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Sharp Fronts of Paired Oscillatory Integrals

by

Lars GARBING*

Introduction

Extending the work of Lax [6], using the theory of oscillatory

integrals and Fourier integral operators, Duistermaat and Hormander [3]

constructed global parametrices of fundamental solutions of strongly hy-

perbolic differential operators with smooth coefficients. The singular spec-

tra of these objects are certain Lagrangean manifolds. The explicit for-

mulas make it possible at least in principle to see how such a parametrix

behaves close to its singular support. In particular, it should be possible

to investigate the existence and non-existence of sharp fronts. These

are defined as follows. Let Y be a closed subset of a manifold X con-

taining the singular support of a distribution F and let U be a component

of X\Y whose boundary conatins a point XQ of Y. We say that F is

sharp or has a sharp front at XQ from U if there is a neighborhood V

of XQ such that F has a C°° extension from U to U fl V. When this does

not happen, -F is said to be diffuse or to have a diffuse front at XQ from

U. For instance, the distributions in one variable (x ± z'O) ~J are diffuse

from both sides of the origin but their difference 2m8(x) = (x — z'O)"1

— (.r-fz'O)"1 is sharp from both sides. The singular support of the for-

ward fundamental solution of a second order hyperbolic differential oper-

ator is the corresponding forward light-cone. The fundamental solution

is sharp from the outside for the trivial reason that it vanishes outside

the cone. On the other hand, the classical parametrix construction by

Hadamard shows that it is diffuse and sharp from inside the cone according

as the number n of variables is odd or even. In the latter case, when n^>2

and the operator is homogeneous with constant coefficients, the inside of

the light-cone is a lacuna, i.e. the fundamental solution vanishes there.
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As it turns out, oscillatory integrals as defined in [4] hardly ever

define distributions with sharp fronts. But in parametrices of, e.g., for-

ward fundamental solutions of hyperbolic operators these integrals occur

in pairs whose sums may have sharp fronts. The pairing involved is

actually an intrinsic affair connecting oscillating integrals with phase func-

tions of opposite signs in such a way that the pairing survives pssages to

equivalent phase functions, the only ambiguity being a change of sign

which can be interpreted as the square of the Maslov index.

Continuing work by Petrovsky [7], the paper [1] by Atiyah-Bott-

Garding dealt with sharp fronts and lacunas of forward fundamental solu-

tions of hyperbolic operators with constant coefficients. The main tool

was a topological criterion for the existence of lacunas invented by Pet-

rovsky. A local version of it, the local Petrovsky criterion, is tied to

the existence of sharp fronts. We shall extend it to distributions defined

by paired oscillatory integrals and apply the results to fundamental solu-

tions of strongly hyperbolic differential operators with variable coefficients.

Our results are far from complete. The criterion in its general form

remains a conjecture and its invariance and stability properties have to

be made precise, but already in simple cases it yields some new results.

§ 1. Paired oscillatory integrals.

I shall use the notations and results of Hormander [4] about oscil-

latory integrals. Let X be a C°° manifold of dimension n and Sm (X, RN)

the class of complex C°° functions from XxRN, called amplitude functions,

such that, for all ot and /?,

locally uniformly in x. Such an amplitude function a(x,ff) is said to

be regular if it has an asymptotic expansion

where am-p^Sm~p(X,> RN) is homogeneous of degree m—p in 6 for large

values of 6 and a — am ----- am-p^Sm~p~1(X, RN) for every p. In par-

ticular, all terms am-p are uniquely determined by a for all sufficiently

large values of 8.
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A regular phase function is a real C°° function (p(x, 6) fromXx(Ry\(T),

homogeneous of degree 1 in 0 such that the system d(pe (x, 0) has

rank N when (pQ (x, $) = 0. Restricted to cpQ = 0, the map (x, ff) — > (x, <^)

then defines a corresponding Lagrangean manifold A of dimension n in

T1* (J£) \0, the cotangent bundle of X minus its zero section. This manifold

contains the singular spectrum of the oscillatory integral with any amplitude

function a (x, 6}

(1) I(a9cp9x)= (a(x9 '* dd.

