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Analytic Completion and Decomposablllty
Properties In Tubold Domains

by

J. BROS*

The analytic structure of distributions-i.e. the decomposability of the

latter in sums of boundary values of analytic functions can be investigated

not only from the microlocal point of view, but more globally in complex

space. For this purpose we introduce in Cn (or in more general mani-

folds) a large class of domains D called "tuboids", the closure of which

contains a real domain J2 (J2 = D p)-Kn) -the boundary values on Q of func-

tions which are analytic in D can then be considered (here in the sense

of distributions). It turns out that the decomposability properties in do-

mains of this type are intimately related with the geometry of the latter,

in particular with their pseudoconvexity properties. In this connection,

we shall state some pseudoconvexity criterions and theorems of analytic

completion.

In the first part of this lecture, one is concerned with analytic func-

tions in tuboids of a special kind, namely (respectively) tubes and local

tubes in Cn; these classes of analytic functions can be very well character-

ized by means of the (respectively) usual and generalized Fourier-Laplace

transformation. In fact the geometry of the above domains in Cn will

be exactly reflected by the corresponding geometry of "gauge-sets of ex-

ponential decrease" in the Fourier-space. Some theorems of analytic com-

pletion then appear as direct applications of this method: in the case of

tubes, one reobtains the fact that the holomorphy envelope of a tube is

its convex hull (Bochner's theorem); in the case of local tubes, a similar

theorem has been derived; the edge-of-the-wedge theorem is a refinement
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of the latter. We then use the same method to prove a similar, but

more general property of analytic completion, which we call "cut-tube

theorem"; it applies to couples of analytic functions (F+, F~) in (respec-

tive) tubes (T+, T") which are symmetric with respect to a certain ana-

lytic surface 2, the discontinuity of (F+, F~) across 2 being submitted

to certain positivity conditions. A similar statement holds in the case of

local tubes.

The second part of this lecture deals with general tuboids; a tuboid

D over a real set S is "microlocally" characterized by its "profile",

which is a cone bundle A = \J (p, Ap) in the tangent bundle TX? to Q.
pefi

It turns out that the convexity of all (concical) fibers Ap of A is a

characteristic property for the tuboids which are holomorphy domains.

More precisely two statements can be proved: the one asserts that any

tuboid D with profile A can be completed to another tuboid, whose profile

A is obtained from A by convex completion of all fibers of the latter;

the other one asserts that if A is a cone bundle with convex fibers,

there exists a basis of tuboids with profile A which are Stein manifolds.

A special case of this result is the Cartan-Grauert theorem according to

which every real domain J? admits a basis of complex neighbourhoods

which are Stein manifolds.

Our third part is devoted to a brief review of the decomposability prop-

erties which are consequences of the previous methods and results.

On the one hand, the (respectively) usual and generalized Laplace

transform theorems, stated in part I, allow us to prove decomposition

theorems for distributions in terms of boundary values of analytic functions

in (respectively) tubes and local tubes. A microlocal (and therfore weak-

er) version of this decomposability property then follows, and leads in

a natural way to the introduction of the "essential support" of a distri-

bution in S9 as a certain closed subset of the cotangent bundle T*J2;

it establishes at once the "vertical decomposability" of the essential sup-

port (i.e. decomposability in each fiber of T*J2).
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On the other hand, the geometrical properties of tuboids obtained

in part II entail (as an application of Cartan's theorem B) a certain class

of "horizontal decomposability properties" for functions which are analytic

in tuboids.

These two types of decomposability ("vertical" and "horizontal") are

the basic ingredients for proving the general decomposability of the es-

sential support of a distribution*.

Finally a simple homological argument is briefly presented which

relates every property of "support decomposability" (in a large sense)

of distributions with a corresponding class of "generalized edge-of-the-

wedge theorems" for the associated analytic functions.

Remark. In all these results, the emphasis is intentionally put on the

geometrical aspects; when boundary values are considered, they are always

chosen to be distributions for convenience, but this is certainly not crucial.

I. The Usual and Generalized Fourier-Laplace Transformation

and Related Properties of Analytic Completion

§ 1. The Laplace Transform Theorem

Notations: f denotes a tempered distribution in JR"^ (x= (^r"^n))

and f=3f its Fourier transform in R^; when it exists, we denote

*"•*/(*)<** the Laplace transform of/, F = X(f\ definedf
J

for k= (&!, •• - ,&„) =P + iq complex (in C"'(^)), and we then put f=b.v.F

(b.v. = boundary value for g-^0).

