
Publ RIMS, Kyoto Univ.
12 (1977), 709-725

On Perturbation of Non-Linear

Equations in Banach Spaces

By

Yoshikazu KOBAYASHI* and Kazuo KOBAYASI**

0. Introduction

Let A be a dissipative operator in a Banach space X and let X0

be a subset of X. In this paper we study the "range" condition

(1) R(I-1A)^XQ for

Condition (1) states that given /eX0 and A>0 there is a ueD(A)

satisfying the equation u — lAuBf. It is also known that under con-

dition (1) (with X0 — D(A)) A generates a contraction semigroup on

D(A) (cf. [5, Theorem I]).

Our first purpose is to discuss sufficient conditions for (1). In

general, the direct verification of (1) is not easy. We shall give some

conditions on A which implies condition (1). Our conditions seem to

be weaker than (1) and hence would be easy to check. We note,

however, that our conditions are, in fact, equivalent to (1).

Next, given dissipative operators A and J3, we consider the perturba-

tion problem of Kato type; in which one wants to show

(2) R(I-A(A + B))=>X0 for A>0

if B is small relative to A in a certain sense. Our second purpose is

to give conditions on A and B under which A + B satisfies our condi-

tions mentioned above.

From the same point of view, in case X* is uniformly convex, Kato
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[8] and Brezis-Pazy [3] gave sufficient conditions for (1), e.g., for

every xeD(A) there exist a neighborhood Ux of x and a sequence

sn | 0 such that

(which implies Kato's local ??i-dissipativeness condition); and Kato treated

the perturbation problem (2).

In Section 2, we discuss conditions equivalent to condition (1).

We shall treat this problem in the setting where X is a general Banach

space and further relax the conditions imposed by Kato and Brezis-

Pazy. Our method is based on a generation theorem essentially due

to Takahashi [12] : If for every x e Da(A)

) = o(A2) as AiO

holds, then A generates a contraction semigroup on D(A). In Section

3 we shall treat the perturbation problem (2) and give some perturba-

tion theorems of Kato type in the setting where X is a general Banach

space.

1. Preliminaries

Throughout this paper X denotes a real Banach space with the

dual space X* and the bidual space JT**. The norms in these spaces

are denoted by || || and the natural pairing between x e X and fe X*

is denoted by < x, /> . We write by F the duality mapping of X into

X*, that is, F(x) = {/eX*; <x,/> = ||x||2 = ||/||2} for xeX. We set

and

<y,x>i = M{<yJ>°JeF(x)}, x, yeX.

For the properties of < • , • > s and < • , • > f we refer to [5 ; Lemma

2.16]. In particular, we note that the function < •, • >s (resp. < •, - >,-)

from XxX into R1 is upper (resp. lower) semi-continuous with respect

to the strong topology of X x X.
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We mean by an operator A in X a subset of XxX, and set Ax —

{ y , [ . x 9 y ' ] e A } , D ( A ) = {x'iAx^(l>} and R(A) = \.JxeD(A)Ax. The sets D(A)

and R(A) are called the domain and range of A respectively. An operator

A in X is said to be tlissipative if

(1.1) <V 1 ~> ' 2 , -x,-.x2>^0

for each [x;, j>y] 6 A, j = 1 , 2. If, in place of (1.1), <j>i — j>2» *i~ *2>s

^0 holds, then we say that A is dissipative in the sense of Browder.

It is well known that A is dissipative if and only if the resolvent JA =

(/ — AA)"1 of A is single-valued and a contraction for all A>0, where

I denotes the identity on X.

Let A be an operator in X. For each xeD(A) we set

\ \ \ A x \ \ \ = i n f { \ \ y \ \ ; y e A x ] .

Following Takahashi [13], we introduce the set Da(A) which con-

sists of all xeX such that there exists a sequence [xtt} in D(A) satisfying

that limxw = x and HIAxJI is bounded. Also we define

{mf{M;x,,eD(A), limx,, = x, ImTpxJI ^M) if xeDJ(A),
M v| _ J M-+00 /J-»00

X| — 1

( oo if xtDa(A).

As is easily seen from the definitions of Da(A) and | • |, we have:

(a) | Ax|^ HI Ax HI for xeD(A) and D(A)aDa(A)c:D(A).

(b) The function \Ax\ from X into [0, oo] is lower semi-continuous

with respect to the strong topology of X.

