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Propagation of Analytic and Differentlable
Singularities for Solutions

of Partial Differential Equations

by

Jean-Michel BONY*

In the first part of this paper, we study propagation of singularities

for solutions of an analytic pseudo-differential equation, the characteristic

set of which is a regular involutive manifold. There exists a natural

foliation of this manifold, and (theorem 1.7) the analytic singular spec-

trum of a solution is a union of leaves—this is a joint work "with P.

Schapira. The same result holds for differentiable singular spectrum

(wave front) assuming Levi's condition. A similar result had been prov-

ed by J. Sjostrand for C°° pseudo-differential equations, but with additional

assumptions on complex characteristics [14]. We prove also microlocal

solvability for our operators (theorem 1.6). Complete proofs are given

in [6] and [4].

In the second part of this paper (§ 4 to 7), we study operators the

characteristic set of which contains a regular involutive manifold. The

main result (theorem 5.6) is an analogue, for singular spectrum, to Hol-

mgren theorem for support. Applications to propagation of analytic sin-

gularities and to uniqueness of Cauchy problem are given. Besides argu-

ments used in the first part, we use results of Kashiwara [11], [12]

and direct infinitesimal geometry. A more detailed exposition is given

in [5].
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§ 1. Main Theorems

Let P(x, DX) be an analytic pseudo-differential operator of order jU,

defined near a point (XQ, <f0) ^Rv XS1'"1. Let P 'fl be its principal symbol

and Char (P) = { (x, £) ; P \ (x9 f ) = 0} its characteristic set. We shall use

following assumptions on P

1.1. Char (P) is a regular involutive manifold, of codimension n,

That means that Char(P) can be defined by analytic equations

with {qiy q^ =0 on Char(P) and dqly • • - , dq^S^dXi linearly independent

on Char(P).

1828 PV vanishes on Char(P) exactly at order m, i.e. for each point

(x, £) of Char(P) and for each vector (Sx,S?) transversal to Char(P)

at this point, we have:

Pfl (x + eSx, $ + efl?) = asm + o (sm) with a^O .

It is then possible to find a decomposition of P^ of the following

type

P / £N V "̂1 ( ~*

with a= (cKi, • • • , a:n), functions aa homogeneous of degree ju> — m satisfying

for (^r, ? ) e Char (P) and
\a\=m

The following assumption shall be used for differentiable singularities.

1.3. (Levi's condition) Let Ql9 -°,Qn be first order pseudo-differential

operators, the principal symbols of which are functions qt above. Then

there exist pseudo-differential operators Aa(x9D^9 Q^\<X\^m, of order

jU — m such that

This assumption does not depend on choice of Qiy and is merely an

assumption on terms of order /*,# — !, • • • , # — TTZ + ! in the symbol of P.

We shall use the two following notions to study singularities.

1.4. Analytic singular spectrum of a hyperfunction [13] We shall

denote by S.S. A. (&) the support of the microfunction associated to hyper-
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function u. If u is a distribution, S.S.A. (u) coincides with the essential

support of u defined by Bros and lagolnitzer [1], and we shall use the

following property: let u be a distribution such that (XQ, f0) ^S.S.A. (u),

then u is, near x^ a sum of boundary values of holomorphic functions fa,

defined near XQ inHv + zT'o: and slowly increasing (i.e. \f(.x-\-iy)\^C\y\~N

for 3; small) where Ta are open convex cones in Rv such that f0^ra°.

Actually, we can prove a more general result. Every notion of

analytic singularity having "good properties" with respect to tensorial

product, traces and integration along fibers coincides with S.S.A.. For

instance, the analytic wave front defined by Hormander for distributions

[9] coincides with S.S.A..

I.5* Differentiate singular spectrum. We shall denote by S.S.D. (u)

the wave front of u defined by Hormander.

I06o Bichar act eristic leaves. Under assumption 1.1, hamiltonian fields

Hqj satisfy {Hq., Hqj} = 0 on Char (P) and then define a foliation of Char

(P) by 72-dimensional leaves called bicharacteristic leaves.

