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Measures
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Introduction

In harmonic analysis of a real separable Hilbert space //, we often

wish to require a nice measure \i, whose measure theoretical structure

is closely connected with the topological structure of H. In this direc-

tion, we have already known that an important measure is not a measure

lying on H but rather a continuous cylindrical measure lying on a

nuclear extension of H. Moreover it will be turned out that if ^ is

also //-quasi-invariant, then the convergence of linear functional in \i

is identical with the strong convergence in //, (see Theorem 2.1). There-

fore //"-continuous (cylindrical) and //-quasi-invariant measures are

regarded as nice measures and are worth special interest. From now

on, realizing H as /2, we shall consider these measures on R00, Rg'c:

/2dR°°. RJ is the set of all x = (xl9..., xn,...)eR°° such that x,t = 0

except finite numbers of n. The general description for RJ-quasi-in-

variant measures was given by Skorohod. In [13] he characterized them

in terms of a partial independence of sub-a-fields. But this result does

not directly lead a classification of I2-continuous and I2-quasi-invariant

measures. In above classification, we identify \JL and \i! if these measures

are equivalent with each other. So it is desirable to have a concept

which is invariant on the equivalence classes. One of these concepts

is the set A^ of admissible linear operators on J2, (see Definition 3.1).

It seems to the author that A^ is a natural concept and plays an effec-

tive role in this problem. (It will be turned out in Theorem 3.2 that
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for a measure \i of Gauss type, the correspondence u-^A^ Is one to

one up to a trivial relation.) Therefore in this paper we shall consider

the transformations of # which arise from linear operators on I2, and

shall investigate the basic facts for A^,

§1. General Description for Quasi-Invariant Measures

Throughout this paper, we shall only consider probability measures

which are defined on the usual tr-field ^(R°°). The set of all probabi-

lity measures on ^(R00) will be denoted by M(R°°). Let jueMCR00)

and reR0 0 . We define the transformed measure uteM(Rm) by fit(A)

= li(A-i) for all Ae

Definition 1.1. /ZGM(R°°) is called t-quasi-invariant or t is ad-

missible translation for u, // and only if ut is equivalent with \JL (ut

— //). The set of all such t will be denoted by jTM. // tircT^, or <P =

T^ holds, we say that \JL is ^-quasi-invariant or strictly-<$>-quasi-invariant

respectively.

Definition 1,28 Let ^eM(R°°) be ^-quasi-invariant. If the fol-

lowing condition is satisfied, we say that fi is $-ergodic.

For any ^-quasi-invariant measure ur, the relation U'<IJL implies

ju' = 0 or u'^fj. (< means the relation of absolute continuity.)

Several equivalent versions of Definition 1.2 are stated in [15].

Let pn,m(n>m) be the projection from R°° to RB~m, x = (xlv..,

xm+1,...,xn9...)-+(xm+l9...9xj, and /^>m be the image measure of n by

the map pHtm, untm=pnjmu. Especially we shall write pn (un) instead of

Pn,o (un,o) respectively. If each urttm is absolutely continuous with the
Lebesgue measure on R"~w, then using density function /B§m, we shall

write u = {fnitn}.

Proposition 1.1. Let ^eM(R°°) be W$ -quasi-invariant. Then each

Vn,m is equivalent with the Lebesgue measure on Rn"m.

Proof. Since any quasi-invariant a-finite measure on any finite-
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dimensional Euclid space is equivalent to Lebesgue measure, we shall

show that each ^K>m is R"~m-quasi-invariant. Suppose that fintm(A) = Q

for some A e ^(R"~m) and that I = (tm + ̂  , . . . , £„) e R"-'". Then putting

j;=(0,...,0, fm + 1,,..,*,,, 0,...)eR£, we have p7t,]n(A-t) = p-,1m(A)-y9 and

from the R J-quasi-invariance of n , nn,m(A — f) = ̂ (p^,]n(A) — y) = 0. In a

similar way, ̂ m(A-t) = Q implies fin>m(A) = Q. Q.E.D.

The converse assertion of the above proposition does not hold in

general. We shall give a counter-example for it after the following

theorem.

Theorem 1.1. Let u, f.il e M(RCO) and assume that fa^u* for all

n. Then

dul

(a) t^Lfn (x)) converges to some function p(x) for [.i-a.e.x.
d\in

(b) for the Lebesgue decomposition of ^ in terms of ju, p(x) is the

density function of its absolutely continuous part.

Especially, in order that JJL>H^, it is necessary and sufficient that

(c) i*,zri
(d) \-^Ln-(pn(x))\ forms a Cauchy sequence in L^R00).

( Ufln )

Proof. Since \-/^L(pnM)\ forms a non-negative martingale withi
respect to (^n), where @n is the minimal (j-field with which pn(x) is

measurable, so (a) is assured by a martingale convergence theorem,

(for example see [7]). Let fi{(A)=\ F(x)^(x) + s(^), A 6 ̂ (R00) be the

Lebesgue decomposition, in which seM(R°°) is singular with \JL. We

denote the conditional expectation of F to &n by £[F|^n] for

each n. Then for any AE&n,( E[F\@n~\(x)d[i(x) = ( F(x)d^(x)^^(A) =
JA JA

Hence E\F\^(x)^(pn(x)) and letting n->oo,

(1) F(x)£p(x) for /x-a.e.x.

