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Dual Action on a von Neumann Algebra
and Takesaki's Duality for a

Locally Compact Group

By

Yoshiomi NAKAGAMI*

Abstract

We define a dual action /3 of a locally compact group G on a von
Neumann algebra N and a crossed dual product N®jG. Then the Takesaki's
duality is generalized in terms of these definitions as follows:

where a is the dual action dual to a given action a, and

where ^3 is the action dual to a given dual action /3. As an application

M®a G~M«(x)J3(£2(G))

whenever l®L-(G)cAf and ^(l(x)/)-l(x)£/.

Introduction

The main purpose of this paper is to generalize the Takesaki's

duality of crossed products for locally compact abelian groups to that

for a non abelian one [18, 13].

To see the situation more precisely we shall prepare some results

which are necessary for Takesaki's duality. We first notice that a neces-

sary and sufficient condition for an isomorphism a of M into M®

L°°(G) to be induced from an action is that a satisfies the commutative

diagram :

Communicated by M. Sato, April 24, 1976.
* Department of Mathematics, Faculty of Science, Kyushu University, Fukuoka 812,

Japan.



728 YOSHIOMI NAKAGAMI

M _*-»

u

where e is the identity automorphism and d is given by (1.5), (Theorem

2.1). Let jR(G) be the von Neumann algebra generated by the regular

representation of G on L2(G). The crossed product M®aG is then

defined as the von Neumann algebra generated by a(M) and 1®R(G).

Here, we denote M®aG by N. Then the same diagram holds for the

action a dual to a of the dual group G on AT:

N -*-> N®L™(G)

Making use of these a and a, we can state Takesaki's duality as follows:

(M®aG)®5G~M®B(L2(G))3

where A~B means that A is isomorphic to B. Let F be the Fourier

transformation of L2(G) onto L2(G) and ft a mapping of N into N

®JR(G) defined by /?=(Adl®F)oa. Let /I be the regular representation

of G on L2(G) and y a mapping given by (1.5). Since

by (1.8), ft satisfies

N JL> N®R(G)

N®R(G) -^ N®R(G)®R(G)9

and a coincides with f$ up to the spatial isomorphism Adl®F. We

shall call an isomorphism satisfying the commutative diagram (*)

a dual action. ($ is then a dual action which is dual to a. By using

a dual action we shall define a crossed dual product N®^G of N

by G as the von Neumann algebra

(**) (J8(N), 1®#(G)}" ( = Adl®F(JV®,G)),
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(Definition 2.2). Then the Takesaki's duality is restated as follows:

(M®aG)®)jG~M®£(L2(G)).

Changing the roles of {a, G} and {a, G} and applying the Fourier trans-

formation, we have

where ft is the action dual to /?, (Theorem 2.3).

Since Theorem 2.1 holds for a general locally compact group as

well, the diagram (*) and the crossed dual product (**) have their

meanings even when G is not necessarily abelian. Therefore our generali-

zations are obtained in the same forms as above in Theorems 3.1 and

7.1. The contents of this paper is the following:

0. Introduction

1. Preliminary

2. Dual action /? and crossed dual product

3. Duality for crossed product by a

4. Some technical lemmas for f$

5. Spectrum of /?

6. Fixed points of a and /?

7. Duality for crossed dual product by /?

8. Haga's factorization of crossed product

9. Appendix.

Here, the reader who wants to know directly the Takesaki's duality

of the second type, can skip Sections 5 and 6, which are prepared

only for Corollaries 7.4, 7.5 and Section 8. In Section 8 we shall give

a sufficient condition for a crossed product M®aG and a crossed dual

product N®d
pG to be factorized into Ma®B(L2(G)) and N^®B(L2(G)\

respectively, by using the idea of Landstad, [9], (Theorems 8.4 and 8.2).

Recently, Roberts [14] has obtained interesting results which have

close connection with ours.

The author wants to express his deep gratitude to Professor M.

Takesaki for his valuable discussion and Professor M. Tomita for his

encouragement.
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la Preliminary

Let G be a locally compact group, dt the right invariant Haar

measure and /(/) the integral

\f(t)dt.

The modular function A satisfies A(i)I(f) = I(ft) for /ELl(G\ where

ft(s)=f(ts). Let A be the right regular representation of G on L2(G)5

A(/) for / in Ll(G) the integral

and R(G) the von Neumann algebra generated by A(G) or k(

When G is abelian, the spectrum G of LA(G) becomes a locally

compact abelian group and the spectrum of L^G) is isomorphic to G.

For £, v\ in L2(G) and / in L^G), using Plancherel theorem, we have

(i.i)

where * denotes the convolution, jftOs^r1) and dC denotes the Haar

measure on G associated with dt. We identify R(G) and £(0)* with

L°°(G) and L^G), respectively, through the correspondence in (1.1):

(1.2)

Then the duality between G and G is expressed by 1 as the following

diagram :

(1.3)
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where A* denotes the dual of X to R(G)*. A is therefore considered

as the Fourier transformation through the above identification (1.2).

For a non abelian G, the duality theorem for G by Eymard, Take-

saki and Saito [5, 17, 15] has the same diagram as (1.3). Let K(G)

denote the set of all continuous functions with compact carrier on G

and B(G) the set of all limits relative to compact convergence of finite

linear combinations of functions of positive type on G with respect to

A. Define a norm of g in B(G) by

(1.4) suplK/l^l' ./eLHG), ||A(/)||<l]<oo.

B(G) is a commutative Banach algebra. The mapping /»->/ gives an

involution in B(G). Denote the closed linear span of

{§*/:/, fir eX(G)} ((g*f)(t) =

in B(G) by A(G), which is called the Fourier algebra of G. It is known

that A(G) is a regular, semi-simple, abelian and involutive Banach al-

gebra and coincides with the set of all //*<!; with £, rj in L2(G). Since

for £ and r^ in L2(G)

as in (L.I) , A>#o>z,i1 = fj*£ and A(G) = k*R(G)*. Therefore ^(G)^ has the
same algebraic structure as A(G). Denote the product of 0 and \l/ in

^(G)* by (f)\l/9 that is, A*(</>i/0 = (^0)0^1/0. For a non zero y in R(G)
the following two conditions are equivalent:

(i) j; = A(r) for some f e G ; and

(ii) <y, (j)\l/> = <y, (frxy, ij/> for all 0, \j/e^(G)^.

In what follows we shall identify the spectrum (the set of characters)

of A(G) with the original G through L

Now we define two mappings

d: L«(G) > L00(G)®LCO(G)

y :/j(G) >R(G)®R(G)

by

(1-5)
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Then by (ii) we have

(1.6) <yA(0, (t>®\l*> = <A(0, 0*A> .

In case of an abelian G, if/ is an element of L*(G),

= (
J

(1.7)

= \( /
JG./G

where d£ and dC' are the Haar measure on G associated with dt. There-

fore, under the identification of R(G) with L°°(G) as in (1.2), we have

(1.8) yA(/) = tf,

with which we combine the argument in Introduction, we shall define a

crossed dual product in Section 2.

The following four unitary operators on L2(G)®L2(G) play im-

portant roles in our paper:

s, 0 = «s, ts), (W'Q(s, t)sA
(1.9)

s, 0 sc(sf, 0, (^'^ (s, 0 =A(tyi2t(t-ls, i).

