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Limit Theorems of Occupation Times
for Markov Processes

By

Yuji KASAHARA*}

§ 0. Introduction

Let Xt be a temporally homogeneous Markov process with values

in an abstract space and f ( x ) be a measurable function on this space.

The limiting distribution of random variable

as

where u(f) is some normalizing function, has been investigated by many

authors. A most general limit theorem was obtained by Darling and

Kac [1], who also showed that, under suitable condition, the limit dis-

tribution must be Mittag-Leffler distribution. However, they confined

themselves to the case where /(x) is nonnegative. C. Stone [5] derived

a limit theorem for processes including 1 -dimensional diffusion processes

with the infinitesimal generator -= -- = — . It is not assumed that f ( x )
dm ax C

is nonnegative, but it is essential that /(x) is not null-charged; \f(x)m(dx)

*0.
In this paper we study the case where f ( x ) is null-charged. If Xt

is positively recurrent, the problem above can be reduced to the central

limit theorem (see Tanaka [6]). A similar problem was treated by

Dobrusin [2], who studied limit theorems for the 1 -dimensional simple

random walk.

The aim of this paper is to give a limit theorem for most general

processes. Contrary to the case of [1], the limiting distribution is

Communicated by K. Ito, July 30, 1976.
*) Department of Mathematics, Kyoto University, Kyoto.
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bilateral Mittag-Leffler distribution (for the definition, see Appendix).
We also prove that, under suitable conditions, the limiting distribution
must be bilateral Mittag-Leffler distribution.

To prove these theorems, we use the method of Darling and Kac;

we calculate the Laplace transform of the moments of \ f(Xs)ds and
Jo

appeal to Tauberian theorem. However, matters are more complicated
since f(x) may take negative values in our case.

In section 1, we will state our theorems in a general form and we
give, as an example, a limit theorem for 1-dimensional Brownian motion.
Sections 2 and 3 are devoted to the proof of the theorems in section 1.
In the last two sections, we apply the main theorems to symmetric stable
processes and 1-dimensional diffusion processes.

§L Main Theorems

Let X = (Xt9 Px) be a temporally homogeneous Markov process
with state space (£, ^), where £ is a locally compact Hausdorff space
and 88 the Borel a-field of E. We assume there is a Radon measure
v(dx) such that the transition probability p(t, x, dy) is absolutely con-
tinuous with respect to v(dy);

Let us denote by Gs(s>0) the Green operator of X;

G,f(x)=\ Gs(x, y)f(y)v(dy)
J E

for any bounded measurable function /, where

GJx,y)=(*>e-«p(t,x,y)dt.
Jo

In the sequel, we assume that Gs(x9 y) has following representation;

e(x, y; s).
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[Assumptions]

(A) /(x) is a bounded measurable function on E such that sup|Gs/(x)|
xeE

is bounded as s-»0.

(B) lim/i(s)=oo.
s-»0

(C) C = JJw(x,

(D) There exists a measurable function lgp(x)<oo satisfying the fol-

lowing ;

(D.i) Jl/00lp00v(d)0<«>.

(D.2)

is bounded in x.

(D.3)

converges to 0 uniformly in x as s->0.

Suppose (A)~(D) are satisfied. Then we easily see that /(x) satisfies

the following condition;

(N)

This condition plays an essential part in the sequel. The condition

(B) is, roughly speaking, equivalent to the recurrence of Xt, and in many

cases, (C) is satisfied if /(x)^0 v-a.e.. (D) is a rather technical assump-

tion, and in a special case such as /(x) has compact support, (D) can

be replaced by a more natural assumption (D');

(D') (D.I') J|/(x)|v(dx)<oo.

(D.2;) w(x, y) is locally integrable and \|w(x, y)f(y)\v(dy) is

bounded on {£;/(£) **()}.