On the other hand, for any Ae&n and for any n, \
J

lim\ -^L(pn(x))df.i(x) = f.i1(A), and therefore the same inequality holds
n JAG^n
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for any ^e^(R°°). We take a set Be^R00) such that /i(B)=l and

s(B) = 0. Then ( (F(x)-p(x))dn(x)^Q, so from (I) we conclude that
JB

F(x) = p(x) for /i-a.e.x.

If /^jU1, then clearly (c) holds and \p(x)dii(x) = l. Since —^-(p^x))

is non-negative modulo ^-null sets, by the well known theorem,

f du1

\ p(x)—-^]L(pn(x)) ^(;c)->0, which assures (d). Conversely, if (c)
J t€ fA>n

and (d) hold, then \p(x)dfjL(x) = l, therefore singular part must

vanish. Q. E. D.

Counter-Example

We start from the class Sn of all skew-symmetrical matrices acting

on R". Naturally SB may be identified with Rk" (fcB = n(n-l)/2) under

the correspondence,

O V V V
, -A- l , *^29 '

— x ^, U, x 3,

^~ -JC2, 0,
\ xkn

Now we shall define a measure juftn on ^(RfcM) such that, d^ikn(x) =

yndGt(I + X ) ~ ( n ~ l ) d x , where dx is the volume element of Lebesgue

measure on ^(Rfen), X eSn is the corresponding matrix to x and yn

is the normalizing constant such as ^fen(Rfen) = l. fikn is identified with

the image measure of the normalized Haar measure Art on S0(n) by the

Cayley transformation. That is, for a bounded measurable function /,

(2) ( f(x)diikn(x) = ( /((/ -
jRfen JUeSO(n)

For the projection p^ from Rw to Rm, we see that

(For these facts, see [8].) For kn_l<j<kn we define the measure fij

on ^(R-7') such that nj = pkjnnkn and obtain a consistent sequence in

the sense of Kolmogorov. Therefore a unique //eM(R°°) exists such

that pnfi = iJLH for all n. Now we shall show that t = (u, 0, 0,...)eRo is
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not admissible for \JL. We put p(x) = lim f'kn (pk(x)) and let XkneSn
n "Hkn

be the corresponding matrix to pkn(x). Then,

u

'wherer-=

— n
/ 0, u, 0

i 0 0

n .

Putting al';} for the ( i , j ) entry of (7 + XjJ-1, we have

dcl(/ + XJdct(/ + Xjkn-rj-1 = {l + ̂ (w, XJ]-1 and

gn(u9 Xkt) = (a<??2 - a<?\)u

Since (/ - Xkt) (I + Xki)~
 i = UnE S0(n) and (/ + Xki)~ i=2~l(I+ Un\ so

\gn(u, Xki)\ ^2(|w| + u2) for all /z and u. From now on we shall

assume that jjtt~ \i and shall derive a contradiction. Then it fol-

lows that 0 < p(x) < oo, for ^-a.e.x, therefore, lim (n — 1) | gn(u, Xki)\ ^

Ciim(w-l)|log(l+^B(w, XJ)| = C|logp(x)|<oo, for " /i-a.e.x. (C is some
n

constant depending on JM.) Thus limgn(u, Xki) = Q for /j-a.e.x and

(3)

in virtue of Lebcsgue's convergence theorem. On the other hand,

using (2) we can easily show that \gn(u, Xkt)dfi(x) = u2/4, for all n
j

and u. It contradicts with (3).

We shall introduce Kakutani's metric d on M(R°°),

where AeM(R°°) is taken such that A>^ (i = l, 2). d does not depend

on a particular choice of A. For fixed ^eM(R°°), using one to one

correspondence t-+fit, we shall induce d to the set TM, d(tl9 t2) =

4^1? ^2) for tt e TM (z = 1, 2). It is clear that d(r, 0) = d( - f, 0) and

d(ti, t2) = d(tL — t2, 0). Following theorems are due to [1].

Theorem 1.2. (TM, J) fs a complete metric space and the natural
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injection of T^ into R°° is continuous.

Theorem 1.3. Let 0 be a complete metric linear topological

subspace of R°°, and be continuously imbedded into R°°. If ^cT^

then the natural injection Q-^T^ is continuous.

Proofs are omitted.

Remark, Under the assumption of Theorem 1.3, for any bounded

measurable function F,

in

Proposition 1.2. Le£ $ foe o/ f/?e same meaning as in Theorem

1.3. Assume that $<=TM arcd d> contains RJ densely. Then for a

quasi-invariant measure u, JHQ-ergodicity is equivalent to <$>-ergodicity.

Proof. Since RJJcz^, so Rg-ergodicity is always stronger than

^-ergodicity. We shall prove the converse relation. For it, it will be

sufficient that

(*) For any BeJ'CR00), the relation u((B-y)QB} = Q for any yeRJ

implies u(B) = Q or u(B) = l.

Now in virtue of Remark after Theorem 1.3, u((A — y)QA)

is a continuous function of ye<P for each fixed yle^CR00), so

fJi((B — j;)©jB) = 0 for any .ye$, because RJ is dense in <f>. Therefore

from ^-ergodicity we have f.i(B) = Q or 1. Q. E. D.

