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Linear Transformation of Quasi-Invariant
Measures

By

Hiroaki SHIMOMURA¥*

Introduction

In harmonic analysis of a real separable Hilbert space H, we often
wish to require a nice measure pu, whose measure theoretical structure
is closely connected with the topological structure of H. In this direc-
tion, we have already known that an important measure is not a measure
lying on H but rather a continuous cylindrical measure lying on a
nuclear extension of H. Moreover it will be turned out that if u is
also H-quasi-invariant, then the convergence of linear functionals in u
is identical with the strong convergence in H, (sce Theorem 2.1). There-
fore IH-continuous (cylindrical) and H-quasi-invariant measures are
regarded as nice measures and are worth special interest. From now
on, realizing H as [2, we shall consider these measures on R®, Rc
[2cR®. Ry is the set of all x=(x,..., X,,...) eR® such that x,=0
except finite numbers of n. The general description for R-quasi-in-
variant measures was given by Skorohod. In [13] he characterized them
in terms of a partial independence of sub-o-fields. But this result does
not directly lead a classification of [2-continuous and [2-quasi-invariant
measures. In above classification, we identify u and u’ if these measures
are equivalent with each other. So it is desirable to have a concept
which is invariant on the equivalence classes. One of these concepts
is the set A, of admissible linear operators on [2, (see Definition 3.1).
It seems to the author that A, is a natural concept and plays an effec-
tive role in this problem. (It will be turned out in Theorem 3.2 that
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for a measure p of Gauss type, the correspondence u—A4, is one to
one up to a trivial relation.) Therefore in this paper we shall consider
the transformations of u which arise from linear operators on [2, and
shall investigate the basic facts for A,.

§1. General Description for Quasi-Invariant Measures

Throughout this paper, we shall only consider probability measures
which are defined on the usual o-field #(R®). The set of all probabi-
lity measures on Z(R®) will be denoted by M(R®). Let ueM(R®)
and teR®. We define the transformed measure p,e M(R®) by u(4)
=u(A—1t) for all Ae B(R>).

Definition 1.1. pe M(R*) is called t-quasi-invariant or t is ad-
missible translation for p, if and only if u, is equivalent with u (u,
~p). The set of all such t will be denoted by T, If ®cT, or &=
T, holds, we say that p is ®-quasi-invariant or strictly-®-quasi-invariant

respectively.

Definition 1.2. Let ue M(R®) be P-quasi-invariant. If the fol-
lowing condition is satisfied, we say that pu is ®-ergodic.

For any ®-quasi-invariant measure ', the relation p'Sp implies
wW=0 or u~p. (< means the relation of absolute continuity.)

Several equivalent versions of Definition 1.2 are stated in [15].

Let p,n,(n>m) be the projection from R® to R"™, x=(xi,...,
X 19005 Xpooe:)=> Xt 150005 X), and p, , be the image measure of pu by
the map P, lnm=DPnmi. Especially we shall write p,(u,) instead of
Dn,o (hn0) respectively. If each p,, is absolutely continuous with the
Lebesgue measure on R"™™, then using density function f,,, we shall

write p={fyu}.

Proposition 1.1. Let pe M(R®) be R@-quasi-invariant. Then each

Unm is equivalent with the Lebesgue measure on R"™™.

Proof. Since any quasi-invariant o-finite measure on any finite-
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dimensional Euclid space is equivalent to Lebesgue measure, we shall
show that each p,, is R"™-quasi-invariant. Suppose that y,,(4)=0
for some AeZR*™) and that t=(f,4,-.»t,)ER*™ Then putting
y=00,..,0, tyt1s.o0s 1y 0,...) ERE, we have p;L(A—-0=p;L(4)—y, and
from the RY¥-quasi-invariance of u, p, . (A—8)=u(p;(A)—y)=0. In a
similar way, p,,(A—t)=0 implies pu,,(4)=0. Q.E.D.

The converse assertion of the above proposition does not hold in
general. We shall give a counter-example for it after the following
theorem.

Theorem 1.1. Let p, u' € M(R®) and assume that p,zupl for all
n. Then

du,
(@) du,
(b) for the Lebesgue decomposition of p' in terms of u, p(x) is the
density function of its absolutely continuous part.

(p,(x)) converges to some function p(x) for p-a.e.x.

Especially, in order that uzu', it is necessary and sufficient that
© M Hs

1
(d) dp, (p.(x))} forms a Cauchy sequence in L}(R®).
du, “

Proof. Since {%%(p,,(x))} forms a non-negative martingale with
respect to (4,), where £, is the minimal o-field with which p,(x) is
measurable, so (a) is assured by a martingale convergence theorem,
(for example see [7]). Let y‘(A):& F(x)du(x)+s(A), Ae Z(R*) be the
Lebesgue decomposition, in which sAeM(R“’) is singular with u. We
denote the conditional expectation of F to &%, by E[F|#,] for

each n. Then for any Ae@,, SAE[FIQW](x)du(x)=SAF(x)du(x)g,u‘(A)=

[ 2 (,()du(x). Henee ELFI#,)(0S 952 (p(x) and letting nsoo,
A n n

(N F(x)=p(x) for up-a.ex.

On the other hand, for any Ae4#, and for any n,S p(x)du(x) <
A

n A

1
ZZ " (px))du(x)=p'(A), and therefore the same inequality holds
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for any Ae #(R*). We take a set Be #(R®) such that u(B)=1 and
s(B)=0. Then SB(F(x)—p(x))du(x)go, so from (1) we conclude that
F(x)=p(x) for p-a.e.x.

