Linear Transformation of Quasi-Invariant Measures

By

Hiroaki Shimomura*

Introduction

In harmonic analysis of a real separable Hilbert space H, we often wish to require a nice measure μ , whose measure theoretical structure is closely connected with the topological structure of H. In this direction, we have already known that an important measure is not a measure lying on H but rather a continuous cylindrical measure lying on a nuclear extension of H. Moreover it will be turned out that if μ is also H-quasi-invariant, then the convergence of linear functionals in μ is identical with the strong convergence in H, (see Theorem 2.1). There-*H*-continuous (cylindrical) *H*-quasi-invariant fore and measures are regarded as nice measures and are worth special interest. From now on, realizing H as l^2 , we shall consider these measures on $\mathbf{R}^{\infty}, \mathbf{R}_0^{\infty} \subset$ $l^2 \subset \mathbf{R}^{\infty}$. \mathbf{R}_0^{∞} is the set of all $x = (x_1, \dots, x_n, \dots) \in \mathbf{R}^{\infty}$ such that $x_n = 0$ except finite numbers of n. The general description for \mathbf{R}_0^{∞} -quasi-invariant measures was given by Skorohod. In [13] he characterized them in terms of a partial independence of sub- σ -fields. But this result does not directly lead a classification of l^2 -continuous and l^2 -quasi-invariant measures. In above classification, we identify μ and μ' if these measures are equivalent with each other. So it is desirable to have a concept which is invariant on the equivalence classes. One of these concepts is the set Λ_{μ} of admissible linear operators on l^2 , (see Definition 3.1). It seems to the author that A_{μ} is a natural concept and plays an effective role in this problem. (It will be turned out in Theorem 3.2 that

Communicated by K. Itô, June 21, 1976.

^{*} Department of Mathematics, Fukui University, Fukui.

HIROAKI SHIMOMURA

for a measure μ of Gauss type, the correspondence $\mu \rightarrow \Lambda_{\mu}$ is one to one up to a trivial relation.) Therefore in this paper we shall consider the transformations of μ which arise from linear operators on l^2 , and shall investigate the basic facts for Λ_{μ} .

§1. General Description for Quasi-Invariant Measures

Throughout this paper, we shall only consider probability measures which are defined on the usual σ -field $\mathscr{D}(\mathbb{R}^{\infty})$. The set of all probability measures on $\mathscr{D}(\mathbb{R}^{\infty})$ will be denoted by $M(\mathbb{R}^{\infty})$. Let $\mu \in M(\mathbb{R}^{\infty})$ and $t \in \mathbb{R}^{\infty}$. We define the transformed measure $\mu_t \in M(\mathbb{R}^{\infty})$ by $\mu_t(A)$ $= \mu(A-t)$ for all $A \in \mathscr{D}(\mathbb{R}^{\infty})$.

Definition 1.1. $\mu \in M(\mathbb{R}^{\infty})$ is called t-quasi-invariant or t is admissible translation for μ , if and only if μ_t is equivalent with $\mu(\mu_t \simeq \mu)$. The set of all such t will be denoted by T_{μ} . If $\Phi \subset T_{\mu}$, or $\Phi = T_{\mu}$ holds, we say that μ is Φ -quasi-invariant or strictly- Φ -quasi-invariant respectively.

Definition 1.2. Let $\mu \in M(\mathbb{R}^{\infty})$ be Φ -quasi-invariant. If the following condition is satisfied, we say that μ is Φ -ergodic.

For any Φ -quasi-invariant measure μ' , the relation $\mu' \leq \mu$ implies $\mu'=0$ or $\mu' \simeq \mu$. (\leq means the relation of absolute continuity.)

Several equivalent versions of Definition 1.2 are stated in [15].

Let $p_{n,m}$ (n > m) be the projection from \mathbb{R}^{∞} to \mathbb{R}^{n-m} , $x = (x_1, ..., x_{m+1}, ..., x_n, ...) \rightarrow (x_{m+1}, ..., x_n)$, and $\mu_{n,m}$ be the image measure of μ by the map $p_{n,m}$, $\mu_{n,m} = p_{n,m}\mu$. Especially we shall write $p_n(\mu_n)$ instead of $p_{n,0}(\mu_{n,0})$ respectively. If each $\mu_{n,m}$ is absolutely continuous with the Lebesgue measure on \mathbb{R}^{n-m} , then using density function $f_{n,m}$, we shall write $\mu = \{f_{n,m}\}$.

Proposition 1.1. Let $\mu \in M(\mathbb{R}^{\infty})$ be \mathbb{R}_{0}^{∞} -quasi-invariant. Then each $\mu_{n,m}$ is equivalent with the Lebesgue measure on \mathbb{R}^{n-m} .

Proof. Since any quasi-invariant σ -finite measure on any finite-

dimensional Euclid space is equivalent to Lebesgue measure, we shall show that each $\mu_{n,m}$ is \mathbb{R}^{n-m} -quasi-invariant. Suppose that $\mu_{n,m}(A)=0$ for some $A \in \mathscr{B}(\mathbb{R}^{n-m})$ and that $t=(t_{m+1},\ldots,t_n) \in \mathbb{R}^{n-m}$. Then putting $y=(0,\ldots,0,t_{m+1},\ldots,t_n,0,\ldots) \in \mathbb{R}_0^\infty$, we have $p_{n,m}^{-1}(A-t)=p_{n,m}^{-1}(A)-y$, and from the \mathbb{R}_0^∞ -quasi-invariance of μ , $\mu_{n,m}(A-t)=\mu(p_{n,m}^{-1}(A)-y)=0$. In a similar way, $\mu_{n,m}(A-t)=0$ implies $\mu_{n,m}(A)=0$. Q. E. D.

The converse assertion of the above proposition does not hold in general. We shall give a counter-example for it after the following theorem.

Theorem 1.1. Let μ , $\mu^1 \in M(\mathbb{R}^{\infty})$ and assume that $\mu_n \gtrsim \mu_n^1$ for all n. Then

(a) $\frac{d\mu_n^1}{d\mu_n}(p_n(x))$ converges to some function $\rho(x)$ for μ -a.e.x.

(b) for the Lebesgue decomposition of μ^1 in terms of μ , $\rho(x)$ is the density function of its absolutely continuous part.

Especially, in order that $\mu \gtrsim \mu^1$, it is necessary and sufficient that (c) $\mu_n \gtrsim \mu_n^1$

(d) $\left\{\frac{d\mu_n^1}{d\mu_n}(p_n(x))\right\}$ forms a Cauchy sequence in $L^1_{\mu}(\mathbf{R}^{\infty})$.

Proof. Since $\left\{\frac{d\mu_n^n}{d\mu_n}(p_n(x))\right\}$ forms a non-negative martingale with respect to (\mathscr{B}_n) , where \mathscr{B}_n is the minimal σ -field with which $p_n(x)$ is measurable, so (a) is assured by a martingale convergence theorem, (for example see [7]). Let $\mu^1(A) = \int_A F(x)d\mu(x) + s(A), A \in \mathscr{B}(\mathbb{R}^\infty)$ be the Lebesgue decomposition, in which $s \in M(\mathbb{R}^\infty)$ is singular with μ . We denote the conditional expectation of F to \mathscr{B}_n by $E[F|\mathscr{B}_n]$ for each n. Then for any $A \in \mathscr{B}_n, \int_A E[F|\mathscr{B}_n](x)d\mu(x) = \int_A F(x)d\mu(x) \leq \mu^1(A) = \int_A \frac{d\mu_n^1}{d\mu_n}(p_n(x))d\mu(x)$. Hence $E[F|\mathscr{B}_n](x) \leq \frac{d\mu_n^1}{d\mu_n}(p_n(x))$ and letting $n \to \infty$,

(1)
$$F(x) \leq \rho(x)$$
 for μ -a.e.x.

On the other hand, for any $A \in \mathscr{B}_n$ and for any n, $\int_A \rho(x) d\mu(x) \leq \lim_n \int_A \frac{d\mu_n^1}{d\mu_n} (p_n(x)) d\mu(x) = \mu^1(A)$, and therefore the same inequality holds

for any $A \in \mathscr{B}(\mathbb{R}^{\infty})$. We take a set $B \in \mathscr{B}(\mathbb{R}^{\infty})$ such that $\mu(B) = 1$ and s(B) = 0. Then $\int_{B} (F(x) - \rho(x)) d\mu(x) \ge 0$, so from (1) we conclude that $F(x) = \rho(x)$ for μ -a.e.x.

If $\mu \gtrsim \mu^1$, then clearly (c) holds and $\int \rho(x) d\mu(x) = 1$. Since $\frac{d\mu_n^1}{d\mu_n}(p_n(x))$ is non-negative modulo μ -null sets, by the well known theorem, $\int \left| \rho(x) - \frac{d\mu_n^1}{d\mu_n}(p_n(x)) \right| d\mu(x) \to 0$, which assures (d). Conversely, if (c) and (d) hold, then $\int \rho(x) d\mu(x) = 1$, therefore singular part must vanish. Q.E.D.