Let jieM(R°°) be RJ-quasi-invariant. Then \y d^y(x)d^(x) is a
J a/x

positive definite function of y G RJ and continuous with the inductive

limit topology of RQ. Therefore there exists a unique veM(R°°) (which

is called the adjoint measure of u) such that,

nix(y))dv(x) =

for all j; = (.y1,...,j; l l,...)eRg>. x(j) means

Proposition 1.3. Lef /i6M(R°°) be R% -quasi-invariant. Let <P
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a complete metric linear topological subspace of R00 such that

(a) ^ is continuously imbedded into R°°

(b) 0 contains RQ densely.

Then in order that T^=><i>, it is necessary and sufficient that v(y) is

continuous with the induced topology from $.

Proof. The necessity is an immediate consequence of Theorem 1.3.

For the sufficiency, let ye® and {)>„}<= RJ such that yn->y (n-»oo) in

$. By the assumption, d(yn9 ym) = 2{1 - v(yn - yj} -»0 (n, m->oo), which

shows {j;,J forms a Cauchy sequence in 7^. From Theorem 1.2, there

exists teTp such that rf(>>n, i)-*Q (w->oo). Since the both injections of

0 and 7^ into R°° are continuous, so y = t. Q.E. D.

For a sequence a = {an}9 we set Ha= {x = (x l9..., xn, ...)eR°°|

Proposition 1.4. Le^ ^eM(R°°). T"/zen ^/?ere exists a positive se-

quence a = {an} such that

Proof. Since R°° is a Polish space, we can take a compact set

J^ciR00 such that n(KJ>l — lln for each n. Without loss of generality,

we may assume that {Kn} is increasing. We take a positive sequence

a = {an} such that, S?=1flj( x5dKx)<cx). Then for any N,

It follows easily fi(Ha) = \. Q.E.D.

Proposition 1.5. L^r ^6M(R°°) be R^-quasi-invariant. Then there

exists some sequence a = {an} such that T

Proof. Let v be the adjoint measure of ft. Applying Proposition

1.4 for v, v(H6) = l for some positive sequence b = {bn}. We put an = b~i

for each n and a = {an}. Since for any y = (j^, ...,};„,... )eRo ) and for

any 1?>0,
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so v(y) is continuous with the natural Hilbertian topology of Ha. Hence

T^Ha from Proposition 1.3. Q.E.D.

Let gc be a one-dimensional Gaussian measure with mean 0 and

variance c2, and Ga (a = {aJ)eM(R°°) be the product-measure of {gaj.

It is easy that G0i(Ha) = l for any sequence a = {an] such that ZS=i«»a/2

<cc. Now let jU6M(R°°) be a RJ-quasi-invariant measure. We take

a sequence a = {an} assured by Proposition 1.4 such that T^Ha and

take a positive sequence a = {aj such that Z?=i f ina« < °°- Then Li*G«
(convoluted measure by /* and Ga) is equivalent with ^, because Ga(Tfl)

= 1. Conversely, for any positive sequence a = {aj and for any ^u1

eAf(R°°), [tl*Ga is RJ-quasi-in variant, because Ga is RJ-quasi-in variant.

Thus,

Theorem 1.4. In order that ^eM(R°°) is RQ -quasi-invariant, it is

necessary and sufficient that there exist some p,1 G M(R"J) and a positive

sequence a={an} such that ^^

Let 3$n be the minimal a-field with which all the functions Pj,n(x)

are measurable and put ^^-=r\^=^n. We say that \.i

eM(R°°) is tail-trivial if \a takes only the value 0 or 1 on 33 „>•

Theorem 1.5. In order that /^eMCR00) is Rg '-quasi-invariant and

l&Q-ergodic, it is necessary and sufficient that there exist a tail-trivial

measure fi1 and a={ocn} as in Theorem 1.5.

Proof. In general, tail-trivial condition is equivalent to Rg-ergodicity

for a measure with RJ-quasi-invariance. See, [13]. Therefore the

necessity part follows from preceding arguments to Theorem 1.5. For

the sufficiency, we have only to check that /^1*Ga is tail-trivial. Let

Ae^f^. Since Gx is R^-ergodic (assured by 0-1 law) so GX(A — x)

takes only the value 0 or 1 as a function of xeR°°. Moreover, a set

E = {xeR*>\Gn(A-x)=l} belongs to ^uo. Therefore
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or 1. Q.E.D.

§2, I2-Quasi-Invariant and I2-Continuous Measure and Its Linear

Transformations

Let jueM(R°°). We say thai fj. is /2-continuous if its Fourier-

Bochner transformation, p.(y)=\e\p(2nix(y))dn(x) is a continuous func-

tion of ye^Q with the induced topology from I2. Since for any e>0

and for any

= e*(e* -1)-! (1 - exp (iux(y))n~

£ - 1 )- 1 n~ * (Ti/2 - tan- 1 R) ,

so /i(x||x()0|>e)-»0 as LV|| =(Z?=i.V,2)1/2-^0- Therefore for any / ?e / 2 ,
we can define x(h), taking a limit (in the sense of convergence in //)

of {x(hn)} such that {/iJcRJ and /?„->/? in I2. We shall denote the

set of all /(-measurable real-valued functions by Mes(R°°, ju, R1).