1.6o Theorem (niicrolocal solvability)

a) Under assumptions 1.1. and 1.2., let v be a hyp erf unction defined

near XQ. Then, there exists a hyperfunction u defined near x§ such

that (xQ,$0')&S.S.A.(Pu-v).

b) Under assumptions 1.1, 1.2, 1.3, let v be a distribution (resp. a

C°° function) defined near x$. Then, there exists a distribution (resp.

a C°° function) u defined near XQ such that (JCQ, f0) ^S.S.A. (Pu — v).

Remark. Strictly speaking, this statement has no meaning if P is

not a differential operator. But, if P is a pseudo-differential operator

defined near (XQ) f0), Pu is a hyperfunction defined modulo hyperfunctions

the S.S. A. of which does not contain (^o>fo)? s° that S.S. A. (Pu — v) is

well defined near (XQ, ?0) • The same remark holds for the following

theorem.

1,7. Theorem (Propagation of singularities)

a) Under assumptions 1.1 and 1.2, let u be a hyperfunction defined
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near XQ satisfying (XQ, f0) QrS.S.A. (Pu). Then, near (^0>fo), the ana-

lytic singular spectrum of u is a union of bicharacteristic leaves.

b) Under assumptions 1.1, 1.2, 1.3, let u be a distribution defined

near XQ satisfying (x0, f0)^S.S.D.(P&). Then, near (XQ, £0), the differ en-

tiable singular spectrum of u is a union of bicharacteristic leaves.

We shall give a sketch of the proof of theorems 1.6 and 1.7 in § 3.

Using a quantized contact transform, multiplying P by an elliptic operator

of order m — jU, and changing notations, it is sufficient to prove these theo-

rems in the following case:

1.8. P(x9 t, Dx, A) = H Aa(x9 t, Dx, A) A* + lower order terms
\a\=m

or

1.9. P(x9t9DX9Dt) = I] Aa(x,t,Dx,Dt}Dx«
0^1 a I ^m

where Aa are pseudo-differential operators of order 0, defined for (x, t,

f,r) near (0, 0, 0, rfl), with r0= (1, 0, • • • , 0).

§ 2e Pseudo-Differential Cauchy-Kowalewski Theorem In the

Complex Domain

Let us consider first a pseudo-differential operator Q(z, DZ) of order

0, defined for z near 0 and £ near (1,0, - - - j O ) . Then, we have an

expansion [13] : P(z, Dz) =]Tj aa(z)D"*D%9 the summation being extend-

ed to multi-index a=(al9af) with a';>0 and a1 + \a/\^0.

Let 2 be the hyperplane defined by z± = 0". It is then possible to

define, for a holomorphic function f:

being by definition the /?i/l primitive of /which vanishes at order

@ on 2 (this is closely related to action of Q on holomorphic microfunc-

tions defined in [13]).

2.1. Definition. A convex open set Q is said k-2-flat

if
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imply

2.20 Theorem. There exists &>0 such that if f is holomorphic in

a k-2-flat domain Q, contained in a sufficiently small neighbourhood

of 0, then Q2f is holomorphic in &.

Moreover, estimates involving growth conditions on f and Q£f near

the boundary of Q can be given.

Let us now consider the following situation, which is the complex-

ification of 1.8 and 1.9, after putting P in Weierstrass form.

P(z, w, Dz, Dw) is a pseudo-differential operator in C2
n X CW

P
9 defined

for (*,ze;,C,0) near (0,0,0,00) , with 60= (1, 0, • • - , 0).

2,3. P(z,w,D,,Du')=DZ + S Aa(z,<w,Dz,,
\a\ — m,an<^m

2A. P(z,ro,D,,Dw')=D*+ I] Aa(z, w, D,., Dw)LV
O^la|^m,o:ri<m

where Aa are of order 0 and do not depend on DZn-

2.5. Theorem. There exist k^>0 and 5>0 such that, if B is a con-

vex open set, contained in a sufficiently small neighbourhood of 0,

such that each slice J2H \_w = constant} is d-H-flat and each slice Q

H \_zn = constant] is k-2-flat, -where PI and 2 are hyperplanes zn = h

and w1 = o~y -we have:

a) Under assumption 2.3, if g and (/£/), J = 0, • • • , m — \ are holomor-

phic respectively in Q and in S(~]H, there exists one and only one

solution f holomorphic in & of the Cauchy problem:

b) Under assumption 2.4, suppose that Q is contained in [Im
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and that g and hj are bounded by a constant times \ Im iv^ ~N (or that

g, hj and all their derivatives are bounded) . Then., estimates almost

of the same type hold for f.