(c) If A is a dissipative operator and satisfies that R(I — XA) •=> D(A)

for all sufficiently small A>0, then xeDa(A) if and only if ||AAx|| is

bounded as A 1 0, where AA = A~1(JA — I). In this case we have |Ax| =

\im\\A,x\\.
A i O

Remark 1.1. Under the assumptions of (c) stated above we see

that Da(A) equals to the generalized domain D(A) which was introduced

by Crandall [4]. When X is a reflexive Banach space, Da(A) = D(A)

if and only if A is almost demi-closed, that is, if \_xn, yn~]eA, xn-+x

and yn-*y, then xeD(A). (We denote by "->" and "-^" strong con-
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vergence and weak convergence respectively.) Also see [13] for further

properties of Da(A),

Let X0 be a subset of X. A one-parameter family {T(0; t^Q} of

single-valued operators from X0 into itself is called a contraction semi-

group on X0 if it satisfies

( i ) T(0)x = x for x e X0, T(s + 1) = T(s)T(i) for s, t ̂  0,

(ii) \\T(t)x-T(t)y\\^\\x-y\\ for x, yeX0 and f^O,

(iii) limT(Ox = x for
tio

Finally, we state a generation theorem of semigroups which is

a slight generalization of Theorem III in [12]. The proof of this theo-

rem will be given in the Appendix.

Theorem. Let A be a dissipative operator in X, Suppose:

(K) For each xeDa(A) and each M>0 there are a neighborhood

U of x and a positive constant K with the property that for every u

eDa(A)(]U with \Au\^M there exists a positive sequence {sn} such

that en-»0 and

dist (R(I - tnA\ u)^K£* for all n^L

Then there exists a unique contraction semigroup {T(i)i t^O} on D(A)

such that for each x e D(A), u(t) = T(f)x satisfies

(1.2) \\u(t)-u\\2-\\u(s)-u\\2^2(t<v,u(r,)-u>sdrl
Js

for all [u,v}eA and all s, £e[0, oo) with s^t. Moreover, if xeDa(A)9

then u(f)eDa(A) and

(1.3)
hlO

for all t^Q.
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2. Range conditions

In this section we introduce some range conditions for an operator

in X and investigate the relationship among them.

Let C be a subset of X. We say that an operator A in X satisfies

condition (R^ (resp. (R2)) on C if for each xEDa(A), each weC and

each M>0 there are a neighborhood U of x and a positive constant

K satisfying the following (*) (resp. (**)):

(*) For each ueDa(A)nU with \Au\^M, there are a neighbor-

hood V of u and a positive sequence {8n} such that <5n-»0 and

for all n and all t?eseg[w, y] n V.

(**) For each ueDa(A)r\U with |^4w|^M and each veC, there

is a positive sequence {<5n} such that (5n-»0 and

dist (R(I - dn(A - i7), u) ̂  K<52 for all n.

Here seg [w, w] denotes the segment from u to w. We also introduce

the following condition which is stronger than (R2)'.

(R3) For each xeDa(A) and each weX there is a positive se-

quence {Sn} such that 5n-»0 and

K(/-gB(A-w))3x for all w.

Theorem 2.1. Le^ A be a closed, dissipative operator in X and

C be a convex subset of X including Da(A). Then the following (i)

and (ii) are equivalent:

(/) R(I-JiA)=>C for all A>0.
(ii) A satisfies condition (Rj) on C.

In addition, if C is a linear subspace, then (i) and (ii) are equivalent

to the following:

(Hi) A satisfies condition (R2) on C.

Corollary 2.2. Let A be a dissipative operator in X. Then the

following three conditions are equivalent:
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( / ) A is m-dissipative, lhat is, A is dissipative and R(I

for all A>0.

( / / ) A satisfies condition (R3).

(Hi) A is closed and satisfies condition (R^) or (R2) on X,

Remark 2.3. Theorem 2.1 and Corollary 2.2 extend some results

in Kato [8] and Brezis-Pazy [3] to the case of general Banach spaces.

To prove the theorem and the corollary we prepare the following

Lemma 2.4. Let C be a subset of X including Da(A), w be an

element of C and A be a positive number. Put B = AA — I+w. Assume

that A satisfies (RL) on C or that C is a linear subspace and A satisfies

(R2) on C. Then B satisfies condition (R).