If uzu!, then clearly (c) holds and Sp(x)du(x)=1. Since dit, (ps(x))

du,
is non-negative modulo p-null sets, by the well known theorem,

floco-

and (d) hold, then Sp(x)dy(x)=1, therefore singular part must
vanish. Q.E.D.

1
ZZ 1 (p,,(x))‘du(x)—»O, which assures (d). Conversely, if (c)

Counter-Example

We start from the class S, of all skew-symmetrical matrices acting
on R”. Naturally S, may be identified with R*~ (k,=n(n—1)/2) under
the correspondence,

— X1, Os X3,
X

0 3 ‘_'—)(xlaer-'s xk")=x'
9 :

( 0, xq, X3, X4
I
|
1
=
E o X,

Now we shall define a measure p, on £(Rk+) such that, du (x)=
ydet(I+X)~"~Vdx, where dx is the volume element of Lebesgue
measure on Z(Rk»), X €S, is the corresponding matrix to x and 7y,
is the normalizing constant such as u, (R¥»)=1. p, is identified with
the image measure of the normalized Haar measure 4, on SO(n) by the
Cayley transformation. That is, for a bounded measurable function f,

@ [ S =(  f-0)U+ Uy DR
Rkn UeSO(n)

For the projection pz from R" to R™, we see that piru, =, (n>m).
(For these facts, see [8].) For k,_,<j<k, we define the measure p;
on #(R/) such that u;=pk=u,  and obtain a consistent sequence in
the sense of Kolmogorov. Therefore a unique ue M(R®) exists such
that p,u=p, for all n. Now we shall show that t=(u, 0,0,...)eRy is
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not admissible for u. We put p(x)=limi‘(l%(pk"(x)) and let X, €8S,
n k

be the corresponding matrix to p, (x). Then,

n

e /e
0, u,
det (I+ X))

d(u,)y, __{ . }11—1 ] N
e (pi,(x)= det [+ X, ~T,) , where T, =|—u,0,

.
|

0
Putting a{") for the (i, j) entry of (I+X,)"!, we have

det(I+X, )det(I+X, — T, ) ' ={1+g,u, X, )}"' and
g"(u Xk,,) (a(n) a(z")l)u+(a(”) a(zn)2 [l(”)za(")l)uz-

Since (I-X,)(+X,)'=U,eSO(n) and (I+X,) '=2"11I+U,), so
|g,(u, Xy JI=2(lu|+u?) for all n and u. From now on we shall
assume that pu,~u and shall derive a contradiction. Then it fol-
lows that O0<p(x)<oco, for p-a.ex, therefore, lim(n—1)|g,(u, X; ) <
Clim (n—1)| log(1+g,(u, X;))|=C|logp(x)|<oo, for ! p-a.e.x. (C is some
constant depending on p.) Thus limg,(u, X, )=0 for p-a.e.x and

3) lim Sg,,(u, X, )du(x)=0

in virtuc of Lebesgue’s convergence theorem. On the other hand,
using (2) we can casily show that gg,,(u, X, )di(x)=u?/4, for all n

and u. It contradicts with (3).

We shall introduce Kakutani’s metric d on M(R®),

s, 1) ={ [ [V IR0 = 2 () | "o}

where 1€ M(R®) is taken such that Az y; (i=1,2). d does not depend
on a particular choice of 1. For fixed pue M(R®), using one to one
correspondence t—y, we shall induce d to the set T, d(t;, t;)=
d(u,, u,,) for t;,€T,(i=1,2). It is clear that d(t,0)=d(—t, 0) and
d(ty, t,)=d(t, —t,, 0). Following theorems are due to [I].

Theorem 1.2. (T, d) is a complete metric space and the natural
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injection of T, into R® is continuous.

Theorem 1.3. Let ® be a complete metric linear topological
subspace of R®, and be continuously imbedded into R>. If &cT,

then the natural injection ®—T, is continuous.
Proofs are omitted.

Remark. Under the assumption of Theorem 1.3, for any bounded
measurable function F,

SlF(x+t)—F(x)|du(x)——>O (t—0 in ®).

Proposition 1.2. Let @ be of the same meaning as in Theorem
1.3. Assume that ®<T, and @ contains Ry densely. Then for a
quasi-invariant measure u, Rg-ergodicity is equivalent to ®-ergodicity.

Proof. Since RFcP, so RF-ergodicity is always stronger than
d-ergodicity. We shall prove the converse relation. For it, it will be
sufficient that
(¥) For any Be Z(R®), the relation u((B—y)©B)=0 for any yeRy
implies u(B)=0 or u(B)=1.

Now in virtue of Remark after Theorem 1.3, wu((4—y)© A)
is a continuous function of ye® for each fixed AeZ(R®), so
wW(B—y)©B)=0 for any ye®d, because RF is dense in &. Therefore
from @-ergodicity we have w(B)=0 or 1. Q.E.D.

AUy (x)du(x) is a
du

Let pueM(R®) be Ry-quasi-invariant. Then S«/

positive definite function of yeRy and continuous with the inductive
limit topology of R®. Therefore there exists a unique ve M(R®) (which
is called the adjoint measure of ) such that,

1) =exp @rix(r)av(x) =/ ‘fi_f;;(x)du(x)

for all y=((,...» Vus--.) ERF. x(y) means > 2, y,.X,.

Proposition 1.3. Let pue M(R®) be Rg-quasi-invariant. Let @ be
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a complete metric linear topological subspace of R*® such that

(@) @ is continuously imbedded into R®

(b) @ contains Ry densely.

