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Reflection of C°° Singularities for a Class
of Operators With Multiple Characteristics

by

Jacques CHAZARAIN*

Abstract

Let P, a partial differential operator with real principal part and constant multi-
plicity characteristics. We have shown in some previous works [1], [2] that several results
about operators with simple characteristics can be generalized to these operators with
multiple characterics if we add an hypothesis, named Levi's condition, on the lower order
terms. For instance, there is still propagation along bicharacteristics for the singularities
of distributions u such that P^eC°°(J2); if moreover the principal part of P is hyper-
bolic, the Cauchy problem is well posed in the C°° setting.

In this paper, we shall give a generalization to such operators of the theorem of
Lax-Nirenberg [6] concerning the reflection at the boundary dQ of the singularities of
distributions u satisfying P^eC00^). In order to get a more precise result of regularity
up to the boundary, we shall differ from Nirenberg's proof in the details, but the principle
will be the same. That is, we factorise micro locally P in an elliptic and two hyper-
bolic factors satisfying the Levi condition; then the proof of the theorem will be reduce
to the study of micro local regularity results for elliptic and hyperbolic boundary problems.

§ I. Statement of the Theorem of Reflection

First, we have to introduce some notations and definitions. Let P(y9

Dy) a classical pseudo-differential operator of degree m, -we denote its

principal symbol ffm(p) by the corresponding small letter p (y, fj). Let,

(y0? ^°) a point of the characteristic variety p~l(&) of p. The hypothesis

(~Ti) of real constant multiplicity is given by the

Definition 1. p has constant multiplicity, say 5, near (y°, if} if

there exist a real symbol p(y, fj) with simple characteristics such

that

= lp (y, ?) ]s near (y\ -f).
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We call p the reduce part of p near (y°, if) ; the bicharacteristic of

p through (y°, if) is defined as those of p. Now, we can formulate the

Levi condition (-T2)

Definition 2. p satisfies the Levi condition at (y°, ̂ °) if given

a solution (p near y° of

and a CQ°° function a such that d<p(y)=f=§ on the support of a, we have

for large /I

This is, in fact, a condition on the terms of order ^>m — s of P

(see Chazarain [1], [2] for more details). We denote by (_£) the union

of the conditions (=£1) and (J?2). The theorem of reflection is local,

even micro-local, so it will be sufficient to state it in the case where Q

is the half space JR+n+1 = {(t, x)\ O>0}, we call (r, $ ) the dual variables.

We shall often consider pseudo-differential operators

which are differential in t, that means precisely that

.7=0

with Pj a classical pseudo-differential operator of degree<^j varying smo-

othly with £l>0. The hyperplane t = Q is said non characteristic for P

if the symbol pQ (0, x, £) is a function of x alone and is never zero.

Consider an operator of this type and assume it satisfies (.£) in T*J2+
7l+1

= (R+XRn) XRn+1. Given (x\ f°) <ET*IT\0, we call rl9 — , rfc, the real

roots in r of

and 51? '"ySje their multiplicities. The bicharacteristics Cly-',Ck of P

through the points (0, XQ\ ry, f°) J = l, ""^ are called the reflected bich-

aracteristics from (.r0, $ °) . We assume they hint transversally the hyper-

plane £ = 0, that means, using (J?i), that the fy are simple roots of the

reduce part pj of p near (0, x°; r/, ?°). Therefore, there exists a conical

neighbourhood UxF of (a;0,?0) and a T>0, such that the roots r,- are



REFLECTION OF C°° SINGULARITIES 41

smooth functions r,(*,j:,f) in [0,T]xUxr.

We can now state the main theorem, we use Hormander [4] notation

WF for the C°° singular spectrum.