Two regular phase functions, (p(x,ff) from Xx(RN\0*) and $(x,6)

from Xx(RN\ff), are said to be equivalent near a point (XQ, £„) of T*(X)\0

if they generate the same Lagrangean manifold near this point, i.e. if

there is a diffeomorphism (x, 6) -> (x, 0) from an open neighborhood

of (XQ, OQ) on (pQ = § to an open neighborhood of (x0, 00) on (p§ = Q such

that <px {x, 6} = <px (x, 0) , both sides reducing to So when X = XQ, 6 = 6Q,

6=0Q. Under these circumstances, Theorem 3.1.4 and 3.2.1 of [4] show

that

(2) N— N — rank (pQQ — rank $$$ = 0

on A and that the difference

(3) (T = sgn 0to — sgn <pgs

is constant on yl close to (XQ, f0). Here sgn = sgn+ — sgn_ and rank = sgn+

+ sgn_ where sgn+ and sgn_ denote, respectively, the number of positive

and negative eigenvalues of a matrix. Further, given a regulan amplitude

function a in S~"~N/2(X, J?F) with support in a sufficiently small conical

neighborhood of (xQ,6o), there is another one, a in S~~"~N/2(X, RN) with

support in a conical neighborhood of (XQ, 0Q) such that, close to XQ,

(4) I(a, q>, x) —7(2, ^, ^)

modulo smooth functions. Finally, given a regular phase function (p(x, 8)

and a point (:r0, 00) on (pQ ~ 0, there is an equivalent phase function (f>

such that $89 = 0 at the corresponding point (x0, OQ).

Changing the the sign of the phase function we pass from the Lagran-

gean manifold A to the opposite manifold — A obtained from A by the

reflection (x, f)->(.r, — ?). We shall see what happens to (4) under this
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process. Let us write the expansions of a and a as

(5) *~S *-<-**
p = 0

where q=—N/2-}-p, q=—N/2Jrp and the powers of i turn out to be

convenient later. Let us define companions to these regular amplitude

functions as follows

Then, passing to companions and changing the sign of the phase function

leaves the equivalence (4) unchanged apart from a factor ±1. In fact,

we have

Lemma. It follows from (4) that

/r?\ T f f \ f - \ \(7) l(a , — cp, x)~( — 1;

modulo smooth functions -where

is constant on A close to (.r0, £0).

The proof is easily extracted from [4], the essential point being that

the coefficients ca = ca(A) of the formula (3.2.6) of [4] have the property

that ca(-A) = (-iy>al/2ca(A). It follows from the formula (3.2.11) of

[4] that (7) holds with the factor iN~^~ff
 On the right which, by virtue of

(2) and (3) equals (-1)'-.

Note. It is easy to verify that (7), taken as a requirement that

the two sides be proportional, uniquely determines the pairing a-^>a' up

to a factor and that (7) then holds as written. Note that ( —l) < r " is the

square of iff~, a factor which for oscillatory integrals accounts for the

Maslov index ([4] pp. 154-163).

Oscillatory integrals of the type (1) will be called simple while

those of the form

(8) F(a,q>,x)=I(a,y>,x)+eI(a',—<p9x), e = ± l ,
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are said to be paired. Note that with assumptions as in the lemma,

i.e. if I(a, (p, x) ^I(a, fp, x) , then

(9) P(a,(p,x)~ ll(a^,x) where g =(-!)'-£.

Polar coordinates. Let us write (1) in terms of the expansions

(5) and (6),

(10) /(*,?>, *)~
P

(11) !(*',-?, *)~f] f *-,_*(*, fl)*-'*-*"*"^
p = 0 J

where q = jU — N/2Jrp. We shall introduce polar coordinates on the right

sides using a real C°° radius function 7($)>0 from RN\Q of homogeneity L

Assuming that the amplitude functions are homogeneous when f^> , the

result is

f *-fl-XJr=i

i; f fl-fl-Jy(^,
I> = 0 J^ = l

where each term differs from the corresponding term of (10), (11) by

a C°° function,

and the fo(£±z"0) =lim x a(£±z"e), £>0, are distributions in one variable,

boundary values on the real axis of the analytic functions

x.(*)=r(-5)*', XP (*)=^ flog*"1 + <:*)//>•

where — 7T<^arg 2:<C7T5 PlS^Q is an integer and s=^0,l,2, ••• and ^0 = 0,

cp =P~l + Cp-i- Putting

(12) *.'(*) =x.U + fO) +ex-U-fO)