Theorem 2.1. Let f.i e M(R°°) be an l2-coniinuous and I2 -quasi-

invariant measure, (in abbreviation, !2-c.q. measure) Then the map

h e /2-^x(/7)GMes(R°°, /,(, R1) equipped with the topology of convergence

in /( is a homeomorphic operator.

Proof. The continuity of the map follows from above arguments.

We shall prove the inverse continuity. Let {/?„}<= /2 and x(/zw)->0 in /^.

It follows that l — [Qxp(—\x(hn)\)dfjL(x)-+Q(n-+cc>)9 and therefore for

an appropriate subsequence {n,-}, ^J

which yields SyLi|x(ftBj)|<oo for ^-a.e.x. It follows from the /2-quasi-

invariance that for any h€l2
9'£JL1\(x±h)(hnj)\<cQ for jLi-a.e.x. and

therefore ^J=i\h(hnj)\<co. In this step, we put s1 = hni and put in-
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ductively Sj = hnj or -hnj as H^-f • • •4-s J | | 2 ^X«=iPJI 2 will be satisfied.

And we put Sll = s1 + — +sn. Then for any he!2, \h(Sn)-h(SJ\£

Xj-iH-ilfcOs/OHOCn, m~»oo), which derives that {||SJ|} is bounded. There-

fore \\httj\\ = ||Sj-||->0 0'->oo). It follows easily that hn-»Q (n-»oo).

Q.E.D.

Proposition 2.1. Let jU, /,£* e M(R°°) and ju^1. If H is ^-con-

tinuous, then p1 is also I2 -continuous.

Proof. We put An=L -^-(j)gnl. Then X4£)->0, therefore ^(A*)

-*0(«->oo). Now for yeR£,

- (
J
exp - exp

Q.E.D.
XX

It shows that /^H)7) is continuous with ||j;||.

Proposition 2.2. Ler jU6M(R°°) fog I2 -continuous. Then T^l2.

XX
Proof. Let t e T^. Then jur(j;) is continuous in virtue of Proposition

2.1. Since ^) = exp(^))/l(^) and ll-expOX^NI/Ky)-^)!!/^)!"1,
so exp(it(y)) (equivalently, ^(j)) is a continuous function of \\y\\. Con-

sequently, £e / 2 . Q.E.D.

Let n be an /2-continuous measure on ^(R00) and S be a linear

operator (not necessarily bounded) on I2. Then the function fi(Sy)

of jeRJ is positive definite and continuous with a inductive limit

topology of RJ. Therefore a unique jus6M(R°°) corresponds to fi(Sy)

through the Fourier-Bochner transformation0

Proposition 2.3. Let S be a linear operator on I2. Assume that

I* is l2-c.q. Then in order that fts is I2 -continuous, it is necessary and
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sufficient that there exists a bounded operator $ on I2 such that

Proof. Clearly the existence of such S implies the continuity of

us. Conversely, suppose that us is /2-continuous and that {yJcRJ,

yn-*Q in /2. Then ^(wjJ = //(wSj;,l)->l (n->oo) for all w e R 1 . There-

fore {Syn} converges to 0 in u, consequently Syn-*Q (n-»oo) in I2 by

Theorem 2.1. It shows that S\R$ is continuous with respect to the

induced topology from /2, therefore it can be extended to a bounded

operator S on I2. Q.E. D.

Theorem 2.2. Let u., jit1 eM(R°°). Assume that /.t is l2-continuous

and that S is a bounded operator on I2. Then if u>ul
9 we have

Proof. By Proposition 2.1, u1 is also /2-continuous, so ^ has a

meaning. Let 38 be the minimal cr-field with which all the functions

x(S/0, h e /2 are measurable. And let D be the set of all trigonometric

polynomials of a type of £ 3= i a; exP OX^j-))* where a/eC, h j - e l 2 and n

is arbitrary but finite. The L^R^-closure of D (denoted by D) consists

with all ^-measurable square summable functions with ^. We shall de-

note the conditional expectation of XeL^R00) to ^ by E\_X\Sf}. A

map U defined on D such that Z3=iajexP(^(^j))">Z3=iayexPO-x('1;))
is an isometric operator from DcL^(R°°) into L2

S(R°°). So it can

be extended to D with the same property. We put u(^E\-^- & M

= Ye L£S(R°°). Since for any XeD and for any he /2, U(exp(ix(Sh))X)

= e\p(ix(k))U(X), so

Y(x} 1 2rf/isU) = exp (i

= Jexp (fx(S/0)^ ! W = Jexp (fx(/i))^ (x) .

Thus, d/iK*) = 1 7(x)| 2^s(x). Q. E. D.

Theorem 2.3. Let /ieM(R°°) be l2-c.q. Then for any bounded

operator S on /2, TMs = S*/2. Moreover if [JL is I2~ergodic, then ns is
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S*l2-ergodic,

Proof. Let / iel2 . Since (Hh)s = (lis)s*h> so (/ts)s*;,^s in virtue
of Theorem 2.2, which shows S*/2czT^s. We shall prove the converse
relation in a similar method with in Theorem 2.2. Let Dl be a set

of all trigonometric polynomials of a type of Z3=iO/exPOXft/))» where
&J 6 C, hj e I2 and n is arbitrary but finite. A map U1 defined on D^

such that ^"=ittj£xp(ix(hj))^^')=lttjQxp(ix(Shj)) is an isometric operator
from DjdL^R00) into L2(R°°), and it can be extended to the whole

space I^S(R°°), because D^ is dense in L|S(R°°). Now let teT^.

