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Sojourn Times and Asymptotic Properties
of the Scattering Matrix

by

V. GUILLEMIN

§ 1. Introduction

In scattering theory one usually has the following set-up or some

simple variant of it. One has a Hilbert space H and two one-parameter

groups of unitary operators QJ, and ^o on H. One supposes that the

wave operators

and their inverses exist and are, therefore, unitary operators from H to

H intertwing U and ^LZ0. the scattering operator is S=W+(W~)"1, and

it intertwines ^L£0 with itself.

Now in the cases of interest for scattering theory CHQ has a uniform

continuous spectrum. This means there exists a Hilbert space K and an

isomorphism of Hilbert spaces p:H-+L2(R,K) such that p^lX^t) p~l is

the operator "multiplication by eltff" for (7EE.R. Since S commutes with

^o? pSp~* commutes with multiplication by eltff for all t, and must then

necessarily be of the form "multiplication by *S(0")" where S(fi^):IC—>K

is for each ff^R a unitary operator. The subject of this talk will be

the asymptotic behavior of 5((T) for large values of (T. Our purpose

will be to examine this asymptotic behavior in special cases and attempt

to discern some general pattern.

§ 2. A simple example

Let X be a compact manifold and v a vector field on XxR which

has positive I? component and is equal to d/dt outside {(.£, <0>
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Let fs:XxR-*XxR be the flow associated with v. Let H be the Hil-

bert space of L2 half-densities on XxR. Then fs induces on H a one-

parameter group of unitary operators ^U(s) : H->H. Let ^o be the cor-

responding group for d/dt. Then ^oC^O^C^) is independent of t for

large t, so the wave operators exist. Moreover, they are of the form

(/*)* where f±:XxR->XxR are diffeomorphisms. It follows that the

scattering operator is of the form g* where g= (f~}~lf+. Q commutes with

the group of translations (.r, f) — > (x, £ + <?); therefore, it must be of the

form

where h:X-^>X is a diffeomorphism and T a smooth function on X.h and

T can be computed as follows. For x^X and tQ<^a follow the trajec-

tory of the point (x, £0) with respect to the vector field v. For t^>b

this trajectory will be a line parallel to the £-axis with ^-coordinate

h(x). (See figure 1).

SCQffered

incoming roy

Figure 1.

Moreover T(.r)+£i — £0 will be the time taken to go from (x, £0) to

(h(x),t^) along the curve f. We will call T(X) the "sojourn time"

of r.
Let K=LZ(X). A spectral representation of ^o is given by the

Fourier transform

H=L2(XxR) =LZ(R, K) -^-*L2(R, K)

which converts Uo into multiplication by eztff, and the scattering operator

into

(2-1)

Note that the oscillatory part of (2-1) determines the sojourn times
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of the scattered rays.

§ 3. Acoustical scattering: opaque obstacles

Let G be a compact convex subregion of Rn. Let HG be the Hilbert

space completion of the space of all pairs (/, g), f,g^CQ°°(Rn — G) with

respect to the energy norm

The mixed boundary problem

^u-Au = 0, K€=L 2CR n -G), u^O ou 9G;

has a unique solution with Cauchy data u(x, 0) =f, Qu/dt(x9 0) =g, (/, g)

G=H. Denote the Cauchy data at time t of this solution by ^G(0 (/> 00-

One easily verifies that ^ZG(0 : H—>H is unitary. If G is the empty set,

we will denote the corresponding Hilbert space and unitary group by

H0 and ^Lt0. Since HQnHG the operators

(3-1)

make sense as linear transformations from J^ to H0. It turns out that

if the dimension n is odd, the limits W± of (3 -1) as t tend to + oo

and their inverses exist, and hence, so does the scattering operator S

= W+(Wr~)~1. The infinitesimal generator of QJ,Q is the operator

(3-2)
\ A 0

Let K=L2(Sn~1). Given any function f^K we can associate with it

a generalized eigenfunction of A of eigenvalue A, namely

(3-3) f

It is not hard, using (3-2), (3-3) and the Fourier inversion formula,

to construct a spectral resolution

of ^o (See Lax-Phillips [5]). Therefore the scattering operator is a

unitary operator
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for each (?<=R. Given (a), 0) eS71'1 XS71"1 we will denote by

the Schwartz kernel of this operator. Our main result is

Theorem 1. For o)^d S(ff,a),6) is a smooth function of all three

variables. Moreover for fixed

( .*• \ (l-n)/2
-5-)
27TZ/

-where T is the sojourn time of the unique scattered ray 'with direction

of incidence a) and direction of reflection 6 and J is the scattering

differential cross-section at (a), 0).

