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On the Asymptotic Behaviors of Transition
Probability Densities of One-Dimensional

Diffusion Processes

By

Matsuyo TOMISAKI*

§ 1. Introduction

Let X' = [X'(i), P'x, xeQ] be a one-dimensional diffusion processes

on an interval Q (^R1) and p(t, x, y) be its transition probability density

with respect to the speed measure m(dx). We are interested in the

problem of describing the asymptotic behavior of p(t, a, a) as f-»0[oo]

in terms of the speed measure m. Concerning this problem, there have

been several works when a e Q is the regular left end point except a

trap: By completing I. S. Kac's result [3], Kasahara [4] showed that

p(t, a, a) varies regularly in t if and only if m[0, x) does so in x.

I. S. Kac [2] discussed the condition of the convergence of integrals

related to the spectral function corresponding to the measure m(dx) and

this result gives conditions for the convergence of the integrals \ cp(f)p(t9
Jo+

f°°a, a)dt and \ <p(i)p(t, a, a)dt in terms of the measure m(dx) for some

class of positive nonincreasing functions <p(t).

In this paper we remove the restriction that a is the left end point

and obtain the following results for the general case of an interior point

or a regular end point. Our main results are following: First, we

obtain some inequalities estimating the growth order of the function

p(t, a, a) when f->0 or +00 using some nonincreasing functions Fa(t)

defined in terms of the speed measure in. The proof of these inequalities

is based on some inequalities similar to that of I. S. Kac [3] concerning
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c°°G(a, a, a)=\ e~**p(t, a, a)dt which we will prove by a probabilistic me-
Jo

thod. Second, using these inequalities we obtain necessary and sufficient

conditions, in terms of the speed measure m, for the convergence of the
f f°°integrals \ (p(i)p(t, a, a)dt and \ (p(t)p(t, a, a)dt for any positive and
Jo+ J

nonincreasing function r/>(/).

Our results will be applied to obtain, for a two-dimensional diffu-

sion process which is given as a direct product of one-dimensional dif-

fusion processes, necessary and sufficient conditions for possibility of

hitting a given point and for recurrence or transience of the diffusion.

Finally the author would like to thank Professor S. Watanabe,

Professor N. Ikeda and Professor Y. Ogura for their several valuable

suggestions.

§28 Main Theorems

Let /![/2] be the left [right] end point Q. Let m(dx) and k(dx)

be nonnegative Borel measures on (Il9 /2), which are finite on each closed

subinterval of (Il9 12)9 where m(C/)>0 for any open set U (^0). Denote

the generator of X' by ©°:

(05 u) (x) = (u+(dx) - u(x)k(dx)}lm(dx)W xeQ.

If IteQ, then the boundary condition is given by

or

where Og/q, m,, ̂ <oo and U 1 ( l l ) = u+(ll+)9u
2(]2)^u-(l2-).^ If

we extend m(dx) and k(dx) on Q so that

/c, if a-1),

(f tt-2).

(1) (2) ^W=Um44^M, «-M=lim "^""^v ; v ; v y ^,j(7)-JW ifT*^)-^)1

where s(x) is the scale, i.e. a continuous increasing function on (llt /2).
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Let Qr be the set of all points a e Q which satisfy either of the

following conditions:

(i) / 1 <a< / 2 ,

(ii) «==/,. with ( / / — I ) and s(L^ is bounded, where s(/1) = s(/1+)

and s(/2)ss(/2-).

Let us define the following functions:

mot[s(a)9 s(a) + y)dy,
o

-y, s(a)~\dy9

Ua(x) = \ m°t(s(a) - y, s(a) + y)dy9
Jo

Va(x) = xm°t[s(a), s(d) + x)9

Va(x) = xm°t(s(a)-x9 s(aj]9

where t(x) is the inverse function of s(x) and m°t(a, b~] — m(t(d), t(b)~\.

Let $fl(x)[7a(x)], f«(x)[ffl(x)] and <Pfl(x)[!Pfl(x)] be the inverse functions

of x»Ua(x)tVa(x)l x<->UaWtya(xK and x~[/a(x)[Ffl(x)] respectively.

Let us put Pa(f)=\ p(s9 a, a)Js.
Jo

Through this paper we shall introduce the following notation:

we write

as ti 0 [t t oo]

if and only if

First we study the asymptotic behavior of Pa(f) as 1 1 0.

Theorem 2.1. Fpr euery aeg r ,
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where

$a or ¥a, if

Fa=) $a or *Fa, if ,

i ®a or Va, if

Remark. In particular we see $a(t)x*Fa(i), ^a(f)^Pa(t) and 0a(f)

x!Fa(0 as 11 0 which can be verified directly.