Putting U s t = X t , w e have f o r / ie / 2 ,

Jexp (ix(Sh))\Xt\*di4x) = Jexp (ix(h))d(^\(x) = exp (it(h))fep (ix(Sh))d^(x) .

Since Xfdii(x)<dn(x), so from Proposition 2.1, exp(if(/?)) is a conti-

nuous function of ||S7i||, therefore the same holds for t(h). It follows
that there exists a suitable constant K>0 such that \t(h)\^K\\Sh\\ for

any he I2, Consequently, teS*l2.

For the ergodicity, it will be sufficient that a function XeL^R00)

which satisfies for any hel2, X(x) = X(x — S*h) for /,is-a.e.x is a con-
stant function for /^s-a.e.x. First we shall state a following general

consideration. Let Z(x) e L/?S(R°°) such that for some /z e J2
9 Z(x-S*h)

= Z/J(^)eL2
s(R°°). We put l/1(Z)=»T and l/1(Zfc)=»i. Then for any

e>0, there exists trigonometric polynomial such that,

liz*(*) - Z3= i aj exP ('XMIUs < c and

l|Z*W-S3=iajexp(iJcCij))ll(MS)s*h<fi.

Therefore,

S/i)) | |<8 and

If necessary, taking a subsequence, we may assume that the above two

trigonometric polynomials converge to Wh(x) and to W(x) for /j-a.e.x

respectively. From the i2-quasi-in variance, it follows that Wh(x H- h) =
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W(x) for /<-a.e.x. Returning to X, we put [/t(X)=y. Since X(x) =

Xh(x) for /^-a.e.x, so for any hel2, Y(x + h)=Y(x) for /i-a.e.x. Con-

sequently, Y(x) = const for //-a.e.x in virtue of /2-ergodicity of /i,

which derives that X(x) = const for ^s-a.e.x. Q.E. D.

§3. Admissible Linear Transformations

Definition 3.1. Let /,feM(R°°) be !2-c.q., and S be a bounded

operator on I2. We say that S is admissible for u, if Hs — H- We

denote the set of all such S by A^.

Proposition 3.1. Let ^ [tl € M(R™) be l2-c.q. Then,

(a) JJL~I,II implies A^ = A f l l .

(b) if T is a homeomorphic operator on I2, then AtlT = T~lAflT.

Especially in the case of T=aJ, (/ is an identity operator on I2 and

(c) Sl9S2eAfl implies SL
mS2eAti. If S has a bounded inverse, S

e/i/t implies S~1eAti.

(d) SeAp implies S* is onto. Hence S is a homeomorphism from

I2 to a closed subspace of I2.

Proof, (a) and (d) are immediate consequences of Theorem 2.2

and of Theorem 2.3 respectively, (b) and (c) follow from the fact

In this section we shall study A^ first for a measure of Gauss type

and later for a general a.

1. A Measure of Gauss Type

We say that Gv e M(R°°) is a measure of Gauss type if its Fourier-

Bochner transformation has a following form.

G^e) = Jexp (ix(e))dGv(x) = exp(- \\ Ve\\ 2/2),

where V is a bounded operator on I2, such that F* is onto. This
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definition is particular comparing with a usual definition, because we

shall demand that Gv is /2-c.q. Actually Gv is /2-c.q., which is assured

by Theorem 2.3 and by the fact that G/ is J2-c.q. One more remark

is that, since Gv = Gjv*v-> so without loss of generality we may assume
that V is a positive definite Hermitian homeomorpfic operator.

Theorem 3.1. Let Gv be a measure of Gauss type. Then AGv

= {S\S* is onto, and V*V-(VS)*VS is a Hilbert-Shmidt operator.}.

This result is due to [2]. We omit the proof.

Theorem 3.2. Let Gv, GWreM(R°°) be measures of Gauss type.

Then for AGv = AGw.> it is necessary and sufficient that GV^G^W for

a some positive constant a.

Proof. The sufficiency follows from Proposition 3.1. Let AGv =

AGw. V9 W may be assumed as homeomorphic operators. Then from

(b) in Proposition 3.1, AGvw-i=AGl. Taking S = ̂ /(VW-1)*VW-1 in

place of VW~l, we have AGs = AGj, From it we can derive that there

exists some positive constant a such that S — a/ is a Hilbert-Shmidt

operator. (We shall prove it in a subsequent lemma.) Consequently

from Theorem 3.1, we have Gs~Ga/, equivalently GK~Ga}F. Q.E.D.

Since any isometric operator belongs to AGl, so for the remainder

part of the above proof it will be sufficient to assure the following

fact.

Lemma 3.1. Let S be a Hermitian bounded operator on I2.

Assume that for any isometric operator U, S—U*SU is a Hilbert-

Shmidt operator. Then we conclude that there exists some real con-

stant a such that S — al is a Hilbert-Shmidt operator.