We must explain the last two terms. Let a be a large positive

number so that the ball of radius a contains the region G. Since G is

convex there exists one point x^G such that o) and —6 make equal

angles, both less than 90°, with n(x). (See figure 2.)

Plane of reflection

Figure 2.

Let 7" be the union of the line segments joining A to x and x to B. We will

call f the scattered ray with angle of incidence a) and angle of scattering Q,

The length of 7 minus the normalizing factor 2a will be called the sojourn

time of r. Finally consider the map of the plane of incidence in figure
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2 into S71'1 which maps A' to a)' as follows. For A' near A on the

plane of incidence go along the incident ray from A' with direction a)

until it hits G at a point x near x. Let &)' be the direction of the

reflected ray at xf '. The map A'— »o)' is well-defined (for A' near A)

and is differentiate. Its Jacobian at A is by definition the differential

cross- section at 7*.

§ 4. Acoustical Scattering : refracting media

Theorem 1 is due to Andrew Majda. (See [8].) It is stated in

a rather different form in [8], but can be converted to our form without

too much effort. (See appendix A below.) The proof is rather difficult,

because of the problems posed by "glancing rays". Rather than attempt

to outline it here, we will sketch the proof of a similar result for refract-

ing media, for which one doesn't encounter glancing rays.

Let G = ̂ GijdxidxJ- be a Riemannian metric on Rn which is identical

with the ordinary Euclidean metric except on some compact set. Let

AG be its Laplace-Beltrami operator. Let HG be the Hilbert space com-

pletion of the set of pairs (f, g) , f, g EE C0°° (jR
n) with respect to the norm

f (2GtV!L
JRn \ QXi OXj

and let *UG be the one-parameter group of unitary operators on H as-

sociated with the wave equation: dz/dzt — AG. If G is the standard Euclid-

ean metric then UG and HG are the ^L£0 and H0 defined in § 3. (Note

that as topological vector spaces H and HQ are the same.) It turns out

that, for odd dimensions, the wave operators

and their inverses exist, just as for the Dirichlet problem. Therefore,

the scattering operator also exists; and, just as in § 3, it induces a unitary

transformation on the (7-th generalized eigenspace of *U0

Choose a number, a, so large that the metric G is Euclidean outside of

the ball of radius a. Let f be a geodesic which for large negative and



74 VICTOR GUILLEMIN

positive times lies outside of Ba. (See figure 3.)

Plone ofincidence

Figure 3.

Then Y consists of two line segments with directions o) and 0 plus a curved

arc lying in Ba. We will call o) the direction of incidence of f and 6 the

direction of scattering. We will define the sojourn time of 7" to be the

length of the arc joining B to A minus the normalizing factor 2a. Geodesic

flow induces a map from the plane of incidence into the n — 1 sphere,

and the Jacobian of this map at A will be defined to be the scattering

cross- section at 7. We will call 7 non- degenerate if the scattering cross-

section is non-zero.

Theorem 2. Let o) and O^S71'1 be fixed -with d^o). Suppose there

are only a finite number of rays ft, •-,?& 'with direction of incidence

a) and direction of scattering 6, each ft being non- degenerate. Then

(4-1) S(ff, a), 0)

'where Tt is the sojourn time of ft, Jt the differential cross-section

and HI the number of conjugate points, counted 'with multiplicity, along

The idea of the proof is to exhibit the wave operators WQ
± as solu-

tions of a hyperbolic partial differential equation. To do so we start
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with the spectral resolution p: HQ->LZ(R, K) of the unitary group tfJ,Q.