Then in order that T,o®, it is necessary and sufficient that ¥(y) is
continuous with the induced topology from @.

Proof. The necessity is an immediate consequence of Theorem 1.3.
For the sufficiency, let ye® and {y,}<R% such that y,—»y (n—o0) in
&. By the assumption, d(y,, y,)=2{1—9%,—yw}—0 (n, m—>o0), which
shows {y,} forms a Cauchy sequence in T,. From Theorem 1.2, there
exists teT, such that d(y,, t)—0 (n—o0). Since the both injections of
¢ and T, into R® are continuous, so y=t. Q.E.D.

For a scquence a={a,}, we set H,={x=(X..., X,...) ER®|

2,2
?lo=1anxn < OO}

Proposition 1.4. Let pe M(R®). Then there exists a positive se-
quence a={a,} such that p(H,)=1.

Proof. Since R® is a Polish space, we can take a compact set
K,=R® such that u(K,)>1—1/n for each n. Without loss of generality,
we may assume that {K,} is increasing. We take a positive sequence

a={a,} such that, Zj‘,‘;,a,z,g x2du(x)<w. Then for any N,
K

n

[, (Smiakxddne sThal| dduo+Sieead| xiducx) <.
Kn K K

N n

It follows easily u(H,)=1. Q.E.D.

Proposition 1.5. Let pe M(R®) be R¥-quasi-invariant. Then there
exists some sequence a={a,} such that T,oH,.

Proof. Let v be the adjoint measure of u. Applying Proposition
1.4 for v, W(H,)=1 for some positive sequence b={b,}. We put a,=b;!
for each n and a={a,}. Since for any y=(...; V...)ERZ and for
any R>0,

L=< [l —exp @RiZ . ya,bx )
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§252b2x2_>_R2dv(x)+2ﬂSZb’%x’%<R2]Zﬁ;lyuaubnxnldv(x)

S2(X=1bi x5 2 R?) +2rR(E 2 ady )2,

so §(y) is continuous with the natural Hilbertian topology of H,. Hence
T,oH, from Proposition 1.3. Q.E.D.

Let g. be a one-dimensional Gaussian measure with mean 0 and
variance c¢2, and G, (x={a,})e M(R*®) be the product-measure of {g, }.
It is easy that G,(H,) =1 for any sequence a={a,} such that Y ® ,a2u?
<. Now let ue M(R®) be a R¥-quasi-invariant measure. We take
a sequence a={a,} assured by Proposition 1.4 such that T,oH, and
take a positive sequence a={x,} such that Y 2 ,a2a2<o0. Then uxG,
(convoluted measure by p and G,) is equivalent with u, because G(T,)
=1. Conversely, for any positive sequence o={a,} and for any u!
e M(R®), u'+G, is Rg-quasi-invariant, because G, is R¥-quasi-invariant.
Thus,

Theorem 1.4. In order that pe M(R®) is R§-quasi-invariant, it is
necessary and sufficient that there exist some p'e M(R*) and a positive
sequence a={a,} such that u=>~p'=G,.

Let #" be the minimal o-field with which all the functions p;,(x)
(jzn+1) are measurable and put #,=NL,%". We say that pu
€ M(R>) is tail-trivial if u takes only the value 0 or 1 on %,.

Theorem 1.5. In order that pe M(R®) is RE-quasi-invariant and
R$-ergodic, it is necessary and sufficient that there exist a tail-trivial

measure p' and a={a,} as in Theorem 1.5.

Proof. In general, tail-trivial condition is equivalent to R¥-ergodicity
for a measure with R{-quasi-invariance. See, [13]. Therefore the
necessity part follows from preceding arguments to Theorem 1.5. For
the sufficiency, we have only to check that ulsG, is tail-trivial. Let
Ae#B,. Since G, is RP-ergodic (assured by 0-1 law) so G (4A—x)
takes only the value 0 or | as a function of xeR®. Moreover, a set
E={xeR?|G(A—x)=1} belongs to #,. Thercfore pu'xG,(A)=p!(E)=0
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or 1. Q.E.D.

§2. [2-Quasi-Invariant and I>-Continuous Measure and Its Linear
Transformations

Let pe M(R®). We say that p is [2-continuous if its Fourier-
Bochner transformation, ﬁ(y)=gexp(2nix(y))du(x) is a continuous func-
tion of yeR® with the induced topology from [2. Since for any &>0
and for any yeRY,

uxlx(p)|>e)se(er—1)71 S(l —exp (— [x(»)dp(x)
=ef(ef—1)71 S(l —exp (iux(y)n~ (1 +u?)"dudu(x)

<ef(er— 1)“& 11— A(uy)z= (1 +u?)"'du
Jlu| =R

+4ef(ef—1)"n~!(n/2—tan"!R),

so (x| |x(»)|>&e)—0 as |[y|=(Z=,y2)1/2>0. Therefore for any hel?,
we can define x(h), taking a limit (in the sense of convergence in p)
of {x(h,} such that {h,}<R¥ and h,—h in [2. We shall denote the
set of all p-measurable real-valued functions by Mes(R®, u, RY).

Theorem 2.1. Let pe M(R®) be an [%-continuous and 1%-quasi-
invariant measure. (in abbreviation, 1%-c.q. measure) Then the map
hel?2—x(h)e Mes(R®, i, R!) equipped with the topology of convergence
in i is a homeomorphic operator.