(D.3') lim\|e(x, y\ s)f(y)\v(dy) = Q, and the convergence is uniform
s-»0 J
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on

Theorem 1. // X and /(*) satisfy (A)~(D) (or (D'», flnd (f
= s~aL(l/s) w/'f/i L(l/s) slowly varying as s-*0, ffcew, O^agl , C>0
/or eac/i xe E,

where gx/2(u)=±-\"
/ tu- j y . z,

Theorem 1 has the following converse;

Theorem 2. // X and /(x) s<m's/> (A)~(D) (or (D')),
there is a nondegenerate distribution function G(x) such that

holds for some xeE and for some appropriate nondecreasing function

w(0/'oo, then /i(s) = s~aL(l/s) for some a (O^a^ l ) and slowly varying

L(l/s). Hence G(u) = ga,l2(bu) with suitable constant b.

Example. Let Xt be a 1 -dimensional standard Brownian motion and
f(x) be a bounded Borel function such that

.e., (\x3f(x)\dx«x>, and

Since Gs(x, y) = —, =e-v^l*-y| with v(dx) = dx, (B)~(D) are satisfied if we

set h(s) = llj2t, u(x9 y)~-\x-y\9 s(x,y; s) = -
and p(x) = |x| + l. To show that (A) is satisfied, we have only to notice

that

\GJtx, y)-GJtx,0)\£\y\.

In fact,
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Hence we obtain the following;

f ( X s ) d s < u } = = g l / 4 ( u ) , w
'

where (C t)
2 - — |*-j, \f(x)f(y) dxdy .

\J *• j )

Remark. The result in the example above can be obtained by

another method. Let /(x) (=^0 a.e.) be a bounded measurable function

such that xf(x) is summable and such that \f(x)dx = 0. Then

(x-y)f(y)dy and F(x) = 2 f(y)dy
o J-ao

are bounded functions. By Ito's formula, we obtain

G(Xt)-G(X0) = T F(X^dXt+\tf(Xf)ds.
Jo Jo

Since G(x) is bounded, we have only to show

lim E Jexp -^T* (' F(Xs)dXs\ = E1 /2(A2),
f->ao I ^1* Jo J

where £1/2(P) = Z,T=^2"/r(n/2 + l) = (C° e**d§ll4(x)
J-OO

(•oo

= \ e* xdgl/2(x), (see Appendix).

To prove this we use the Cameron-Martin formula;

= ̂ {exp 2^172 J'oW) 2 ̂  • exp (̂ 174 J

where X*. is the solution of the following stochastic differential equation;
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Then using the method of C. Stone [5], we can prove

limJgJexp 2J;*1/2 (tF(XQ2ds\=El/2(tf).
f->oo I £^il 'Jo J

This proves our assertion.

§2. Auxialiary Results

In order to prove the theorems in section 1, we need some auxialiary

results. Throughout this section we assume (A)~(D). To simplify the

notations, for any measurable function u(x) defined on E, we denote

sup \u(x)\lp(x) by ||u||.
xeE

Notice that lim||wj|=0 is followed by limw/J(x) = 0 for each x.
n-»oo H-*OO

Lemma 2.1B Let g(x)=\ u(x9 y)f(y)v(dy}. Then,
JE

(i)
s-»0

(ii) g(x) is bounded on E.

(iii) IS||GX/0)-CJi(s)ll<oo.
s-»0

Proof, (i) follows immediately from (D.3), and (ii) from (A) and (i).

By the definition of g(x), we have,

GJ(fg)(x)-Ch(s)

9 yi s)f(y)g(y)v(dy).

Since g(x) is bounded, (D.2) and (D.3) imply (iii). Q.E.D.

Lemma 2JL For any vs(x), s>0 (Mm ||i;J| <oo),

(i) lim
S-.Q
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(ii) lim
s-»0

GJ(Gs(fvs)) <Klim \v
s-»0h(s)

where K is a positive constant which is independent of vs.