Let 1 (resp. 1G) be the identity operator on a Hilbert space 3? or tf

(resp. L2(G)). Let A' denote the left regular representation of G on

L2(G):

(A'CsXXOsE^s)1/2^-1*), { eL2(G)

and

(1.10)



VON NEUMANN ALGEBRA AND TAKESAKI'S DUALITY 733

When a measure n converges to a Dirac measure se at the unit

e of G in the dual space of C(G) with the compact convergence topol-

ogy, we say simply that /.t converges to se in this paper. For example,

let ^ be a compact symmetric neighbourhood of e, {i^} a fundamental

system of compact symmeteric neighbourhoods of e satisfying ^2c=^r

and gr- = Xr-*Xr-l\\Xr-*Xr-\\i9 where x^ denotes the indicator function of
^. Then gr-eP(G) n K(G)+ and a measure g^(t)dt converges to ee,

where

2. Dual Action ft and Crossed Dual Product

In this section we shall define a dual action and a crossed dual

product for our later Sections.

Let M be a von Neumann algebra on a Hilbert space jf and AutM

the automorphism group of M. By an action of G on M we mean a

homomorphism a: t eGi-x^e AutM such that for each x in M the

mapping te&-*at(x)eM is (j-strongly* continuous. Let {no9 AJ be a

covariant representation of {M, cr} on ^f ®L2(G) defined by

(2.1)

for ^6^®L2(G). The crossed product M®aG of M by G is the von

Neumann algebra generated by na(M) and /^(G).

Since M®L°°(G) is isomorphic to the set L°°(G5 M) of all essentially

bounded M- valued a-weakly measurable functions on G by [12, 16],

na(x) is identified with a function st-xr^x) in L°°(G, M).

Theorem 2.1. A necessary and sufficient condition that a mapping

oc of M into M®LCO(G) be induced by an action a with

is that a be an isomorphism which satisfies

(2.2) (a®j) o a = (f®c>) o a .

Proof. Necessity. Since a is known to be an isomorphism, we
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have only to show (2.2). Since a(x) is an essentially bounded cr-weakly

measurable function

s e G l - > as(x)eM,

(a®f)a(x) and (£®(5)a(x) correspond respectively essentially bounded

a-weakly measurable functions

(s, t) E G x G | - > ffs((rt(xj) E M

and

(s, O e G x G | - >vst(x)EM.

Since cr is an action by hypothesis, these two functions coincide and

hence (2.2) follows.

Sufficiency. We shall begin by showing that ir = AdkL(r) [ a(M),

reG is an action on a(M). Put L = a(M) and d = c®6. Since

(By (2.2))

c (a® 0 (M® L°°(G)) = L® L°°(G)

and since

for each zEL,a)'eL* and geLi(G)9 we can define a bounded linear

operator Sg on L by

<3g(z)9 cof> = <5(z), cor®g>.

If y E L, then for any o> defined by vectors in 3? and /, 0 e

we have

Making the measure ^(O^t converge to the Dirac measure cr at reC,

we know that the right hand side converges to
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In the above convergence we may assume that H ^ H ^ l and hence

II <^()0 II < II .y II • Further, co®/ are total in the predual of L. Indeed,
since the convex hull of all a)®/ is weakly dense in L*, it is also norm

dense by the Hahn-Banach's separation theorem. Therefore, Sg(y) con-

verges a-weakly to tr(y). Since Sg(y)eL from the above, rr(y)eL.

Since i~l =T r-i , ir(L) = L. Since Ad/l^r) is an isomorphism and rn->

AdAi(r)(z) is cr-strongly* continuous for each zeM®LGO(G), its restric-

tion ir to L is an action of G on L.

Now we define an action a of G on M by

(2.3) o-s = a~1°Tsoa.

We shall show a = 7rff. For this we define two bounded linear operators

ag and ff(g) on M for gfeL1(G) by

(2.4) < ag(x), a; > = < a(x), co

for *eM and o>eM*? and

If weM^ and feLl(G), then

= U(0<aocrr(x), <D®f>dt

(x), w®/> A (By (2.3))

), co®t-if>dt

(2.5)
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(By (2.2))

where rf(s)=f(sr) and a* is the dual mapping of a. Since co and /

are arbitrary and a is an isomorphism, we have o(g)x = ̂ g(x). There-

fore

\ co®g> = <(?(g)x, co>

Since co and g are arbitrary, %(x) = na(x). Q. E. D.

From this theorem we can identify an isomorphism of M into

M®L°°(G) satisfying (2.2) with an action of G on M. Therefore we

shall use the same letter for them.

Definition 2.2. A dual action j8 of G on N is an isomorphism

of a von Neumann algebra N into N®R(G) satisfying

(2.6) (j6®00/? = (f®y)°/? •

A crossed dual product of N by G with respect to ft is the von Neu-

mann algebra generated by ff(N) and 1®L°°(G), which is denoted by

N®$G.

Theorem 2.3. (i) Let aw be an isomorphism of B(je®L2(GJ)

into £(^®L2(G)®L2(G)) defined by

(2.7) <rw(y) = kdl®W*(y®lG).

If a is an action of G on M, then 6t = aw I M®aG is a dual action

of G on M®aG.

(ii) Let N be a von Neumann algebra on a Hilbert space JT and

av' an isomorphism of B(jT®L2(G)) into £(jf®L2(G)®L2(G)) defined by

(2.8) c^'00
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// /? is a dual action of G on N, then J3 = GV' [ N®JG is an action of

G on

Proof, (i) If xeM and £e JT®L2(G)®L2(G), then

s, 0

and

ss 0

Therefore

(2.9) fi(a(x)) = a(x)®lG and

Since M®aG is generated by a(M) and Ai(G), a is a mapping of M®aG

into (M®aG)®.R(G). It is clear that & is an isomorphism. Since

= (a® 0 (a(X)® 1 G)

® 1G = 0® y) (a(x)® 1 G)

and

(2.6) holds for M®aG and 4.
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(ii) The argument will proceed similarly as (i). For each / in
L°°(G) we define T^f) and ef by

(2.10) ri(/)sl®/

on jf®L2(G) and

(2.11) (e/)(s, 0 = f(r's).

Since j8(JV)cN®R(G), it follows from (1.9) that [/?00®lo,
for all y in N. Since

s, 0

0(r1s, 0

r1s, 0

s, 0

for £eJr®L2(G)®L2(G), we have

(2.12) $(P(y))=P(y)®\c and

for all y e N and /e L°°(G). Since

] s) = (1 ® e/) (s, (r)

))(s, f, r),

we have

Moreover, since
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for all yeN, (2.2) holds for N®$G and /?. Q.E.D.

Definition 2.4. A dual action a (resp. an action ft) in Theorem 2.3

is said to be dual to a (resp. ft).

Let aj be an action of G on M7 (7=1,2). When an isomorphism

p of Mt onto M2 satisfies

(p®t)°a1=a2°p (or poa/=a2op)

{Mx, a
1} and {M2, a

2} are said to be equivalent. In this case, M±®^G

is isomorphic to M2®a2G.

Definition 2.5. Let fa be a dual action of G on Nj (j = l, 2).