Proof. The continuity of the map follows from above arguments.
We shall prove the inverse continuity. Let {h,}<I? and x(h,)—0 in p.
It follows that l—gexp(—!x(h,,)l)du(x)—->0 (n—>0), and therefore for

an appropriate subsequence  {n;}, ij;l{l—Sexp(—lx(h,,j)l)du(x)}<oo,
which yields 3 %-|x(h,)|<oo for p-a.e.x. It follows from the I2-quasi-
invariance that for any hel?, Zalxxh)(h,)l<oo for p-aex. and
therefore 3 % |h(h, )| <oco. In this step, we put s;=h, and put in-
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ductively s;=h, or —h, as sy 4451222 J_1lIs,lI> will be satisfied.
And we put S,=s,+---+s, Then for any hel?, |h(S,)—h(S,)I<
>m 1lh(s)]=0 (n, m— o), which derives that {||S,||} is bounded. There-
fore |h, [ =|s;|—0(j—o0). Itfollows easily that h,—0 (n—c0).

Iljl

Q.E.D.

Proposition 2.1. Let u, u'e M(R®) and uzu'. If pu is [*-con-
tinuous, then pu' is also 1%-continuous.

1
Proof. We put An={xf—‘2,/it~(x)§n}. Then p(Ag)—0, therefore pl(AS)

—0 (n—> o). Now for yeRZ,

|1 fexp @x(r)dit (0| <[ | 11-exp (ix() [ 44 () dutx) + 20" (4)
An H
< 1—exp (ix()Iducx) + 201 (49)

<y2n | [ -expxOonducl| " + 2t (a5).

Q.E.D.
N\
It shows that u!(y) is continuous with | y||.

Proposition 2.2. Let pe M(R®) be I?-continuous. Then T,<I2.

Proof. Let teT,. Then /j:(y) is continuous in virtue of Proposition

N P
2.1. Since p(y)=exp(it(y)a(y) and [1—exp(it(y)|=12y)—pWIAWI™T,
so exp(it(y)) (equivalently, t#(y)) is a continuous function of [y|. Con-
sequently, tel2. Q.E.D.

Let u be an [2-continuous measure on Z(R®) and S be a linear
operator (not necessarily bounded) on [2. Then the function fA(Sy)
of yeR¥ is positive definite and continuous with a inductive limit
topology of R¥. Therefore a unique puge M(R®) corresponds to A(Sy)
through the Fourier-Bochner transformation.

Proposition 2.3. Let S be a linear operator on 12. Assume that
u is 12-c.q. Then in order that pug is 12-continuous, it is necessary and
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sufficient that there exists a bounded operator § on 12 such that
SIR®=S|RY.

Proof. Clearly the existence of such S implies the continuity of
lg. Conversely, suppose that pg is [%-continuous and that {y,}<RZ,
y,—0 in [2. Then ;/t;(uy,,)=,ﬁ(uSy,,)—+1 (n—>o0) for all ueR!. There-
fore {Sy,} converges to 0 in u, consequently Sy,—0 (n—o0) in [? by
Theorem 2.1. It shows that S|RY is continuous with respect to the
induced topology from 12, therefore it can be extended to a bounded
operator S on [2. Q.E.D.

Theorem 2.2. Let p, u' e M(R®). Assume that p is [?-continuous
and that S is a bounded operator on 12. Then if puzu', we have
Bs= 4.

Proof. By Proposition 2.1, p! is also [?-continuous, so u! has a
meaning. Let # be the minimal o-field with which all the functions
x(Sh), hel? are measurable. And let D be the set of all trigonometric
polynomials of a type of Y "_,a;exp(ix(Sh;)), where a;eC, h;el?> and n
is arbitrary but finite. The L2(R®)-closure of D (denoted by D) consists
with all #-measurable square summable functions with p. We shall de-
note the conditional expectation of XeLl(R*) to # by E[X|#]. A
map U defined on D such that > a;exp(ix(Shj)— X" a;exp(ix(h))
is an isometric operator from DcL2(R®) into LZ(R®). So it can
be extended to D with the same property. We put U<\/ E[il;—ll.@b
=YeL?(R>). Since for any XeD and for any hel?, U(exp(i:ézSh))X)
=exp (ix(h)U(X), so

fexp x| Y(0) 1 2dps) = fexp (ix(Sh))E[%‘;—‘ | |dux)

= fexp (ix(smydu’ (9= {exp (ix(W)u3 ).

Thus, dpd(x)=|Y(x)]|?dus(x). Q.E.D.

Theorem 2.3. Let ue M(R®) be [%-c.q. Then for any bounded
operator S on 12, T, ,=S*I1?. Moreover if p is I%-ergodic, then ug is
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S*12-ergodic.

Proof. Let hel?. Since ()s=(g)sm SO (Ug)s=ug in virtue
of Theorem 2.2, which shows S*I2cT,,. We shall prove the converse
relation in a similar method with in Theorem 2.2. Let D; be a set
of all trigonometric polynomials of a type of X.%_,a;exp(ix(h;)), where
a;€C, hjel?> and n is arbitrary but finite. A map U, defined on D,
such that > % «;exp(ix(h;)—X"- a;exp(ix(Sh;)) is an isometric operator
from D,cLi(R®) into L2(R®), and it can be extended to the whole
space L2 (R®), because D, is dense in LZ(R®). Now let teT,,.

Putting U,(«/d—(:;—)‘>=Xt, we have for hel?,

{lex (ix(SMYIX,I2dux) = {exp (ix(1))d(15) )= exp it {exp (ix(SH)duC)

Since X?2Zdu(x)<du(x), so from Proposition 2.1, exp(it(h)) is a conti-
nuous function of [Sh|, therefore the same holds for #(h). It follows
that there exists a suitable constant K>0 such that |#(h)|<K]|Sh| for
any hel?. Consequently, teS*[2.