Theorem I, (Reflection of the regularity)- Let P(t,x,Dt,

Dx) a pseudo differential operator of degree m, differential in t, -which

satisfies the condition (J?) in T*R+n+1 and such that £ = 0 is non

characteristic. Let ^0 = (x°, ?°) eT*JRn\0» -we assume that the reflected

bichar act eristics Cly • • • , Ck from /10 hint transver sally the hyperplane

t — 0. Given an integer £0e[0, k] we define the integers m1 = s1-\ ----

+ Sk0, m2 — Ska+i-\ ----- h Sfc9 m' =m — ml — mz. Let a distribution

(JR+; £D' (Hn)) which satisfies the following conditions:

(1)

(2) WF(u) does not meet the bichar act eristics Cly--yCk

(3)

(with ri0u

Then, it follows that

(4) all the bichar act eristics Cl9 •••,Ck do not meet WF(u)

(5) for every j^O 20 $ WF(rfu) .

In fact, we have also a much more precise result : there exists

a pseudo differential operator a(x,Dx} elliptic at A0 and a T>0 such

that

(6) a Or, DJu(t9 x) e C°° ( [0, T] X IT) .

The last affirmation of the theorem is a result of regularity up to

the boundary. In fact, information on u\R^n+i and on the traces fju give

nothing concerning the regularity up to the boundary. For example,

it is easy to verify, that the function

is in C00(H+;,2)/) and ^|12+ri+1eC00(l?+
n+1), T</u = 0 j^Q, but nevertheless
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In order to describe easily the regularity up to the boundary, we introduce

a closed set in T*jRn\0 that we call the "boundary singular spectrum"

dWF.

Definition 3. Let a distribution u^C°°(R+; ^'(K71)), we say

that XQ$:dWF(u) if there exists a pseudo- differential operator a(x,

Dx*) elliptic at /10 and ^ T>0 such that

a (x, Dx) u(t, x) e C" ([0, T] X 1?") .

The example above shows that dWF(u) has nothing to do with

the closure of WF(u) in T*!̂ 71"1.

It is clear from the definition that kQ^dWF(u) implies

(7) Jo49WF(A'K), l*GdWF( f '«(*,-
\ Jo

in that case, we remark also that we have kQ^dWFto(u) for tQ<^T if

dWFto denote the boundary singular spectrum relative to the half space

We can give another definition using the Fourier transform in the x

variable :

Proposition I, Let u^C°°(R+ ;£)'), -we have (x\

if there exists a conical neighbourhood UxF of (x°, g °) and a T>0

such for every a^CQ°°(U)9 k^N, N^R, there exists C such that

(8) | ff, (a - D*u) (t,

for every feT and t^[0,T]

The proof is a simple but a little tedious exercise.

Using this new characterisation, we see immediately that (x°, f °) $

dWF(u) implies the existence of "conic box" F(T, U) such that

(9) WF(u^r(T,U)=<t>,

where UxF is conical neighbourhood of (x°, ^°), T>0, and the conic
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box is by definition:

r(T,E7)= fc*;r,

In particular, a conic box is a neighbourhood of every point of the form

(0,^°;r??
0) with reH.

We remark also that the boundary singular spectrum describe the

regularity up to the boundary; for instance, it is easy to show that u(t, x)

is C°° up to the boundary near XQ iff (XQ, f) $dWF(u) for every f.

§ 2. Proof of Theorem I

Coming back to the theorem 1, we see that the conclusion (6) means

exactly hQ^dWF(u). The conclusion (4) is a trivial consequence of (6)

and, using the theorem of propagation of singularities for such operators

(Chazarain [2]), the conclusion (5) follows also from (6) and (9).

So it remains to prove (6); to do so we shall see during the proof that

it is sufficient to assume AQ$dWF(f) at the place of (1).

The first ingredient of the proof is a generalization to our case of

a result of micro-local factorization of Nirenberg [6].