Next we study the case f f o o . We are interested only in the case

Km Pa(i) = oo (a e Qr), which holds if and only if the following con-
f t°°

ditions are satisfied:

(P-l)

(P-2) if s(/1)>-oo, then m( / l s / 0 ]<oo and l^Q with (/!-l),(3)

(P-3) if s(/2)<oo, then m[/05 J2)<oo and l2eQ with (/2-l)9
(4)

where 10 is any fixed point in (Il9 12}. If, besides (P-l), (P-2) and

(P-3), m(g)<oo is satisfied, then we have limPfl(0/f=l/m(Q). Therefore
ft°o

we consider the remaining case m(g)=oo. We may suppose m[/0, /2) =

oo without loss of generality.

Theorem 2.2, Assume (P-l), (P-2), s(/2)=oo and m[/0, /2)=oo. Then

for every a e Qr,

Pa(t)~Hao(t) as t f o o ,

where a0 is any fixed point in (Il9 12) and

$a or ¥a9 if m(/l5 I0]<oo,

0a or Wa, if m(/ l5 I0] = oo.

These asymptotic behaviors of Pa(t) are equivalent to those of the

Green function. Let G(a, x, y) be the Green function of X°, i.e. G(a,

(3), (4) If (P-l) and (P-2) [(P-3)] are satisfied, then (/<-!) means (-!)'««(/<)+
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f°°
x,y) = \ e~^p(t,x,y)dt. Then Theorem 2.1 [2.2] is equivalent to the

Jo
following Theorem 2.1' [2.2'], which can be proved by using [5; Lemma

S QO
e'^Pldf) and Pa(f) is positive, increasing and

o
concave.

Theorem 2.1'. For every aeg r,

G(a, a, a)xFfl(l/a) as a t oo.

Theorem 2.2'. Assume (P-l), (P-2), s(/2) = oo and m[/0, /2)=oo.

/or every aeQr,

G(a, 0, a)^Hao(l/a) as a j 0,

w/iere a0 zs any fixed point in (7 l 5 J2)-

Since limG(a, a, b)/G(a, c, d) = l (a, 5, c, rfeQO under the assumption
cUO

of Theorem 2.2 or Theorem 2.2;, Theorem 2.2 and Theorem 2.2' may be

summarized in the following table:

Table 2.1

*<G)-o

*,,
> — oo

/I eg
(/l-l)

= 00

S(12)

m(/i\v

<00

= 00

<oo,/ 2eQ,( /2- l) =00

<00

limaG(a, a, b) = l/w(®
a lO

HmPa(^)//= l/m(Q)

G(a, a, ^)x^c(l/a) or

a^ t f oo

= 00

!Fc(l/a) as a |0

a,y ^t oo

G(a,a5^)^^c(l/a)0r

*Fc(l/a)^oaO

a^ ^ t oo

where a, feeQr and c (¥^l^ is any fixed point in Qr.
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§3. Proofs of the Main Theorems

First, we obtain some inequalities on G(a, x, >') to prove Theorem
2.1' and Theorem 2.2'. For this we introduce the conservative diffusion

X=[X(t), PX9 xeg] with the same m(rfx) and s(x) as X'. In other

words, its generator © is given by (©w)(x) = w+(Jx)/m(dx) and if lteQ9

the boundary condition is

0, in case (/,-!),

(©w)(/.) = 0, in case (I, -2).

Denoting the local time at x by t(t, x) (i.e. \ t(t, x)m(dx) = \ IA(X(sJ)ds,
JA JO

), we have

G(a, a, fo) = ]

where f(f, a)=-af- \ t(f, x)k(dx)-f1(0-f2(0»

KtxLebesgue measure of {s; X(s) = li9 s^t}9

h-Z),

0, otherwise.

Define cr^ by

It follows from the strict Markov property that

, ^_ A€ ,(n,fl ,a)
, a, a) - gr^fe a)/(iy, a, a) '

(3.1)

and in particular if m(ll9 /0]<0° an(i (P-2) is satisfied, then

(5) See [1; §5.6].



ONE-DIMENSIONAL DIFFUSION PROCESSES 825

<3'2>

where

Assume that points A% j;, c, J? in /, g, h are in Qr. For simplicity we

write ia.(dx) = am(dx) + k(dx) and

fjc
/fl(je, a)=\ fa[0, 3;

Ja

/fl(x, a)=\ ia(y, a)s(dy)9
Jx

Ja(x9 a) = (5(x)-s(a))/a[a, x),

/fl(A% a) = (s(a) - s(x))ia(x, a) .

We show the following inequalities, which are analogous to I. S.

Kac's one [3; Lemma 2.7].