Counter-Example

We start from the class S_n of all skew-symmetrical matrices acting on \mathbb{R}^n . Naturally S_n may be identified with $\mathbb{R}^{k_n} (k_n = n(n-1)/2)$ under the correspondence,

$$X = \begin{pmatrix} 0, x_1, x_2, x_4 \cdots \\ -x_1, 0, x_3, & \vdots \\ -x_2, & 0, & \vdots \\ \vdots & \ddots & x_{k_n} \\ \vdots & \ddots & \vdots \\ \cdots & \cdots & \cdots & -x_{k_n}, 0 \end{pmatrix} \longleftrightarrow (x_1, x_2, \dots, x_{k_n}) = x.$$

Now we shall define a measure μ_{k_n} on $\mathscr{B}(\mathbb{R}^{k_n})$ such that, $d\mu_{k_n}(x) = \gamma_n \det(I+X)^{-(n-1)}dx$, where dx is the volume element of Lebesgue measure on $\mathscr{B}(\mathbb{R}^{k_n}), X \in S_n$ is the corresponding matrix to x and γ_n is the normalizing constant such as $\mu_{k_n}(\mathbb{R}^{k_n}) = 1$. μ_{k_n} is identified with the image measure of the normalized Haar measure λ_n on SO(n) by the Cayley transformation. That is, for a bounded measurable function f,

(2)
$$\int_{\mathbf{R}^{k_n}} f(x) d\mu_{k_n}(x) = \int_{U \in SO(n)} f((I-U)(I+U)^{-1}) d\lambda_n(U).$$

For the projection p_m^n from \mathbf{R}^n to \mathbf{R}^m , we see that $p_{k_m}^k \mu_{k_n} = \mu_{k_m} (n > m)$. (For these facts, see [8].) For $k_{n-1} < j < k_n$ we define the measure μ_j on $\mathscr{R}(\mathbf{R}^j)$ such that $\mu_j = p_j^{k_n} \mu_{k_n}$ and obtain a consistent sequence in the sense of Kolmogorov. Therefore a unique $\mu \in M(\mathbf{R}^\infty)$ exists such that $p_n \mu = \mu_n$ for all n. Now we shall show that $t = (u, 0, 0, ...) \in \mathbf{R}_0^\infty$ is not admissible for μ . We put $\rho(x) = \lim_{n} \frac{d(\mu_{t})_{k_{n}}}{d\mu_{k_{n}}}(p_{k_{n}}(x))$ and let $X_{k_{n}} \in S_{n}$ be the corresponding matrix to $p_{k_{n}}(x)$. Then,

$$\frac{d(\mu_t)_{k_n}}{d\mu_{k_n}}(p_{k_n}(x)) = \left\{ \frac{\det(I+X_{k_n})}{\det(I+X_{k_n}-T_{k_n})} \right\}^{n-1}, \text{ where } T_{k_n} = \begin{pmatrix} 0, u, 0\\ 0, u, 0\\ -u, 0, \\ 0 \end{pmatrix} \right|^n.$$

Putting $a_{i,j}^{(n)}$ for the (i, j) entry of $(I + X_{k_n})^{-1}$, we have

det
$$(I + X_{k_n})$$
det $(I + X_{k_n} - T_{k_n})^{-1} = \{1 + g_n(u, X_{k_n})\}^{-1}$ and
 $g_n(u, X_{k_n}) = (a_{1,2}^{(n)} - a_{2,1}^{(n)})u + (a_{1,1}^{(n)}a_{2,2}^{(n)} - a_{1,2}^{(n)}a_{2,1}^{(n)})u^2.$

Since $(I-X_{k_n})(I+X_{k_n})^{-1} = U_n \in SO(n)$ and $(I+X_{k_n})^{-1} = 2^{-1}(I+U_n)$, so $|g_n(u, X_{k_n})| \leq 2(|u|+u^2)$ for all *n* and *u*. From now on we shall assume that $\mu_t \simeq \mu$ and shall derive a contradiction. Then it follows that $0 < \rho(x) < \infty$, for μ -a.e.x, therefore, $\overline{\lim}(n-1)|g_n(u, X_{k_n})| \leq C \overline{\lim}(n-1)|\log(1+g_n(u, X_{k_n}))| = C |\log \rho(x)| < \infty$, for μ -a.e.x. (*C* is some constant depending on μ .) Thus $\lim_{n \to \infty} g_n(u, X_{k_n}) = 0$ for μ -a.e.x and

(3)
$$\lim_{n} \int g_{n}(u, X_{k_{n}}) d\mu(x) = 0$$

in virtue of Lebesgue's convergence theorem. On the other hand, using (2) we can easily show that $\int g_n(u, X_{k_n})d\mu(x) = u^2/4$, for all *n* and *u*. It contradicts with (3).

We shall introduce Kakutani's metric d on $M(\mathbb{R}^{\infty})$,

$$d(\mu_1, \mu_2) = \left\{ \int \left| \sqrt{\frac{d\mu_1}{d\lambda}}(x) - \sqrt{\frac{d\mu_2}{d\lambda}}(x) \right|^2 d\lambda(x) \right\}^{1/2},$$

where $\lambda \in M(\mathbf{R}^{\infty})$ is taken such that $\lambda \gtrsim \mu_i$ (i=1, 2). d does not depend on a particular choice of λ . For fixed $\mu \in M(\mathbf{R}^{\infty})$, using one to one correspondence $t \rightarrow \mu_t$, we shall induce d to the set T_{μ} , $d(t_1, t_2) =$ $d(\mu_{t_1}, \mu_{t_2})$ for $t_i \in T_{\mu}$ (i=1, 2). It is clear that d(t, 0) = d(-t, 0) and $d(t_1, t_2) = d(t_1 - t_2, 0)$. Following theorems are due to [1].

Theorem 1.2. (T_{μ}, d) is a complete metric space and the natural

injection of T_{μ} into \mathbf{R}^{∞} is continuous.

Theorem 1.3. Let Φ be a complete metric linear topological subspace of \mathbb{R}^{∞} , and be continuously imbedded into \mathbb{R}^{∞} . If $\Phi \subset T_{\mu}$, then the natural injection $\Phi \to T_{\mu}$ is continuous.

Proofs are omitted.

Remark. Under the assumption of Theorem 1.3, for any bounded measurable function F,

$$\int |F(x+t) - F(x)| d\mu(x) \longrightarrow 0 \qquad (t \longrightarrow 0 \ in \ \Phi).$$

Proposition 1.2. Let Φ be of the same meaning as in Theorem 1.3. Assume that $\Phi \subset T_{\mu}$ and Φ contains \mathbf{R}_{0}^{∞} densely. Then for a quasi-invariant measure μ , \mathbf{R}_{0}^{∞} -ergodicity is equivalent to Φ -ergodicity.

Proof. Since $\mathbf{R}_0^{\infty} \subset \Phi$, so \mathbf{R}_0^{∞} -ergodicity is always stronger than Φ -ergodicity. We shall prove the converse relation. For it, it will be sufficient that

(*) For any $B \in \mathscr{B}(\mathbb{R}^{\infty})$, the relation $\mu((B-y) \ominus B) = 0$ for any $y \in \mathbb{R}_{0}^{\infty}$ implies $\mu(B) = 0$ or $\mu(B) = 1$.

Now in virtue of Remark after Theorem 1.3, $\mu((A-y) \ominus A)$ is a continuous function of $y \in \Phi$ for each fixed $A \in \mathscr{B}(\mathbb{R}^{\infty})$, so $\mu((B-y) \ominus B) = 0$ for any $y \in \Phi$, because \mathbb{R}_0^{∞} is dense in Φ . Therefore from Φ -ergodicity we have $\mu(B) = 0$ or 1. Q.E.D.

Let $\mu \in M(\mathbb{R}^{\infty})$ be \mathbb{R}_{0}^{∞} -quasi-invariant. Then $\int \sqrt{\frac{d\mu_{y}}{d\mu}}(x)d\mu(x)$ is a positive definite function of $y \in \mathbb{R}_{0}^{\infty}$ and continuous with the inductive limit topology of \mathbb{R}_{0}^{∞} . Therefore there exists a unique $v \in M(\mathbb{R}^{\infty})$ (which is called the adjoint measure of μ) such that,

$$\hat{v}(y) = \int \exp(2\pi i x(y)) dv(x) = \int \sqrt{\frac{d\mu_y}{d\mu}}(x) d\mu(x)$$

for all $y = (y_1, \dots, y_n, \dots) \in \mathbf{R}_0^\infty$. x(y) means $\sum_{n=1}^\infty y_n x_n$.

Proposition 1.3. Let $\mu \in M(\mathbb{R}^{\infty})$ be \mathbb{R}_{0}^{∞} -quasi-invariant. Let Φ be

- a complete metric linear topological subspace of \mathbf{R}^{∞} such that (a) Φ is continuously imbedded into \mathbf{R}^{∞}
- (b) Φ contains \mathbf{R}_0^{∞} densely.

Then in order that $T_{\mu} \supset \Phi$, it is necessary and sufficient that $\hat{v}(y)$ is continuous with the induced topology from Φ .

Proof. The necessity is an immediate consequence of Theorem 1.3. For the sufficiency, let $y \in \Phi$ and $\{y_n\} \subset \mathbb{R}_0^{\infty}$ such that $y_n \to y \ (n \to \infty)$ in Φ . By the assumption, $d(y_n, y_m) = 2\{1 - \hat{v}(y_n - y_m)\} \to 0 \ (n, m \to \infty)$, which shows $\{y_n\}$ forms a Cauchy sequence in T_{μ} . From Theorem 1.2, there exists $t \in T_{\mu}$ such that $d(y_n, t) \to 0 \ (n \to \infty)$. Since the both injections of Φ and T_{μ} into \mathbb{R}^{∞} are continuous, so y = t. Q.E.D.