(See the previous section.) Denote by WG
+ the composition of the following

sequence of transformations

the last arrow being Fourier transform in the R variable. WG
+ inter-

twines the one-parameter group UG and the one-parameter group of transl-

ations on the real line. The infinitesimal generator of (UG is the operator

A - ( ° l ]
\Aa 0 /

and the generator of the translation group is d/dt, so the Schwartz kernel

of WG
+ satisfies the equation

(4-2) AGWG
+(x, t, CD) -^- WG

+(x, t, a)) -0
dt

for x^Rn, ul^S71'1. Now when G is the standard Euclidean metric, W+

is the identity and WG
+=p. It follows from Huygens' principle, that no

matter what G is, the Schwartz kernels of WG
+ and p are equal when

t is large. However (4-2) is a hyperbolic equation, so its solution is

uniquely determined by its values for large positive t. Pursuing this

line of reasoning a little further one can show that WG
+ is a Fourier

integral operator, and write down quite explicitly its associated canonical

relation and its leading symbol. Similar results hold for WG~; and the

composition formula for Fourier integral operators given in Hormander

[4], §4 shows that S is itself a sum of Fourier integral operators. Fi-

nally, having computed the top symbol of S, which, as we've just intimated,

is not too formidable a job, one easily obtains the result (4-1) on the

asymptotic behavior of S since S is just the Fourier transform in t of

S. The details of this computation can be found in [3].

§ 5. The automorpMc wave equation

Our list of examples is still too small, and the example in § 2 too

simple-minded, for us to draw any general conclusions from them. The

general conclusion we would like to draw is that the periods of oscillation

of the scattering matrix for 6 large are intimately related to the sojourn

times of the scattered rays. In this section we will discuss an example
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which is quite different from the others; so the fact that we will be

able to derive a formula for the scattering matrix which is formally

identical with (3 • 4), makes our general conclusion a litte bit more plau-

sible. This example is due to Faddeev, and for lack of time we will

describe it in its barest outlines. A detailed and very readable account

of it can be found in Lax-Phillips [6], and we will frequently refer to

this paper below.

Let H be the upper half-plane provided with its Poincare metric,

dsz= (dx2jrdy2)/yz. Let F be a discrete group of fractional linear trans-

formations such that X=H/F has finite area. For simplicity we'll as-

sume F contains no elliptic transformations. Then X=H/F is a Rieman

nian manifold which looks geometrically like a compact surface with a

finite number of tentacles (cusps) attached. (See figure 4.)

Figure 4.

By a theorem of Siegel ([9], Ch. 1), X is the disjoint union of a compact

subset XQ = XQ
a and a finite number of open sets Xi = Xia, i = 1, •••,!, called

cusp neighborhoods, such that each Xt is isometric to the set — l/2<[Re z

<Jl/2, Im z^>a, in the upper half-plane (figure 5 below.)

Figure 5.
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(In this figure the lines x = 1/2 and x = — 1/2 are identified.) There is such

a Siegel decomposition for every sufficiently large a, and, for fixed a,

it is unique. We will assume a choice of suitable a has been made from

now on.

Consider the intrinsic Laplace-Beltrami operator, A, on X and its

associated wave equation

(5-1) (

It is well-known that A has a large discrete spectrum, so the scattering

techniques described in this paper won't apply per se to (5-1). How-

ever, if H is the Hilbert space of Cauchy data on X (with the same

energy norm as in § 4) and H^ the subspace of Cauchy data spanned by

the proper eigenfunctions of J, then in H^ an appropriate scattering

theory can be set up. Its vague outlines are as follows: Assume for

simplicity that there is only one cusp. Then there is a fundamental

domain F for F which looks like the region in figure 5, but with a

broken curve consisting of circular arcs in place of the line y = a. (In

figure 6 we've drawn the fundamental region for F = SL(2, Z). The

wave equation associated with figure 5 should be regarded as the "free"

system and that associated with figure 6 as the "perturbed" system.)

X= 1/2

Figure 6.

The wave equation for H/F is somewhat like the wave equation for

an obstacle except that instead of having zero boundary data on the

boundary of the obstacle as in § 3, one has periodic boundary data on

the components of the boundary of F which get identified by F. We

won't go into details here, but refer the reader to [6], Ch. VI.

By a scattered geodesic or scattered ray we will mean a geodesic

7 = )"(£) which lies outside of XQ both for all sufficiently negative t and
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for all sufficiently positive t. If it lies in the exterior region Xi for

large negative t and in the exterior region Xj for large positive t, we

will say that j is scattered from the i-th cusp neighborhood into the

j-th cusp neighborhood. The sojourn time of f will be the total time

elapsed from the time it first enters XQ to the time it leaves XQ forever.