Gauge-sets of exponential decrease for f

A closed star-shaped set G in R"X) is called a gauge-set of exponential

decrease for a function f if

This property is analogous to the one which has been derived for hyperfunctions
(from the flabbiness of the sheaf C) in the Works by Professors M. Sato, T. Kawai,
M. Kashiwara (see " Microfunctions and pseudo differential equations", Lecture Notes
in Math., Springer-Verlag, 1971).
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(i) i/
for appropriate constant C and integer m, where \x\ = f ( u ) denotes the

equation of the boundary of G in polar coordinates (.r = |(:r||w, u^Sn~1).

In the case of a general tempered distribution f9 G is a gauge-set

for f if there exist polynomials P and Q and a bounded function g

satisfying (1) such that:

(2) /= v ax

One can prove:

Proposition 1. If G1} G2 are gauge- sets for f, then G± f| G2 is also

a gauge- set for f.

Reciprocal polar transformation between R*$ and R^.

With every set B in R*$9 we associate its polar set

-which is necessarily closed, convex and contains the origin of R"X). Sim-

ilarly G will denote the polar set in iZJ^ of a subset G of R"X).

Proposition 2. The polar set of Gl fl G2 is (G1 U Gz}
c(the notation

J3C denotes the convex hull of the set B).

Proposition 3. For set B in R^9 one has B=(Bu {0})c.

Tubes in Cn
w. We put TB = Rn

(p)+iB(Bc:R^, the tube with basis

B.

We shall always assume that the closure B of B contains the origin.

Laplace transform theorem (L.T.T)e The folio wing statements

hold:

i) F analytic in TB, continuous and slowly increasing at infi-



ANALYTIC COMPLETION IN TUBOID DOMAINS 23

nity in TB =» F = J?(f), and B is a gauge-set (of exponential decrease)

forf.

ii) f admits G as a gauge-set =$ F = J ^ ( f ) exists and is an-
o^ ^

alytic and slowly increasing in TB, where B = G (the interior ofG).

iii) If B is a convex set, the following equivalence property

holds: F analytic and slowly increasing in TB <=> F = J ? ( f ) and B is

a gauge-set for f.

Remark. This result is still valid when B is "flat" (i.e. contained

in a linear submanifold): F is then analytic only in the corresponding

variables).

§ 2. Bochner98 Theorem, the Tubular Edge-of-the-Wedge

and the Cut-Tube Theorem

By applying successively the statements i) and ii) of the above Lap-
«=:

lace transform theorem and noticing that B is the closed convex hull

of B (cf. proposition 3), one readily obtains:

Tube theorem. Every function 'which is analytic in a tube TB

and slowly increasing at infinity can be analytically continued in the

tube which is the convex hull of TB (it is also slowly increasing at

infinity in the latter}.

Remark. The general version of Bochner's tube theorem* (i.e.

without conditions at infinity) will be also obtained as a consequence of

the theorem on local tubes given below; in fact it will be seen that

any tube can be considered as the union of an increasing sequence of

local tubes of the considered type.

A refined version of the tube theorem is the

Tubular edge-of-the-wedge theorem.

Let f=b.v.F1 = b.v.F2, with Fj(j = I,2) analytic in the convex tube

TBj'y then Fl9 Fz have a common analytic continuation F in TB, where

B is the convex hull of Bl U B2 (see fig. T) and f=b.v.F.

see S. Bochner, Annals of Math. 39, p. 14 (1938).
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Fig. 1.

Proof. In view of L.T.T. (i), f admits Bl and B2 as gauge-sets; in

view of proposition 1, it thus admits SjflSg; then L.T.T. (ii) yields the

desired result, inview of proposition 2.

This result still holds in the case when TBt, TBz are "flat tubes"

(fig. 2); in this case Fl9 F2 are only analytic in certain variables, and

are given as distributions with respect to the remaining variables; how-

ever their common analytic continuation F is still defined and analytic

in T(BlU52)C (it is therfore analytic in more variables than the original

Fl9 FZ) : this result is known as the "flat tube theorem", and was first

proved independently by Malgrange, Zerner, Kunze and Stein (1961).