For a sequence $a = \{a_n\}$, we set $H_a = \{x = (x_1, ..., x_n, ...) \in \mathbb{R}^{\infty} | \sum_{n=1}^{\infty} a_n^2 x_n^2 < \infty\}.$

Proposition 1.4. Let $\mu \in M(\mathbb{R}^{\infty})$. Then there exists a positive sequence $a = \{a_n\}$ such that $\mu(H_a) = 1$.

Proof. Since \mathbf{R}^{∞} is a Polish space, we can take a compact set $K_n \subset \mathbf{R}^{\infty}$ such that $\mu(K_n) > 1 - 1/n$ for each *n*. Without loss of generality, we may assume that $\{K_n\}$ is increasing. We take a positive sequence $a = \{a_n\}$ such that, $\sum_{n=1}^{\infty} a_n^2 \int_{K_n} x_n^2 d\mu(x) < \infty$. Then for any *N*,

$$\int_{K_N} \left(\sum_{n=1}^{\infty} a_n^2 x_n^2 \right) d\mu(x) \leq \sum_{n=1}^{N} a_n^2 \int_{K_N} x_n^2 d\mu(x) + \sum_{n=N+1}^{\infty} a_n^2 \int_{K_n} x_n^2 d\mu(x) < \infty.$$

It follows easily $\mu(H_a) = 1$.

Proposition 1.5. Let $\mu \in M(\mathbb{R}^{\infty})$ be \mathbb{R}_0^{∞} -quasi-invariant. Then there exists some sequence $a = \{a_n\}$ such that $T_{\mu} \supset H_a$.

Proof. Let v be the adjoint measure of μ . Applying Proposition 1.4 for v, $v(H_b)=1$ for some positive sequence $b = \{b_n\}$. We put $a_n = b_n^{-1}$ for each n and $a = \{a_n\}$. Since for any $y = (y_1, \dots, y_n, \dots) \in \mathbb{R}_0^{\infty}$ and for any R > 0,

$$|1-\hat{v}(y)| \leq \int |1-\exp\left(2\pi i \sum_{n=1}^{\infty} y_n a_n b_n x_n\right)| dv(x)$$

Q. E. D.

HIROAKI SHIMOMURA

$$\leq 2 \int \sum b_n^2 x_n^2 \geq R^2 dv(x) + 2\pi \int \sum b_n^2 x_n^2 < R^2 |\sum_{n=1}^{\infty} y_n a_n b_n x_n| dv(x)$$

$$\leq 2v (\sum_{n=1}^{\infty} b_n^2 x_n^2 \geq R^2) + 2\pi R (\sum_{n=1}^{\infty} a_n^2 y_n^2)^{1/2},$$

so $\hat{v}(y)$ is continuous with the natural Hilbertian topology of H_a . Hence $T_{\mu} \supset H_a$ from Proposition 1.3. Q.E.D.

Let g_c be a one-dimensional Gaussian measure with mean 0 and variance c^2 , and $G_{\alpha} (\alpha = \{\alpha_n\}) \in M(\mathbb{R}^{\infty})$ be the product-measure of $\{g_{\alpha_n}\}$. It is easy that $G_{\alpha}(H_{\alpha}) = 1$ for any sequence $a = \{a_n\}$ such that $\sum_{n=1}^{\infty} a_n^2 \alpha_n^2 < \infty$. Now let $\mu \in M(\mathbb{R}^{\infty})$ be a \mathbb{R}_0^{∞} -quasi-invariant measure. We take a sequence $a = \{a_n\}$ assured by Proposition 1.4 such that $T_{\mu} \supset H_a$ and take a positive sequence $\alpha = \{\alpha_n\}$ such that $\sum_{n=1}^{\infty} a_n^2 \alpha_n^2 < \infty$. Then $\mu * G_{\alpha}$ (convoluted measure by μ and G_{α}) is equivalent with μ , because $G_{\alpha}(T_{\mu})$ =1. Conversely, for any positive sequence $\alpha = \{\alpha_n\}$ and for any $\mu^1 \in M(\mathbb{R}^{\infty}), \ \mu^1 * G_{\alpha}$ is \mathbb{R}_0^{∞} -quasi-invariant, because G_{α} is \mathbb{R}_0^{∞} -quasi-invariant. Thus,

Theorem 1.4. In order that $\mu \in M(\mathbb{R}^{\infty})$ is \mathbb{R}_{0}^{∞} -quasi-invariant, it is necessary and sufficient that there exist some $\mu^{1} \in M(\mathbb{R}^{\infty})$ and a positive sequence $\alpha = \{\alpha_{n}\}$ such that $\mu \simeq \mu^{1} * G_{\alpha}$.

Let \mathscr{B}^n be the minimal σ -field with which all the functions $p_{j,n}(x)$ $(j \ge n+1)$ are measurable and put $\mathscr{B}_{\infty} = \bigcap_{n=1}^{\infty} \mathscr{B}^n$. We say that $\mu \in M(\mathbb{R}^{\infty})$ is tail-trivial if μ takes only the value 0 or 1 on \mathscr{B}_{∞} .

Theorem 1.5. In order that $\mu \in M(\mathbb{R}^{\infty})$ is \mathbb{R}_{0}^{∞} -quasi-invariant and \mathbb{R}_{0}^{∞} -ergodic, it is necessary and sufficient that there exist a tail-trivial measure μ^{1} and $\alpha = \{\alpha_{n}\}$ as in Theorem 1.5.

Proof. In general, tail-trivial condition is equivalent to \mathbb{R}_0^∞ -ergodicity for a measure with \mathbb{R}_0^∞ -quasi-invariance. See, [13]. Therefore the necessity part follows from preceding arguments to Theorem 1.5. For the sufficiency, we have only to check that $\mu^1 * G_\alpha$ is tail-trivial. Let $A \in \mathscr{B}_\infty$. Since G_α is \mathbb{R}_0^∞ -ergodic (assured by 0–1 law) so $G_\alpha(A-x)$ takes only the value 0 or 1 as a function of $x \in \mathbb{R}^\infty$. Moreover, a set $E = \{x \in \mathbb{R}^\infty | G_\alpha(A-x) = 1\}$ belongs to \mathscr{B}_∞ . Therefore $\mu^1 * G_\alpha(A) = \mu^1(E) = 0$

Q. E. D.

§2. l^2 -Quasi-Invariant and l^2 -Continuous Measure and Its Linear Transformations

Let $\mu \in M(\mathbb{R}^{\infty})$. We say that μ is l^2 -continuous if its Fourier-Bochner transformation, $\hat{\mu}(y) = \int \exp(2\pi i x(y)) d\mu(x)$ is a continuous function of $y \in \mathbb{R}^{\infty}_0$ with the induced topology from l^2 . Since for any $\varepsilon > 0$ and for any $y \in \mathbb{R}^{\infty}_0$,

$$\begin{split} \mu(x||x(y)| > \varepsilon) &\leq e^{\varepsilon}(e^{\varepsilon} - 1)^{-1} \int (1 - \exp(-|x(y)|) d\mu(x) \\ &= e^{\varepsilon}(e^{\varepsilon} - 1)^{-1} \int (1 - \exp(iux(y))\pi^{-1}(1 + u^2)^{-1} du d\mu(x) \\ &\leq e^{\varepsilon}(e^{\varepsilon} - 1)^{-1} \int_{|u| \leq R} |1 - \hat{\mu}(uy)|\pi^{-1}(1 + u^2)^{-1} du \\ &+ 4e^{\varepsilon}(e^{\varepsilon} - 1)^{-1}\pi^{-1}(\pi/2 - \tan^{-1}R), \end{split}$$

so $\mu(x||x(y)| > \varepsilon) \to 0$ as $||y|| = (\sum_{n=1}^{\infty} y_n^2)^{1/2} \to 0$. Therefore for any $h \in l^2$, we can define x(h), taking a limit (in the sense of convergence in μ) of $\{x(h_n)\}$ such that $\{h_n\} \subset \mathbb{R}_0^{\infty}$ and $h_n \to h$ in l^2 . We shall denote the set of all μ -measurable real-valued functions by $\operatorname{Mes}(\mathbb{R}^{\infty}, \mu, \mathbb{R}^1)$.

Theorem 2.1. Let $\mu \in M(\mathbb{R}^{\infty})$ be an l^2 -continuous and l^2 -quasiinvariant measure. (in abbreviation, l^2 -c.q. measure) Then the map $h \in l^2 \rightarrow x(h) \in \operatorname{Mes}(\mathbb{R}^{\infty}, \mu, \mathbb{R}^1)$ equipped with the topology of convergence in μ is a homeomorphic operator.