This theorem is proved using a successive approximation method and

of course, very precise estimates are needed for operators AaS and for

commutators. These estimates in part b) are the crucial step where Le-

vi's condition is used.

§ 30 Sketch of the Proof of Theorems 1.6 and 1.7

Let G be an open convex cone in Rn+p, the polar set G° of which

is a small neighbourhood of ? = 0, r = ro=(l, 0, ••• , 0), and let JT be an

open convex cone in Rn with F° sufficiently small. It is then possible

to find "flat" (as in theorem 2.5) open convex subsets of Cn+p which

coincide with Rn f p + i (G + jT) near the origin. Using theorem 2.5, we

obtain :

3.1. Theorem,,

a) Let g be holomorphic in Rn+p + i (G + F) near 0. Then, there ex-

ists f holomorphic in Rn+p + i(G' +/"1), near 0, for each G'c cG, such

that

b) Let f be holomorphic in Rn+p + i(G + F) near 0, such that Pb(f)

= 0. Then, f can be extended as a holomorphic function in Rn+p + i

(G'+JT) near 0, for each G'ccG.

c) Assuming Levies condition, a) and b) hold for slo*wly increasing

functions f and g, and a) holds for functions all derivatives of 'which

are bounded.

In this theorem, & ( • ) denotes the boundary value, and equality means

equality as microfunctions near (0, r0) .

It is now easy to prove microlocal solvability. We write v — b(g)

with g holomorphic in Rn+p + iG near 0. For a convenient family Fa9

we can write g=2ga, with ga holomorphic in jRn+p + i (G + F a) near 0,
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and then we solve b (Pfa) ~ & (Q a) • Putting u = £b(f^), we obtain a mi-

crolocal solution of Pu = v.

To prove propagation of singularities, suppose that S.S. (A. or D.)^

$(0, r0). Using solvability, we can suppose u = b(f) with Pb(f)=Q.

Using a decomposition f=2fa as above, we obtain Pb(fa} = &((7a) with

J?&(ga) =0. Arguments similar to (and simpler than) "edge of the wedge

theorem" imply that there exist ga0 holomorphic in M.n+p + z(G + /T
a + JT^)

near 0, with g&a'=—Qa.& and ga=2gae. Solving Pb(fa^)=gaff9 we are

reduced to f=Sf^9 Pb(f^ = 0.

Using now part b) of theorem 3.1, we obtain that fa' and hence f

are holomorphic in Rn+PJri(G' + U71). We can take the partial boundary

value: u(z9 t) =bwf(z, tv), which is defined on CnXRp near 0, and satisfies

d/dzj u(z9 f) = 0. Using propagation of analytic or differentiate singu-

larities [13], [7], for partial Cauchy-Riemann system, we can then prove

the propagation of singularities for u(x9£)=bzu(z9£).

In some sense, the argument above is the proof "with parameters

t and Dt" of analyticity of solutions of elliptic equations (with respect

to x).

II. Holmgren-Type Results "When the Characteristic Set

Contains an Involutive Manifold

§ 4. Some Results of Direct Infinetisiraal Geometry

The following situation shall be frequently used

$ is an open set of Rv, containing the point XQ\ <f>(x) is a real,

C2 function defined in Q9 satisfying <t>(x^ =0 and d$(x)^Q in Q.

and ,0"i" =

4.20 Definition: Cotangent normal bundle of an arbitrary

closed set F of Rv. We say that (#<,,?<)) belongs to TF*RV if

and if it is possible to find Q and $ satisfying 4.1 such that

We proved parts a and b of the following theorem in [2], [3],



12 JEAN-MICHEL BONY

part c is due to Hormander [10].

4.3. Theorem. Let F be a closed set of Rv.

a) Let Z be a lipschitzian vector field, such that its principal symbol

z(x,^) vanishes on TF*RV. Then, F is a union of integral curves of

Z.

b) Let <?i(.r, ?) and q2(x,g) be homogeneous C1 functions vanishing

on TF*RV. Then the Poisson bracket {qly q2} vanishes on TF*RV.

c) Let q(x, f) be a real homogeneous C1 function vanishing on TF*RV.