Lemma 3.1. Let a be any point of Qr (<z</2). Let Ka\_K^\ be

either of functions Ia or Ja[/a or Ja~]. Then for any £, ^eQ1" such that

(3.3) ea/{e + 5 + eXa(»/, a) + 5£B(£, a)}

^ G(oc, a, a)

^, a)},

where 8 = s(a) — s(c) anrf <5 = s(?/) — s(d). In particular, if m(/ l 5 I0]<oo

and (P~2) /s satisfied, then for every £eQ r swc/z that a<£,

(3.4)
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where 5 = s(£,) — s(a) and

\ f(x, a, <z)ia(dx), if a>/ l s
J [ * i , f l ) n < 2

0, if a = l,.

Proof. First we show (3.3). Since h^(xy y, a) satisfies

hfrfa y, a) = ̂ (x, >;)

for x, ye (£, iy), where ^(x, >;)= ̂ (3;, x) = {s(x)-s(t)}{s(ri)-s(y)}l{s(ri)-

^x^y<.ri), by using /?^(x, y, oft^h^y, y, a) we have

/fl(^, a)}

Ja(^ a)}.

Because of G(a, as a)^.h^n(a, a, a) and (3.1), we obtain the lower estimate

of G(a, a, a).

Since /(•, £, a) is a solution of (5w = aw and satisfies

( - !)'/'(/,, f , a) + (fc, + am^/A, 5, a) = 0, if l^Q and (I, - 1) ,

we have the estimate

(l + J^a))-!, i/ a<C,
(3.5) /(a,«,a)^

On the other hand, it is easy to see that g^x, a) is nonincreasing

whereas gn%(x, a) is nondecreasing and that they satisfy

for x e [£, fy], and hence

(6) The proof is similar to [1; §5.6 (16)].
(7)Sce[l ; §5.6(12)].
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(3.6) 04l |(a,a);

We combine (3.5) and (3.6) to obtain

<jl±l + /(£
= \ d -ai€ '

-1

.)}".

Since h^(a, a, a)^^,f(a, a) = e<5/(e + ^), by (3.1) we have the upper estimate
of G(a, a, a) in (3.3).

Next we show (3.4). Since h^(x, y, a) satisfies

for x, y < ̂  where e£x, y) = e£y, x) = s(t) - s(y) (x^y^ & by using
ft^Cx, y, a)g/i^(j;, j;, a) we have

a)}

Therefore we obtain the lower estimate in (3.4) because G(a, a, a)^/
a, a) and (3.2).

The upper estimate follows from (3.2), h^(a, a, a)^(a, d) = 5 and

^a)}-1, i/ a<{,

(8) The proof is similar to [1; §5.6 (16)].
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where we used (3.5). Thus we obtain the assertion of the lemma.

Q.E.D.

We are ready to prove Theorem 2.1' and Theorem 2.2'.

Proof of Theorem 2.1'. Suppose I1<a<l2. There is a <5>0 such

that t(s(a)-S),t(s(a) + d)EQr. Taking £ = f(s(a) - <5) and */ = f(s(a) + <5) in
(3.3), we have

(s(fl)-5), a)}

^G(a5 a, a)

where l/fl and Va are the functions defined in Section 2, and hence

setting (5 = Ffl(l/a), we have

(3.7) Ffl(l /a)/{3 + Ffl(l /a)

^ G(a, a, a)

for every a>0 such that /(s(a)±Ffl(l/a))egr. Since limFfl(x) = 0, we
xlO

have

3 a , a F f l a g m a , a ,
atoo at°o

By the same way in case a = lt we obtain

? a, a)/Ffl(l/a)^IirnG(a5 a,
at°o

Thus the theorem is proved. Q.E.D.

Proof of Theorem 2.2'. In case m(/ l f /0] = oo the result is obvious

from (3.7) and limG(a, a, 0)/G(a, ft, &) = ! (fl, fee 20- In case m(l l5 70]
a i O

<oo by the same method as in the proof of Theorem 2.1' it follows
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from (3.4) that

Ilf a) n Q)}^G(a, a, a)rg

a i O

Put Mfl=l7fl or Va. Since Mfl(x)^,xm(a, 4)/2 for all x>B = 2(s(A)-

s(0)), where A(>d) is any fixed number, we have af/fl(l/oc)g2/m(05 ̂ 4)

for all a^l/Mfl(B), so that

lim G(a, a, a)/Hfl(l/a)^ l/{2 + 2m([/1, a) n Q)lm(a, 4)} .
a J - O

Since m[/0, /2) = °o ^nd ^4 is arbitrary, letting A^12, we obtain

, a, a)/fffl(l/a)^2,

which completes the proof. Q.E. D.

§4. Integral Characteristics

Let cp be a positive nonincreasing function on (0, (5)[(<5, GO)] for

some (5 e(09 oo). By integration by parts and Theorem 2.1 [2.2] we

have Theorem 4.1 [4.2] immediately.