Proof. The continuity of the map follows from above arguments. We shall prove the inverse continuity. Let $\{h_n\} \subset l^2$ and $x(h_n) \to 0$ in μ . It follows that $1 - \int \exp(-|x(h_n)|) d\mu(x) \to 0$ $(n \to \infty)$, and therefore for an appropriate subsequence $\{n_j\}, \sum_{j=1}^{\infty} \left\{1 - \int \exp(-|x(h_{n_j})|) d\mu(x)\right\} < \infty$, which yields $\sum_{j=1}^{\infty} |x(h_{n_j})| < \infty$ for μ -a.e.x. It follows from the l^2 -quasiinvariance that for any $h \in l^2, \sum_{j=1}^{\infty} |(x \pm h)(h_{n_j})| < \infty$ for μ -a.e.x. and therefore $\sum_{j=1}^{\infty} |h(h_{n_j})| < \infty$. In this step, we put $s_1 = h_{n_1}$ and put inductively $s_j = h_{n_j}$ or $-h_{n_j}$ as $||s_1 + \dots + s_j||^2 \ge \sum_{n=1}^{j} ||s_n||^2$ will be satisfied. And we put $S_n = s_1 + \dots + s_n$. Then for any $h \in l^2$, $|h(S_n) - h(S_m)| \le \sum_{j=n+1}^{m} |h(s_j)| \to 0$ $(n, m \to \infty)$, which derives that $\{||S_n||\}$ is bounded. Therefore $||h_{n_j}|| = ||s_j|| \to 0$ $(j \to \infty)$. It follows easily that $h_n \to 0$ $(n \to \infty)$.

Q. E. D.

Q. E. D.

Proposition 2.1. Let μ , $\mu^1 \in M(\mathbb{R}^{\infty})$ and $\mu \gtrsim \mu^1$. If μ is l^2 -continuous, then μ^1 is also l^2 -continuous.

Proof. We put $A_n = \left\{ x \left| \frac{d\mu^1}{d\mu}(x) \le n \right\} \right\}$. Then $\mu(A_n^c) \to 0$, therefore $\mu^1(A_n^c) \to 0$ $(n \to \infty)$. Now for $y \in \mathbf{R}_0^\infty$,

$$\left| 1 - \int \exp(ix(y)) d\mu^{1}(x) \right| \leq \int_{A_{n}} |1 - \exp(ix(y))| \frac{d\mu^{1}}{d\mu}(x) d\mu(x) + 2\mu^{1}(A_{n}^{c})$$
$$\leq n \int |1 - \exp(ix(y))| d\mu(x) + 2\mu^{1}(A_{n}^{c})$$
$$\leq \sqrt{2} n \left| \int (1 - \exp(ix(y)) d\mu(x)) \right|^{1/2} + 2\mu^{1}(A_{n}^{c}).$$

It shows that $\widehat{\mu^1}(y)$ is continuous with ||y||.

Proposition 2.2. Let $\mu \in M(\mathbb{R}^{\infty})$ be l^2 -continuous. Then $T_{\mu} \subset l^2$.

Proof. Let $t \in T_{\mu}$. Then $\widehat{\mu_t}(y)$ is continuous in virtue of Proposition 2.1. Since $\widehat{\mu_t}(y) = \exp(it(y))\widehat{\mu}(y)$ and $|1 - \exp(it(y))| = |\widehat{\mu}(y) - \widehat{\mu_t}(y)| |\widehat{\mu}(y)|^{-1}$, so $\exp(it(y))$ (equivalently, t(y)) is a continuous function of ||y||. Consequently, $t \in l^2$. Q. E. D.

Let μ be an l^2 -continuous measure on $\mathscr{B}(\mathbb{R}^{\infty})$ and S be a linear operator (not necessarily bounded) on l^2 . Then the function $\hat{\mu}(Sy)$ of $y \in \mathbb{R}_0^{\infty}$ is positive definite and continuous with a inductive limit topology of \mathbb{R}_0^{∞} . Therefore a unique $\mu_S \in M(\mathbb{R}^{\infty})$ corresponds to $\hat{\mu}(Sy)$ through the Fourier-Bochner transformation.

Proposition 2.3. Let S be a linear operator on l^2 . Assume that μ is l^2 -c.q. Then in order that μ_s is l^2 -continuous, it is necessary and

sufficient that there exists a bounded operator \tilde{S} on l^2 such that $\tilde{S}|\mathbf{R}_0^{\infty} = S|\mathbf{R}_0^{\infty}$.

Proof. Clearly the existence of such \tilde{S} implies the continuity of μ_S . Conversely, suppose that μ_S is l^2 -continuous and that $\{y_n\} \subset \mathbf{R}_0^{\infty}$, $y_n \to 0$ in l^2 . Then $\widehat{\mu_S}(uy_n) = \widehat{\mu}(uSy_n) \to 1 \ (n \to \infty)$ for all $u \in \mathbf{R}^1$. Therefore $\{Sy_n\}$ converges to 0 in μ , consequently $Sy_n \to 0 \ (n \to \infty)$ in l^2 by Theorem 2.1. It shows that $S|\mathbf{R}_0^{\infty}$ is continuous with respect to the induced topology from l^2 , therefore it can be extended to a bounded operator \tilde{S} on l^2 . Q.E.D.

Theorem 2.2. Let μ , $\mu^1 \in M(\mathbb{R}^{\infty})$. Assume that μ is l^2 -continuous and that S is a bounded operator on l^2 . Then if $\mu \gtrsim \mu^1$, we have $\mu_S \gtrsim \mu_S^1$.

Proof. By Proposition 2.1, μ^1 is also l^2 -continuous, so μ_s^1 has a meaning. Let \mathscr{B} be the minimal σ -field with which all the functions $x(Sh), h \in l^2$ are measurable. And let D be the set of all trigonometric polynomials of a type of $\sum_{j=1}^{n} \alpha_j \exp(ix(Sh_j))$, where $\alpha_j \in \mathbb{C}, h_j \in l^2$ and n is arbitrary but finite. The $L^2_{\mu}(\mathbb{R}^{\infty})$ -closure of D (denoted by \overline{D}) consists with all \mathscr{B} -measurable square summable functions with μ . We shall denote the conditional expectation of $X \in L^1_{\mu}(\mathbb{R}^{\infty})$ to \mathscr{B} by $E[X|\mathscr{B}]$. A map U defined on D such that $\sum_{j=1}^{n} \alpha_j \exp(ix(Sh_j)) \rightarrow \sum_{j=1}^{n} \alpha_j \exp(ix(h_j))$ is an isometric operator from $D \subset L^2_{\mu}(\mathbb{R}^{\infty})$ into $L^2_{\mu_s}(\mathbb{R}^{\infty})$. So it can be extended to \overline{D} with the same property. We put $U(\sqrt{E\left\lfloor\frac{d\mu^1}{d\mu}\mid\mathscr{B}\right\rfloor}) = Y \in L^2_{\mu_s}(\mathbb{R}^{\infty})$. Since for any $X \in \overline{D}$ and for any $h \in l^2$, $U(\exp(ix(Sh))X) = \exp(ix(h))U(X)$, so

$$\int \exp(ix(h)) |Y(x)|^2 d\mu_S(x) = \int \exp(ix(Sh)) E\left[\frac{d\mu^1}{d\mu} \middle| \mathscr{B}\right](x) d\mu(x)$$
$$= \int \exp(ix(Sh)) d\mu^1(x) = \int \exp(ix(h)) d\mu_S^1(x).$$

Thus, $d\mu_{S}^{1}(x) = |Y(x)|^{2} d\mu_{S}(x)$.

Q. E. D.

Theorem 2.3. Let $\mu \in M(\mathbb{R}^{\infty})$ be l^2 -c.q. Then for any bounded operator S on l^2 , $T_{\mu_s} = S^* l^2$. Moreover if μ is l^2 -ergodic, then μ_s is

S*l²-ergodic.

Proof. Let $h \in l^2$. Since $(\mu_h)_S = (\mu_S)_{S^*h}$, so $(\mu_S)_{S^*h} \simeq \mu_S$ in virtue of Theorem 2.2, which shows $S^*l^2 \subset T_{\mu_S}$. We shall prove the converse relation in a similar method with in Theorem 2.2. Let D_1 be a set of all trigonometric polynomials of a type of $\sum_{j=1}^n \alpha_j \exp(ix(h_j))$, where $\alpha_j \in \mathbb{C}, h_j \in l^2$ and *n* is arbitrary but finite. A map U_1 defined on D_1 such that $\sum_{j=1}^n \alpha_j \exp(ix(h_j)) \rightarrow \sum_{j=1}^n \alpha_j \exp(ix(Sh_j))$ is an isometric operator from $D_1 \subset L^2_{\mu_S}(\mathbb{R}^\infty)$ into $L^2_{\mu}(\mathbb{R}^\infty)$, and it can be extended to the whole space $L^2_{\mu_S}(\mathbb{R}^\infty)$, because D_1 is dense in $L^2_{\mu_S}(\mathbb{R}^\infty)$. Now let $t \in T_{\mu_S}$. Putting $U_1(\sqrt{\frac{d(\mu_S)_t}{d\mu}}) = X_t$, we have for $h \in l^2$,

$$\int \exp(ix(Sh))|X_t|^2 d\mu(x) = \int \exp(ix(h))d(\mu_S)_t(x) = \exp(it(h))\int \exp(ix(Sh))d\mu(x) d\mu(x) d\mu(x)$$

Since $X_t^2 d\mu(x) \leq d\mu(x)$, so from Proposition 2.1, $\exp(it(h))$ is a continuous function of ||Sh||, therefore the same holds for t(h). It follows that there exists a suitable constant K > 0 such that $|t(h)| \leq K ||Sh||$ for any $h \in l^2$. Consequently, $t \in S^*l^2$.