Proposition 2. Let P, satisfies the hypothesis of Theorem 1. Then

there exists a conical box r(T,U) and pseudo-differential operators

Hly H2, Q, R of degree ml9 mz, m*', m and differential in t7 such that

(10) P = H1.Q-H2 + R

(11) the condition (_£) is satisfied by _Hj and H2 in the box

P(T, U) and their principal symbol are given by

Ai = ft(r-t>(*,*,£))•>, 7z2= n (r-r,)''
.7=1 j = *0 + l

(12) the remainder R has the form
m-l

R = Y^ Rj(t,x9 DX}D/, and the complete symbol of Rj is in

5—([0,T]xC7;r)

the operator Q is elliptic in the box F(T, IT).
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Proof. It is sufficient to give the proof in the case where p has

only one real root r^, .r, ?) for (t, x, ?) e [0, T] X UxF, let 5 its mul-

tiplicity. We can write

P= (r-r2(*, x, g)y-q(t, x, r, ?)

with q a polynomial of degree m — s in r such that

(13) q (*,*,ra(*,*,f),f)=£0 is [0,T]Xt/xr.

By a transposition argument it will be also sufficient to prove a factoriza-

tion of the form

P = H1-Q+R.

We write the complete symbols of P, Hi and Q in the form

m-l

*,*, r,£) =/>(*,*, r, f) H-ECr-OV*,*, f)

H,(t, x, r, f) = (r-rO' + ZXr-rO'M*. ̂ . f)

0

0

m — s-1

where ^, &/, Cy are classical symbols of degree m — l—j, s — l—j, m — s

—j — I, with an asymptotic expansion

in homogeneous components. To satisfy the condition (12), we have to

calculate the symbols bjjk and cy iJfc.

Equaling the components of degree m — \ for Hi. Q and P in the box

jT(T, C7), we get the equation

s-1 ^
E (r - rO ̂ ,,0] - g + Dtq - H

We make "C = Tl9 so we obtain b0iQ(t,3:, C) using (13); after having derivate

in r, we make again t = 'C1 so we get bliQ and so on up to bg-lt0. Then,

we keep alone, in the left hand side, the term
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By the construction of the bjiQ) we know that the right hand side is a poly-

nomial in r, divisible by (r — t^)*. After division, we obtain Cji0 by identi-

fication. The same kind of procedure can be repeated to obtain the other

symbols bjtk and cjik in the box F(T9 U) . Then, we extend them outside

F(T, U) as symbols of the same degree.

We define R by the egality

and by construction it satisfies (12) . It remains to show that HI satisfies

the Levi condition (J?2) at points of F(T, U).

For this purpose, we consider a convenient solution <p(t^x) of

and a smooth solution ot(t, x) with small support. From the equality

we deduce

with

From (13), we have (Zi~ ̂ m~sq(t, x, dt(p, dx(p) ;

so we deduce

from which it follows easily that (J^2) is satisfied by Hlu

The next ingredients in the proof of theorem 1 are results of micro-local

regularity for non-strict hyperbolic Cauchy problems and Dirichlet bound-

dary problems.

Theorem 2. (Hyperbolic ease). Let H(t, x, Dt, Dx) an operator

'which satisfies the hypothesis of theorem 1 in a box F(T, U), We

assume moreover that h is hyperbolic in that box, that is to say
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h(t,x,T,$)=Q has only real roots in r for (t, x, £) e [0, T] X £7xF.

Consider u<=C°°(R+ \ 3)') 9 we pose

(14) Hu=f9ri = Vj J-0, -,m-l.

and we assume

(15) (^,f

(16)

The proof will be given in the next paragraph.

Theorem 3. (Elliptic case). Let Q(t, x, Dt, Dx) a pseudo- differ-

ential operator of degree mf =2d, differential in t, and elliptic in

a conic box F(T, U). Consider u<=C°°(R+; 3)'}, we pose

(17) Qu=f fu=w with r'u=(r*u> '",r*-iu)
and we assume

(18) (x\ f°) $ 9 WF(f) ,

Then

(19) (x\

the proof will be given also in the next paragraph.

Now we shall finish the proof of theorem 1, it will be a simple

calculation of WF and dWF assuming theorem 2 and theorem 3. We

shall proceed in three steps, each step corresponds to factor of the factor-

ization (10) of P.