Fig. 2.

Analytic couples -with a discontinuity of positive type*

In CJif
n

0 (weCr, treC71), we consider two open tubes TB* =

-\-iB±, with B+ and B~ symmetrical with respect to the surface

(as in Fig. 3). We put: B=(B+^B~Y,

* Properties of the same nature have also been derived independently by V. Glaser
(unpublished), by using direct methods in complex place.
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>

\
1m w = 0 ' "w

Im cr = 0

Fig. 3.

Cut-tube theorem.

Let F+, F~ be analytic and slowly increasing functions in the

respective tubes TB+, TB-, f±=b.v.F± and /=/+-/-.

Then, if the "discontinuity" f is of positive type -with respect to

w (i.e. ifM9^(R\wJ, VX^CR?,)), J/(™-te/, ff)x(<7)?(ze,MO

dw divf d(J^ff) , f admits an analytic continuation F 'with respect to

?u in the flat tube TA.

Moreover F+, F~ can be analytically continued in the respective

interiors of the tubes T V, TV, and in TA one has:

Proof. We first treat the case when F+, F~ are sufficiently decreas-

ing at infinity, so that/* =3~1(f±) are functions which admit respectively

B + , B~ as gauge-sets in -R^) (x=(xly •••,.z:r) and y= (yly ~'9yn} denote

the respective conjugate variables to iv= (jwly • • • , zfr) and ff= (ffly • • • , (T^));

thus B+l)B~ is a gauge-set for f=f+— f~.

We now introduce the partial inverse Fourier transform:

In view of the positivity assumption on f, we have:

Vff, g(x,<f)=g+(x,ff}-g-(

which entails the inequality:

^/(^, 0)
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Using the definition of gauge-sets, we easily deduce from this inequal-

ity that the set S which is the convex hull of the plane {x = 0} with

the set S1= (B+ U^~) fl {y = 0} is a gauge-set for f. Now the symmetry

of B+, B~ with respect to {y = 0} implies that ,Si = {B+ f)B~} fl {y = 0}

and that S=[(B+n£~) U {^ = 0}]c. Therefore its polar set is S=(B+

[_) B~y fl {Im(T = 0} = J, and L.T.T. then entails the existence of an an-

alytic continuation F of f in T^.

By now writing f+=fjrf~y we infer that B~ \J S is a gauge-set for

/+; thus (from proposition 1), B+ n (B~ \J S) is a gauge-set too, but since

it coincides with B+nS (whose polar set is J+) , L.T.T. yields the an-

nounced result for F+ (a similar argument holds for .F").

The general case is treated by putting h± = e~w*f±, since ^± and

h = h+ — h~ will then satisfy the conditions of the previous case (note

that the product e~wz f of two functions of positive type is of positive

type).

Fig. 4.

Generalized Laplace Transformation and Analytic Completion

Theorems for Local Tubes

0 denotes an analytic function in C^), with a spherical critical point

at & =£0 (real) , and such that: 0(fe) =<0(&) (example: (D(k) = X] (&/ —
y=i

A generalized Fourier transform 20 associates with every function or

distribution f (with sufficient decrease at infinity) the following 7z-form

in Hi (x^(xl"-xn)}:

.7=0
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where

V

here the analytic functions py (&,&') are introduced through Hefer's theo-

rem and satisfy:

2

Let f(x) be the usual inverse Fourier transform of f\ we note that

Local tubes TB$a.

TEG a is a domain in C(*), defined as the bounded connected component

of the following set:

f ||«]| + p (Re 0 (/. + »«)- a) =0
U i #;

&=(P,a>)es I (?=||g||-fl); p>0; coeS"'1

where (p, a)) denote the polar coordinates of a point b in an auxiliary

space .Rp); -B is an open set in this space, such that OeJ3; it also has

to be contained in a certain critical domain Bcr, determined by 0.

Remarks, i) The intersection of TB0(X with the real subspace is

the closure of the open set J2a= {£(E Rn; 0<j5OX<2} At every point

^> in J2a, the profile of the corresponding imaginary section of Ts0a (in

!?<$) is given by the profile of B in R^ (by "profile" of a domain, we

always mean the cone of all semi-straight lines which are issued from

the origin and whose intersection with the considered domain cantains

a segment ending at the origin:

ii) For 0 = 0, TB(Da reduces to the tube T(a5) whose basis is

the homotetic of B with respect to the origin, the ratio being equal to a.