For the ergodicity, it will be sufficient that a function $X \in L^2_{\mu_s}(\mathbb{R}^{\infty})$ which satisfies for any $h \in l^2$, $X(x) = X(x - S^*h)$ for μ_s -a.e.x is a constant function for μ_s -a.e.x. First we shall state a following general consideration. Let $Z(x) \in L^2_{\mu_s}(\mathbb{R}^{\infty})$ such that for some $h \in l^2$, $Z(x - S^*h)$ $= Z_h(x) \in L^2_{\mu_s}(\mathbb{R}^{\infty})$. We put $U_1(Z) = W$ and $U_1(Z_h) = W_h$. Then for any $\varepsilon > 0$, there exists trigonometric polynomial such that,

$$\|Z_h(x) - \sum_{j=1}^n \alpha_j \exp(ix(h_j))\|_{\mu_S} < \varepsilon \quad \text{and}$$
$$\|Z_h(x) - \sum_{j=1}^n \alpha_j \exp(ix(h_j))\|_{(\mu_S)S^*h} < \varepsilon$$

Therefore,

$$\|W_h(x) - \sum_{j=1}^n \alpha_j \exp(ix(Sh_j))\|_{\mu} < \varepsilon \quad \text{and}$$
$$\|W(x) - \sum_{j=1}^n \alpha_j \exp(ih(Sh_j)) \exp(ix(Sh_j))\|_{\mu} < \varepsilon.$$

If necessary, taking a subsequence, we may assume that the above two trigonometric polynomials converge to $W_h(x)$ and to W(x) for μ -a.e.x respectively. From the l^2 -quasi-invariance, it follows that $W_h(x+h) =$

W(x) for μ -a.e.x. Returning to X, we put $U_1(X) = Y$. Since $X(x) = X_h(x)$ for μ_s -a.e.x, so for any $h \in l^2$, Y(x+h) = Y(x) for μ -a.e.x. Consequently, Y(x) = const for μ -a.e.x in virtue of l^2 -ergodicity of μ , which derives that X(x) = const for μ_s -a.e.x. Q. E. D.

§3. Admissible Linear Transformations

Definition 3.1. Let $\mu \in M(\mathbb{R}^{\infty})$ be l^2 -c.q., and S be a bounded operator on l^2 . We say that S is admissible for μ , if $\mu_S \simeq \mu$. We denote the set of all such S by Λ_{μ} .

Proposition 3.1. Let μ , $\mu^1 \in M(\mathbb{R}^{\infty})$ be l^2 -c.q. Then,

(a) $\mu \simeq \mu^1$ implies $\Lambda_{\mu} = \Lambda_{\mu_1}$.

(b) if T is a homeomorphic operator on l^2 , then $\Lambda_{\mu_T} = T^{-1} \Lambda_{\mu} T$.

Especially in the case of $T=\alpha I$, (I is an identity operator on l^2 and $\alpha \neq 0 \in \mathbf{R}^1$) $\Lambda_{\mu_T} = \Lambda_{\mu}$.

(c) $S_1, S_2 \in A_{\mu}$ implies $S_1 \cdot S_2 \in A_{\mu}$. If S has a bounded inverse, S $\in A_{\mu}$ implies $S^{-1} \in A_{\mu}$.

(d) $S \in A_{\mu}$ implies S^* is onto. Hence S is a homeomorphism from l^2 to a closed subspace of l^2 .

Proof. (a) and (d) are immediate consequences of Theorem 2.2 and of Theorem 2.3 respectively. (b) and (c) follow from the fact $(\mu_s)_T = \mu_{ST}$.

In this section we shall study Λ_{μ} first for a measure of Gauss type and later for a general μ .

1. A Measure of Gauss Type

We say that $G_V \in M(\mathbb{R}^\infty)$ is a measure of Gauss type if its Fourier-Bochner transformation has a following form.

$$\widehat{G}_{V}(e) = \int \exp(ix(e)) dG_{V}(x) = \exp(-\|Ve\|^{2}/2),$$

where V is a bounded operator on l^2 , such that V* is onto. This

definition is particular comparing with a usual definition, because we shall demand that G_V is l^2 -c.q. Actually G_V is l^2 -c.q., which is assured by Theorem 2.3 and by the fact that G_I is l^2 -c.q. One more remark is that, since $G_V = G_{\sqrt{V^*V}}$, so without loss of generality we may assume that V is a positive definite Hermitian homeomorphic operator.

Theorem 3.1. Let G_V be a measure of Gauss type. Then $\Lambda_{G_V} = \{S | S^* \text{ is onto, and } V^*V - (VS)^*VS \text{ is a Hilbert-Shmidt operator.} \}$.

This result is due to [2]. We omit the proof.

Theorem 3.2. Let $G_V, G_W \in M(\mathbb{R}^{\infty})$ be measures of Gauss type. Then for $\Lambda_{G_V} = \Lambda_{G_W}$, it is necessary and sufficient that $G_V \simeq G_{\alpha W}$ for a some positive constant α .

Proof. The sufficiency follows from Proposition 3.1. Let $\Lambda_{G_V} = \Lambda_{G_W}$. V, W may be assumed as homeomorphic operators. Then from (b) in Proposition 3.1, $\Lambda_{G_{VW}^{-1}} = \Lambda_{G_I}$. Taking $S = \sqrt{(VW^{-1})^* VW^{-1}}$ in place of VW^{-1} , we have $\Lambda_{G_S} = \Lambda_{G_I}$. From it we can derive that there exists some positive constant α such that $S - \alpha I$ is a Hilbert-Shmidt operator. (We shall prove it in a subsequent lemma.) Consequently from Theorem 3.1, we have $G_S \simeq G_{\alpha I}$, equivalently $G_V \simeq G_{\alpha W}$. Q.E.D.

Since any isometric operator belongs to Λ_{G_I} , so for the remainder part of the above proof it will be sufficient to assure the following fact.

Lemma 3.1. Let S be a Hermitian bounded operator on l^2 . Assume that for any isometric operator U, $S-U^*SU$ is a Hilbert-Shmidt operator. Then we conclude that there exists some real constant α such that $S-\alpha I$ is a Hilbert-Shmidt operator.

Proof. Let $\{E_{\lambda}\}$ be the resolution of unity of $S, S = \int \lambda dE_{\lambda}$. We shall denote the set of all continuous spectrums (of all point spectrums) of S by C(S) (P(S)) respectively. We divide the proof into five steps. (I) For any $\lambda \in C(S)$ and for $\forall p < \lambda < \forall q$, the dimension of Range $(E_p - E_q)$ is infinite.

Proof is derived from the Hermitian property of S.

(II) C(S) consists of at most single point.

Suppose the contrary case, and let $\lambda_1, \lambda_2 \in C(S), \lambda_1 < \lambda_2$. Taking $p_i, q_i \ (i = 1, 2)$ such that $p_1 < \lambda_1 < q_1 < p_2 < \lambda_2 < q_2$, we set $M_i =$ Range $(E_{q_i} - E_{p_i})$. Then M_1 and M_2 are mutually orthogonal and their dimensions are infinite. Take an orthogonal operator U on l^2 such that $UM_1 = M_2$ and $UM_1^{\perp} = M_2^{\perp}$. Then for any $m \in M_1, <Sm, m > \leq q_1 ||m||^2$ and $<SUm, Um > \geq p_2 ||m||^2$, therefore $<(U^*SU-S)m, m > \geq (p_2-q_1)||m||^2$. ($< \cdot, \cdot >$ means the scalar product in l^2 .) It contradicts with the assumption of a Hilbert-Schmidt operator. (III) If λ is an accumulation point of P(S) (that is, whose any neighbourhood meets infinitely many points of P(S)) and $C(S) \neq a$ then

bourhood meets infinitely many points of P(S)) and $C(S) \neq \emptyset$, then $C(S) = \{\lambda\}$. The set of all accumulation points of P(S) consists of at most single point.

Proof is carried out in a similar way with in (II).

(IV) We put $\alpha = \lambda$, in the case of (A) $C(S) = \{\lambda\}$, (B) $C(S) = \emptyset$ and λ is an accumulation point of P(S). If $C(S) = \emptyset$ and P(S) consists of only finitely many elements, then there exists a unique $\lambda \in P(S)$ such that the eigen-vector space corresponding to λ has an infinite dimension. In this case putting $\alpha = \lambda$, $S - \alpha I$ becomes a finite-rank operator. So we shall consider the problem in the case of (A) or (B). Put $T = S - \alpha I$. Then the continuous spectrum of T (if it exists) is origin and P(T) accumulates only to origin. Let $\{F_{\lambda}\}$ be the resolution of unity of T, $T = \int_{a}^{b} \lambda dF_{\lambda}$, and let $\{\varepsilon_n\} (\{\eta_n\})$ be a decreasing (increasing) sequence which converges to 0 respectively. We put $T_n = \int_{a}^{\eta_n} \lambda dF_{\lambda} + \int_{\varepsilon_n}^{b} \lambda dF_{\lambda}$. Then T_n is a compact Hermitian operator and for any $h \in l^2$, $|\langle (T - T_n)h, h > | \leq (|\eta_n| + \varepsilon_n) ||h||^2 \to 0 \ (n \to \infty)$. Since for any bounded Hermitian operator H, $\sup_{\||h\| \leq 1} |\langle Hh, h > | = \|H\|$, it follows that T is also a compact operator.