Proof. We first note that Da(A) = Da(B). Let x be an element of

Da(B) and M' be a positive number. Set M = (M' + i + ||x-w||)M. Then,

for these x and M there exist a positive number K and an open ball

U = l/(.x, r) with the center x and rudius r^l such that (*) (resp. (**))

holds. Let u be any element of Da(B) n U such that \Bu\£M'. Then,

clearly, \Au\^(M' + r+\\x — w\\)/A,^.M9 so that there is a sequence {6n}

satisfying the properties in (*) (resp. (**)) with a neighborhood V of u.

First, assume that (*) holds. Then, setting en = <5n/(A — <5fl) and vn

— (u 4- /yv)/(l + r,n) and noting that vn e seg [M, w] n V for all sufficiently

large n, we have that dist(R(/ — <5HJ4), vn)^K6* and hence

for all sufficiently large n.

Next, assume that (**) holds and C is a linear subspace. Setting

v = )c 1 (u — w) and noting that v e C, we get dist (R(I — dn(A — v))9 u) :g Kd*

for all n. Hence,

dist(R(I-enB), M)

g(1 +s,,)dlst(R(I-dn(A-v)l «)^A2 jKc2.

Thus we see that B satisfies condition (R). Q. E. D.
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Proof of Theorem 2.1. Let weC be an arbitrary element and A

be an arbitrary positive number. Put B = kA — J + w. We first assume

(n) in the theorem. By the Theorem in the Section 1 and Lemma 2.4,

there exists a contraction semigroup {T(t); ^0} on D(B) such that

(2.1) \BT(t)x\ =lim Ir1 \\ T(t + h)x- T(t)x\\
HIQ

for f^O and xEDa(B). Since B + I is dissipative, it can be proved that

\\T(t)x-T(t}y\\^e-f \\x-y\\ for t^Q and x,yeD(B) (for example, see

[10]). This fact and (2.1) give that

|| T(t + /i)x - T(t)x || rg £T' || T(h)x - x ||

for all t, ft^O. This shows that z = limr(f)x exists for x e Da(B) and

|5z|=0. For |j5z|^Urn|^r(Ox|^yiri(limVr/rHl-^~/OI^I) = 0. Here we
f->oo f-+c» /?->-0

have used property (b) in the Section 1. The fact that |J3z|=0 implies

that there is a sequence {[*„, vjj in B such that xn-+z and yn-+0.

Since jB is closed as well as A, we have [z, 0]e£, that is, we.R(/ — A^).

Thus we have proved that ( / / ) implies (/). Similarly, we can prove

that ( / / / ) implies (/'). Conversely, it is evident to see that (/) implies

(ii) and (/ / /) . Q.E. D.

Proof of Corollary 2.2. It suffices to show that if A satisfies (R3),

then A is closed. Let {[xk, y^} be a sequence in A such that xk-+x

and yk-*y> Since |ylx|^lim|y4xfc|^lirn||j;fc|| <oo, it follows from (#3)

that there exists an e = e(x, y)>Q such that R(I — c(A — y}) 3 x, that is,

x0 — x = s(y0 — y) for some [x0, yQ~\EA. Letting k tend to oo in <y0

— yk, x0 — xk > i ̂  0, we have < y0 — y, x0 — x>i^Q and hence

l |x-*oll2=<*o-*> x0~x>t

Thus x = x0 and y = y^ Hence A is closed, Q.E. D.
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3. Perturbation Problems

In this section, let A be an operator in X and let B be a single-

valued operator in X. We say that B is locally A-bounded with A-

bound<l if D(A)c:D(B) and for each xeD(A) there are a neighborhood

U of x and constants K^05 L^O with L<1 such that

(3.1) ||Bii||^K + L|||4tf||| for any ueD(A)r\U.

We consider the following type of local Lipschitz conditions:

(L.I) D(A)<=.D(B\ and for each xeDa(A) and each M>0 there are

a neighborhood U of x and a constant K^.0 such that

(3.2) ||Bw-J3i

whenver w, i ;e£>G4)n I/, |||Au|||^M and
(L.2) D(A)c=.D(B), and for each xeDa(A) there are a neighborhood

[/ of x and nonnegative constants K and L < 1 such that

(3.3) \\Bu-Bv\\£K\\u-v\\+L\\\Au-Av\\\ for any w, v e D(A) fl U.