For the ergodicity, it will be sufficient that a function X e L2 (R®)
which satisfies for any hel?, X(x)=X(x—S*h) for ug-a.ex is a con-
stant function for ug-a.e.x. First we shall state a following general
consideration. Let Z(x)e LZ(R®) such that for some hel?, Z(x—S*h)
=Z,(x)e L2 (R*). We put U(Z)=W and U,(Z,)=W,. Then for any
e¢>0, there exists trigonometric polynomial such that,

1Zy(x)— 2 5=10;exp (ix(h )| <e and
1Z,,(x) = X 5= o5 €xp (Ix(h D sy 520 <&
Therefore,
| Wi(x)— 2 %=1 o; exp (ix(Shy))ll ,<e and
|W(x)— 2= a;exp (ih(Sh;)) exp (ix(Sh)))| ,<e.

If necessary, taking a subsequence, we may assume that the above two
trigonometric polynomials converge to W, (x) and to W(x) for p-a.ex
respectively. From the [2-quasi-invariance, it follows that W,(x+h)=
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W(x) for p-a.e.x. Returning to X, we put U,(X)=Y. Since X(x)=
X, (x) for ug-a.ex, so for any hel?, Y(x+h)=Y(x) for p-a.ex. Con-
sequently, Y(x)=const for p-a.ex in virtue of [?-ergodicity of g,
which derives that X(x)=const for pg-a.e.x. Q.E.D.

§3. Admissible Linear Transformations

Definition 3.1. Let pue M(R®) be [?-c.q., and S be a bounded
operator on 2. We say that S is admissible for u, if pg~u. We
denote the set of all such S by A,.

Proposition 3.1. Let u, u' e M(R®) be 1%-c.q. Then,
(a) p=p' implies Ay=A,,.
(b) if T is a homeomorphic operator on 12, then A, =T 'A,T.
Especially in the case of T=oal, (I is an identity operator on 1> and
a#0eR!) A, =4,
() S,,S,eA, implies S,-S,eA, If S has a bounded inverse, S
€A, implies S™'eA,.
(d) Sed, implies S* is onto. Hence S is a homeomorphism from
12 to a closed subspace of I>.

Proof. (a) and (d) are immediate consequences of Theorem 2.2
and of Theorem 2.3 respectively. (b) and (c) follow from the fact

(ng)r=usr-

In this section we shall study A, first for a measure of Gauss type
and later for a general p.

1. A Measure of Gauss Type

We say that G, e M(R®) is a measure of Gauss type if its Fourier-
Bochner transformation has a following form.

Gy(e)=exp (ix(e)dGyx)=exp (= I Vel [2),

where V is a bounded operator on [2, such that V* is onto. This
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definition is particular comparing with a usual definition, because we
shall demand that G, is I2-c.q. Actually G, is I2-c.q., which is assured
by Theorem 2.3 and by the fact that G, is I2-c.q. One more remark
is that, since Gy =G s, so without loss of generality we may assume
that V is a positive definite Hermitian homeomorpfic operator.

Theorem 3.1. Let G, be a measure of Gauss type. Then Ag,
={S|S* is onto, and V*V—(VS)*VS is a Hilbert-Shmidt operator.}.

This result is due to [2]. We omit the proof.

Theorem 3.2. Let Gy, G e M(R®) be measures of Gauss type.
Then for Ag,=Ag,, it is necessary and sufficient that Gy>~G,y for
a some positive constant d.

Proof. The sufficiency follows from Proposition 3.1. Let Ag, =
Ag,. V, W may be assumed as homeomorphic operators. Then from
(b) in Proposition 3.1, Ag,, -1=Ag,. Taking S=./(VW I)*VYW-1 in
place of VW~!, we have Ag,=A;,. From it we can derive that there
exists some positive constant o« such that S—af is a Hilbert-Shmidt
operator. (We shall prove it in a subsequent lemma.) Consequently
from Theorem 3.1, we have Gg~G,, equivalently G, ~G,y. Q.E.D.

Since any isometric operator belongs to Ag,, so for the remainder
part of the above proof it will be sufficient to assure the following
fact.

Lemma 3.1. Let S be a Hermitian bounded operator on I2.
Assume that for any isometric operator U, S—U*SU is a Hilbert-
Shmidt operator. Then we conclude that there exists some real con-
stant o such that S—ol is a Hilbert-Shmidt operator.

Proof. Let {E,} be the resolution of unity of S,S=gldE,1. We
shall denote the set of all continuous spectrums (of all point spectrums)
of § by C(S) (P(S)) respectively. We divide the proof into five
steps. (I) For any AeC(S) and for Vp<A<Vg, the dimension of
Range (E,—E)) is infinite.



QUASI-INVARIANT MEASURES 791

Proof is derived from the Hermitian property of S.
(I) C(S) consists of at most single point.

Suppose the contrary case, and let 1,, 1,e€C(S), ,<A,. Taking

Pi»q;(i=1,2) such that p, <, <q,<p,<4,<¢q, Wwe set M;=
Range (E,,—E,). Then M; and M, are mutually orthogonal and their
dimensions are infinite. Take an orthogonal operator U on [? such
that UM, =M, and UM}{=M3%. Then for any meM,, <Sm, m> =<
q.|mj]? and <SUm,Um> = p,||m|?, therefore < (U*SU—-S)m,m> =
(po—q)lIm|? (<-, > means the scalar product in [2) It con-
tradicts with the assumption of a Hilbert-Schmidt operator.
(Il1) If 4 is an accumulation point of P(S) (that is, whose any neigh-
bourhood meets infinitely many points of P(S)) and C(S)=g, then
C(S)={A}. The set of all accumulation points of P(S) consists of at
most single point.