we can now write the paired oscillatory integral (9) as

(a,<p,x)^ f a_,_ff(x,
p=o Jr=i

Note that if 5 is an integer, then %s
e(^) is one of the successive integrals

or derivatives of
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%0
+U) =2 \og\t\-1 , Xo"(0 = -ffi sgn *

and hence ^s
+ is diffuse and ^s~ sharp from both sides of the origin.

When 5 is a half-integer meaning that 2s is an integer but s is not,

then, putting ££=max(0, et) ,

%«e(0 — const ts
s

is sharp at the origin from the side et<^0 and diffuse from the other.

§ 2. Forward parametrices of strongly hyperbolic operators.

Let P(x, U) where D = d/idx is the imaginary gradient be a smooth

differential operator of order m from some open subset of Rn containing

the origin and assume that P is strongly hyperbolic with respect to the

hyperplanes xl = const. We can then factor its principal symbol, suitably

normalized, as pimmtpm with real factors

The functions ck are smooth and of homogeneity 1 in f and all different

unless £2 = 0, • • • , £n = 0. When x is close to the origin they define m

regular phase functions <pi,"m,(pm depending on Q— (02, • • • , 02) and satis-

fying pk(x, (pkx) =0, (pk=x202
J[ ----- \-xJ3n when x1 = Q. There is also an

involution k->kf defined by pk(x9 — ?) = —pw(x, £) so that also (pk(x, —6)

= —<pK>(x,ff). Let H(t) = (1 + sgn f) /2 be the Heaviside function.

By Lax's construction [6], P has a right forward parametrix H(

where PE^Q and, for small x,

where

Ek (x) - a, (x,

with regular amplitude functions ak in SL~m(X, R71'1), X being a neigh-

borhood of zero in Rn. Expanding ak^ ]£] bkp where bkp is homogeneous
p=l— m

of degree p for large values of 0, Lax's construction also shows that

bk'p — ( — l)p^fcp and this turns out to imply that Ek,~( — l)71"1/^/, —<pk,x).

In other words, close to the origin,



SHARP FRONTS OF PAIRED OSCILLATORY INTEGRALS 59

is a sum of paired oscillatory integrals.

Lax's construction only holds close to the origin but Duistermaat

and Hormander [3] have shown that if X is an open connected neighbor-

hood of 0 which is pseudoconvex with respect to the bicharacteristics of

Pi, °",Pm passing through the origin, then every Ek has an extension

to X, unique modulo smooth functions and denoted here by Ek, such

that El-\ ----- \-Em multiplied by H(x^) is a forward right parametrix.

Moreover, to every (XQ, £0) in the corresponding Lagrangean manifold

Ak there is a regular phase function (p(x,6) representing Ak at (XQ, £0)

such that, close to JCQ,

Ek(x)~I(a,(p,x)

for some regular amplitude function a(x,ff) in S~**~N/2 where N=dimO

and jj, = m — \—(n — V)/2. This also applies to Ek, with the phase func-

tion — </>(.r, 0) corresponding to the Lagrangean manifold —Ak. The lem-

ma applied to a chain of overlapping neighborhoods shows that

for some £=±1. Passing to an equivalent phase function changes the

right side according to (1 • 9) . The following theorem sums up the situa-

tion.

Theorem I. Outside the origin, the forward right parametrix

E(x) of a strongly hyperbolic differential operator P(x, D) of order

m is a linear combination of paired oscillatory integrals having asym-

ptotic expansions

: f=i Jr=

-with C°° amplitudes bp. Here y = m — I—(n — l — N)/2, N= dim 6 and

<p is a regular phase function belonging to the Lagrangean manifold

of P issuing from the origin and £ = 1 or —1. Changing to an equiva-

lent phase function (p multiplies £ by the factor ( — l) f f- where

0"- =
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is locally constant on the Lagrangean manigold. Close to the origin

(p can be chosen so that N=n — l, (p = x262-\ ----- \-xndn 'when x1 = Q and

then £=(-l)7l~1.