Remark 3.1. If there exist nondecreasing functions kt(t) on [0, oo),

i=l , 2, such that

then B satisfies local Lipschitz condition (L.I). This type of condition

has been discussed by Kato [7],

Our main result of this section is as follows.

Theorem 3.2. Assume that A is m-dissipative and that B is dis-

sipative, locally A-bounded with A-bound<i and satisfies local Lipschitz

condition (L.I) or (L.2). // at least one of A and B is dissipative in

the sense of Browder, then A + B is m-dissipative and Da(A + B) = Da(A).

Remark 3.3. If X is reflexive in Theorem 3.2, then A is almost

demi-closed (see Kenmochi [9] and Remark 1.1). Therefore Theorem

3.2 is an extension of Theorem 11.1 in [8] to the case of general Banach
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spaces.

Lemma 3.4. // B is locally A-bounded with A-bound<l, then

Proof. Let xzDa(A). Then there exist a sequence {xn}c:D(A)

and a constant M such that xn-»x and |||v4xw||| ^M. Let U be a neigh-

borhood of x satisfying (3.1). Since we may assume that xneU for all

n, we have \\Bxn\\£K + LM, and hence \\\(A + B)xn\\\M^xn\\\ + \\Bxn\\^

K + (L+1)M. This shows x<=Da(A + B). Conversely, let xeDa(A + B).

Then there exist a sequence {xn}^D(A) and a constant M such that

xn-+x and \\\(A + B)xn\\\£M. Also, by (3.1), we have \\\Axn\\\^\\\(A + B)xn\\\

+ \\Bxn\\^M + K + L\\\Axn\\\. Since L<1, we obtain \\\Axn\\\ ^(l-L)~l(M

+ K), so that x 6 Da(A). Q. E. D.

The local Lipschitz condition (L.I) or (L.2) on B implies a local

range condition of A + B on Da(A). Precisely we have the following

lemmas.

Lemma 3.58 Suppose that A is m-dissipative and Da(A + B) = Da(A).

If B satisfies local Lipschitz condition (L.I), then A + B satisfies con-

dition CR3).

Lemma 3.6. Suppose that A is m-dissipative and Da(A + B) = Da(A).

If B satisfies local Lipschitz condition (L.2) with L<l/2, then

satisfies condition

Proof of Lemma 3.5. Let a e Da( A + B) = Da(A) and weX. We want

to show that a e R(I — e(A + B — w)) for all sufficiently small e > 0. We

may assume that w = 0 since (3.2) is true even if B is replaced by B — w.

Hence we shall show that there is a 6>Q such that the equation

(3.4) z-G(A + B)z3a

has a solution zeD(A) if 0<s<<5. Put JA = (/ - A.4)- x for 1>0. We

note that J^:X-^D(A) is a contraction. Then (3.4) is equivalent to

(3.5) z =
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Let D(B1) = {x e X] limBJ^x exists) and define an operator Bi with
A i O

domain D(B^ by

(3.6) J31x = limJBJAx for xeD(B1).
A I D

If xeDa(A), then J^xeD(A) and JAx-»x as /i| 0 with |||A/Ax|l| ̂ ||v4Ax||

£\Ax\. Hence we see by (3.2) that Da(A)<=D(B1) and B&^Bx if XE

D(A). Therefore, (3.4) is also equivalent to the equation

(3.7) z = JE(a + eB1z).

Thus it suffices to show that there is a d>Q such that (3.7) has a

solution if 0<e<(5. To this end we use the fixed point theorem. Let

M>\Aa\ + 2\\Bia\\. By the condition (L.I), for these a and M there

exist positive numbers r and K such that (3.2) holds for u, v E D(A) fl B2r

with \\\Au\\\ ^M and |||A0|||gM, where Br = B(a,r) and B(a9 r) denotes a

closed ball with center a and rudius r. If u, v e Da(A) r\ Br and |^4w|

^M, I^I^M, then J^u9 J^vED(A)nB2r9 \\\AJ^u\\\^\Au\^M and

g|Ai;|^M for all sufficiently small A>0, and hence

for all sufficiently small A>0. Letting A 4 0, we have

(3.8)

for u, vEDa(A)f}Br such that |ylM|gM and \Av\^M. P u t p = min{r,

(M -\Aa\-2\\B ̂ DJIK] and

I = {x;xeD f l(^)nBp and

Obviously, a el and I is closed in X by virtue of the lower semi-

continuity of \Ax\ in x. Choose a (5>0 so that 6<p/(Kp + \Aa\ +

||51a||) and let e be an arbitrary number in (0, 5). Now let us define

an operator G by

Gx = JE(a + sBix) for xel

with D(G) = Z. In order to show that G has a fixed point, we observe

from (3.8) that for any XE!
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(3.9) \\BiX\\ ^ \\B,x-BLa\\ + \\B.a\\ £K\\x-a\\ + ||JMII

and hence

(3.10)