Proof is carried out in a similar way with in (II).

(IV) We put a=A, in the case of (4) C(S)={A}, (B) C(S)=8 and A
is an accumulation point of P(S). If C(S)=¢ and P(S) consists of
only finitely many elements, then there exists a unique 1€ P(S) such that
the eigen-vector space corresponding to A has an infinite dimension.
In this case putting a=A1, S—al becomes a finite-rank operator. So we
shall consider the problem in the case of (4) or (B). Put T=S-—al.
Then the continuous spectrum of T (if it exists) is origin and P(T)
accumulates only to origin. Let {F,} be the resolution of unity of T,

b
T=S AF,, and let {g} ({n,})) be a decreasing (increasing) sequence

which converges to 0 respectively. We put T,,=S"",1dF ,1+Sb AF ;.
Then T, is a compact Hermitian operator and t?or any E"helz,
|<(T—T)h, h>| = (In.l+e)h]|?> >0 (m—> o). Since for any bounded
Hermitian operator H, sup |<Hh, h>|=|H|, it follows that T is also
a compact operator. st

(V) Let 4,(#0) be an eigen-value of T and h, be a corresponding
unit eigen-vector of T, Th=Y2,4,<h, h,>h,lim1,=0. We take a
subsequence {n;} such that 3> %.,|4,[><oo, andn define an isometric
operator U such that Uh;=h, for all j and Ulker T=identity. Then
from the assumption, 00> %, [|(U*TU—T)h;|>=3X%,|4,,—4;|2, which
is equivalent to > ;4% <oo0. Q.E.D.
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Theorem 3.3. Let S be an Hermitian operator on 2. Assume
that SeAg, for some Gy,. Then I—S? is a Hilbert-Shmidt operator.

Proof. Since V*V—-SV*VS is a Hilbert-Shmidt operator, the proof
follows from the following lemma.

Lemma 3.2. Let P be a positive definite Hermitian homeomorphic
operator on 12. Assume that T is a bounded operator on 1?> and that
P—TPT is a Hilbert-Shmidt operator. Then I—T? is a Hilbert-
Shmidt operator.

Proof. First we shall prove for any n>0,
(%) Pp2nt1_Tp2r+1T s a Hilbert-Shmidt operator.

Inductively, we shall assume that (%) holds for 1<j<n—1. Multiplying
P2 by P2n1—_TP2"~ 1T, we have P2?""!'—P2TP2"-1T is a Hilbert-
Shmidt operator. On the other hand, since both TP2—TPTPT and
P2T—TPTPT are Hilbert-Shmidt operators, so the same holds for TP2
—P2T. Substituting TP? for P2T in P2TP?" T, we can assure that
(xx) holds for n. Let {E,} be the resolution of unity of P, P=gbldE,1.
Without loss of generality we can assume that O<a<b<1. Appro;(imat-
ing Al/2mt1 by polynomials of A on the interval [—b, b], for any
e>0, there exist m and a;(j=1,2,...,m)eR! such that |P!/2n+1
—>m_ja;P?i*1| <e for each fixed n. Generally speaking, for a bound-
ed operator B,, By, | B,—TB,T—(B,—TB,T)| <(1+|T|»)|B,~B,l, so
P1/2nt1_TP1/2n*+1T s a compact operator. Since,

I(I = Pimyx| 2 =§’;<1 —21M)2d <Ex, x> <(1—a'/m?|x|2,

it follows that by the same argument as in above I—T2 is a compact
operator. Let (T?-DNh=Y%,l,<h, h,>g, be the spectre decom-
position, where {h,} and {g,} are orthonomal systems respectively,
and 4,>0, lim4,=0. Then,

n

<T?PT?h,, g,> = <P(Ag,+h,), Lh,+3g,>

=(+42)<Ph,, g,> +1,{<Ph,, h,>+ <Pg,, g,>}.



QUASI-INVARIANT MEASURES 793

Since {<T?PT?h,, g,>— <Ph,, g,>}€l?> and <Ph, h>=alh|? for any
hel?, it follows that {,} €l?, which shows that I—T?2 is a Hilbert-
Shmidt operator. Q.E.D.

Corollary. Let G, be a measure of Gauss type. Then for a positive
definite Hermitian homeomorphic operator S, following conditions are
equivalent.

(@) I—S is a Hilbert-Shmidt operator.
(b) Sedg,.

2. General g

First we shall state the following fact comparing with Corollary of
Theorem 3.3. Let S be an arbitrary homeomorphic opcrator on [2,
and let ue M(R®) be an [?-c.q. measure. We put

P(A) =T 01/2" 2 usi(A) + us-A( Ay for Ae BR®).

Then, (a) pu® is 12-c.q., (b) SeAs.

Thereforc some [2-c.q. measures have an arbitrarily given homeo-
morphic operator as an admissible element. However if we confine our
consideration to [?-ergodic measures, we can gencralize Theorem 3.3 as
follows.

Theorem 3.4. Let S be an Hermitian bounded operator on [2.
Then in order that SeA, for some I2-continuous, |2-quasi-invariant
and [%-ergodic (in an abbreviation, [%-c.q.e.) measure pe M(R®), it
is necessary that I—S? is a compact operator.