(NI, /?J and {A/2> /?2}
 are said to be equivalent if there is an isomor-

phism p of Nl onto JV2 satisfying

Of course, N^^G is isomorphic to JV2®^2G.

3. Duality for Crossed Product by a

We are now ready to show the following duality theorem for crossed

products of von Neumann algebras by a locally compact group.

Theorem 3.1. Let M be a von Neumann algebra on a HUbert

space 3F and a an action of G on M. Let a = na, /? = a, a = j§ and a

the action associated with a as in Theorem 2.1. Then (M®aG)®j|JG

is isomorphic to M®J3(L2(G)) and the isomorphism transforms the

action a on the former into the action cr®AdA' on the latter.

Proof. Let «^1 = ̂ T®L2(G) and ̂ 2 = ̂ T®L2(G)®L2(G). Using (2.9)

and (2.10), we set

A(r) = ̂ (r)®^(r) and T2(/)=1®1G®/

for / in L°°(G). Let IV = M®aG and D = N®$G. N is generated by

a(M) and 1®R(G) on J^l and D is generated by fi(N) and 1JV®L°°(G)
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on JT2. Therefore by (2.9) D is generated by a(M)®!G, A(G) and

T2(L*(GJ). Since

(3. 1) =/Or)«sr, f r) =/(* r) (4(r){) (s, 0

yl and T2 satisfy the commutation relation in the sense of Mackey,

[10]. Therefore the von Neumann algebra B generated by A(G) and

T2(L
QO(G)) is isomorphic to B(L2(G)), and hence D is isomorphic to

(D n B')®B. Put

on M. Then n is an isomorphism of M into B(3f ®L2(G)®L2(G))

and satisfies

Since

s, 0

0

and

sf 0

r9 rr)

we have n(M)c:Bf.

Let K(G x G, e^f ) be the set of all continuous functions on G x G

with compact carriers and with values in 3P. For each / and g in

K(G) with g>0 and || g\\l = l we put

(3.2) x/>g
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where gr(s) = g(rs). Then xftgeD. For any £ and v\ in K(GxG9 ^f)

we have

t))drdsdt.

Since ^^/(rr^^^-iW^s, OW5> 0) belongs to K(G), when the measure

g(r)dr converges to the Dirac measure ee at the unit e of G? the right

hand side converges to

and this converges to (TC(;X)£|J/) as / converges to the constant 1 function

uniformly on each compact subset of G. Since K(G x G, tf ) is dense

in ^2, and since l l x ^ H ^ H / l l ||x|| \\g\\l9 xf}9 converges weakly to n(x)

and hence 7r(M)c=D, namely, 7r(M)c=DnB /.

Next we shall show that D is generated by n(M) and B. For each

/ and g in K(G) we put

Then j;/j0 e (n(M) U J5)". For each £ and >y in K(G x G, jf) we have

By the same reason as above, when the measure g(r)dr converges to

se9 the right hand side converges to
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which converges to ((a(y)®lG)£|)j) as / tends to 1 in an appropriate
sense. Thus a(M)®lGc(7r(M) U B)", and hence D c (?r(M) U B)". Since
the converse inclusion is obtained in the above, D = (n(M) U B)". There-
fore D is isomorphic to 7t(M)®B.

By Theorem 2.1 a and a satisfies

zeD

for £eje2®L2(G). Since we know from (2.12) that

a(0GO)=/*00®lo and

we have

(3.3)
=

ffX^(s))f (r) = (G4(s)® 1G)0 (r) = >l(s){(r)

and

*,(T2(/)KO-) = ((l®lc®e/)0(r)
(3.4)

= r2(/r-«)«r).

Since \_A(r), A'2(r')]=0 for all r, r 'eG, it follows from (3.4) that

(3.5)

on B.
We apply (3.3) and (3.4) to xftt defined by (3.2). Then

ff«(x/,9KO, 0

Sj t)dr
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When g(r)dr converges to se, (Sa(xf^£,\r\) converges to

/(r'fl)(<rs,-.(ffa(x))c(s, r)|/7(S, t))dsdt

= j J /(r > a) ( .̂(xMs, /MS, OM«/' •

Therefore, if g(r)dr converges to ee and then / to 1, then Xj>tg converges

to n(x) as before and hence

(3.6) ^«x)) = 7r((ia(x)) xeM.

Combining (3.5) and (3.6), we have

for all a e G, where p is the isomorphism of D onto M®B obtained
before. Q. E. D.

4. Some Technical Lemmas for j8

Let N be a von Neumann algebra on a Hilbert space JT and /?
a dual action of G on N. For any 0 in R(G)% and co in N# we define
linear mappings jff^ on JV and <£to of N into #(G) by

(4.1)

for all xeN,coreN* and $rER(G)*. Let /?* denote the mapping of

onto JV* defined by

(4.2)

for all (oeN* and $

Since 7 is a dual action of G on R(G), y$ and y* are defined by
(4.1) and (4.2).

Lemma 4.1. Let $ and 4> be elements in

( i ) /W=W-
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( ii ) )V(#o>(*)) = ^coOM*)) for co e N* an d x e N.
(iii)

Proof, (i) If weN* and x 6 N, then

9 co®0®^> (By (1.6))

, eo®0®^> (By (2.6))

(4.3)

(ii) If $eR(G)#, then

(iii) From (4.4) we have

(4.4)
(By (4.3))

Q.E.D.

The following lemma is an immediate consequence of [11, Theorem

59 Chapter 3]. For the sake of completeness we shall give a direct

proof.

Lemma 42. Le£ L be a von Neumann algebra and t^u(t) a

weakly continuous unitary representation of G in L. If <j> is an ele-
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ment of L*, then t*-*u(i)*(j) (or u(i)(j), $u(t), $w(0*) is continuous (in

norm).

By means of this lemma we know that the functions in the above

lemma are Bochner integrable on every compact subset of G and their

integrals exist in L*.

Proof. For each / in LX(G) we denote by u(f) the integral

Let L0 be the set of all u(f)*\l/ with /eJC(G) and \l/eL*. Since u(f)*\l/

converges weakly to ij/ as f(i)dt tends to ee, L0 is weakly dense in

L* and hence it is total in L* in norm by the Hahn-Banach's separation

theorem.

For any (/> in L0 of the form u(f)*\j/ we have

|| (U(D* - H(S)*)0 1| ̂  |

Since L0 is total in L* in norm, t»-»u(f)*0 is continuous for all $ in

L*.

As for the remaining functions t*-*u(t)(/)9 <j)u(i) and $i/(£)* we can

give their proofs in a similar way. Q.E. D.

As <J(s), A(r)*0> = <A(sr"1), 0>, we have

The following two lemmas are crucial from the technical point of view.

In particular, Lemma 4.3 plays a role of Fourier expansion.

Lemma 4.3. Let $ be elements in R(G)% satisfying A^^>

0||1 = 1 and <A(r)*, <j)>dr tends to 8e.

(i) If \l/ is an element in R(G)% with A^eL1(G), the integral

(4.5)
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exists in R(G)%, is bounded by \\ty\\ and converges weakly to \j/.

(ii) // x = /?p(x) for some l*peK(G), the integral

(4.6)

exists in N®y*R(G), is bounded by \\x\\ and converges weakly* to

(}(x)9 where y* is the dual norm of y-norm.