Proof. Let {EJ be the resolution of unity of S9 S=UdE^. We

shall denote the set of all continuous spectrums (of all point spectrums)

of S by C(S) (P(S)) respectively. We divide the proof into five

steps. (I) For any AeC(S) and for Mp < X < V#, the dimension of

Range (Ep~E^ is infinite.
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Proof is derived from the Hermitian property of S.

(II) C(S) consists of at most single point.

Suppose the contrary case, and let A1? A2eC(S), A t <A 2 . Taking

ph qt (i = l, 2) such that pl <AX < ql < p2 < A2 < <?2> we set Mf =
Range (Eq. — Ep). Then Mx and M2 are mutually orthogonal and their

dimensions are infinite. Take an orthogonal operator U on I2 such

that UM1 = M2 and l/Mf = M£. Then for any meMl9 <Sm9 m> ^

qv\\m\\2 and <SUm, Um> ^ p2IMI2> therefore < (t/*Sl/-S)m, m> ^
G?2 — ̂ i)|| m||2. ( < • , • > means the scalar product in /2.) It con-

tradicts with the assumption of a Hilbert-Schmidt operator.

(III) If A is an accumulation point of P(S) (that is, whose any neigh-

bourhood meets infinitely many points of P(S)) and C(S)^0, then

C(S) = {A}. The set of all accumulation points of P(S) consists of at

most single point.

Proof is carried out in a similar way with in (II).

(IV) We put a = A, in the case of (A) C(S) = {A}, (B) C(S) = 0 and A

is an accumulation point of P(S). If C(S) = 0 and P(S) consists of

only finitely many elements, then there exists a unique AeP(S) such that

the eigen-vector space corresponding to A has an infinite dimension.

In this case putting a = A, S — a/ becomes a finite-rank operator. So we

shall consider the problem in the case of (^4) or (J5). Put T=S — a/.

Then the continuous spectrum of T (if it exists) is origin and P(T)

accumulates only to origin. Let {FA} be the resolution of unity of T,
Cb

T= \ MFfc and let {£„} ({??„}) be a decreasing (increasing) sequence
)a

Cnn Cb
which converges to 0 respectively. We put Tn=\ AdFA+\ AdFA.

Ja Jsn

Then Tn is a compact Hermitian operator and for any he I2,

\<(T-Tn)h, /z>|^(|??J+en)| |/i | |2-^0(?i-^oo). Since for any bounded

Hermitian operator H, sup \<Hh, h>\ = \\H\\, it follows that T is also
Pl l^ i

a compact operator.

(V) Let An(^0) be an eigen-value of T and hn be a corresponding

unit eigen-vector of T, Th = £ £L 1 An < ft, ftw > ftn, lim AK = 0. We take a
n

subsequence {HJ} such that Zj )=il^n jl
2<°°5 an^ define an isometric

operator U such that Uhj = hnj for all j and l/|kerT= identity. Then

from the assumption, oo>^=l\\(U^TU-T)hj\\2 = ̂ =i\^nj-^j\2, which
is equivalent to £?=i^j<°°- Q.E.D.
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Theorem 33. Let S be an Hermitian operator on I2, Assume

that SeAGv for some Gv. Then I — S2 is a Hilbert-Shmidt operator.

Proof. Since F*F-S'F*FS is a Hilbert-Shrnidt operator, the proof

follows from the following lemma.

Lemma 3*2B Let P be a positive definite Hermitian homeomorphic

operator on I2. Assume that T is a bounded operator on I2 and that

P-TPT is a Hilbert-Shmidt operator. Then I-T2 is a Hilbert-

Shmidt operator.

Proof. First we shall prove for any

(**) p2u+i_Tp2n+iT is a Hilbert-Shmidt operator.

Inductively, we shall assume that (**) holds for l^j^n — 1. Multiplying

P2 by P2«-1-TP2»-1T9 we have P2""1 -P^TP2n~lT is a Hilbert-

Shmidt operator. On the other hand, since both TP2-TPTPT and

P2T-TPTPT are Hilbert-Shmidt operators, so the same holds for TP2

-P2T. Substituting TP2 for P2T in P2TP2n~1T, we can assure that
Cb

(*#) holds for n. Let {jEJ be the resolution of unity of P,P=

Without loss of generality we can assume that 0 < a < f o < l . Approximat-

ing A1/2""1"1 by polynomials of A on the interval [ — &, 6], for any

e > 0, there exist m and a j ( j = 1 , 2, . . . , m) e R l such that || P l / 2 "+ 1

— ^y=iajP2J+l\\<£ f°r eacn fixed n. Generally speaking, for a bound-
ed operator Bl9 B2, \\B1-TB1T-(B2-TB2T)\\ ^(1 + ||T| 2)||B1-B2||, so

iji s a compact operator. Since,

it follows that by the same argument as in above I— T2 is a compact

operator. Let (T2 - I)h = Z ?= i ̂ » < h, hn > gn be the spectre decom-
position, where {hn} and {gn} are orthonomal systems respectively,

and AM>0, lim/Ln = 0. Then,

<T2PT2hn, gn> =

n, gn> +Xn{<Phn, hn> + <Pgn, gn>}.
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Since {<T2PT2hn, gn> - <Phtt, gn>} £ I2 and <P/?, /?> ̂ a||/i||2 for any

he I2, it follows that {AJe/2 , which shows that I-T2 is a Hilbert-

Shmidt operator. Q.E. D.