Furthermore, noting that |MGx||| <; ||

sBlx)\\^\\Bix\\+e'1\\a-Gx\\ for any xeZ, we have by (3.9) and (3.10)
that

for any x e Z. Hence G maps I into itself. Also, G is a strict con-

traction; in fact, we obtain from (3.8) that

for any x,yel. Hence G has a fixed point zel", that is, z = Gz =

). Q.E.D.

Proof of Lemma 3.6. Just as in the proof of Lemma 3.5, it suffices

to show that if aeDa(A), then (3.4) has a solution z in Da(A) for all

sufficiently small e>0. Let a E Da(A). Note that (3.4) is equivalent to

(3.5). If we set y = a + cBz in (3.5), then we have z = JEy and hence

(3.11) y = a + sBJEya

Conversely, if j; is a solution of (3.11), then clearly z = JBy satisfies (3.5).

Therefore we shall show that for sufficiently small e>0, (3.11) has a

solution y. We use again the fixed point theorem. By assumption there

are positive constants r, K and L with L<l/2 such that (3.3) holds true

for any w, veD(A) n B2r. In this case we note that (3.1) holds true

with U = B2r and K replaced by a suitable .K'^0. Take G with 2L<a

<1, and set (5 = min{r(l -a)/(K' + \Aa\), (a-2L)/K} and I = Br. Let

se(0, <5) be arbitrarily fixed. We then define an operator G with D(G)

= Z by Gx==a + sBJ8x, If xel, then
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that is, JEx E B2r, because s\Aa\ rg r(l — cr) ̂  r. Since Jcx, JBy e D(A) f] B2r

for any x, yeZ, we have by (3.3)

\\Gx-Gy\\^s\\BJEx-BJEy\\

^sK\\JEx-JEy\\+8L\\\AJEx-AJEy\\\

for any x, j; e I. This shows that G is a strict contraction. Further-

more G maps I into itself. In fact, if xeZ, then

||Gx-fl | g || Gx- Ga|| + ||Ga-a|| £<r||x-a|| + fi|| BJ.a|| .

Since JEaeB2n (3.1) with K replaced by K' implies that \\BJBa\\<*

K' + L\\\AJca\\\£K' + \Aa\. Hence

\\Gx- a\\£ar + e(K' + \Aa\)£r

for xeZ, that is, GxeBr = I for xeJ by the definition of d. Hence

G has a fixed point yeZ, so that y = Gy = a + 8BJEy. Q.E. D.

Proof of Theorem 3,2. At first, assume that B satisfies local Lip-

schitz condition (L.I). By Lemmas 3.4 and 3.5, A + B satisfies condition

(R3). Since A + B is dissipative, the assertion follows from Corollary 2.2.

Next, assume that B satisfies local Lipschitz condition (L.2). If

we can take L<l/2 in (3.3), then Lemmas 3.4 and 3.6 imply that A + B

satisfies condition (#3), so that the assertion follows from Corollary 2.2

again. We shall now use the continuity argument due to Kato [8]

to remove this restriction (see the proof of Theorem 11.1 in [8]). Con-

sider the family of operators A + tB, O ^ f ^ l . We note that each A + tB

is dissipative and Da(A + tB) = Da(A) by Lemma 3.4 since tB is locally

^4-bounded with 4-bound <1. Thus Lemma 3.6 assures that A + tB is

m-dissipative if Og^l/2. On the other hand, (3.3) implies

^

and hence
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for u,veD(A)nU. If A + tB is known to be m-dissipative, then by the

above result A + t'B = (A + tB) + (t' — t)B is m-dissipative whenever (t1 —

f)(l-Lirl<^ll2. Therefore, A + tB is m-dissipative for all t<l. Fur-

thermore, since (1 — t)(l — Lf)~l ^1/2 for all t sufficiently near 1, we see

that A + B is m-dissipative. Q.E. D.