Let (x0, f0) be a point of TF*Ry and let (.r (£),£(£)) be the bicharac-

teristic with respect to q starting from (x0, £Q) . Then, x(f) cannot

go out of F at the second order, i.e., if S and $ satisfy 4.1 *with

Fn^+ = 0, it is impossible to have (j)(x(t))^atz with <2>0.

Classical Holmgren theorem asserts that, if F is the support of a

solution u of P(x,Dx)u = Q, then TF*RV is contained in the characteristic

set of P. In [2], [3], [10], It is shown that theorem 4.3 gives easily

improvements of Holmgren theorem. Here, we shall apply theorem 4.3

to subsets of the cotangent budle.

§ 5. Main Theorem

We denote by M = T*RV the cotangent bundle, and by x*=(x,£)

points of M. Let W be a regular involutive manifold (see § 1) of cod-

imension ?z. Then, there is a natural foliation of W by 72-dimensIonal

leaves called W^bicharacteristic leaves.

The symplectic structure defines an isomorphism of (TM)^* and

(T*Af)^o* wnicn induces the following isomorphism:

5.1. (TwM)t9.= (T*2),9.

where XQ belongs to W, (TwM}Xo*= (TM)^0*/(TW)^ is the normal tan-

gent space, and 2 is the W^-bicharacteristic leaf through XQ.

5o20 We assume now that the pseudo-differential operator P satisfies

We Char (P). Let k be the greatest integer such that PM and all its

derivatives up to order k — 1 vanish on W.
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5.3. Definition, (inicro char act eristic tangent 'vector) Let (Sx, (5?)

e(TM)*o* with XQ = (x*9 ?„) e W. T^e say *Aa£ (Sx98f) is micro char-

acteristic if

It is easy to see that this property depends only on the class of

,«) in (7

5.4. Definition, (microcharacteristic cotangent vector) Let 2

be a W-bicharacteristic leaf, and OEO*> ^o*) ̂ T*2. We say that (.r0*,
%*) belongs to Microchar (P) £/" £Ae tangent vector corresponding to

?o* by isomorphism 5.1. zs microcharacteristic as defined in 5.3.

We shall use the following notations to state the main theorem.

5.5.

2 is a W-bicharacteristic leaf, and (-r0*5 %*) ̂ T*2. a) is an
open subset of 2 containing XQ. The real, C2 function <p is defined

on u), and satisfies cp(x*} =0 and d(p(x*)=^=0 in o).

%* = dcp (^o*) and a)4- = {x* e u)\ <p (x*} >0} .

5.6. Theorem. Assume 5.2 and 5.5, and let u be a micr of unc-

tion solution of Pu = 0. Assume moreover that (x*, %*) $i Microchar
(P). Then, u = 0 in o)+ implies x*&Supp(u).

§ 6. Applications to Propagation of Singularities and Uniqueness

of Cauchy Problem

Using results of § 4, it is possible to give extensions of theorem

5.6 similar to extensions of Holmgren theorem. As a corollary, we shall

obtain a new improvement of Holmgren theorem. We shall use following

notations, where 2 is a TF-bi characteristic leaf.

6.1.

{!$'. (microcharacteristic ideal) Set of real, homogeneous, C°°

functions q(x*,7)*) defined on T*2 and vanishing on Microchar (P).
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JlliS\ Lie algebra (with respect to Poisson bracket) generated

by juj.

£* Microchar (P): Set of (x*,y*) eT*2 such that r(^*,^*)=0

for each r belonging to

6.28 Theorem. ~Let u be a microf unction solution of Pu = 0.

a) Let Z be a vector field on 2 such that its principal symbol z(x*9

??*) belongs to JHjj.3. Then, Supp(^) is a union of integral curves
of Z.

b) With notations 5.5, assume that (jc0*, %*) &-C* Microchar (P).

Then, u = 0 in o)+ implies .r0*$Supp(&).

c) Assume (xQ*9 V) &~C* Microchar (P), and that there exist r^JlfjL^

such that the bichar act eristic 'with respect to r starting from (-r0*, 9?*)

goes into o)+ at the second order. Then, u = 0 in o)+ implies .r0*

The simplest application holds under the following assumptions.