The a-gauge-sets

A cone F with apex at the origin in the half-space {xQ>0} of !ZJ£i0)
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is called an a-gauge-set of exponential decrease for a function f(x, -T0)

if the latter satisfies bounds of the following type:

V£>0, \f(x, *e) I ̂ C£ (1 + 1WH «-««-»-.

in the region {(^:, :̂0) ^/^; ^r0=0}- The same definition holds for a form

f by requiring that all the coefficients f3 of /"satisfy the above inequality

(uniformly with respect to the extra-variables pf). Any such cone F is

called "admissible" if it contains the cone FBcr with basis Ber in {xQ = I}

and apex at the origin in J?£jio).

The following property can then be proved:

Generalized Laplace Transform Theorem (G.L.T.T.). i) If

the restriction of the distribution f to Qa is the boundary value of

an analytic function F defined in TB(Ba, then the cone FB with basis

B in {.r0 — 1} and apex at the origin in JRJ^i0) is an a-gauge-set for

f
ii) If f has an 3 0- transform f -which admits an admissible

a-gauge-set F then f\Qa = b.v.F, where F is an analytic function in the

tube Tg; here G denotes the section of F by the hyperplane {xQ = ~L},
o

and G is the interior of the polar set of G.

iii) If B is convex (and J3cJBcr): f\Sa = b.v.F, analytic in TB0a

<=> SB is an a-gauge-set for f.

As in the case of the usual Laplace transformation, the following

theorems of analytic completion are consequences of G.L.T.T.

Local tube theorem.* The envelope of holomorphy of a local

tube Tma (-with BdBcr) is the local tube TBC0a, B° being the convex

hull of B in B?6).

(Local) edge-of-the-wedge theorem.** Let Bl9 B2 touch each

* Microlocal analogues of this theorem have been proved independently by Professor
Komatsu (J. Fac. Sci. Univ. Tokyo., IA. 19 (1972)) and E. Andronikof (Thesis, 1975,
Paris).

** In its original microlocal version (not formulated with the Ts*d this theorem has
been proved by H. Epstein, J. Math. Phys. 1 (1969), 524.
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other at the origin in R^ (as in Fig. 1) and assume that f\Sa = b.v.F1

= b.v.F2, -where Fly F2 are respectively analytic in, TSWa, TBWa. Then

f\sa
 = b.v.Fy -where F is a common analytic continuation of Fl an d Fz

in Tma, -with B=(B1(jB2y.

A similar version of the flat tube theorem can be obtained. We also

have:

Semi-local version of the cut-tube theorem*

C'ffc) is again replaced by QJ,71 ,̂ but our localizing function 0 will

only depend on the n variables o~, and not on iv. B+, B~ are then given in

a space R[imw,w (as in Fig. 3, but with Im 0" replaced by the auxiliary vari-

ables b— (bly •••, &n)). The corresponding (semi) -local tubes TB±<Da will

then be bounded by the real open sets

{(<w, tf) ; WEE IT,

Our statement is then the following:

Proposition. Let f±=b.v.F±, 'with F+, F respectively analytic

in TB+0a, TB-0a and assume f=f+—f~ is of positive type "with respect

to iv (for (7 varying in @a). Then F+, F~, f admit analytic continua-

tions in the respective (semi)-local tubes TA+0a, TA-0a, TAOa, with J+,

J~, A defined as in paragraph 2.

II. Tnboids and a Generalization of Cartan-Grauert9s

Theorem

In CJ f c )=fi( lp )XJff*fl), identified with the tangent fiber bundle TJR*P)

-or more generally in TjR,, SI being an 72-dimensional real analytic man-

ifold-we introduce the following class of domains, called "profiles".

Definition I. A profile in TSl is an open "cone boundle" A= U (P,

Ap); for every p in the open set Q of 5i, Ap is a non-empty open cone

with apex at the origin in TP5L

We can then introduce the following class of domains, called "tub-

oids" in C"r) or in a complex analytic manifold <_^, which admits Si as
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its real submanifold.