Proof. Set a(s)=\f(y)vs(y)v(dy~), then we easily see that

(2.1) 115 \\Gs(fvs)(x)-a(s)h(S)\\ ^K, IIS ||i>,|
s-»0 s-»0

where J^Hlw*, y)f(y)\p(y)v(dy)\\ (<oo) and that

(2.2) ffin \a(s)\ ^
s->0

Since ||a(s)|| ^|fl(s)|, we obtain by (2.1) and (2.2) that

lim
s-»0 s-»0

where X2 = J|/(y)|p(y)v(^) (<oo).

Thus (i) is proved, and furthermore, using (i) and (2.1), (2.2), we have,

lim
s->0 s-»0

lim ||Gs(A)-fl(s)Ks)|| +lim sup \GJ(x)\ lim |a(
s-*0 s-»0 x s-*0

where X3 = limsup|Gs/(x)|. Q.E.D.
s->0 x

Lemma 2.3. Let v^s, x) = Gsf(x) and u^s, x)=

, n=l,2 .....
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(i) iIS||un(x)-C»||=0, n = l,2,....

(ii) IImK(jc)||<oo, n = 1,2,....
s-»0

Proof. We prove the assertion by induction. By Lemma 2.1

we have lim
s->o h(s)

Jm |GJ-0||=0.

Hence, using Lemma 2.2 (i),

°ML-c

-C =0,

fimlli^-Cllgfim "My -r o-TT^ G.(f(G.f-g»
s->0 s->0 h(s)

Gs(f(GJ-g))

s-»0 h(s)

h(s)

^ K ITS || GJ-0||=0.

fim||i;1||<cx) follows immediately from (A).
s-*0

Next we assume (i) and (ii) are valid for n. Then using Lemma 2.2 (ii),

s->0

<n(GJGsf_c
\ 7 ^ \ ^

s-»0

^K lim ||wfl-C"|| + |C|"lim ||t^-CI^O,

and

Now the induction is completed. Q.E.D.

As an easy corollary of Lemma 2.3, we obtain the following;

Lemma 2A For each
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We assumed in this section (A)^(D). However we remark that

Lemma 2.4 is of course valid if we assume (D') instead of (D). The

proof turns out to be easier, so the details are omitted.

§3. Proof of the Main Theorems

Throughout this section we fix x0eE and EXQ{-}9 PXo{'} are de-

noted simply E { ' ] , P [ - } respectively. Now changing the variable we

have

f o o f / f f \ 2 )
(3.1) 5\ «r"£ ( /(Xt)c/r) \dt

Jo l \ Jo / )

Hence Lemma 2.4 provides us with

(3.2) [imhh)\ e~"E\5-*o n\&) Jo I V J o

Notice that the left-hand side is of course nonnegative and consequently

C is nonnegative. (3.2) can be generalized easily as follows;

(see [1]).

Since the integrand is not necessarily increasing, we cannot apply

Tauberian theorem even if /;(s) varies regularly. So we have to make a

detour if we want to evaluate the asymptotic behaviour of the moments

of \'f(XJdi.
Jo

Let T be a nonnegative random variable which is independent of X

such that P[T>x] =e~x. Then we can rewrite (3.3) as follows;
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(3.4) lim

The right-hand side of (3.4) gives the n-th moment of the bilateral

exponential distribution which belongs to the determinate case. There-

fore (3.4) implies

Consequently,

CT/S(3-6) !&
We next introduce another process;

(3.7)

where g(x) is the bounded function defined in Lemma 2.1. Taking in

mind that Gsf(x)-»g(x) (the convergence being dominated by a positive

constant), we see that Mt is a martingale. Since g(x) is bounded, (3.5)

and (3.6) provide us with

and

<3-9>
It also follows from (3.4) that the moment of arbitrary order of

I ,( ^MT/S is bounded. Hence we obtain,

s->0

MT/S
s->o T/s

or equivalently,
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S'ao (/ ]
€-*£<( —r====-Mtls} \dt = L^\ 1; nl,

o (

("oo f I 1l^0}0
e~'E\\~i^mrM^

Changing the variables, we have,

(3.11) lim s

s->0 xC/H.yjj-

Consequently we also have,

i _i_ r _ n»n = ^ ^

Since Mr is a martingale, both £{|Mf|"} and £{|Mr|" + M?} are non-

decreasing in t (n = l, 2,...). Hence, if /i(s) = s~aL(l/s), we can apply

the Karamata's Tauberian theorem. By (3.11) and (3.12) we obtain,

(3̂J.