Corollary. Let Gv be a measure of Gauss type. Then for a positive

definite Hermitian homeomorphic operator S, following conditions are

equivalent.

(a) / — S is a Hilbert-Shmidt operator.

(b) SeAGy.

2. General /£

First we shall state the following fact comparing with Corollary of

Theorem 3.3. Let S be an arbitrary homeomorphic operator on /2,

and let ^eM(R°°) be an /2»c.q. measure. We put

MV) = Z?=ol/2B+MM^) + /*s-»(>4)} for 4

Then, (a) ^ is /2-c.q., (b) SeA^s.

Therefore some /2-c.q. measures have an arbitrarily given homeo-

morphic operator as an admissible element. However if we confine our

consideration to /2-ergodic measures, we can generalize Theorem 3.3 as

follows.

Theorem 3.4. Let S be an Hermitian bounded operator on I2.

Then in order that SsA^ for some I2 -continuous, I2 -quasi-invariant

and l2-ergodic (in an abbreviation, l2-c.q.e.) measure ^eM(R°°), it

is necessary that I — S2 is a compact operator.

Proof is derived from following lemmas.

Lemma 3.3. Let T be an Hermitian bounded operator on I2. And

let m E M(R°°) be l2-c.q. and ^ e M(R°°) be I2 -continuous. Then for

it is sufficient that I—T is a Hilbert-Shmidt operator.

Proof. Let r/i = £"SBl(l + A n)</z , /?„>/?„ be the spectre decom-

position of T? where {/?„} is c.o.n.s. in I2 and Z?=i^»<co- We set
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n
^-s

£n = (0, 0,..., 0, 1, 0,...)eR°° for each w, and take an orthogonal operator
on I2 such that Uen = hn. Then U*TUh = ̂ ™=1(i+An)<h, en>en, and

m*u^m*ftT is equivalent to mu*uu^mu*(uu)u^TU. Therefore substituting

m^ for m, ,% for /^ and U*TU for T, we may prove it in the case of

hn = en. In this case T can be extended naturally to R°°. Now in

virtue of the I2 -continuity, Z?=i^«x«<°°> for //-a.e.x. We shall denote
the above set by jfirA(cR°°). Since for any x = (xl5..., *„, ...)eHA,

Z?=i{^(O-^(O}2 = Z?=i^xJ<cx), so m*ii(A}=( mG4-xXX*) = 0
JHA

implies \ m(,4 - "Dc + Tx - x) du(x) = 0, equivalent^ m(A-Tx) = 0 for //-
JH A

a.e.x. It yields m(/l — x) = 0 for ^r-a.e.x and therefore m*jur(^4) = 0. The

converse relation is shown in a similar way, so m*^T~ra#^. Q. E. D,

Lemma 3.4. Let ju1, \i2 eM(R°°) be RQ -quasi-invariant, and \il

= {fntm} (i= 1, 2). Suppose that jii1 fs ^L^-ergodic and that fil>iJL2.

Then ( |/,!>m(x)-/n
2,m(x)|rfx-»0 (n^m^w).

J U n - »n

Proof. Since <£J -^j- ^m |> forms an inverse martingale with respect

to (^m) and jLi1 is tail-trivial,

On the other hand, for a fixed m,

fl [du2
 m~] fn,m

Jl Ldu1 j ' fn.m " '

\ l-^r^GVmW) ^W is a decreasing sequence of m (^«). From
•^ J n,m
these results we have the desired conclusion. Q. E. D.

Lemma 3.5. Let jueM(R°°) foe l2-c.q. and let fn(u) be the density

function of ^n,n-i=pn,n-iM with one-dimensional Lebesgue measure du.

Then {/„} forms a totally bounded set of LJ^R1).

Proof. By Theorem 1.3, \ 1— -J-(jc) du(x) is a continuous func-

tion of tel2. Since

=(0,...,0,^0,...), aeR1 , so |/n(w-a)-/»|^ is a family of
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equi-continuous functions of a. On the other hand, I2 -continuity assures

that for any given e>0, there exists R not depending on n such that,

\ fn(u)du<&. It follows from an exercise in p.p. 458 of [14] that
J\u\>R

{/„} is a totally bounded set. Q. E. D.

Proof of Theorem 3.4. We put T=S2, then T is a positive definite

Hermitian homeomorphic operator. According to [6], there exists

equivalence operator E such that E*TE has a complete set of eigen-

vectors in I2. Equivalence operator means that, (a) it is one to one

onto, bounded and therefore has a bounded inverse, (b) I — E*E is a

Hilbert-Shmidt operator. Since /ir^ju, so UTE — ̂ E an(i /-<(E*)-IE*T£ —

/^(£*)-I£*E- We put A*(£*)-i =/*1. Then by Lemma 3.3, for a measure

Gj = G of Gauss type, G*J.IE*TE^G*I.IE*.E^G*^. For the spectre decom-

position of £*TE, using the same argument as in the proof of Lemma

3.3 and using the rotational invariance of G, we may assume that

tt=iln<h>e*>*n, where *B = (0,..., 0, , 0,...) and C l^V^c2

for some positive constants c1? c2. Let /n(w) be a density function of

AMI- i/*1 witn dw. Since the density function of pn>n-i^E*TE is A"1/*^1"),
so from the /2-ergodicity due to Theorem 2.3 and from Proposition 1.2,

Theorem 1.5 and Lemma 3.4,

(-^^
(n - >oo) .