First step. We define

(20) v = QH2u and f1=f—Ru9

using (1) we can write

(21) Hlv=f1.

With these notations, we have the
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Lemma 1. There exists a conical box F (T, U) such that for every

and £GE[0,T]

(22)

Proof of the Lemma. The property of the singular spectrum (cf.

Hormander [4]) and (20), (21) implies the inclusions

(23) WF(v) fl WF(u) C V!(0) U WFC/i)]-

On the other hand, if the roots t)(£, .r, ?) are defined for (*, .r, ?) <E [0, T]

XUxF, the theorem of traces [4] shows that, for *e[0, T],

(24) (C7x n H WT(r^) C { (x, ft | (^, x, r, (f, ̂  f ) , f ) e WF(u)

for some _/e [1, ^]}.

Taking F(T, U) small enough, the property (12) and the hypothesis

(x°,^<£QWF(f) imply

(25) (tfxr)nW.F(r.*/i)=0 for <e[0,T], 4^0.

Combining (23), (24), (25) and (11) we obtain

(26) (Ux n n WF(r,*r;) C { (x, I) ! (t, x, tj (t, x, f ) , f ) s WF(«)

for some Je[l, ^0]}.

But the hypothesis (2) allows us to find a box /"(T, t7) such that, for

yeE[l,&0],

(27) {(*, ̂ ; r,(^, x, f), f)| (^, f) e U XT, ie [0, T]} n WF(u) =<f> .

So, the Lemma follows from (26) and (27).

It is easy to see that (x\ f°) $9W!F(fi), so using (22), we can

apply the theorem 2 to the backward Cauchy problem for time £<CT

and we deduce, with the remark (7) , that

(28) (x\

Second step. We define

(29) w
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so w is a solution of the following Dirichlet problem

i t , • n m 'ro}w=hj j=o, ...,__

As the degree of H"2 is wz2, we deduce from (3) that (x\ f °)
£ - A m' *for j = 0, .-,-g— 1.

On the other hand, the proposition 2 shows that Q is elliptic in

a box P(T, U), so using also (28) the theorem 3 implies that

(31) (x*,

Third step. The distribution u satisfies the Cauchy problem

I H2u = -w

r»1u = k} j=0,---,m2-l.

With (3) and (31), the theorem 2 implies finally that

(a»,F)*dWF(u).

the theorem 1 is proved.

Remark. There is no new difficulties to generalize to our case,

the theorem of Majda and Osher [5] concerning more general boundary

problems. In return, the generalization of the result of Taylor [7] to

systems with constant multiplicities seems to be more difficult, due to the

lack of a nice Levi condition for systems.

§ 3. Proofs of Theorems 2 and 3

Proof of theorem 2. We shall first reduce to the case where H

satisfies the hypothesis of theorem 1 in all T*R+n+1. To do so, we extend

smoothly the roots Tj(t,x,$) to R+n+1 X JRn\0 keeping them distincts and

homogeneous in £. We define an operator M by

M(*,:c, A, A) = (A-r,(*, *,!>,))•'•••(•••)••

it satisfies by construction the hypothesis of theorem 1 in T*R+n+1. Then,

we obtain a prolongation H of H by taking
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H=a(x, £>J -H+ (I-a) -M,

where CX, (x, $ ) is a non-negative symbol identical to one in a neighbour-

hood U'XF' of (x°, f°) and with "compact" conic support in UxF.

So jff and H coincide in a box F/ (T, £7') and I? satisfies the hypothesis

in all T*Rn+1. We define /=/+ (B-H).u, then we are reduced to the

same problem for H

(33) H.u = f r/u = vj j = Q,~-,m-I

It is clear, from the construction of H, that

(34) (x°,e)^dWF(f).

To simplify the notations, we skip the tilda in the rest of the proof.