(3 14} Um
(3.14) ^co

and consequently we have,

The right-hand side of (3.15) is the /t-th moment of the bilateral

Mittag-Leffler distribution, which belongs to the determinate case. 0^

a^l is rather trivial by Lemma 2.1 (iii). Thus the proof of Theorem 1

is completed.

We next prove Theorem 2. We need little modification to the proof

of Theorem 2 in [1], Since u(t) is nondecreasing, we can choose a
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nondecreasing function 0(f) with values in [0, oo] and a sequence s,,-^09

so that

~-u(tlsn) > 0(0, n > oos

at each continuity point of (j)(f). Then,

<x\dt

. .
n) u(t/sn)

a.e.

with trivial conventions; G l a n d G ~ = G(0) where

Now (3.6) and (3.16) provides us with

(3. 17)

letting .v^cx), we have G(x/^(0)~^l? a.e.^. Since G(0)<i by the assump-

tion, we obtain 0(1) <oo, f>0. Similarly we also have 0(f)>0? £>Q.

Darling and Kac [1] proved that (3.17) determines $(0 uniquely, which

implies

This proves that /i(s) varies regularly for some exponent a. Since

Oga^l is rather trivial as in the proof of Theorem 1, our assertion

is now proved.

§48 Limit Theorems for Symmetric Stable Processes

Let Xt be an additive process on Rn (n = l, 2) such that E0{el<^'Xt>}

= e~*^la. We assume that Xt is recurrent; i.e. i^a^2 if « = 1, and

oc = 2 if n = 2. Green kernel G(x3 j;) (with respect to Lebesgue measure)
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has the following representation;

x~~y}* dt> if «=1, l^oc<^2
u jo &+ s

Gs(x,y) =

Therefore we have,

Gs(x, y~) = h(s) + u(x, y) + s(x, y; s)

where

(

I f* , , ... i
II // = OC — 1

~: log (4/5-) + 7/2 if 71 = a = 2

2cos(7ca/2)F(a) |.v-j

1 ., 1

27C

T — i f / z = l < a ^ 2

if //=.a= 1

• I? _ -. "}

and E(X, v; s) converges to 0 uniformly on each compact set in Rl x

I?1 or R2xR2. Let /(x) be a bounded Borel function with compact

support such that \f(x)dx = Q. Using a similar argument which we

used in the example in section J, we see that the assumptions (A)~

(D') are satisfied. Hence we obtain

Theorem 3,

where $— \ 1 — I / a // /i = l^a^

0 // n = GL = 2
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and C =

§5. Limit Theorems for 1-Dimensional Diffusion Processes

Let in(dx) be a nonnegative Radon measure on JR 1 . Then we can

obtain a generalized diffusion process Xt with the infinitesimal generator

~^r~~^r~ from 1-dimensional Brownian motion by means of time change

(see [5]). If the support of m(dx) is an interval Q, then Xt becomes a

diffusion process on Q with reflecting barrier when the boundary is

finite.

Remark that Xt is a recurrent, conservative Markov process on

Now let {(f)(x, X), \l/(x9 A)} be the system of the solutions of the

following equations.

<l>(x9Z) = !-*, (x-yW(y9X)m(dy)
Jxi

\l/(x, X)=x — A\ (x-y)\l/(y, X)m(dy) —

(x r r
where \ =\ if y<x, and = — \ if x<y.

Jy J[y,») J[*,y)
Then it is well known that the following hold for each s>0.