4 Appendix

We here give a proof of the Theorem in Section 1.

Lemma Al. Let A be a dissipative operator in X and let u:

[0, T]-+X be a continuous function such that (1.2) holds for all [u9 t;]

eA and s, te[0, T] with s^t. Suppose that

(4.1) }imh-ldist(R(I-hA)9 u(t)) = 0 for fe[0, T).
MO

Then for t e [0, T), u(f) e Da(A) If and only if h-l\\u(t + h)-u(t)\\ is

bounded as h i 0. In this case, (1.3) holds and \\u(r)-u(t)\\^\Au(t)\

\r-t\ for any re[r, T].

Proof. We follow the argument of Benilan [2] and Takahashi [12].

Let t be a real number in [0, T). First, suppose that u(t)eDa(A). We

can choose a sequence {[un, vn~]}c:A such that un-*u(t) and \\vn\\^

\Au(t)\ + l/n. It now follows from (1.2) that

\\u(r}~un\\^-\\u(t}-un\\^2(\Au(t}\ +

for all re[J, T] and all n^l . Letting n tend to oo, we obtain that

which implies

(4.2) ||M(r

for all re[r, T], and hence
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We next assume that h~1\\u(t + h) — u(t)\\ is bounded as h 1 0. Then

a generalized sequence {lrl(u(t + h) — u(i))\ Q<h<T— t} in X** has a

cluster point zeZ** with respect to the weak*-topology of X** and

z satisfies \\z\\ ̂ timh~l\\u(t + h)-u(t)\\. By the assumption (4.1) there
A ; O

exist sequences {dn} and {[xn, yn~]}c:A such that dn-*Q and xn — 8nyn —

u(i) = o(5n\ Since

f+A

= h~

for all /eF(w(0-xn), we obtain that -\\z\\ \\u(t)-x,,\\^<z,f>^<yn,

u(t)—xn>s. Hence

n, u(t)-Xn>s+\\o(5n)\\ \\u(t)-xn[\

which gives

^^
This implies that u(t)eDa(A) and \Au(t)\£ \\z\\ £}

hlO
Q.E.D.

Lemma A2. Under the assumptions of the Theorem, for each XE

Da(A) there exist a positive number Tx and a unique continuous func-

tion w:[0, TX~]-+X such that u(Q) = x and (1.2) holds for any [w, v\eA

and s, £e[0, TJ with s^t. Moreover, \Au(t)\ is nonincreasing in t.

Proof. Let x be an element of Da(A) and set M = 2|Ax|. By

condition (R) we can take positive constants r = r(x) and K = K(x) such

that for any e>0 and any u e Da(A) n B(x, r) with \Au\^M there is

a <5>0 satisfying 5^e and

(4.3) dist (R(I - 5A\ u) ̂  Kd2/3 .
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Setting 7; = min{l, 2r/(M + 4K), M/4K], f[ z>=0 and x& = x, we define ?£

and [xj, y"]e,4 for /c^l such that

(i) /J^fJ!-! +/1JJ with /jj? G (/4'/2, /4')» where //£ is the supremum

of all /i such that 0</«l//i, f j _ j + /*<TX and dist (/?(/- /

(ii) l>r, )>Z] e A and || zj || £ X/iJ, where zj = (xj - xj. t )
in fact, it is possible to construct sequences {fj?}j£=i and {[A-[!,

by the following estimates:

(4.4) \Axl\ ̂  \\yl\\ ^ \\zl\\ + \\xl-xl-i\\lhl

and hence

Next, we suppose that limt% = t<Tx. Then z = limxJJ exists and

belongs to Da(A) n B(x, r). Moreover, |^z| ̂  \Ax\ + 2Kt<, M by (4.4).