(V) Let $\lambda_n (\neq 0)$ be an eigen-value of T and h_n be a corresponding unit eigen-vector of T, $Th = \sum_{n=1}^{\infty} \lambda_n < h$, $h_n > h_n$, $\lim_n \lambda_n = 0$. We take a subsequence $\{n_j\}$ such that $\sum_{j=1}^{\infty} |\lambda_{n_j}|^2 < \infty$, and define an isometric operator U such that $Uh_j = h_{n_j}$ for all j and $U|\ker T = \text{identity}$. Then from the assumption, $\infty > \sum_{j=1}^{\infty} ||(U^*TU - T)h_j||^2 = \sum_{j=1}^{\infty} |\lambda_{n_j} - \lambda_j|^2$, which is equivalent to $\sum_{j=1}^{\infty} \lambda_j^2 < \infty$. Q. E. D. **Theorem 3.3.** Let S be an Hermitian operator on l^2 . Assume that $S \in A_{G_V}$ for some G_V . Then $I - S^2$ is a Hilbert-Shmidt operator.

Proof. Since $V^*V - SV^*VS$ is a Hilbert-Shmidt operator, the proof follows from the following lemma.

Lemma 3.2. Let P be a positive definite Hermitian homeomorphic operator on l^2 . Assume that T is a bounded operator on l^2 and that P-TPT is a Hilbert-Shmidt operator. Then $I-T^2$ is a Hilbert-Shmidt operator.

Proof. First we shall prove for any n > 0,

(**)
$$P^{2n+1} - TP^{2n+1}T$$
 is a Hilbert-Shmidt operator.

Inductively, we shall assume that (**) holds for $1 \le j \le n-1$. Multiplying P^2 by $P^{2n-1} - TP^{2n-1}T$, we have $P^{2n+1} - P^2TP^{2n-1}T$ is a Hilbert-Shmidt operator. On the other hand, since both $TP^2 - TPTPT$ and $P^2T - TPTPT$ are Hilbert-Shmidt operators, so the same holds for $TP^2 - P^2T$. Substituting TP^2 for P^2T in $P^2TP^{2n-1}T$, we can assure that (**) holds for n. Let $\{E_{\lambda}\}$ be the resolution of unity of $P, P = \int_a^b \lambda dE_{\lambda}$. Without loss of generality we can assume that 0 < a < b < 1. Approximating $\lambda^{1/2n+1}$ by polynomials of λ on the interval [-b, b], for any $\varepsilon > 0$, there exist m and $a_j (j=1, 2, ..., m) \in \mathbb{R}^1$ such that $||P^{1/2n+1} - \sum_{j=1}^m a_j P^{2j+1}|| < \varepsilon$ for each fixed n. Generally speaking, for a bounded operator $B_1, B_2, ||B_1 - TB_1T - (B_2 - TB_2T)|| \le (1 + ||T||^2) ||B_1 - B_2||$, so $P^{1/2n+1} - TP^{1/2n+1}T$ is a compact operator. Since,

$$\|(I-P^{1/n})x\|^2 = \int_a^b (1-\lambda^{1/n})^2 d < E_{\lambda}x, \ x > \leq (1-a^{1/n})^2 \|x\|^2,$$

it follows that by the same argument as in above $I-T^2$ is a compact operator. Let $(T^2-I)h = \sum_{n=1}^{\infty} \lambda_n < h, h_n > g_n$ be the spectre decomposition, where $\{h_n\}$ and $\{g_n\}$ are orthonomal systems respectively, and $\lambda_n > 0$, $\lim \lambda_n = 0$. Then,

$$< T^2 P T^2 h_n, \ g_n > = < P(\lambda_n g_n + h_n), \ \lambda_n h_n + g_n >$$
$$= (1 + \lambda_n^2) < P h_n, \ g_n > + \lambda_n \{ < P h_n, \ h_n > + < P g_n, \ g_n > \}.$$

Since $\{\langle T^2PT^2h_n, g_n \rangle - \langle Ph_n, g_n \rangle\} \in l^2$ and $\langle Ph, h \rangle \ge a \|h\|^2$ for any $h \in l^2$, it follows that $\{\lambda_n\} \in l^2$, which shows that $I - T^2$ is a Hilbert-Shmidt operator. Q.E.D.

Corollary. Let G_V be a measure of Gauss type. Then for a positive definite Hermitian homeomorphic operator S, following conditions are equivalent.

- (a) I-S is a Hilbert-Shmidt operator.
- (b) $S \in \Lambda_{G_V}$.

2. General μ

First we shall state the following fact comparing with Corollary of Theorem 3.3. Let S be an arbitrary homeomorphic operator on l^2 , and let $\mu \in M(\mathbb{R}^{\infty})$ be an l^2 -c.q. measure. We put

$$\mu^{S}(A) = \sum_{n=0}^{\infty} \frac{1}{2^{n+2}} \{ \mu_{S^{n}}(A) + \mu_{S^{-n}}(A) \} \quad \text{for} \quad A \in \mathscr{B}(\mathbf{R}^{\infty}).$$

Then, (a) μ^{s} is l^{2} -c.q., (b) $S \in \Lambda_{\mu^{s}}$.

Therefore some l^2 -c.q. measures have an arbitrarily given homeomorphic operator as an admissible element. However if we confine our consideration to l^2 -ergodic measures, we can generalize Theorem 3.3 as follows.

Theorem 3.4. Let S be an Hermitian bounded operator on l^2 . Then in order that $S \in A_{\mu}$ for some l^2 -continuous, l^2 -quasi-invariant and l^2 -ergodic (in an abbreviation, l^2 -c.q.e.) measure $\mu \in M(\mathbb{R}^{\infty})$, it is necessary that $I - S^2$ is a compact operator.

Proof is derived from following lemmas.

Lemma 3.3. Let T be an Hermitian bounded operator on l^2 . And let $m \in M(\mathbb{R}^{\infty})$ be l^2 -c.q. and $\mu \in M(\mathbb{R}^{\infty})$ be l^2 -continuous. Then for $m*\mu \simeq m*\mu_T$, it is sufficient that I-T is a Hilbert-Shmidt operator.

Proof. Let $Th = \sum_{n=1}^{\infty} (1+\lambda_n) < h$, $h_n > h_n$ be the spectre decomposition of T, where $\{h_n\}$ is c.o.n.s. in l^2 and $\sum_{n=1}^{\infty} \lambda_n^2 < \infty$. We set

 $e_n = (0, 0, ..., 0, 1, 0, ...) \in \mathbb{R}^{\infty}$ for each *n*, and take an orthogonal operator on l^2 such that $Ue_n = h_n$. Then $U^*TUh = \sum_{n=1}^{\infty} (1+\lambda_n) < h, e_n > e_n$, and $m*\mu \simeq m*\mu_T$ is equivalent to $m_U*\mu_U \simeq m_U*(\mu_U)_{U*TU}$. Therefore substituting m_U for *m*, μ_U for μ and U^*TU for *T*, we may prove it in the case of $h_n = e_n$. In this case *T* can be extended naturally to \mathbb{R}^{∞} . Now in virtue of the l^2 -continuity, $\sum_{n=1}^{\infty} \lambda_n^2 x_n^2 < \infty$, for μ -a.e.x. We shall denote the above set by $H_{\lambda}(\subset \mathbb{R}^{\infty})$. Since for any $x = (x_1, ..., x_n, ...) \in H_{\lambda}$, $\sum_{n=1}^{\infty} \{Tx(e_n) - x(e_n)\}^2 = \sum_{n=1}^{\infty} \lambda_n^2 x_n^2 < \infty$, so $m*\mu(A) = \int_{H_{\lambda}} m(A-x)d\mu(x) = 0$ implies $\int_{H_{\lambda}} m(A-Tx+Tx-x)d\mu(x) = 0$, equivalently m(A-Tx)=0 for μ a.e.x. It yields m(A-x)=0 for μ_T -a.e.x and therefore $m*\mu_T(A)=0$. The converse relation is shown in a similar way, so $m*\mu_T \simeq m*\mu$. Q.E.D.

Lemma 3.4. Let μ^1 , $\mu^2 \in M(\mathbb{R}^\infty)$ be \mathbb{R}^∞_0 -quasi-invariant, and $\mu^i = \{f_{n,m}^i\}$ (i=1, 2). Suppose that μ^1 is \mathbb{R}^∞_0 -ergodic and that $\mu^1 \gtrsim \mu^2$. Then $\int_{\mathbb{R}^{n-m}} |f_{n,m}^1(x) - f_{n,m}^2(x)| dx \to 0$ ($n \ge m \to \infty$).