Especially, exp ( - u2/2)|/n(tf) -/„( V)l ->0 (n-* oo), where /„(» = ^exp (/MU)/B

(u)dM.

Let A be an arbitrary limiting point of {An}. Then by the compactness

of {/„} assured by Lemma 3.5, there exists /eLj^R1), \|/(ii)ldi* = l

such that /(Af)=/(t;) for all ueR 1 . Since for any positive integer n,

/(A"y)=/(i;), so in the case of A>1, we have /(u) = 0 for any u^O, and

in the case of c 2 ^A<l , we have ?(v)=\ for any ueR1 . Therefore A=l

and it follows that l imAB=l, which shows the compactness of E*TE — I.

As £*(/-T)£ = £*£-/ + /-£*TE, so I-T is a compact operator.

Q.E.D.
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Generally speaking, in Theorem 3.4 we cannot replace a compact

operator with a Hilbert-Shmidt operator.

Example 3.1. Let dx be the volume element of Lebesgue measure

on ^(Rn) and we put ||x|| =V*i +"•+*» for x = (xl9...9 xn)eR".
Then for an integer k>—n,

(||x||fcexp(-||*ll
J

We put yn = nn/2r((n + K)l2)r(n/2)-l
9 vn = ̂ /2n(n + kYrr and form a measure

/i,a on 0(RB) such that

Then some calculations derive that

(4) Jx}dft,flk(x)=l, for I g V j g

(5) 1 - < » - * t W^».*W = 1 — exp (-

nr

for all reR" 9 where «II_1=27c«II-1>/2r((n-l)/2)-1 and 5 = %/8-1

We shall estimate the value (5) as n->oo. In this step, we select

and fix /3>2 and put k = fi — n. We shall write /^ instead of /zn§fc.

We put

and divide it into two terms, Inid = Jn>d
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Then5

exp ( — r2)dr, and

«-«

/ U2\ r n-expf --5") ^" >0

(n >oo).

Q ^Since -A-1—> —.~_l— («-»oo), so it follows that

(6)

for some universal constant c and for some positive sequence {ej which

converges to 0.

Now let A be any positive constant and consider a map xeR"-»

AxeR". We shall denote the image measure of ^M by this map by

H*9p. Then after some calculations9

(7) 1

Lastly we shall choose a subsequence {/i^} such that S/^i8"^00'
put m0 = 0, mj = / 7 1 H \-iij. Let ^6M(R°°) be the product-measure

of {/'«,./?} such that pmj,IIIj.1/^ = ^IIi/./, O' = l, 2,...). Then ^ has following
properties.

(a) [ip is /2-continuous in virtue of (4) and of the symmetry of each

flnj'

(b) [ip is I2-quasi-invariant and /2»ergodic in virtue of (6).

(c) Let {dj} be a positive sequence such that Zy3=i(l~^ J)
2<0°-

Then for a sequence {An} such that kn = a} for mj_l<n^mj, we obtain

TAe/l^ in virtue of (7), where T^h = ̂ =^n<h, en>en and en = (03 0,...,
«

O,TO,...).
Since S?=i(i-^n)2 = Sy>=i«J(l-«j)2

9 so TA is not necessarily a
Hilbert-Shmidt operator.
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Lastly comparing with corollary of Theorem 3.3, we shall give an

example of ergodic measure /z, for which the implication (a)=^>(b) in
the same corollary does not hold.

Example 3.2. We put aB=l + l / 2+ - - - + l/n and bn = (an + an+1)!2.

Let f ( u ) be a function defined on R1 such that,

/(")=
(M-a,,)2/log2Ot +

Then ^//(u) is an even and absolutely continuous function, and from

an elementary calculations,

r°° f°° r°° /i i~f
\ f(u)du = c<ao9 \ u2f(u)du<w and \ ay (ti)
J-oo J-cx) J-oo «W

2

Putting f(u)lc = F(u), we form the product-measure ^eM(R°°) of one-

dimensional measures {F(w)dw}. Then from the above properties, /^

is !2-c.q.e., see [10]. Let /L={A,J be a positive sequence and from

it we form TA as before. Then for T^eA^ it is necessary and sufficient

that

(8) Z?=i{l

because ^/ F is an even function. Changing the variable u to ey and

putting 2F(ev)ev = H(v)9 (8) is equivalent to

(9) Z?

where cM = logAn. Therefore if TAE^l a for any positive sequence A =

{AB} such that Z£=i(l-An)2<oo, then (9) must be satisfied for all

{cn} e I2, which is equivalent to

do)
2

ari;<co-
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Since ^JL(V) = J2 |2-1exp(i;/2) v/F(^) + exp(3(;/2)^-(^)j, and
foO

\ evF(ev)dv=[/2, so (10) is equivalent to
J-oo

However, \~"u2 **U-(U) \~du^ ,, . n ."" 2 , , n , so

rJ — a

> = 00.

It shows that T^Afl for some positive definite Hermitian homeo-
morphic operator T such that /— T is a Hilbert-Shmidt operator.
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