Proof, (i) We denote (4.5) by ^. By Lemma 4.2, rn-»A(r)*0

is continuous. Since A^eL^G) by assumption and ||A(r)*$|| = ||0||,

the function rn-»<A(r), ^>(A(r)*0) is Bochner integrable and hence

^ exists in R(G)*. If /eL^G), then

(4.7)

The integral on the left hand side

(4.8)

exists in R(G)% by a similar reason as above and hence coincides with

\l/$ by (4.7). Therefore

= \

for all xeR(G). Here, since rt-><A(r)x, i^> is continuous, if <A(r)*,

(^>Jr converges to ee, then i/r^ converges weakly to if/,

From (4.8) and the assumption ||/dA<t<^||1 = l it follows that the

norm of i/r^ is majorized by ||i^||.
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(ii) Since car 4((/l(r)*</>)p) c (car A*0)r n car A*p, r^ j8A(r)^(x) = £(A(r)^)p

(x) has a compact carrier. Since n-»/JA(r)*0 is continuous and ||j8A(r)*^(x)||

<||0|| ||x||, ri->j8A(r)*^(x) is Bochner integrable and hence (4.6) exists in

N®R(G). If co e AT* and i// E R(G)* with A^eX(G), then

(4.9)

j8(x), <»<g)A(r)*0> <A(r), \l/>dr,

which converges to <P(x), a}®\//> by (i). Since the set of all \l/

satisfying A*^ e K(G) is weakly dense, it is dense in R(G)^. Since the

absolute value of the right hand side of (4.9) is majorized by ||x|| ||eo|| ||̂ ||

by (i), y*-norm of (4.6) is bounded by ||x||. Therefore (4.6) converges

weakly* to fl(x). Q.E.D.

The above (ii) in Lemma 4.3 or the following remark can be used

to prove (ii) in Theorem 7.1. However, we shall intend to utilize the

former in this paper.

Remark. If x is of the form P^y) for some \l/eR(G)% with A,+\l/

eK(G), then (4.6) exists in N®R(G) and converges cr-weakly to /?(x).

For this it suffices to show that (4.6) is uniformly bounded in $. If

we use the argument which will be done in Lemma 7.3, the integrals

d w*dr

exist as vector forms and satisfy

Since
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it follows from the right hand side that (4.6) is bounded by ||x|| under

the assumption of Lemma 4.3.

Lemma 4A Let (/> be an element of R(G)* satisfying ^<p

and PA^H^I.

(i) If {// is an element in R(G)% with A^eJ^G), the integral

(4.10)

exists in R(G)* and coincides with \j/.

(ii) // x = /?p(x) for some A^peXfG), the integral

(4,11)

exists in N and coincides with x.

Proof, (i) Since /U(£5 X*\l/ e K(G) and car A*((A(r)*(£)i/0 cz (

n carA*^, r^(A(r)*0)i/^ has a compact carrier. Since

|| $|| || ̂ || and rn-*(A(r)*$)^ is continuous by Lemma 4.2, (4.10) exists
in ^(G)*. Since

A(r)*, <i»dr=l

for all seG by assumption, we have for any / in
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Since X(Ll(G)) is o-weakly dense in R(G), if/ is given by (4.10).

(ii) By a similar reason as in the proof of (ii) in Lemma 4.3,

(4.11) exists in N and is bounded. For any coeN* and any

with

= \ <P(x\

(4.12)

•o®\li>. (By (4.3)).

Since the set of i//eK(G)# with ^ij/eK(G) is dense in ^(G)*, the linear

span of oj®\l/ with A.#\l/eK(G) is dense in (N®R(GJ)%. Therefore (4.11)

coincides with x. Q. E. D.

Lemma 4.5. // xeN, then x belongs to the von Neumann algebra

generated by P#(x) with A^i//eK(G).

Proof. Let N0 be the von Neumann algebra generated by P#(x)

with h*\l/ e K(G). If CD EN* annihilates on N0, then

(4.13) <P(x), o)®i//> = <Pf(x), co> =0

for all \l/ with 1*\I/EK(G). Since the set of all \j/ with ^\l/eK(G) is

dense in ^(G)^, (4.13) holds for all ^e#(G)#. Therefore j8(x) belongs

to N0®R(G) by [19]. By considering #,,(*) as x in (4.13), /? f JV0 is a

dual action of G on N0 and hence xeN0 by [22, Proposition II. 1.1].

Q.E.D.

5, Spectrum of f$

The spectrum of an action of G on a C*-algebra was investigated

by the method of abstract harmonic analysis, [2]. We shall define the

corresponding concept for a dual action of G on N by using the same

ideas. When the set of x in N is trivial whose spectrum with respect

to P is {e}, P is considered to be ergodic.

The basic theorem in Gelfand's theory for a commutative Banach

algebra tells us that there is a bijection between the set of all maximal

regular ideals m of ^(G)* and the spectrum G satisfying



750 YOSHIOMI NAKAGAMI

(5.1) m1 = CA(0 and

for teG. The Tauberian theorem is generalized by Eymard [5] as the

following: if m is a closed ideal of R(G)% such that for any teG there

exists a 0era with <A(J), 0>^0, then m = K(G)*. Therefore every

proper closed ideal is included in a maximal regular ideal.

Definition 5.1. For any ^ in £(G)* let F(<£) denote the set of all

t E G with < A(f), 0 > = 0. Let

(resp.sp,(x)5= n{r(0):/^(x) = 0} for xeN).

Let w^ (resp. mx) denote the set of all <j)eR(G)* with /^ = 0(resp.

0,00 = 0).

From (i) in Lemma 4.1 it follows that mft and mx are closed ideals

of ^(G)* and sp (/?) (resp. sp^OO) is the hull of mp (resp. mx). Besides,

if sp0(x) = <£, then mx = R(G)# by Tauberian theorem and hence x = 0.

Proposition 5.2» For a non zero xeN and teG the following

four conditions are equivalent:

( i )

(ii)

(iii) h(x)= <A(f), 0>x /or a//

(iv) d>w(x)= <x, c0>A(f) /or a//

Proof. The equivalence among conditions (ii), (iii) and (iv) is

immediate from (4.1). It suffices to show the implications (iii)=>(i)

and (i)=>(ii).

(iii)=>(i) Suppose the condition (iii). Since /^(x) = 0 implies

0>=0 for all (j>eR(G)#, we have resp^(x). For any seG with

we can select a ^ in JR(G)* satisfying <A(0, ̂ >=0 and <A(s), ^>^0.

Since <A(r), i^>=0 implies /^(x) = 0 by assumption, s does not belong
to sp/?(x). Since s is arbitrary with s^f , the condition (i) is obtained.

(i)=>(ii) Suppose the condition (i). Let mt denote the maximal

regular ideal associated with teG by (5.1). Since mx is included in
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mt but not in ms with s^t, mx is primary. By using [5, (4.10)], mx =

mt and hence

), o» =0

for all $£mt. Since mt is a maximal regular ideal, $m(x) = n(a))A.(f)

for some /j(G>)eC. From the linearity of $„ in coeJV*, and ||$w(x)||

<||x|i||co|| it follows that \JL is a bounded linear form on N#9 namely,

we have a y in N with $w(x)= <>>, co>/l(X). Since for any CD in N*

and any <£ in

= < j>, co>

we have /?(x) = j®A(0- Since

J900® A(t) = 08® 0 (j® A(0) = (

we have (j800-j;®A(0)®A(f) = 0 and hence P(y) = y®A(t) = P(x). There-
fore x=v and hence fi(x) = x®A.(t). Q.E. D.