Proof is derived from following lemmas.

Lemma 3.3. Let T be an Hermitian bounded operator on 1. And
let me M(R®) be [%-c.q. and peM(R®) be [?-continuous. Then for
msp~mxur, it is sufficient that I—T is a Hilbert-Shmidt operator.

Proof. Let Th=Y2  (14+4,)<h, h,>h, be the spectre decom-
position of T, where {h,} is c.o.ns. in 2 and > 2 ,A2<c0. We set
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e,=(0, 0,...,0,\1/, 0,...)eR> for each n, and take an orthogonal operator
on 2 such that Ue,=h, Then U*TUh=Y% ,(1+4,)<h, e,>e, and
mup~muur is equivalent to my#uy~my*(uy)ysry- Therefore substituting
my for m, yy for p and U*TU for T, we may prove it in the case of
h,=e, In this case T can be extended naturally to R®. Now in
virtue of the I2-continuity, 3% ,A2x2< o0, for u-a.e.x. We shall denote
the above set by H,(cR<®). Since for any x=(x,,...,%p,...)€H,,

2 ATx(e)—xX(e)) = T dxi <o, so muu(A)=|  m(4—du(x)=0

)

implies SHAm(A—Tx+ Tx—x)du(x)=0, equivalently m(4A—Tx)=0 for u-
a.ex. It yields m(4—x)=0 for p;-a.e.x and therefore m*up(4)=0. The
converse relation is shown in a similar way, SO m#up=~ms*pu. Q.E.D.

Lemma 34. Let p', u?e M(R®) be RZ-quasi-invariant, and u
={fi .} (i=1,2). Suppose that u' is RF-ergodic and that p'Zu?.
Then | 1£4n(0=f2n(0ldx—0 (12 m—c0).

Rn—m

2 T
Proof. Since {E[%Z—l}.@mj} forms an inverse martingale with respect
to (#™) and p! is tail-trivial,

SlE[jﬁf|gnx](x)—1[dyl(x)—->o (m—s ).

On the other hand, for a fixed m,

[ 2 93 | |~ (g | du)—0  (1—c0), and

2
Sll—j;’;"" (p,,,m(x))ldu(x) is a decreasing sequence of m (=#n). From

these results we have the desired conclusion. Q.E.D.

Lemma 3.5. Let ue M(R®) be [%-c.q. and let f (u) be the density
function of W, ,—1=Pun— 1k With one-dimensional Lebesgue measure du.
Then {f,} forms a totally bounded set of L} ,(R%).

Proof. By Theorem 1.3, S‘I—%’L—‘(x)’du(x) is a continuous func-
tion of tel?. Since S|f"(u-a)-fn(u)|dugg\1-“;_’:;(x)}du(x) for any

h

t=(0,..,0, 2, 0,...), acR!, 5o {g[f,,(u—a)—f,,(u){du} is a family of
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equi-continuous functions of a. On the other hand, [2-continuity assures
that for any given ¢>0, there exists R not depending on n such that,
S fu(wydu<e. Tt follows from an exercise in p.p. 458 of [14] that
{Ifl,‘,l}ﬂizs a totally bounded set. Q.E.D.

Proof of Theorem 3.4. We put T=S?, then T is a positive definite
Hermitian homeomorphic operator. According to [6], there exists
equivalence operator E such that E*TE has a complete set of eigen-
vectors in [2. Equivalence operator means that, (a) it is one to one
onto, bounded and therefore has a bounded inverse, (b) I—E*E is a
Hilbert-Shmidt operator. Since pup=~p, so prp~py and Upe-1perg >
Mpvy-1psg-  We put pp-i=p'. Then by Lemma 3.3, for a measure
G;=G of Gauss type, G#pifsrp~Gxpulp~Gxu'. For the spectre decom-
position of E*TE, using thc same argument as in the proof of Lemma
3.3 and using the rotational invariance of G, we may assume that

E¥TEh=%2,2,<h, e,>e, Where e,l=(0,...,0,T, 0,...) and ¢, <V4,Zc,
for some positive constants c;, ¢,. Let f,(u) be a density function of
Pan—14t with du. Since the density function of p,,_ ukerg is A;1f,(4; 1u),
so from the [2-ergodicity due to Theorem 2.3 and from Proposition 1.2,
Theorem 1.5 and Lemma 3.4,

Slfn(u)*(\/ﬁ)“‘exp(— u?(2) =25 fi(A " wyx(y/2m)” texp (— u?[2)ldu—0

(n—> ).

Especially, exp (—v2/2)|/,(v)—f(A,0)] =0 (n—0), where f,,(u)=8exp(iuu)f,,
(u)du.
Let A be an arbitrary limiting point of {1,}. Then by the compactness
of {f,} assured by Lemma 3.5, there exists feLj,(R), Slf(u)l du=1
such that f(lv)=f(v) for all veR!. Since for any positive integer n,
f(A"v)=f(v), so in the case of A>1, we have f(v)=0 for any v#0, and
in the case of c,<A<1, we have f(v)=1 for any veR!. Therefore i=1
and it follows that limA,=1, which shows the compactness of E*TE—I.
As E*(I—T)E=E*E—riI+I—E*TE, so I-T is a compact operator.
Q.E.D.
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Generally speaking, in Theorem 3.4 we cannot replace a compact
operator with a Hilbert-Shmidt operator.

Example 3.1. Let dx be the volume element of Lebesgue measure
on #R") and we put |x|=/x}+-+x2 for x=(x;,...,x,)eR"
Then for an integer k> —n,

Sllxll" exp (= [|x[|2)dx=n""2I((n+k)/2)I (n/2)~".