§ 3. Sharpness of paired oscillatory integrals.

The Petrovsky criterion.

Consider a paired oscillatory integral

(1) G(a:)~i] f &-,-*„-,
P=o Jr=i

and assume that all the amplitude functions vanish outside some conical

neighborhood of a point (XQ, 00) where (pd = 0. As remarked before, we

may assume that rank^^O, i.e. corank (pee = N at this point. When

N=1, then the right side of (1) is a sum of distributions

^->%e_ fc_1/2+p(^(^,^)), 7(6) =1,

independent of 6, multiplied by regular functions. Also, close to XQ, the

projection Y=ftA on .r-space of A is a regular hypersurface whose equa-

tion is q>(x,ff) = 0 (note that ^=^=0). Hence, if jl is an integer, G(x) is

sharp from one side of Y and non-sharp from the other and, if jU is

a half-integer, G(x) is either diffuse (£ = 1) or sharp (£=—1) from

both sides. For fundamental solutions of hyperbolic differential operators

with constant coefficients, this result is due to Davidova (1946) (quoted

by Borovikov [2]).

sharp / diffuse diffuse /diffuse

Y Y

diffuse / sharp sharp //sharp

0=0 0=0

Figure 1. Behavior of paired oscillatory integrals when corank 4000 = 1. Note that
for simple oscillatory integrals with %(t+ieO) instead of %e(£), none of the
distributions .£->&<- 1/2 +P($?) is sharp from either side of Y=7tA.

When the corank exceeds 1, Y ceases to be a manifold and the

behavior of paired oscillatory integrals is more complicated. For hyper-

bolic operators with constant coefficients there is a topological criterion



SHARP FRONTS OF PAIRED OSCILLATORY INTEGRALS 61

for sharpness, the local Petrovsky criterion, ([1] Ch III) covering such

cases. We shall extend it to paired oscillatory integrals

(2) F* (*) = J b (x, 0) &« (p (x, 0) ) dd

where q is an integer or a half-integer, x belongs to a C°° manifold X,

0~($i> ' " , O N - I ) are inhomogeneous coordinates on f = l and b(x,0) and

( p ( x , 6 } are the restrictions of the homogeneous functions b(x,&) and

<p(x,Q) to 7" = 1. The amplitude function b is supposed to have compact

support in the 6 variables and <p is supposed to be a regular phase

function. The associated Lagrangean manifold A then consists of all

points (x, scpx) such that <p = <pe = Q and s>0. We let Y=uA be its

projection on X. An almost analytic extension of a C°° function g(0)

defined in an open set O of RN~l is a C°° extension into an open set

in C^"1, also denoted by g, such that dg/dd=0 when 6 is real. (See

Hormander [5]).

The idea is now to shift the integration in (2) from J?^"1 into CN~1

using the formula

%/ (?>) = X« (9 + *0

and almost analytic extensions of the amplitude function b and the phase

function q> to an open subset Q of C^"1. This will be done using certain

chains and cycles. The zero set of (p in Q will be denoted by $(x).

Petrovsky chains and cycles.

1. Integral q. Let U be an open part of XxRe ifi. Consider C°° maps

v(x,0,i) into J? from t/X (£; 0<^^1) such that

(i) ^ = 0 =» z; = e

(ii) ^ = 0, ^(x, 0) =0 =^ Im ̂ ^>0

(iii) ^>0 =* ^(^,t;)^0.

Every point (j:0, 00) where ^ or (pe^=0 has a neighborhood where such

maps exist and we may even take v independent of x when U is small

enough. Next, let c(x) be the chain (0, f) -> v(x, 0, f) where 0<^1,

oriented by

Definition* A Petrovsky chain for integral q is
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A (x, q,£)=c(x)+ec (x) c J2\0 (x) .

A Petrovsky cycle is

a (x, q, e) = dA (x, q, e) c J2\0 (x) .