Definition 2- In Cn, a tuboid D 'with profile A above the real

open set Q is a complex domain which satisfies the following properties:

a) MA!', with A\RndA', ^V,

a complex naighbourhood of J2, such that:

b) vA", with J^\JRnc^,

a complex neighbourhood of J2, such that: A"nWdD.

The situation is illustrated on Fig. 5 for each fiber Dp (D = \J (p, Dp)):

Ap is also called the profile of the fiber Dp.

Ap

Fig. 5.

In a general analytic manifold JM, with real submanifold, SI a tuboid

D, with profile A in TSl, is defined by requiring that, in a fixed (but

arbitrary) covering of c_5K, its restriction to every chart is a tuboid in

the corresponding system of local coordinates. As a matter of fact the

above definition is invariant under all analytic changes of variables on «_2K.

Remark. Every local tube Tma (introduced in 1.3) is a tuboid in

Cn whose profile is of the form A — Sx 9% & being the profile of B in

For every profile A in TSi we define a new profile A which is

called the "convex hull of A with respect to the fibers" : if A = U (P, Ap) ?
^ ^ xx pe-2

then A = U ($•> Ap) where Ap is the (usual) convex hull of Av. When
~ . p^s

A = A, it is said to be "convex with respect to the fibers".
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We can now state the following properties of holomorphic convexity

of the tuboids.

Theorem 1. For every tuboid D -with profile A, there exists

a tuboid D 'with profile A such that every function f which is analytic

in D can be analytically continued in D.

Theorem 2. For every tuboid D -whose profile A is convex -with

respect to the fibers, there exists a tuboid D' contained in Z), 'which

has the same profile A and is a Stein manifold.

In the case of local tubes Tma, the statement of theorem 1 is a

corollary of the "local tube theorem" given in 1.3; the general case of

theorem 1 is then treated by noticing that every tuboid D with profile

A can be approximated, in the neighbourhood of each real point p of its

closure, by an infinite sequence of local tubes whose profiles (at p)

tend to Ap.

The proof of theorem 2 contains the following steps: in C71, one first

constructs a tuboid D"dD, which has the same profile A as D, and

whose all fibers Dp" are convex open sets. Then, it is possible to con-

struct a tuboid Z/cD", with profile A, which is a holomorphy domain;

the latter property is ensured by the definition of Df as being (a con-

nected component of) the intersection JE(.D") of an appropriate family

of holomorphy domains: each domain of this family is the complement in

Cn of a complex hypersphere Saw:

(where a = fa—aj e=JRn, tf= (ft— ?„) eS11"1; 0<p<i). £(£>") is de-

fined as follows:

")= n

Here Da" denotes the polar set in Rn (with polar coordinates p, ff) of

the fiber Da" of D at a. & is the tube: {&; ||I
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The case of a tuboid D in a general ^-dimensional manifold JM is

treated by making a regular imbedding "z"" of J% in a complex space

Ck(k^n)\ then z'(^) is exhibited as the restriction to £(<-5K) of a certain

tuboid 3) in the ambient space Ck, to which the above construction of

the corresponding tuboid 3)' is applied: the section of this holomorphy

domain 3)' with the closed submanifold i(<3/T) is a Stein manifold which

satisfies the required properties (it is a tuboid in i(JA) which is contained

in z'(-D), and has the same profile as the latter).

Remark. In the case when A = @XRn, a tuboid D with profile A

is simply a complex neighbourhood of Q. In this case, theorem 2 reduces

to Cartan-Grauert's theorem* according to which every complex neigh-

bourhood of Q contains a "Stein neighbourhood" of Q.

"Horizontal" decomposability properties.

By applying Cartan' s theorem 23** (or the corresponding theorem

due to Hormander*** in the case of slowly increasing functions), one

can derive from theorem 2 the two following decomposability properties.

Notations: The profile A= U (P, Ap) is said to be "above the real open
pefl

set Q\ if £'cJ2, we put:

Theorem 3. Let {Aj above S j - 9 j ^ J } be a finite family of profiles

which are convex zvith respect to the fibers and such that'.