Hence it follows from (4.3) that there exists a (5>0 such that <5^

min{l/2n, Tx-t} and dist (i^(I - ^v4), z)<^K52/3>. However, since ^J<2hJ

<^ for all sufficiently large /c, the definition of /4 implies that dist(li(/

-5 A), xZ-i)>2K62l3 for all such k. Letting /c->oo, we get dist(&(/

-5^4), z)^2K62/3 which contradicts the inequality dist(R(/-<5,4), z)

^K62/3. Therefore, lmU£ = Tx must be true. Then we define step
fc-»oo

functions un(f) and fn(i) for n^l by



724 YOSHIKAZU KOBAYASHI AND KAZUO KOBAYASI

ift = 0
f zl if re (4'-i

xl i f /e(/ j . l f / j ] , /„(/) =
1 -y%

M if /6(^Bi rj

where k=l , 2,..., ]VM and NB is an integer such that Tx-t%n^\ln. We

can easily see that \\un(t)-un(s)\\ ^ Const. \t-s\ for all s, fe[0, TJ and

/n-»0 in L!(0, Tx; X) as n-»oo. Hence, by virtue of [12; Theorem I] un

converges uniformly on [0, TJ to a unique continuous function u such

thatw(0) = jc and (1.2) holds for any [u,v]eA and s, f 6 [0, TJ with

s^f, and such that ||w(f + A)-M(f)|| ^ ||w(5 + /j)-w(s)|| for 0£s<it<^t + h^Tx.

Since ti(OeDa(A) by (4.4), condition (R) assures that u(t)- satisfies (4.1).

Therefore, (1.3) holds for every fe[0, Tx) by Lemma Al and |^4w(OI is
nonincreasing. Q. E. D.

Proof of Theorem. Let xeDa(A) and let [0, T) be the largest inter-

val on which there is a unique function u such that w(0) = x, (1.2) holds

for any [w, v\eA and s, £e[0, T) with s^f and |Aw(f)| is nonincreasing

in t. Suppose that T<oo. Since u(t)eDa(A), (4.2) gives that ||M(r)-

u(i)\\^(r-t)\Au(i)\£(r-t)\Ax\ for Ogr^r<T. This implies that z

= limw(£) exists and belongs to Da(A) again, because \Az\ <*lim\Au(s)\
r t r s t r

g|ylw(OI^Mx| for any te[0, T) by property (b) in Section 1. Hence,

by Lemma A2 we can extend u beyond T. Therefore we must have

T=oo. Consequently, we obtain the desired semigroup. Q.E. D.

Acknowledgements

The authors wish to thank the referee for many helpful comments.

References

[ 1 ] Barbu, V.s Continuous perturbations of nonlinear ra-accretive operators in
Banach spaces, Boll. Un. Mat. Ital., 6 (1972), 270-278.

[2] Benilan, Ph., Equations d'evolution dan un espace du Banach quelconque et
applications, These, Or say, (1972).

[ 3 ] Brezis, H. and Pazy, A., Accretive sets and differential equations in Banach
spaces, Israel J. Math., 8 (1970), 367-383.

[ 4 ] Crandall, M. G., A generalized domain for semigroup generators, Proc. Amer.



PERTURBATION OF NON-LINEAR EQUATIONS 725

Math. Soc., 37 (1973), 434-440.
[ 5 ] CrandalJ, M. G. and Liggett, T. M., Generation of semigroups of nonlinear

transformations on general Banach spaces, Amer. J. Math., 93 (1971), 265-298.
[ 6 ] Crandall, M. G. and Pazy, A., Semigroups of nonlinear contractions and dis-

sipative sets, /. Functional Analysis, 3(1969), 376-4J 8.
[ 7 ] Kato, T., Nonlinear evolution equations in Banach spaces, Proc. Symp. Ap-

plied Math., 17, AMS P. R. I., (1965), 50-67.
[8] 9 Accretive operators and nonlinear evolution equations in Banach

spaces, Proc. Symp. Pure Math., 18, Part I, AMS P.R.I. (1970), 158-161.
[9] Kenmochi, N., Remarks on the w-accretiveness of nonlinear operators, Hiro-

shima Math. J., 3 (1973), 61-68.
[10] Kenmochi, N. and Oharu, S., Difference approximation of nonlinear evolution

equations, Publ. RIMS, Kyoto Univ., 10 (1974), 147-207.
[11] Martin, R., Differential equations on closed subsets of a Banach space, Tras.

Amer. Math. Soc., 179 (1973), 399-414.
[12] Takahashi, T., Convergence of difference approximation of nonlinear evolution

equations and generation of semigroups, /. Math. Soc. Japan, 28 (1976), 96-
113.

[13] , Invariant sets for semigroups of nonlinear operators, to appear.
[14] Webb, G., Continuous nonlinear perturbations of linear accretive operators in

Banach spaces, /. Functional Analysis, 10 (1972), 191-203.