From the theory of Cauchy problem for such operator (Chazaraiii [1]),

we know that that (33) has an unique solution u. We decompose it as

u = Uj_ + u2

with &j and uz defined as solutions of

0 Hu2=f

We begin by u^ It is sufficient to consider the case where

Vj = Q , j = Q9---,m — 2 and vm-l=v .

We have proved in the reference above, that «2 can be expressed in

term of v with Fourier integral operator; in particular for £^>0 small

enough, we have

(35) «!(*,*)=!; (e^^d^x.^v^d^.
j=i J

The phase (pj is defined as the solution of

d&, - r, (f, x, dx(fj) =0 <p, (0, x,fi=x.£,

and the amplitude dj is a symbol of degree Sj — m which satisfies some

transport equation.

To prove that (x°, f°) ^dWF(u1)y we have to consider a pseudo-

differential operator <z(.r, Dx) ; ^vhose symbol is supported in a conic neigh-

bourhood Ui X FI of (x°, £ °) to be chosen latter and elliptic at that point.
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From (35), we obtain

(36) a(x9D)ui(t9x)=% f eW'"ej(t,x,ft$
J = l jRn

with

ej (t, x, f ) = e-^'a (x, D) (&,<?"} .

It is well known that e3 has the following expansion

(37) e, (t, x,
a>0 Q/I

with

ft (*, *, y, ?) = %(*» x> ?)

By hypothesis (x°, f°) ^ W!F(v), so we can find UxF small such that

(UxT)r}WF(v)=(f>. Now we can choose t^xA and T>0 in order

that (x,$)&Uxr implies (j:, dxfy (t, x, f ) ) $ Ui X A for every * e [0, T] ,

this possibility follows from the fact that 9X^ (0, x, f) = f . With this

choice it is easy to verify, using (37), that we have

(38) «(

Using the Duhamel principle, the solution uz is given by

m rt r

(39) «,(*,*)=!; ^tt-'"'
1 Jo JJBn

where the variable 5 in <pj and dj means that they are relative to the

Cauchy problem with initial data at time t = s, and f(s, f) = (3xf(s.,}} (f).

We pose

(40) u,t(t,s,x)= \
*J R

Using the same kind of arguments as for ul9 we can find a jT>0 and

pseudodifferential operator a (x, D^ elliptic at (xQ
9 f °) such that

(41) a (x, £U rvf (t, s, x} e C°° ( [0, T] X [0, T] X IT) .

After an integration of (41) with respect to seE[0, T] we obtain from

(39), (40), (41)

(42) a (*,£>,) a, (f,*)eC" ([0,71x11").
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Finally, (x\ f°) E^dWF(u) follows from (38), (42) and the theorem 2

is proved.

Proof of the theorem 3. The hypothesis (18) on the data implies

the existence of a pseudo-differential operator a (x, D^) elliptic at (.r0, f0),

with support in C/X/7, such that

f a (^ £>,)/= flreC"([0,T]xH-)
(43)

( a (*,£,)«;, = A, eC-(JT) .7 = 0, •••,<*-!.

After composition of (17) on the left by a (x, D) we obtain

( Q& = g
(44)

( riu = h

with Qi=a.Q and Ti=a.f. As a(x,D) is elliptic at (.a;0, f°), the prob-

lem (44) is still elliptic in a small box F' (Tf , [/'). From the theory

of the Dirichlet problem, we know that the application

has a micro-local left parametrix

More precisely, we have

where SI is a pseudo-differential operator whose complete symbol is rap-

idely decreasing in a smaller box r"(T",U"). We do not recall here

the construction of this parametrix, it is done with the help of the Cal-

deron projector, as in Hormander [3], but the calculations of symbols

are perfomed only in the box Ff (T' ', £/').

We compose (44) on the left with ET, we obtain

(45) u

As g and h are smooth, we have

(46) 3

and the smoothness property of SI implies that
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(47) (*°,f°)« 9WF(3iu).

Combining (45), (46), (47) we obtain finally
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