Proof. Since $\left\{ E\left[\frac{d\mu^2}{d\mu^1} \middle| \mathscr{B}^m\right] \right\}$ forms an inverse martingale with respect to (\mathscr{B}^m) and μ^1 is tail-trivial,

$$\int \left| E \left[\frac{d\mu^2}{d\mu^1} \middle| \mathscr{B}^m \right](x) - 1 \middle| d\mu^1(x) \longrightarrow 0 \qquad (m \longrightarrow \infty).$$

On the other hand, for a fixed m,

$$\int \left| E\left[\frac{d\mu^2}{d\mu^1} \middle| \mathscr{B}^m\right](x) - \frac{f_{n,m}^2}{f_{n,m}^1}(p_{n,m}(x)) \middle| d\mu(x) \longrightarrow 0 \qquad (n \longrightarrow \infty), \text{ and} \right.$$

 $\int \left| 1 - \frac{f_{n,m}^2}{f_{n,m}^1} (p_{n,m}(x)) \right| d\mu(x)$ is a decreasing sequence of m ($\leq n$). From these results we have the desired conclusion. Q. E. D.

Lemma 3.5. Let $\mu \in M(\mathbb{R}^{\infty})$ be l^2 -c.q. and let $f_n(u)$ be the density function of $\mu_{n,n-1} = p_{n,n-1}\mu$ with one-dimensional Lebesgue measure du. Then $\{f_n\}$ forms a totally bounded set of $L^1_{du}(\mathbb{R}^1)$.

Proof. By Theorem 1.3, $\int \left| 1 - \frac{d\mu_t}{d\mu}(x) \right| d\mu(x)$ is a continuous function of $t \in l^2$. Since $\int |f_n(u-a) - f_n(u)| du \leq \int \left| 1 - \frac{d\mu_t}{d\mu}(x) \right| d\mu(x)$ for any $t = (0, ..., 0, a, 0, ...), a \in \mathbb{R}^1$, so $\left\{ \int |f_n(u-a) - f_n(u)| du \right\}$ is a family of

equi-continuous functions of a. On the other hand, l^2 -continuity assures that for any given $\varepsilon > 0$, there exists R not depending on n such that, $\int_{\substack{|u|>R}} f_n(u) du < \varepsilon.$ It follows from an exercise in p.p. 458 of [14] that $\{f_n\}$ is a totally bounded set. Q.E.D.

Proof of Theorem 3.4. We put $T=S^2$, then T is a positive definite Hermitian homeomorphic operator. According to [6], there exists equivalence operator E such that E^*TE has a complete set of eigenvectors in l^2 . Equivalence operator means that, (a) it is one to one onto, bounded and therefore has a bounded inverse, (b) $I-E^*E$ is a Hilbert-Shmidt operator. Since $\mu_T \simeq \mu$, so $\mu_{TE} \simeq \mu_E$ and $\mu_{(E^*)^{-1}E^*TE} \simeq$ $\mu_{(E^*)^{-1}E^*E}$. We put $\mu_{(E^*)^{-1}} = \mu^1$. Then by Lemma 3.3, for a measure $G_I = G$ of Gauss type, $G*\mu_{E^*TE}^1 \simeq G*\mu_{E^*E}^1 \simeq G*\mu^1$. For the spectre decomposition of E^*TE , using the same argument as in the proof of Lemma 3.3 and using the rotational invariance of G, we may assume that $E^*TEh = \sum_{n=1}^{\infty} \lambda_n < h, e_n > e_n$, where $e_n = (0, ..., 0, 1, 0, ...)$ and $c_1 \leq \forall \lambda_n \leq c_2$ for some positive constants c_1, c_2 . Let $f_n(u)$ be a density function of $p_{n,n-1}\mu^1$ with du. Since the density function of $p_{n,n-1}\mu_{E^*TE}^1$ is $\lambda_n^{-1}f_n(\lambda_n^{-1}u)$, so from the l^2 -ergodicity due to Theorem 2.3 and from Proposition 1.2, Theorem 1.5 and Lemma 3.4,

$$\int |f_n(u)*(\sqrt{2\pi})^{-1}\exp\left(-u^2/2\right) - \lambda_n^{-1}f_n(\lambda_n^{-1}u)*(\sqrt{2\pi})^{-1}\exp\left(-u^2/2\right)|du \longrightarrow 0$$

$$(n \longrightarrow \infty).$$

Especially, $\exp(-v^2/2)|\hat{f}_n(v) - \hat{f}_n(\lambda_n v)| \to 0 \ (n \to \infty)$, where $\hat{f}_n(v) = \int \exp(iuv)f_n(u)du$.

Let λ be an arbitrary limiting point of $\{\lambda_n\}$. Then by the compactness of $\{f_n\}$ assured by Lemma 3.5, there exists $f \in L_{du}^1(\mathbb{R}^1)$, $\int |f(u)| du = 1$ such that $\hat{f}(\lambda v) = \hat{f}(v)$ for all $v \in \mathbb{R}^1$. Since for any positive integer *n*, $\hat{f}(\lambda^n v) = \hat{f}(v)$, so in the case of $\lambda > 1$, we have $\hat{f}(v) = 0$ for any $v \neq 0$, and in the case of $c_2 \leq \lambda < 1$, we have $\hat{f}(v) = 1$ for any $v \in \mathbb{R}^1$. Therefore $\lambda = 1$ and it follows that $\lim_n \lambda_n = 1$, which shows the compactness of $E^*TE - I$. As $E^*(I - T)E = E^*E^{-1}I + I - E^*TE$, so I - T is a compact operator. Q. E. D. Generally speaking, in Theorem 3.4 we cannot replace a compact operator with a Hilbert-Shmidt operator.

Example 3.1. Let dx be the volume element of Lebesgue measure on $\mathscr{B}(\mathbb{R}^n)$ and we put $||x|| = \sqrt{x_1^2 + \dots + x_n^2}$ for $x = (x_1, \dots, x_n) \in \mathbb{R}^n$. Then for an integer k > -n,

$$\int \|x\|^k \exp(-\|x\|^2) dx = \pi^{n/2} \Gamma((n+k)/2) \Gamma(n/2)^{-1}$$

We put $\gamma_n = \pi^{n/2} \Gamma((n+k)/2) \Gamma(n/2)^{-1}$, $v_n = \sqrt{2n(n+k)^{-1}}$ and form a measure $\mu_{n,k}$ on $\mathscr{B}(\mathbb{R}^n)$ such that

$$d\mu_{n,k}(x) = (\gamma_n v_n^n)^{-1} \|v_n^{-1} x\|^k \exp\left(-\|v_n^{-1} x\|^2\right) dx.$$

Then some calculations derive that

(4)
$$\int x_j^2 d\mu_{n,k}(x) = 1, \quad \text{for} \quad 1 \leq \forall j \leq n.$$

(5)
$$1 - \int \sqrt{\frac{d(\mu_{n,k})_t}{d\mu_{n,k}}} (x) d\mu_{n,k}(x) = 1 - \frac{\Omega_{n-1}}{\sqrt{n\gamma_n}} \exp\left(-\delta^2/n\right) \int_0^\infty dr \int_{-\infty}^\infty r^{n+k-2} \exp\left(-r^2 - \frac{u^2}{n}\right) \left\{1 + \frac{(u+\delta)^2}{nr^2}\right\}^{k/4} \left\{1 + \frac{(u-\delta)^2}{nr^2}\right\}^{k/4} du,$$

for all $t \in \mathbb{R}^n$, where $\Omega_{n-1} = 2\pi^{(n-1)/2} \Gamma((n-1)/2)^{-1}$ and $\delta = \sqrt{8^{-1}(n+k)} ||t||$.

We shall estimate the value (5) as $n \to \infty$. In this step, we select and fix $\beta > 2$ and put $k = \beta - n$. We shall write $\mu_{n,\beta}$ instead of $\mu_{n,k}$. We put

$$I_{n,\delta} = 1 - \exp(\delta^2/n) \int \sqrt{\frac{d(\mu_{n,\beta})_t}{d\mu_{n,\beta}}}(x) d\mu_{n,\beta}(x) \, .$$

and divide it into two terms, $I_{n,\delta} = J_{n,\delta} + K_n$.

$$J_{n,\delta} = \frac{\Omega_{n-1}}{\sqrt{n\gamma_n}} \int_0^\infty dr \int_{-\infty}^\infty r^{\beta-2} \exp\left(-r^2 - \frac{u^2}{n}\right) \left\{ \exp\left(-\frac{u^2}{2r^2}\right) - \left(1 + \frac{(u+\delta)^2}{nr^2}\right)^{\frac{\beta-n}{4}} \left(1 + \frac{(u-\delta)^2}{nr^2}\right)^{\frac{\beta-n}{4}} \right\} du,$$

$$K_n = \frac{\Omega_{n-1}}{\sqrt{n\gamma_n}} \int_0^\infty dr \int_{-\infty}^\infty r^{\beta-2} \exp\left(-r^2 - \frac{u^2}{n}\right) \left\{ \left(1 + \frac{u^2}{nr^2}\right)^{\frac{\beta-n}{2}} - \exp\left(-\frac{u^2}{2r^2}\right) \right\} du$$

Then,

$$J_{n,\delta} \leq \frac{\Omega_{n-1}}{\sqrt{n\gamma_n}} \int_0^\infty dr \int_{-\infty}^\infty r^{\beta-2} \exp\left(-r^2\right) \left\{ \exp\left(-\frac{u^2}{2r^2}\right) - \exp\left(-\frac{u^2+\delta^2}{2r^2}\right) \right\} du$$

$$\leq \frac{\sqrt{2\pi}\Omega_{n-1}}{2\sqrt{n\gamma_n}} \delta^2 \int_0^\infty r^{\beta-3} \exp\left(-r^2\right) dr, \quad \text{and}$$

$$K_n = \frac{\Omega_{n-1}}{\sqrt{n\gamma_n}} \int_0^\infty dr \int_{-\infty}^\infty r^{\beta-1} \exp\left(-r^2\right) \left| \left(1 + \frac{u^2}{n}\right)^{\frac{\beta-n}{2}} - \exp\left(-\frac{u^2}{2}\right) \right| du \longrightarrow 0$$

$$(n \longrightarrow \infty).$$

Since $\frac{\Omega_{n-1}}{\sqrt{n}\gamma_n} \rightarrow \frac{2}{\sqrt{2\pi}\Gamma(2^{-1}\beta)}$ $(n \rightarrow \infty)$, so it follows that

(6)
$$1 - \int \sqrt{\frac{d(\mu_{n,\beta})_t}{d\mu_{n,\beta}}}(x) d\mu_{n,\beta}(x) \leq c ||t||^2 + \varepsilon_n$$

for some universal constant c and for some positive sequence $\{\varepsilon_n\}$ which converges to 0.