At\atJ = Aj\atf (with £^ =

Then for every family of functions {h^\ij^J} analytic in respective

tuboids Dij with profiles Ay, and satisfying the conditions'.

hij = - ^ , hy + hik + hki = 0 in Dv H Djk fl DM

there exists a family of functions {hi',i^J}, analytic in tuboids Dt

'with profiles At, such that

hihi — h in Di^D

* H. Cartan, Bull. Soc. Math. France, 85 (1957), 77.
H. Grauert, Ann. Math., S£rie 2, 68 (1958), 460.

** H. Cartan, Seminaires E. N. S., Paris (1951/52).
*** L. Hormander, An introduction to complex analysis in several variables, Van Nost-

rand, Princeton (1966).
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{the D/s only depend on the DI/S and not on the functions /zy).

Theorem 4. Let u), & be tuuo real open sets such that o)CJ23

and A a profile above Q (convex 'with respect to the fibers).

For every function h, analytic in a tuboid A -with profile A\o)

there exists a decomposition h = H+r, where H is analytic in a tuboid

D with profile A, and r is analytic in a complex neighbourhood °W

of a) (D and cffl only depend on J).

Corresponding versions of theorems 3 and 4 can be written in the

case of functions with slow increase; in this case all functions have distri-

bution boundary values in the corresponding real open sets Gj, J2, o).

Calling ft, f the b.v. of h^ h, the above statements appear as certain

decomposability properties of distributions; these properties are called "ho-

rizontal", since the terms of the decompositions are distributions defined

in different open sets (see for example in theorem 4):

b.v.h = b.v.H-\- b.v.r
4 ; 4-
a) Q to

III. Vanous Notions of Essential Support, Decomposability Prop-

erties and Generalized Edge-of-the-Wedge Theorems

§ 1. Various Notions of "Essential Support" for Distributions

The L.T.T. and G.L.T.T. (see I) have allowed us to characterize

certain analyticity properties (in tubes and local tubes) by means of the

corresponding properties of exponential decrease of the appropriate (Fou-

rier of 30} transform: there the geometrical notion of gauge-set of ex-

ponential decrease played an important role. More generally, we can

introduce successively the following notions:

Tubular essential support Stub(f) of a tempered distribution f in

-Rep). Stub(f) is the intersection of all the gauge-sets for the (inverse)

Fourier transform of f\ it is a closed star-shaped subset of R"X).

Local essential support 5^0 (/) of f. \Sai0(f) is the intersection
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of all the admissible a-gauge-sets for the Svtransform of /; it is a closed

cone with apex at the origin in RQ*^ D {x0l>0} .

Remark. For every f one can always construct a decreasing sequence

(by inclusion) of gauge-sets (resp. a-gauge-sets) which is a basis of closed

neighbourhoods of Stub(f) (resp. Sa, $ (/) ) .

(Microlocal) essential support Sp(f) of f at the point P. /Sp(/)

is the projective limit, for oc— »0, of the family of cones Sai0(f) fl {xQ = G\:

it is a closed cone in jR^ (or more generally in the fiber TP*£R of the

cotangent boundle T*£R to the real manifold 31 where f is defined).

Its definition turns out to be independent of the choice of 0.

Essential support S(f) of a distribution f in Si. S(f) is a closed

cone bundle in T*5i which is defined by:

= U (fi,

§ 2. Some Vertical DecomposaMIlty Properties of a Distribution

With each notion of essential support (given above) will correspond a

decomposability property of the distribution f as a sum of boundary values

of analytic functions in relevant tuboid domains. If SI is the real manifold

in which f is given, all the involved tuboids have their profiles above

Sl\ this accounts for our terminology ("vertical" decomposability).

Tubular decomposability of a tempered distribution / in R^,

For every finite family of open convex sets Gt (i^T) containing the

origin in R^, the condition

implies the existence of a (non unique} decomposition: f=

with S

From L.T.T., fi = b.v.Fi, analytic in the tube



ANALYTIC COMPLETION IN TUBOID DOMAINS 35

Deeomposability of f in local tubes TB9a For every finite family

of admissible open convex cones Fi(i^T) in the half space {XQ^>$} of

R"xlQ), the condition 5^,0 (/) C (U A) U {0} implies the existence of a
*ei_

(non-unique'} decomposition: /=£]/*, with Sa0(f^) dFi U {0} If the Ft*ei
are salient, this is equivalent (from G.L.T.T.) to: fi = b.v.Fi9 analytic

in TBi0a9 (Bt being the interior of the polar set of FI D {-r0 = l}).