6.3e Char(P) is an analytic manifold of codimension d, defined by q±

(x, $ ) = • • - = qd (x, f) = 0, with dqli'",dqd independant on Char(P).

6.4» ^C* Char(P)=W^ (the set of common zeroes of the Lie algebra

generated by qly • •• ,g d) is an analytic manifold of codimension n, defined

by r^(x9 f) = ••• =rn(x, ?) =0, with drly • • - , dr^ 2^dXi independent on W.

6.5e The principal symbol P^ vanishes on Char(P) exactly at order k,

i.e. !P^,0|>C21^(>, ?)|fc with C>0, near Char(P).

606- Theorem. Assume 6.3, 6.4, 6.5, and let u be a micro func-

tion solution of Pu = 0. Then, the support of u is a union of W-

bichar act eristic leaves.

This is an easy consequence of theorem 6.2, after noting that the

principal symbols of hamiltonian fields PIq. and HTj belong respectively

to juj and JLIJ.S.

6.7- Corollary. Assume that P is a differential operator satis-
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fying 6.3, 6.4, 6.5, and let u be a hyperf unction solution of Pu = Q.

With notations 4.1. suppose that (XQ, f0)ej?* Char(P) and that

there exist r(x, f), vanishing on JL* Char(P) such that the bicharac-

teristic with respect to r, starting from (XQ, f0) goes into @+ before

going out of J2. Then, u = Q in J2+ implies u = Q near XQ.

Under the regularity assumptions 6.3 to 6.5, this result improves

the result of Hormander in [10], which is valid without these assumptions.

§ 7, Sketch of the Proof of Theorem 5.6

Using a quantized contact transform, and changing notations (Rv

= Rx
nXRt

p
y cf. §1) we are reduced to the following case:

P(x, t, Dx, A) = E A*(x, t, Dx, Dt}Dx
x + lower order terms ,

m=*

W={(x, t, f, r)|f = 0}; x** = (0, 0, 0, r0); r0= (1, 0, -, 0)

S^(^^ 0,r)^=^0 for f^=0 and ft^O, z = l, .»,»,

where aA is the principal symbol of zero-order pseudo-differential operator

A,.

We consider the 2n following cones in M.n:

Putting a+ = (1, •••,!) and a,- — ( — 1, • • • , —1), using the decomposi-

tion, existence, and extension arguments of [6], we obtain:

70Io Theorem., Let u be a micro/unction defined near XQ*, sat-

isfying Pu = Q. It is then possible to find holomorphic functions fa,

defined in the intersection of Rn+p + i(G + Fa^ with a neighbourhood

of 0, -where G is a convex cone of Rn+p the polar set of which is

a small neighbourhood of (0, r0) such that

u= ^ b(fa) near x^
a=f=a+, a.

Recall now briefly Kashiwara's theory of microlocalization of sheaf

gV We denote by E the space Rn+pxSn+p~\ and by N the subspace

of E defined by f = 0. We have N=Rn+pXSp~\
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The sheaf g* is defined on E, and the sheaf &h of microfunctions

u on CnXRp satisfying d/dzjU = 0 is a sheaf on E = Cn X Rp X S2^*'1 with

support in Cn X Rp X Sp~\ We denote by n the projection NxSn~l-*N.

7.2. (Kashiwara) [11] [12]. There exists a sheaf ^N~ on

such that the following diagram is exact

0

SP
0 - >&h\N - >JCW*(E, &J - >7r*(8V) - >0

and that, if f is holomorphic near 0 in Rn+p + i(G + F)9 with G as in

theorem 7.1 and F an open convex cone in jRw, we have

7.3. Supp (Spojob(/))cJVxr°

7.4. Theorem (Kashiwara) Let u be a micro function on Rn+p
9

defined near (0, 0, 0, r0) such that points ((0, 0, r0);(0, • • • , ±1)) do not

belong to the support of Spoj(u). Then, if u vanishes for xn<^0, we

have u = 0, near (0, 0, 0, r0) .

Theorem 5.6 is an easy consequence of 7.1, 7.3 and 7.4. In some

sense, 7.4 is a double microlocalization of unique continuation principle for

analytic functions, while 7.1 is a double microlocalization of analyticity

of solutions of elliptic equations.
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