2. Half-integral q. Replace Q by a two-sheeted cover J21/2 consisting

of all (x90') = (x,0,6N) with (X 0) in Xxti and 0/ - £<? (x, 0) = 0.

Let U be an open part of XxRe J2 and let C7172 be the corresponding

two-sheeted cover. Consider C°° maps v = v(x,6',t) into $ from Re C71/2

X (t\ 0<^<;i) such that

(i) £=:() => 77 = 0,

(ii) * = 0, £^(^, 6)>0 =^ Imee^^>0

(iii) O>0 =» B(p(x,6} is not >0 .

Every point (JETO, 00') with ^ or <pd=^Q has a neighborhood f/1/2 where such

maps exist and we may even take v independent of x when U is small

enough. Next, let c(x) be the chain (Q',f)-*v for 0<£<[1 oriented

by 6Nd6dt>Q.

Definition. A Petrovsky chain for half-integral q is

A Petrovsky cycle is

a(x, q, e) =dA(x, q, e)

Figure 2 below illustrates the simplest case N=2. The set <f)(x) is

then a number of real points and pairs of conjugate complex points in

the complex $-plane.

x

q integer, e = l^>a(x) =2 Re Q detached from

© ©
q integer, e=— l^>a(x) consists of loops around Re$(.r) with alternate orientations.
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G
q half-integer, e = 1^a{x) projected down to J2 consists of loops around

with alternate orientations.

g half-integer, £=—l=>a(^c) projected down to ^ consists of loops around
<p (x, 0) <IQ with alternate orientations.

Figure 2. Petrovsky cycles when N=2.

Theorem 2. Let OcB^"1 &e opw, Z^ ^eC°°(XxO) Z?^ a regular

phase function with Lagrangean manifold A and let Y=7tA be its

projection on X. Let amplitude function b(x, 0) eC°°(XxO) have

compact support fwhen restricted to compact parts of X. Let b, <p

be almost analytic extensions of b, cp to an open subset Q ofXy.CN~l

preserving the support property of b. Then every point of X\Y has

a neighborhood V such that Petrovsky chains A(x,q,e) and cycles

a (x, q, e) contained in & exist 'when x^V, and, if F£ is given by

(2) , putting

°we have

(3) Fs(x-)= f f(x,S)- f
Ja(a?) JA(

Proof. Stokes' formula, the fact that df(x, 0) vanishes of infinite

order when Q is real and the properties of Petrovsky chains shows that

the right side of (3) equals

, 0) +zO)

with integration over R1*'1. We shall now state a hypothesis, viz.
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The local Petrovsky criterion. Let XQ GE Y and let I be a smooth

path in X\Y ending in ,r0. There is a smooth (JV—1) -cycle /? in Q

outside (j>(x^) such that, for x^.1 sufficiently close to x0, /? is homologous

to some Petrovsky cycle a (.r, <?, s).

The following theorem, marked by a star, is partly a conjecture.

Theorem 3.* The local Petrovsky criterion implies that F£(x)

is sharp at XQ from the component of X\Y containing I.

Sketch of a proof'. By hypothesis, there is a (ra + 1)-chain B(x) in

Q\j)(x) whose boundary consists of (3 and a part of Re Q. If p<^0 is

an integer, f(x, 6} is single-valued and we have

= f/(:r,0)- f
J/3 JB(x)

where df(x, d) vanishes of infinite order for real 6. When f(x9 0) is

analytic in the 6 variables, this formula actually proves the theorem and

there is a proof also for the other values of p. But in the non-analytic

case, the choice of B (x) as a function of x presents a technical problem.

In any case, the theorem is true when N=2 and <f>(xQ) consists of a

finite number of points. Figure 2 then shows immediately when a desired

cycle exists and how to choose it. A simple description follows.

When x is outside Y, the real zeros of the functions Q-*(p(x, 5)

are simple and hence the components of (p^>$ and ^^0 are disjoint in-

tervals. As x tends to XQ^Y in a component of X\Y, only two things

may happen: adjoining intervals with (p^Q collapse to a point or new

real zeros of even multiplicity appear in the intervals that do not collapse.