Now let λ be any positive constant and consider a map $x \in \mathbf{R}^n \to \lambda x \in \mathbf{R}^n$. We shall denote the image measure of $\mu_{n,\beta}$ by this map by $\mu_{n,\beta}^{\lambda}$. Then after some calculations,

(7)
$$1 - \int \sqrt{\frac{d\mu_{n,\beta}^{\lambda}}{d\mu_{n,\beta}}} (x) d\mu_{n,\beta}(x) = 1 - \left(\frac{2\lambda}{1+\lambda^2}\right)^{\frac{\beta}{2}}.$$

Lastly we shall choose a subsequence $\{n_j\}$ such that $\sum_{j=1}^{\infty} \varepsilon_{n_j} < \infty$, and put $m_0 = 0$, $m_j = n_1 + \dots + n_j$. Let $\mu_{\beta} \in M(\mathbb{R}^{\infty})$ be the product-measure of $\{\mu_{n_j,\beta}\}$ such that $p_{m_j,m_{j-1}}\mu_{\beta} = \mu_{n_j,\beta}$ (j=1, 2,...). Then μ_{β} has following properties.

(a) μ_{β} is l²-continuous in virtue of (4) and of the symmetry of each $\mu_{n,\beta}$.

(b) μ_{β} is l²-quasi-invariant and l²-ergodic in virtue of (6).

(c) Let $\{a_j\}$ be a positive sequence such that $\sum_{j=1}^{\infty} (1-a_j)^2 < \infty$.

Then for a sequence $\{\lambda_n\}$ such that $\lambda_n = a_j$ for $m_{j-1} < n \le m_j$, we obtain $T_{\lambda} \in \Lambda_{\mu\beta}$ in virtue of (7), where $T_{\lambda}h = \sum_{n=1}^{\infty} \lambda_n < h$, $e_n > e_n$ and $e_n = (0, 0, ..., 0, 1, 0, ...)$.

Since $\sum_{n=1}^{\infty} (1-\lambda_n)^2 = \sum_{j=1}^{\infty} n_j (1-a_j)^2$, so T_{λ} is not necessarily a Hilbert-Shmidt operator.

Lastly comparing with corollary of Theorem 3.3, we shall give an example of ergodic measure μ , for which the implication (a) \Longrightarrow (b) in the same corollary does not hold.

Example 3.2. We put $a_n = 1 + 1/2 + \dots + 1/n$ and $b_n = (a_n + a_{n+1})/2$. Let f(u) be a function defined on \mathbb{R}^1 such that,

$$f(u) = \begin{cases} u^2, & |u| \le 1/2. \\ (1-|u|)^2, & 1/2 < |u| \le 1. \\ (|u|-a_n)^2/\log^2(n+1), & a_n < |u| \le b_n. \\ (a_{n+1}-|u|)^2/\log^2(n+1), & b_n < |u| \le a_{n+1}. \end{cases}$$

Then $\sqrt{f(u)}$ is an even and absolutely continuous function, and from an elementary calculations,

$$\int_{-\infty}^{\infty} f(u) du = c < \infty, \ \int_{-\infty}^{\infty} u^2 f(u) du < \infty \text{ and } \ \int_{-\infty}^{\infty} \left| \frac{d\sqrt{f}}{du}(u) \right|^2 du < \infty.$$

Putting f(u)/c = F(u), we form the product-measure $\mu \in M(\mathbb{R}^{\infty})$ of onedimensional measures $\{F(u)du\}$. Then from the above properties, μ is l^2 -c.q.e., see [10]. Let $\lambda = \{\lambda_n\}$ be a positive sequence and from it we form T_{λ} as before. Then for $T_{\lambda} \in \Lambda_{\mu}$, it is necessary and sufficient that

(8)
$$\sum_{n=1}^{\infty} \left\{ 1 - 2\sqrt{\lambda_n} \int_0^\infty \sqrt{F(\lambda_n u)} \sqrt{F(u)} \, du \right\} < \infty,$$

because \sqrt{F} is an even function. Changing the variable u to e^v and putting $2F(e^v)e^v = H(v)$, (8) is equivalent to

(9)
$$\sum_{n=1}^{\infty} \left\{ 1 - \int_{-\infty}^{\infty} \sqrt{H(v+c_n)} \sqrt{H(v)} \, dv \right\} < \infty,$$

where $c_n = \log \lambda_n$. Therefore if $T_{\lambda} \in \Lambda_u$ for any positive sequence $\lambda = \{\lambda_n\}$ such that $\sum_{n=1}^{\infty} (1-\lambda_n)^2 < \infty$, then (9) must be satisfied for all $\{c_n\} \in l^2$, which is equivalent to

(10)
$$\int_{-\infty}^{\infty} \left| \frac{d\sqrt{H}}{dv} (v) \right|^2 dv < \infty.$$

Since
$$\frac{d\sqrt{H}}{dv}(v) = \sqrt{2} \left\{ 2^{-1} \exp(v/2) \sqrt{F}(e^v) + \exp(3v/2) \frac{d\sqrt{F}}{dv}(e^v) \right\}$$
, and
 $\int_{-\infty}^{\infty} e^v F(e^v) dv = 1/2$, so (10) is equivalent to
 $\int_{-\infty}^{\infty} e^{3v} \left| \frac{d\sqrt{F}}{dv}(e^v) \right|^2 dv = \int_0^{\infty} u^2 \left| \frac{d\sqrt{F}}{du}(u) \right|^2 du < \infty$.
However, $\int_{a_n}^{b_n} u^2 \left| \frac{d\sqrt{f}}{du}(u) \right|^2 du \ge \frac{a_n^2}{2(n+1)\log^2(n+1)}$, so
 $\int_{-\infty}^{\infty} \left| \frac{d\sqrt{H}}{dv}(v) \right|^2 dv = \infty$.

It shows that $T \notin \Lambda_{\mu}$ for some positive definite Hermitian homeomorphic operator T such that I-T is a Hilbert-Shmidt operator.

References

- [1] Dao-Xing, Xia., Measure and integration theory on infinite-dimensional spaces, Academic Press, New York, (1972).
- [2] Feldeman, J., Equivalence and perpendicularity of Gaussian processes, *Pacific J. Math.* 8 (1958), 128-137.
- [3] Gelfand, I. M., and Vilenkin, N. Ya., *Generalized functions*, IV, (English transl. Academic Press), (1961).
- [4] Ito, K., Probability theory (in Japanese), Iwanami, (1952).
- [5] Kakutani, S., On equivalence of infinite product measures, Ann. Math. Statist., (1948).
- [6] Loève, M., Probability theory, Van Nostrand, Princeton, N. J., (1963).
- [7] Meyer, P. A., *Probability and potentials*, Waltham Mass., Blaisdell Publ. Co., (1966).
- [8] Shimomura, H., On the construction of invariant measure over the orthogonal group on the Hilbert space by the method of Cayley transformation, *Publ. RIMS, Kyoto Univ.*, 10 (1975), 413-424.
- [9] ———, Some new examples of quasi-invariant measures on a Hilbert space, To appear in *Publ. RIMS, Kyoto Univ.*, **11** (1976), 635–649.
- [10] —, An aspect of quasi-invariant measures on \mathbb{R}^{∞} , *ibid*.
- [11] Schwartz, L., Mesures cylindriques et applications radonifiantes dans les espaces de suites, *Proceeding of the international conference on functional analysis and related topics*, (1969), 41–59.
- [12] ———, Les mesures de Radon dans les espaces topologiques arbitraires, 3rd cycle, (1964–1965), Inst. H. Poincare, Paris.
- [13] Skorohod, A. V., On admissible translations of measures in Hilbert space, *Theor. Probability Appl.* 15 (1970), 557–580.
- [14] Treves, F., *Topological vector spaces*, *Distributions and Kernels*, Academic Press, (1967).
- [15] Umemura, Y., Measures on infinite dimensional vector spaces, Publ. RIMS.

Kyoto Univ., 1 (1965), 1–47.

[16] Yoshida, K., Functional analysis 1, (in Japanese), Iwanami, (1940).