Definition 5.3. Let N^ denote the set of all x in N with sp^(x)

= {e}, and Ma the fixed point algebra of af for all f e G .

The following proposition is not necessary for later use. For each

element j;ejR(G) the carrier suppOO of y is defined by Eymard [5] as

spy(y). We can describe spp(x) in terms of the carriers of #„(*

Proposition 5.4. sp^x) is the closure of the union of

for all CD in N#.

Proof. If CD E N* and ^ e R(G)+9 then

by (iii) in Lemma 4.1. Hence /^(x) = 0 if and only if y^w(x) = 0 for

all 0} in AT*. Therefore
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mx =r\{(f>e R(G)* ' ?,*«,(*) = 0} ,
coeAT*

whose hull gives the desired result. Q.E.D.

6. Fixed Points of a and ft

Let a be an action of G on M and a the dual action of G on
M®aG dual to a. A generalized conditional expectation of M®aG onto
(M®aG)* has been investigated by Landstad in his forthcomming paper,
[9]. Using his results, we shall show that (M®aG)* = a(M). Similar

argument for a dual action /J of G on N has been developed by Haa-

gerup, [6]. In the latter half of this section we shall give an independ-

ent argument in order to show (N(g)j}G)^

The case of a.

K(G) is a left Hilbert algebra with respect to a product (/, g)*-*

f*g, an involution /i->/ and an inner product (f\g) = I(fg). Using the
left representation n of K(G) we have

(6.1) (n(f)g) (0 =

The modular conjugation J of K(G) is of the form (J/)(0 =
and A.r(i) = JA(i)J. Therefore R(G)' is generated by A'(G) and it is the
left von Neumann algebra of K(G) by (6.1). The extension ij/ over

m^ of the canonical weight \j/ on R(G)+ associated with K(G) is given by

i/}(^*/)) = iKn(g)*n(fy> = (f\g) = (<?*/) (e) ,

where e denotes the unit of G. We denote by coe the weight on R(G)

defined by i^oAdJ. Then

Let F be a net in £(G)J such that A^FcK(G) and

(6.2) coc(x)

Let ^ be a dual action of G on N. If yeN+, then {^(y): cfreF} is an

increasing net in N+. Define a generalized conditional expectation
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for yeN+ by

Since co®coe for eoeJVJ is a semi-finite normal weight on N®R(G),

we have

<Eft(y\ a»=sup

for yeN+. Let n^ be the set of all xeN such that

<P(x*x)9

for some fix>0. Since x*j*yx< ||j;||2x*x, n^ is a left ideal of N. Let
m/8 = n|n^ and £^ be the linear extension of Eft over mp. Then £^
satisfies

( i )

(ii)

(iii) x, t x implies Ep(xt) t £^(x) xt e N+

(iv)

(v)

where JV^ denotes the set of all xeiV with jS(x) = x®lc. For instance,

(iv) is proved as follows: If zemj, oeNJ and ^e#(G)J, then

<P(Ep(z)), co®\j/> =sup <j8(j?0(z)
^

-sup <0®y)j8(z), co®0®i/r> (By (4.3)) .

According to the choice of F in (6.2) we may assume that

converges to se. Since

= <x, co> \

the right hand side converges to

<x, co>f(e)<lG, \l/> = <x®A(/), co®coexlG9
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Now, let a be an action of G on M, N=M®XG and /? = a. Using

results of Landstad [9, Lemma 2.8 and Corollary 1.3], we know that

(a) if /eX(G), then !*»*(/) em, and £,(!*<»*(/)) = <!(/),

(b) Nfmp

(c) Ep(mp) = Nft

(d) the mapping y em^E^fr*^) is <7-weakly continuous for

each ften^.

For example, (a) is shown by

(By (2.9))

for any /e^4(G). Using these results we have the following proposition

Proposition 6018 // a is an action of G on M, then a(M) = (M

Proof. Let N = M®aG and ^ = dL By virtue of Proposition 5.2,

NP = Np. Since a(M)cJV, by (2.9), we have only to show the converse

inclusion.

Let JV0 be the set of all

with f i->;x(0 in K(G, M). The linear span N1 of all j;*x with x, y e JV0

is o--weakly dense in JV. Since the convex cone N| spanned by x*x

with xeN0 generates linearly JV19 JVf is ^-weakly dense in N+. Since

JViCm^ by (a) and (b), iVf is a-weakly dense in m^j. It follows from

(d) that EX(1M®%)*)^f(lM®%))) is ff-weakly dense in E
for all geK(g). Since £^ is normal by (iii)

\J £(l
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is ff-weakly dense in £/J(mJ) = Nj5'(by (c)). Consequently,

\J Ep(([
geK(G)

is d-weakly dense in JVJ. Since

by (v) and (a), we have N^cza(M) and hence Npdct(M). Q.E. D.

The case of j8.

Let's recall ag defined by (2.4). Let /' be the left invariant Haar

integral or If(f) = I(Af). Since /' is a semi-finite faithful normal weight

on L°°(G), there exists an increasing net FaK(G)+ such that

(6.3) /'(/) = sup {/(/#): geF}, /eL°°(G)+ .

If yeM + 9 then {o^OO : g e F} is an increasing net in M+. Define £a

for yeM+ by

(6.4) £.00 = sup{a,00:flreF}.

Since co®/' for coeM* is a semi-finite normal weight on M®L°°(G)5

we have

(6.5) <Ea(y)9 a» =sup
9

Since £a(y) is not necessarily bounded, we shall take out the bounded

part by considering the set na of all x E M such that

(6.6) <a(x*x), W®A><IJIX\\CO\\ coeMJ

for some jUx>0. Since x*y*yx< ||j||2x*x, na is a left ideal of M. Put

ma = n*na. £a is, by (6.4), linear and normal on M+ and is extended

canonically over ma, which is denoted by £a.

Lemma 6.2. Let a be an action of G on M and let Ma be the

set of all xeM with a(x) = x®l. // £a and ma are defined as above,

then

( i ) £ a

(ii) £a

(iii) x. t x implies £a(xj t £«W xt e M
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(iv) a(£a(z)) = £a(z) 0 1 G z e m

(v) £j(b*zb) = b*£jtz)b

Proof, (i), (ii) and (iii) are already shown in the above. We have
only to prove (iv) and (v).

(iv) If zemj, G>eMJ and /eL1 (</)+, then

)), co®f> = sup <a(a/z)), co®/>
9

(6.7) =sup <a(z)3 co® (/*#)> (By (2.5))
0

= <a(z), a>®J> <lG ,/> = <Ea(z)®lG, a>®/>.

Since co®/ are total in (M®L00(G))Ji:, we have

for xema.

(v) If beMa, xeM + and coeMJ, then

Q.E.D.