Cx

where a(x) =\ (x — ̂ )
Jxi

We next define ht(s)9 i = l, 2.

ht(s)= lim (-IV v

Then w£(x, s) = 0(x, — s) — (— l)'^(x, — s)/fcf(s), z = l, 2 are positive solutions

of f-j— -^ — s Jw = 0; M I ( - , s) is nondecreasing and w 2 ( ° 5
 s) nonincreasing.

1) We assume that £" contains at least two points, say *ls A'2,
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Green kernel of Xt with respect to m(dx) is given by the following;

f h&u^x, s)u2(y, s) if x^y
Gs(x,j;) =

[ h(s)u2(x, s)Wi(j, s) if y<x

where

Notice that lim 5/7(5) = m( — oo, oo)"1.
s-»0

Lemma 5.1.

"M s>0, x, y

Proof. Since we have the explicit representation of Gs(x, y), it is

not difficult to prove the assertion. Q.E. D.

By Lemma 5.1, it is easy to see that the assumption (A) is satisfied

if /(x) fulfils the following;

(A') /(x) is a bounded Borel function with compact support such that

(/(x)m(Wx) = 0 but /(XMO m-a.e.

In order to prove (D') is satisfied, we need further assumption.

(D") The limit 0 = limft(s)/ft1(s) exists.
s->0

Remark that (D") is valid whenever m(— oo, x1)<oo. In fact, 6 =

m(~ oo, *i)lm(— oo, GO).

Lemma 5.2. Let

i/O, y) = - (x V y) - 9 • (x + y) + (a(x) + ff(y))/m( - oo, oo) .

Then e(x, y\ 5) = Gs(x, y) — h(s) — M(X, y)-*Q9 s->0, ^/?g convergence being

uniform on each compact set o/il1xR1.

This result is obtained with H. Watanabe and will be published

elsewhere.

With h(s) and u(x, y) given above, we can see that (B)~(D') are

satisfied.

Finally we need conditions for the regular variation of h(s). But

using the results in [4], we easily obtain that if m(dx) satisfies the
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following condition (R), then /?(s) varies regularly at 0 with exponent

— a.

(R) m( — x, x) varies regularly at co with exponent I /a— 1 (O^a^l)

and satisfies one of the following conditions.

(R.I) m[0, x)~cm( — x, 0) as x— >oo, with some positive constant c,

(R.2) limm(7A
A*\Q)=0[or oo] for each

y x)

We remark that if (R) is satisfied then (D") is also satisfied. Therefore

we obtain the following;

Theorem 4. // (A') and (R) are satisfied, then for each xeE

where C= ~^\\\x--y\f(x)f(y)m(dx)m(dy) .

Example,

If m[03 x)^jc^ as ,x->oo and in( — x, Q)^xycx as X-KXD for some

nonnegative constants ft and y, then

ft2(s) - const -s"1^1^ (siO)

and consequently,

f t ( s ) - log( l / s ) (540) .

Therefore we obtain

where C= -

In case /n(—oo ? 0) = 09 matters become clearer. As an easy corollary

of Theorem 4 in [4], we have the following;
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Theorem 5. Suppose (A') is satisfied. If m[0, x) varies regularly

at co with exponent /?(0fg/?fgoo) then for each xeE,

I

Theorem 6. Suppose (A') is satisfied. If there exists a non-

degenerate distribution function G(u) such that

a.e.w

holds for some nondecreasing function u(t) f oo, then m[0, x) varies

regularly at oo with some exponent /? (0 5^ /? :g oo). Hence G(u) =

g±(p+1)-i(bu) with appropriate constant b.

Appendix

The distribution function of Mittag-Leffler distribution of order

is given by

and the moments of this distribution are given by /c!/r(a/c + 1), /c = 0,

1, 2,..., which belongs to the determinate case.

Bilateral Mittag-Leffler distribution of order a(0ga<l) is the dis-
1 _i_ (_ l\k fcl

tribution the moment of which is v — - — ' — — > which also belongs

to the determinate case. Hence it is easy to see that the distribution

function of bilateral Mittag-Leffler distribution is given by

We remark that for the special case of a=l/2 we obtain

and of a = 0,
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