The fact of the matter is that F£ is sharp at x0 from a component of

X\Y if, as x tends to XQ,

1) q integer, £ = 1, only collapses occur and no new zeros appear

2) q integer, £=—1, no collapses occur and only new zeros appear

3) q half-integer, £ = 1, new zeros appear only when ^<0 and all col-

lapses involve just one component of 0+ (x)

4) q half-integer, £=•—!, new zeros appear only when ^>0 and all

collapses involve just one component of 0_ (x).
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To prove e.g. 1), let c be the real 0-axis with small intervals around

the collapses replaced by semi-circles in the upper half-plane, put $ = c-}-c

and let B be the union of the resulting circles oriented by the sign of

Im 6. Then

f/tefl)-
J&

where, since df(x, 6) vanishes of infinite order when 6 is real, the right

side is a C°° function of x as long as no point of ^(^c) enters B or leaves

the real axis. The proofs in the other cases are similar. If sharpness

holds for all permitted amplitude functions, our four cases exhaust all

possibilities.

Note. The cycle /? that appears in the Petrovsky condition can prob-

ably serve for all regular phase functions close to <p, making the criterion

stable under small changes of (p. It remains to make this statement

precise and also to prove that the criterion is invariant under shifts to

equivalent phase functions. Applied to the parametrix E(x) of the fun-

damental solution of a second order strongly hyperbolic differential oper-

ator in n variables, the criterion shows that JL(x) is sharp and diffuse

at the origin from inside the light-cone according as n is even or odd,

a result implicit already in the classical construction by Hadamard (Lec-

tures in Cauchy's Problem-•• (1921), Dover Publ.) For higher order

equations, corresponding results would imply sharpness at the origin from

inside regions corresponding to lacunas in the constant coefficient case.

Here the proofs will require a modified Petrovsky criterion involving the

entire parametrix and not only each paired term separately.

Application to cusps and swallow's tails. Let <p(x,d') with dim

0 = 1 be a regular phase function with just one isolated singularity (x0,

00) where (p = (pe
:=(peQ=^Q but (peeo^®- then there are C°° variables s =

s(;c, 0) and y = y(x) such that S(JCQ, 00) = 0, y(x^) = 0 and

(4) <p(x,6)=ss/3+yis + y2.

The curve q> = 0, <^s — 0 in the yl9 ;y2-plane has a cusp dividing the plane

into two regions where s->cp(x, 6) has one or three real zeros. The
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points of Figure 3 show the positions of the zeros in the various parts

and, when relevant, also the intervals of 0+ (.r) and 0_ (.r). According

to the rules above, the paired oscillatory integral

has sharp and diffuse fronts as given by Figure 3.

Figure 3. Sharp and diffuse fronts at cusps. The origin of the coordinates yi, yz
is at the vertex, the 3>i-axis is vertical. There are four cases, #=integer or
half-integer, £ = =bl. The dots indicate the positsons of the zeros of the
polynominal (4) in the complex plane, either all three real or else one real
and a conjugate pair.

Next, assume that has an isolated singularity as before but that

$?(4) (x, $) is the first non-vanishing derivative at the singular point. Then

there are C°° variables s = s(x,0') and y = y(x) such that, after eventually

changing (p to —<p,

(5) <p Or, #) - 54/4 + ylS
2/2 + y2s + y*.

The surface <p = <pg = Q in yl9 y2, y3-space is then a swallow's tail whose

sections with the planes yt = const are sketched in Figure 4 together with

the positions of the zeros of the polynomials (5).
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Figure 4. Positions of the zeros of (5) for various values of y. The arrows are
at the origin of coordinates 3/2, ^3. The :y2-axis is vertical.

Applying our criteria we get a Figure 5 to be interpreted as Figure 3.

To its first column one might add that Fs is sharp at yi = Q from inside

the tail. In case a swallow's tail appears at the outer wave front of

the forward fundamental solution of a second order hyperbolic differential

operator in an odd (even) number of variables, the second (fourth) col-

umn applies. The question of sharpness in this situation was brought

to my attention by J. J. Duistermaat.

d s

integer, + .' integer, — half-integer, + half-integer, —

Figure 5. Sharp and diffuse fronts at a swallow's tail.
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