The idea of the proof of the latter property consists in the possibility

of cutting into several pieces (contained in Pi) the ^-dimensional manifold

in jR(£L0) over which the inverse Svformula is integrated. By a process of

projective limit (a— >0) one also obtains:

Microlocal decomposability of f with respect to the fibers* Let

P be an arbitrary fixed point in R^ (or SC). For every finite family

of open salient convex cones ^(z*e/) in R^ (or TP*SC) such that

5P(/) C (U ^i) U {0}, there exists a (non-unique) decomposition /=XI/*

with : \fi e I, Sp (/,) C Vt U {0}

§ 3. Generalized Edge-of -the- Wedge Theorems

With every decomposability property of the previous type is associat-

ed a certain class of "generalized edge-of-the-wedge theorems", which

correspond to the nullity of certain homology groups.

In fact, one can check that all the above notions of essential supports

of distributions are special cases of the following algebraic notion:

"Support structure" on a vector-space E with value in a set F.

It is defined by giving a mapping 5 from E to 9? (F) and a subset 5>/ (F)

of $*(F) which is a (T-algebra, such that:

a) v/i,

b) decomposability property: for every finite family of sets ft (i^I)

in £P' (F) , the condition s (f) C U Ti implies the existence of a decomposi-
*ei

tion : f= X] ft with s(jQ Cft. Such a support structure will be denoted
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In the above cases, E is the space of distributions, in R^, F1 is

HJc) (resp. J?£+^o)), £F (F) is the set of open convex subsets containing

0 (resp. open salient convex cones with apex at the origin in the half-space

(E, F; s, 3?' (F)) being given, consider a finite family 3 = {ft

iGil} and put N=\I\(the legth of the set 7).

With £F, one can associate a certain homological complex J

cX2(?); the ^-chains are sets

/(p) = {/#, = e,,//"' , with fj™ e JB, 5 (/>(p)) c T>,

(here we have put TJ= Ufa, #j refers to an arbitrary permutation of the
i&7

elements J9 and £ffj. is the signature of this permutation) .

The operation 8 (such that 5°8 = 0) in J{ is defined by: g(p~^=Sf(p)

with: flfi?^1) = 2j/^u){/}.ri'>
 r/ being the permutation of L\J {j} obtained

j&L

from -cL by adding the element j on the right of L.

One can then prove:

Theorem. The homology groups Hp of JC3 all vanish for

In the applications to the various essential supports listed above, the

jf(p) appear as sets of b.v. of analytic functions -F/p) in domains of the

corresponding type ZVP> (tubes, local tubes TB0a, microlocal tubes cen-

tered at P). Dj(p} is the holomorphy envelope (known explicitly) of

the union of p elementary domains Dj(jE;J).

A typical example of the theorems thus obtained is the following

(we choose s = Sai(2>, and write the vanishing of the group -Hi):

Generalized eage-of-the-wedge theorem.* For every family of

distributions fj = b.v.Fj (jEi J), analytic in TSj0a(Bi convex), and such

Other versions of this theorem have been obtained by A. Martineau (Seminaire
Bourbaki, 1968) and Morimoto (see "Microfunctions-••", Lecture Notes in Math.,
Springer Verlag, 1971).
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that: X]/V = 0> there exists a set of distributions fij = b.v.Fij-, analytic
j ^ j

in Ts.j<Da, (-where Bij=(Bi^Bj)
c} such that:

i+J

§ 4o General Decomposability of the Essential Support S(/) of a

Distribution /.

Using as basic tools the horizontal decomposability theorems stated

in II, the microlocal decomposability of Sp(f) and corresponding gene-

ralized edge-of-the-wege theorems stated in III. 3, one can derive the

following general decomposability property of

Theorem. For every finite family of open sets Si(i^I) in

the condition *$(/) C ( U SO U SI implies the existence of a (lion unique)
iei

decomposition :

Remark. The most interesting illustration of this theorem corre-

sponds to the case when all Si are convex with respect to the fibers

(more precisely when all their fibers in Tp*St are convex salient cones) :

in this case, one has fi = b.v.Fi, where Ft is analytic in a general tuboid

whose profile At in TSl is easily determined from S^: Ai= U (p9 C/40p) with
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