Lemma 6.3. Let $ be a dual action of G on N9 M = N®$G and

= /?. Let ma and Ma be as in Lemma 6.2.

(i) // g€Ll(G)l}L*>(G), then 1^0^ em. and £a

(ii) MantaMac:ma.

(iii) £a(ma) = Ma.

Proof, (i) If f ejf and/eL2(G), then

(6.8) = <lw0e0, a>^®|/|2® J> (By (2.12))
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Since (D^®a>f are lotal in M*, lN®g errta and E(X(lN®g) =

(ii) If feeMa, xen a and coeM^, then

= <a(x*jc),

by (6.6). Therefore naMacna and hence MamaMacma.

(iii) Since £a(ma)cMa by (iv) in Lemma 6.2, it suffices to show

the converse inclusion. If xeM a and g eLl(G) n L°°(G), then (

ema by (ii) and

by (v) of Lemma 6.2 and (i). Thus x e £a(ma). Q. E. D.

Proposition 6A // jS is a dual action of G on N, then P(N) =

Proof. Let M = N®jG and ass/J. It is known that Ma = Ma.

Indeed, MacMa is clear. If xeMa, then af(-
x) = ;c locally almost every-

where in teG. Since s*-*as(x) is cr-strongly* continuous, as(x) = x for all

s. Thus xeM*.

Since j5(JV)czMa by (2.12), it suffices to show the converse inclusion.

We first notice that the mapping yem(X^E<x((lN®g)y(lN®g))eM(X is a-

weakly continuous for each geF, where F is a net in K(G)+ defining

/' given at (6.3). This is because

by (6.6) and

<E(X((lN®g)y(lN®g))9 a» = <a((\N®g)y(lN®g))9 co®A>

Let M0 be the linear span of
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with r^y(0 in K(G9M) and feK(G). The linear span Ml of all z*y

with y9 z e Af 0 is a-weakly dense in M. Since the convex cone M\ span-

ned by y*y with )>eM0 generates linearly Ml5 M| is er- weakly dense

in M+. Since J^crr^ by (i) and (ii) of Lemma 6.3, Mj" is ^-weakly

dense in m+. The d-weak continuity shown in the above implies that

£a((l*®0)Mi(ljv®0)) is <7-weakly dense in Ex((lN®g)m+(lN®gJ) for all

geF. Since Ex is normal by (iii) in Lemma 6.2,

is cr-weakly dense in Ea(m£) = M+, which is due to (iii) of Lemma 6.3,

Consequently, since £a is normal,

is cr-weakly dense in MJ. Since £a((ljV®^)Mt(ljV®^)) is included in

^(]V) by Lemma 6.5 below, we have MJc/?(J!V), namely, Mac=^(]V)B

Q.E.D.

Lemma 6.5,

Proof. Since (lAf®6f)^(z)(l /v(x)^)6ma for all zeAT, we may assume

that sp^x) is compact by Lemma 4.5. Denote by F the function on

G:

Then F = X*p for some peR(G)%. Therefore

)9 a»

Q.E.D.
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7. Duality for Crossed Dual Product by ft

We shall show another duality theorem for crossed product, which
is also a generalization of Takesaki's duality.

Theorem 7.1. Let N be a von Neumann algebra on Jf. Let
fi be a dual action of G on N,a = J3 and /? = a. Let n be a faithful

representation of N on Jf®L2(G)®L2(G) defined by

(7.1) n(x) = (i®W')(P(x)®lG)(l®W1)*

for xeN, where W is defined by (1.9). Then

(i) (N®$G)®aG is isomorphic to JV®B(L2(G)) and the isomorphism

transforms n(x) in the former to x®lc in the latter; and

(ii) U*p(n(x))U = (TE® 0000,
where U is defined on Jf ®L2(G)®L2(G)®L2(G) by

Before going into the proof we shall prepare the following lemmas.

Lemma 7.2. (i) // yr is defined on L2(G)®L2(G) by AdJT(lG®

)) or

then y, belongs to the von Neumann algebra generated by eL°°(G) and

\G®R(G), where (e/)(s, t)=f(rls).

(ii) Ad^'

Proof, (i) For each / and g in K(G) we set

We may assume that geK(G) and H^H^l. If ^eX(GxG), then

(*,..0(s, 0
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Since \\xfj < A ( r ) l l 2 \ \ f \ \ \\Ag\\l9 when (Ag)(d)da converges to ee, xft9

converges weakly to (ef)yr. Since xftg is in the von Neumann algebra

B0 generated by eL°°(G) and 1G®R(G\ so is (ef)yr. Since 1G®1G is
in the weak closure of sK(G), yr belongs to B0.

(ii) If £eL2(G)®L2(G), then

Q(s, 0

Q.E.D.

Lemma 73. Let (/) and if/ be elements in R(G^ with

eK(G) and cor an element in B(L2(G)®L2(G))^.

(i) The following four integrals exist as vector forms

W'))dr

(ii) If caeN* and yeN9 then

(7.2) <7<^00®1G, FJw > = < /WJO)®1G, co®G|> 0 = 1, 2).

Proo/. The proof for FJ t^ and G| proceeds similarly as that for

^ and G^. We have only consider the latter.

(i) We first consider F^. Since r^A(r)*^ and r*->yr-iCQr are
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continuous by Lemma 4.2, n->(/L(r)*0)i^®j^-iCo' is continuous. Since

A*<£, A+\l/ 6 K(G) and car A*((A(r)*0)^r) c (car A*0)r n car A*i/r, r»->(A(r)*0)^®
yr-ico' has a compact carrier. Therefore F^ is Bochner integrable and

hence it is the norm limit of vector forms.

As for G^ we have only notice that k*(j)eK(G) and r»->(lG®A'(r)*)
(o)'°Ad W) is continuous.

(ii) We first show that

(7.3)

for all z e R(G). Since F^ and G^ are vector forms, it suffices to show

(7.3) for all A(/) with/eLHG). Now, if/eL^G), then

= \\/(s)<A(s), i/r> <A(sr~1), ^> <(A(s)®lG)jv-i, co'>drds

(7.4) = / ( 5 )<A(s ) , ^r> <A(r)*, 0> <(A(s)®lG)^-ir-i,

<A(s), \l/> <A(r)*, 0> <A(s)®A'(r)*, w'°Ad Pf

= (<A(r)*, 0> <7^A(/)®A'(r)*, co'oAd W>dr

where the third equality is due to the Fubini theorem and the right

invariance of Haar measure, and the fourth equality follows from Lemma

7.2.

Now we replace z in (7.3) by $J(y). Then we have
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where the second equality is due to (ii) of Lemma 4.1. Thus (7.2)

for j = l is proved. Q.E.D.

Proof of Theorem 7.1. Let M = JV®j*G and D = M®aG. Since

M is generated by f}(N) and 1®L°°(G) and since D is generated by oc(M)

and 1M®#(G), D is generated by

G) and

by (2.12). Let Q(/)=l®s/ and A2(r) = l®lG®A(r) as in (1.10). Since

by direct culculation, Q and A2 satisfy the commutation relation, [10].