We put y,=n"2I((n+k)/2)[(n/2)" 1, v,=/2n(n+k)"" and form a measure
My on Z(R") such that

Aty (X)=(,0p)~ oy 1 x[|* exp (= [|lvg ' x[|*)dx.
Then some calculations derive that
4) gxfdu,,,k(x)=1, for 1SVj=n.
_ d(.un,k)t — _&_1;1 _ 52 Sw Sw
) 1=V e oy, 0 = 1= Tt exp (—orm) T

n,k

2 2)h/4 —0)2 k4
prtk=2 exp(—rz _1‘_>{1+@} {1-{-_("—25)_} du,
n nr nr

o)

for all teR", where Q,_;=2rn""D/2[(n—1)/2)"' and 6=./8 I(n+k)|t].

We shall estimate the value (5) as n—oco. In this step, we select
and fix f>2 and put k=f—n. We shall write pu,, instead of p,,.
We put

By.a= 1=exp @2 |\ L (), ).
n,B

and divide it into two terms, I, ;=J,;+K,.

Sl e fen(-55)
J""’_\/Ev,,go dr _wr exp( —rf—— - )\exp 3.2

(e g2 T 52

nr?

B—n
_ Qi (P (P 5, <__ 2 u? {( u? )T_ (_ u?
K,,—\/;yugodrg_wr exp( —r*——- H—W exp 5,2 )}du.
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o) 0 2 2 2
9, P Cwr N\ [ u+s )}
Jn,b =\/n,y Sodrg—wr exP ( 4 ){exp< 2’.2 > exp( 2’.2 du

<212y 52 Swrﬂ‘3 exp (—r?)dr, and
0

p—n

(w© © | 2\ 2

_ =on- p—1 _ .2 u 2 _ (_ u > N
\/n ) drS—oor exp( ! )|<1+ n > exp 2 Idu 0

(n—> ).

2
Since \%’;—';—lﬁjﬁ‘;jﬁ‘)- (n— ), so it follows that
n - -

© = [V L (i, 0 5l 5,
n,p

for some universal constant ¢ and for some positive sequence {g,} which
converges to 0.

Now let A be any positive constant and consider a map xeR"—
AxeR". We shall denote the image measure of p,, by this map by
ui g Then after some calculations,

B
2

(/g ) = _( 24 )
(7) 1 S\/d—u"—,ﬂ— (x) dl‘ln,ﬂ(—\) 1 1+/12 .

Lastly we shall choose a subsequence {n;} such that 3 7.¢, <co, and
put mo=0, m;=n;+---+n;. Let pze M(R*®) be the product-mcasure
of {ju,, g} such that p, . _pg=p, 5(j=1,2,.). Then p; has following
properties.

(@) pg is I?-continuous in virtue of (4) and of the symmetry of each
Ha,p-

(b) g is I2-quasi-invariant and [%-ergodic in virtue of (6).

() Let {a;} be a positive sequence such that 7 ;(1—a,)?<co.

Then for a sequence {4,} such that A,=a; for m;_;<n<m;, we obtain
T,eA,, in virtue of (7), where T;h=37.,2,<h, e,>e, and ¢,=(0,0,...,

0,1,0,.)

Since YL (1-4)*=2%n(l—a)? so T, is not necessarily a
Hilbert-Shmidt opcrator.
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Lastly comparing with corollary of Theorem 3.3, we shall give an
example of ergodic measure u, for which the implication (a)==(b) in
the same corollary does not hold.

Example 3.2. We put a,=1+1/2+---+1/n and b,=(a,+a,,)/2.
Let f(u) be a function defined on R! such that,
u?,  Jul=1/2.
(I—luh?  12<]u|<1.

Jw)=
(lul_an)z/Ing(n-i_l)a an<lu|§bn'

(an+1—lu|)2/log2(n+1)9 bn<|ul§an+1'

Then ./f(u) is an even and absolutely continuous function, and from
an elementary calculations,

d\/u7 (u)izdu<oo.

Sg_owf(u)du=c<oo, Sw p

u%f(u)du < oo and Sw !

Putting f(u)/c=F(u), we form the product-measure ue M(R®) of one-
dimensional measures {F(u)du}. Then from the above properties, u
is [%2-c.q.e., see [10]. Let A={1,} be a positive sequence and from
it we form T, as before. Then for T;eA,, it is necessary and sufficient
that

®) S 1-2J A VPG VPG duf <o,

because \/T is an even function. Changing the variable u to e’ and
putting 2F(e’)e’=H(v), (8) is equivalent to

©) w{1= {7 VH@TE) VHE) dof <o,

where c¢,=logl, Therefore if T,eA, for any positive sequence A=
{4, such that Y% ,(1—-41)%<o, then (9) must be satisfied for all
{c,} € 12, which is equivalent to

(10) S:]d\é?_ (v)lzdv<oo.
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Since d\é?(v) = \/7{2“ Lexp (v/2) \/F‘(e") +exp(3 v/2)d_?1/vlj(e”)}, and

Sw e'F(e*)dv=1/2, so (10) is equivalent to

Sw e3v

bn ra
However, S uz‘d:l/—uf(u) # :
480 o

It shows that T¢A, for some positive definite Hermitian homeo-
morphic operator T such that I—T is a Hilbert-Shmidt operator.

d}é—f(e”) 2du= S:uzl%l/ui(u) ‘zdu< 0.

az
duz 5 i log2 (¥ 1)* *©
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