semi-group on L. Assume
ey supla® (i, /)| oo, Vij=1, -, L
u

Thus sup |A*|< oo. Let sup|f“(i)| oo for i=1,---,I. Then we can
2 u
construct Bellman semi-group S, for {A4% f*}. Moreover, for =L, S,

is a solution of the following Bellman equation,

(O msw[ 3060 SsO) /O], =1, 0

( Sup (D) = (@)

Example 2. Let X* be a 1-dimensional Lévy process of pure jump

type with finite Lévy measure n*

X(8) =z + L er“(dsdz)

and EN*(dsdz) =dsn”(dz). Thus every point of R' is an exponential
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holding point.

Suppose that #* has the density, say #*(dz) =n"(z)dz. Put Y*(2)
=[pJizN*(dsdz). We denote its i-th jump time by w;* 7,“=0, and
Y*(r;*) —Y*(ti) by &* For simplicity we skip the suffix # if any
confusion does not occur. We have the following well-known facts,
(i) ©w—ty, 1=1,2,--, &,i=1,2, --- are independent.

(ii) P(r;—tioi>t) =e™* where A=n(RY).

(i) P(CeA) =%=%— Ln () dz.
Hence

2) P(Y()€A) =14(0) P(r.<t) + g P(Y(r:) € A) P(r;<<t<ti:)

= 14(0) e+ T P(Cr+ o+ + 60 A) P(rt<rins)

=14.(0)e " +m(A,¢).

By virtue of (i) and (iii) the measure m(-,¢) is absolutely continuous
w.r. to the Lebesgue measure #. Suppose ¢=¢ g—a.e. Then, for any

x where “¢(x) =¢(x)” holds, we see

P (z) =E,(X(2)) =Ep(z+Y(2))

—p(x) e+ j¢(x+y) m’ (3, £) dy
~p@e*+ [s)m -z, Hdy

—p@ e+ [9@)m’ o=z, Hdy=Ph(@),
Hence the transition semi-group P, can act on L=L_,(R, #). On the
other hand we have
[P (x) —p(x)| <|p(x)| A—e™) + [l P (r:<t)
<2|gl(1—e*)—0 as ¢£|0.

So P, is strongly continuous.
Thus P,* is a positive contractive and strongly continuous linear semi-

group on L whose generator A" is
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a@ = [ @Ga+y) —p@)n v, seL.

Since |A“@||<2||p|1*, this example 2 satisfies the condition (36) of Re-
mark 2, if

(3) sup A< oo .

Therefore, for f* L with (A3), we have a solution, V(¢ x) =S4 (x),

of Bellman equation

VLD g [ Vi, 349 =V, )G dy+(@ Jae. >0,

v V(0,x) =¢(x).
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