Therefore the von Neumann algebra B generated by 2(L°°(G)) and

1®1G®.R(G) is isomorphic to B(L2(GJ) and hence D is isomorphic to

(D[\B')®B. It is clear that A2(r) commutes with 1®W and /?(;c)®lG

and hence n(x) commutes with A2(r). Since for any zeN and reG

it follows that Adl®^f'(z®A(^)®lG) commutes with Q(f) and hence
that n(x) commutes with Q(/). Therefore n(N)^Bf.

Now, we shall show that n(N) c D. Choose x e N and 0, ^ e ^(G)*

with A*^, A^i/r e K(G). Since r^p(^r}^)llf(x) has a compact carrier,

the integral

exists for every (f)eR(G)#. We denote it by x^. Then x+j belongs

to D by (i) in Lemma 7.2. For any co' in 5(L2(G)®L2(G))^ we have

(7.5)
= <jS(j

= < Ad 1 ® W'(p(Pt(x))® < A(r)*, 0 > A'(r)*dr), co® co'
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where the second equality follows from (iii) of Lemma 4.1 and the

third equality follows from Lemma 7.3. Since we may assume that

A^(f)EK(G) + and ||/dAs^^||1 = l, the norm of the first argument of the

right hand side of (7.5) is majorized by ||/?,/,(X)l|. Further, since co®cof

are total in the set of all vector forms, x^ is bounded by ||/^(x)||.

Since co®o/ are total in D*, (7.5) shows that x^ converges tr-weakly

to

Ad

as <A(r)*, c/»c/ r tends to ee. Since x^eD, n(P^(x))eD. Since x

is in the von Neumann algebra generated by ^(x) with if/ E R(G)* and

A,#\l/eK(G) by Lemma 4.5, n(x) belongs to D.

Next, we shall show that fi(N)®\G is included in (n(N)VB)". For
each y e N we denote by y^ an element of the form

where 0,^ are in R(G)* with A+fa A.+\l/ E K(G). Since yr = AdW(lG®

A'(r)) by (i) in Lemma 7.2, Adl®l^'0^) belongs to (n(N)VBy. For

any o>' in 5(L2(G)®L2(G))Ji! we have

(7.6)

where the second and third equalities follow from Lemmas 4.1 and 7.3,

respectively. Since we may assume that A*<j)€K(G)+ and PA^^>||1 = 1,

y^^ is bounded by ||/^(j;)|| by a similar reason as before. Since co®a/

are total in the predual of Ml®W'*(n(N) U E)\ (7.6) shows that

converges cr-weakly to
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as <A(r)*, cj)>dr tends to ee. Since Ad 1 ® JF'OW belongs to (7i(]V)

UB)", £%(><))®1G belongs to (Tc(AOuB)" and hence 000®lGe(7c(AO

U B)".
Consequently, we have shown both that n(N)(}Bc:D and that

(^(Ar)®lG)uBc(7c(Ar)uB)". Since D is generated by J8(N)®1G and 5,

we have D = (n(N) U B)". Since 7u(IV)c:D n £', D is isomorphic to

(ii) Put l70=[/*(l®lG®FF)*(l®Pr®lG). Then

(7.7) (E/o0(r, 5, 0 =

Here, by Lemma 4.5, we have only to show (ii) for x with compact

sp,(jc). If 0e£(G)* and A*<£eK(G), then for any aeG

(7.8) =

(ra5 r-^, ta)da

da^ r-^, r).

Here we assume that co^ belongs to the algebraic tensor product

R(G)*QR(G)*QR(G)*. By virtue of (ii) in Lemma 4.3 if

converges to ee, the left hand side of (7.8) multiplied by A(r)l/2 con-

verges to

r, 5, 0 (By (7.7))

Define a unitary 17 i on JT®L2(G)®L2(G)®L2(G) by
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(l/ifXr^Osftr,*,*)

and put l/2s=0®W®lG)t/i. Then the right hand side of (7.8) mul-

tiplied by zl(r)1/2 converges to

JCr)1/^!/^®?)^)®^)^!®^'®^)*^)^, r-1*, f)

= (t/2(0®y)/J(jc)®lG)t/S€)(r, 5, 0

= (U2(G8®0/»W®lG)l/!{)(r, 5, 0 (By (2.4))

r, 5, 0-

Since the set of c, considered there is dense in Jf®L2(G)®L2(G)®L2(G),

we complete the proof of (ii).

Combining Proposition 6.4 and Theorem 7.1, we have the follow-

ing corollary.

Corollary 7.4. // M is of the form N®jG for some N and a

dual action P of G on N, then

(i) M* = P(N)for a = j8; and

(ii) M®aG is isomorphic to Ma®5(L2(G)).

The existence of a pair {JV, /?} in the above corollary is always

assured by Theorem 3.1 whenever M is properly infinite and G is se-

parable.

Combining Theorem 3.1 and Proposition 6.1, we have the following

corollary.

Corollary 7.5. // N is of the form M®aG for some M and an

action a of G on M, then

(i) N' = a(M) for /? = a; and

(ii) N®pG is isomorphic to

The existence of a pair of {M, a} in Corollary 7.5 is assured by

Theorem 7.1 whenever N is properly infinite and G is separable.
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8. Haga's Factorization of Crossed Product

In this section we shall establish a structure theorem of a crossed

dual product corresponding to the Landstad's theorem which gives a

necessary and sufficient condition for a given von Neumann algebra

to be a crossed product with respect to a given locally compact group.

Combining this theorem with the Takesaki's duality of second type,

we can give a sufficient condition under which a Haga's factorization for

a crossed product is possible.

Theorem 8.1 (Landstad [9]). Let N be a von Neumann algebra

and G a locally compact group. The following two conditions are

equivalent:

(i) there exist a von Neumann algebra M and an action oe of

G on M satisfying JV~M®aG; and

(ii) there exist a weakly continuous unitary representation u of

G in N and a dual action ft of G on N satisfying fi(u(t)) = u(t)®

for all teG.

Proof. (i)=s>(ii) We may assume that N = M®aG. If we put /? = $

and 14(0 = ^(0, then (ii) follows from (2.9).
(ii)=>(i) Let m^ and Np be as in Section 6. Let F be an increasing

net given at (6.2), namely, coe = sup{oK co eF}.

First we shall show that N is generated by Nft and u(i), t e G.

If 0 e F, y e mj, co G ATJ and \j/ E /?(G)J, then

= <P(yu(t)*)9 u(Oo>®0(A(Ol«> (By (4.3))

Since we may assume that <A(f)*, $>dt converges to e

t)*)u(t))dt, (D®i^> = <p(y)9

by (8.1) and hence
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Since m'jj is a- weakly dense in N+, N is generated by Np and u(i)9

teG by the fact that Ep(mp) = Np.

Next, we notice that Adu(f) is an action of G on Nft. Indeed, if

xeNp, then

and hence Adu(i)(Np) = Np.

Finally we shall show that N is isomorphic to M®aG, where M

= N and a(x) = Adw(x®lG) for xeM. Since

(u*(l M® A(OX) 00 = u(s)*(u
(8.2)

= (("

for ^ in L2(G, JT) and

(8.3) u*a(*)M

for x in M = Np, we have M®aG = AdMo/?(jV) and hence N is isomor-

phic to M®aG. Q.E.D.

If we combine Corollary 7.5 and Theorem 8.1, we will have the

following theorem.