Theorem 4.1, Fix any a e Qr. In order that the integral

* <p(t)p(t, a, d)dt
o

converges, it is necessary and sufficient that the integral

ri
\ (p(ua(x))dx
Jo

converges for some />0, where

( Ua or Fa, If a = li9

"a=( Ua or Ffl, if a = l29

, ua or VaJ if Ii<a<l2.

Theorem 4.2. Assume (P-l), (P-2) and (P-3). In order that the
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integral

\ <p(t)p(t, a, a)dt
J5

converges for some (and hence any) a e Qr, it is necessary and sufficient

that the integral

(OO

converges for some (and hence any) &e( / 1 ? /2) and some 1>Q, where

vb(x) is the function given in the following table:

Table 4.1

»*(*) =

*„
> -00

(/l-l)

= — 00

*(/2)

\«[/0, /2)

<00

= 00

< oo, leQ, (/2~ 1) =00

<oo

X

Ub(x) or Vb(x)

= 00

Ub(x) or Vb(x)

Ub(x) or Vb(x)

§5, Applications to Two-Dimensional Direct

Product Diffusion Processes

Let Xi = lXi(t), Pi, .xeQ'] (i = l, 2) be a conservative one-dimensional

diffusion process with the generator (&u)(x) = ui+(dx)/ml(dx), where

ui+(x) denotes the right derivative by sl(x). Assume that X1 satisfies

the conditions (P-l), (P-2) and (P-3) for each i. We define a two-

dimensional diffusion process X on Q = Qlx Q2 by X=iX(t) = (X1(t),

X2(t)),Px=pi1xP2
:2,x = (x1,x2)EQ]. Let G(a, ^,3;) be its Green func-

tion. On the possibility of hitting a single point a ( E Q r = QirxQ2r)
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for the sample path of X, it is well known that Px(aa<co)>Q (xeg1")

if and only if G(a, a, 0)<oo. Also it is well known that the process

is recurrent if and only if limG(oc, a, 5) = 00 (a, beQr). Combining
oao

these, we see that Px(<7fl<oo) = l (xeg1*) if and only if G(oc, a, a)<oo

and limG(a, a, a) = 00. Thus denoting <Pj,(x) etc. by the inverse function
a;o

of x^Ui
a(x)=\ m^t^s^a), s^aj + y^dy etc., we have the following

Jo
results from Theorem 4.1. and Theorem 4.2.

Theorem 5.1. Fix any point a = (a1, a2)eQr. In order to Px(va

<oo)>0 for all xeQr, it is necessary and sufficient that the integral

(5.1)
o

converges for some (5>0, where

if a' = /\,

Theorem 5.2. In order that X is recurrent it is necessary and

sufficient that the integral

(5.2)

diverges for some />0 and some (and hence all) a = (a1
9 a2)eQr,

where vl
ai(x) is the function given in Table 5.1.

Theorem 5.3. Fix any point a = (a1, a2) eg1". Jw order to -Px(o"fl

<oo) = l for all xeg r, if is necessary and sufficient that the integral

(5.1) converges for some (5>0 and the integral (5.2) diverges for some

As an immediate result of Theorem 5,1 we obtain the following:
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Corollary 5,4. Two-dimensional Lebesgue measure of {aeQr;

Table 5.1

<oo, =00

<oo = 00

> -00

( / i -D.
recurrent.

= — GO

<00

(5.2) always

diverges, therefore X is

= 00

Table 5.2

= 00 <co

= 00

transient
<oo

0<p(a)<l

Table 53

y
X

aeA°

a$A°

- l < y < 0 7 = 0

recurrent

p(a) = l

y>0

transient

p(a) = 0

p(a) = 0
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Px(aa«x>)>Q for every xeQ r ]=0

Example 5.5. Let Ql= R1, si(xi) = xi and inl(dx1) = constant xdx1

(i.e. X1 may be considered as a one-dimensional Brownian motion).

S x
m2(a2— y, a2 + y)dv by the definition. Putting p(d)

o
= P. (dfl<oo), for any fixed point a~(al,a2) we obtain Table 5.2.

In particular if m2(dx2)~constant x \x2\vdx2 (y> — 1), then we have

Table 5.3, where A° = {(xl, 0); xl eR1}. In the case y = 0 these proper-

ties are well known, for X may be considered as a two-dimensional

Brownian motion.

Example 5.6. Let Qi = R1
9 s/(x')= xf and m1(t/x1)= constantx I*1!7

d x 1 ( y > — l ) . Then for any fixed point a = (a1, a2) we obtain the

following table.

Table 5.4

0 +

= 00 , <00 =00 <00

= 00

<oo
0 0<p(a)<l

where 5° = {(0, x2): x2 eJR1}.
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