Theorem 8.2. Let 0 be a dual action of G on N. If there exists

a weakly continuous unitary representation u of G in N satisfying

/J(ii(0) = u(0®A(0 for all teG, then N®|G is isomorphic to N^®

B(L\G)).

Proof. According to Theorem 8.1 there exists a von Neumann al-

gebra M and an action a of G on M such that N is isomorphic to

M®aG. Put p = Adwo£. Using (8.2) and (8.3), we have p(ii(0) =

At(0 and p(x) = a(x) for xeNp. Since

) (By (2.9))

for xeN and
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we know that (p®£)°/? = a°p and hence that /? is a dual action dual
to oc through the isomorphism p. Therefore by Corollary 7.5 we com-
plete the proof.

Theorem 8.3, Let M be a von Neumann algebra and G a locally

compact group. The following three conditions are equivalent:

( i ) there exist a von Neumann algebra N and a dual action f$

of G on N satisfying M~JV®jJG;

(ii) there exists an action a of G on M and a Hilbert space 3C

such that ljr®LQO(G)c:M and ^(ljr®f)=ljr®sf (or afOjr®/) = ljr®
ft-i for all £eG); and

(iii) (assume that M is standard) there exist an action a of G

on M and a weakly continuous unitary representation v on a Hilbert

space 3SC such that l>?r®L00(G)c:M and a, = Ad0(0®A'(0 [ M for all

tEG.

Proof. (i)=>(ii) We may assume that M = N®d
pG. Put a = $.

Then lN®L°°(G)c:M and <x(lN®f) = !N®sf by (2.12). Therefore

and so ctt(lN®f)=iN®ft-i for all teG.

(ii)=>(iii) We have only to show the existence of a weakly con-
tinuous unitary representation v on Jf such that at = Adv(i)®h'(t) on M.

Now we may assume that a, is implemented by a weakly continuous

unitary representation u of G on JT®L2(G) by considering M to be

standard. Since by (ii)

for all /eL°°(G)9 we have (i^®X'(r))*u(T)eB(Jir)®L™(G\ Therefore there

is an essentially bounded weakly measurable function reGi->i>(r) in

L™(G, B(jf)) such that v(r) are unitaries on Jf* for all r e G and w(r)
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= u(r)®r(r). Since w is a representation of G, so is v. The continuity

of unitary representation is immediate from measurability.

(iii)=>(i) Let ma and Nft be as in Section 6. Let F be an increasing

net given at (6.3), namely If = sup{g: g eF}.

First we shall show that M is generated by Ma and ljr®LQO(G).

Suppose that y e ma. If fe e K(G\ geF9ax= B(tf)*, h e L2(G) and /e

), then

(8.4)

where * indicates the convolution product with respect to the second

argument, (Dh®1CiK(k(a)®H) = I®I(K(ah®HJ) for #£L°°(G) and

Since

//s, f) = i

= fc(r ! sr- !) (k(b)h(s)f(sr- 1 b~l)g(brs- l t)db,

we have, by right invariance of Haar measure,

, 0

where ^(r) = fc(r~!). Therefore
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(8.5)
=

by (8.4). If geF converges to A in the compact convergence topology,

V

by (8.5). If (k*k)(r)dr converges to ee, then

(8.6)

converges tr-weakly to y. Since the element at (8.6) belongs to the von

Neumann algebra generated by Ma and ljr®L°°(G), so does y. Since

ma is er-weakly dense in M as in the proof of Proposition 6.4, M is

generated by Ma and l^r®LQO(G).

Now we define a unitary w on jf ®L2(G)(g)L2(G) by

and an isomorphism /? by

for all x in Ma. Then (w*f)(s, 0 = ̂ (01/2^ ^~1s). We shall show
that P is an isomorphism of Ma into

Since w*(lM®A;(r))w = lM(x)/l(r) by

s9 0,

we have, for any x in Ma,

and hence
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(8.7)

Since M' c:B(^)®L^(G) by assumption (iii), if yeM', then y is

an essentially bounded weakly measurable function r*-*y(r) in L^G,

and hence [w, )>®1G] = 0, for

, 0

Therefore, for any x in Ma,

[w(x®lG)w*, >'

and hence by (8.7)

(8.8) w(x®lc)w*

Here we set u(t) = v(t)®l'(t) on «^"®L2(G). Since w*(w(r)®lG)w

®A'(r) by

s> 0,

we have, for any x in Ma,

(8.9) = w(w(r)® A'(r)) (x® 1G) (w(r)® A'(r))*w

Combining (8.8) and (8.9), we have

(8. 10) w(x® lG)w*

which shows that j8 is an isomorphism of Ma into

Next we shall show that /? is a dual action of G on Ma. Define a

unitary Ul on JT®L2(G)®L2(G)®L2(G) by



772 YOSHIOMI NAKAGAMI

as (7.9) and put wst/^wOlJC/?. For z in K(G, B(jT)) we put

Since

Ad((w®lG)w)(z®lG®lG)

and

Ad w(z®lG) =

by direct cumulation, we have

(8. 1 1) Ad (w® l)

on z®lG. Since the set of all z is weakly dense in B(jf ®L2(G)),

(8.11) holds on Ma®lG and hence f$ satisfies (2.6), which shows that

j8 is a dual action of G on Ma.

Finally we shall show that M is isomorphic to JV®jJG, where N =

Ma. Since

(8.12) w*^(x)

for x in N and

(8.13) ^(r^^CO^^wQfe t-is)=f(t-is)t(s, 0

S, 0

for / in L°°(G)? we have JV®jjG = Adw°a(M) and hence M is isomorphic

to N®|G. Q.E.DO

Theorem 8.3 gives a sufficient condition under which Haga's fac-

torization holds for a crossed product, [7], in the following.
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Theorem 8.4. Let a be an action of G on M. If 1^®L°°(G) is

a von Neumann subalgebra of M satisfying af(l j r®/)=l j f®/r-i for all

teG, then M®JG is isomorphic to Ma®£(L2(G)).

Proof. By virtue of Theorem 8.3 we have a von Neumann algebra

N and a dual action ft of G on N such that M is isomorphic to N®jG,

We set p = Adw°a. It follows from (8.12) and (8.13) that p(x) = $»

for xeN = Ma and p(ljr®f) = lN®f for feL^G). Since

) (By (2.12))

for xeJV = Ma and

we know that (p®c)°a = (l°p and hence a is an action dual to /? through

the isomorphism p. Therefore, by Corollary 7.4, we have a desired

result. Q. E. D.

9. Appendix

In this section we shall give a few comments on our results con-

sidered when we use the left regular representation of G on L2(G). Let

J be a unitary involution on L2(G) defined by (J^)(i)

We set

a' = (Ad 1M® J)oa, d' = (Ad J® J)o<5o(Ad J)- 1

M®a,G={a'(M), 1M

Then we have

(9. 1) (a'® ,>a' = (,® 5>a', (a'(x){) (r) = ar

(9.2) (P'®W = ('®yW
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(6'f)(s9 0 =/(*), yT(f) =

M®a,G~M®aG,

If we define &' and /?' by

for yeM®a,G and zeN®^G, then

where (fi'/)(s, 0 =/(«*" O- Besides, a' and j8' satisfying (9.2) and (9.1),

respectively.
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