We will show in appendix B that there are only a countable number of

scattered geodesies, ft, j = l,2, • • - , and that their sojourn times tend to

infinity with j.

Lax-Phillips prove in [6] that the scattering matrix S(o") associated

with the problem just described is an mXm unitary matrix for each 0",

m being the number of cusps. Our main result is the following explicit

formula for the i-jth component of this matrix.

Theorem 3. Let Tj<;T2<-" be the sojourn times of the rays

scattered from the ith cusp neighborhood into the j-th cusp neighbor-

hood, and let c((f) be the function

C(O) =

Then

(5 • 2)

A couple remarks are in order.

1) The series (5 • 2) only converges for Im (7<J — 3/2. Therefore, the

right hand side of (5-2) has to be understood as the meromorphic con-

tinuation of this series to the whole complex plane. One of the deep

consequences of the scattering theory is that (5-2) can be so extended.

2) We can rewrite (5-2) in the form

S{J (ff) = ac (ff) £ J*-"2*- ,̂ Jk = e-r".

The geodesic flow, in the neighborhood of rk, gives us a map from

the boundary of the z-th cusp neighborhood to the boundary of the j-ih

cusp neighborhood. One can show that Jk is the Jacobian, at yk of this

mapping (computed, of course, using the Siegel coordinates). This shows

that the amplitude of the &-th oscillation in (5 -2) is a "differential cross-
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section" just like the amplitude of the kth oscillation in formula (4-1).

We will give the proof of theorem 3 in the appendix B.

A last remark: We conjecture that if X is an arbitrary Riemann

surface of finite area (not necessarily of the form H//7) then there is

a formula analogous to (5 • 2) ; however it is an asymptotic formula.

We have been able to prove such a formula for the case when the

cusp neighborhoods are isometric to those given by figure 5, the proof

being a variant of the proof of theorem 2, sketched in § 4.

Appendix A

Let G be a smooth convex subset of Rn and let ft be a ray reflected

off G with angle of incidence a)Q and angle of reflection 6Q. Suppose 7*0

encounters the obstacle at the point yQ. Our purpose is to obtain a formula

for the scattering differential cross-section at (o)0, 00) in terms of the Gaus-

sian curvature K(yQ} of the surface dG at yQ:

Theorem. Let cQ/2 be the cosine of the angle that ft makes 'with

the normal direction at yQ. Then the scattering differential cross-section

at (to0, 00) is equal to 4:CQ
n

Proof. Let us choose coordinates (xly • • - , xn) in Rn such that o)0

is the unit vector pointing in the direction of the positive ^vaxis. Then

the plane of incidence in figure 2 is just the plane xn= —I. Let XQ be

the point where ft intersects the plane of incidence. Consider, for each

point x on the plane of incidence near XQ, the ray with initial direction

o)0 and initial position x. Let y be the point where it is reflected off

the obstacle and 6 the direction in which it is reflected. By definition

the differential cross-section is the Jacobian determinant at XQ of the map

x-*0. 6 can be determined from x by the set of equations

(A-l) 6 = cn-o)

6-n = o)'n = c/2

n being the unit outward normal at y. Here o) = o)Q is fixed and 6, c

and n are functions of x= (xl9 x2, --,xn-.l9 — 1). We will compute the

Jacobian determinant, J, from the formula
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(A- 2) |iA...A^^Ae=j^lA.
OXi uXn_i

Making the substitution (A-l) we get for the left hand side of (A -2):

(A. 3) r (|» A- A/^-A") -^(~l\dxl dxn^ / \dxi

the "72" in the bottom, line occuring in the i-th place. Let

9n(A-4)
dxl

Substituting (A-4) for o) in the second term in the top line of (A -3)

we get for the whole top line of (A -3)

(A-5) C

In the bottom line of (A -3) we can interchange a) and n and write,

for ^-, 2o>- |^, getting
axt oxt

(A-6)

Finally, making use of (A-4), (A-6) can be written as:

or

or

The second term cancels (A-5); so the upshot of our computation is

that (A -3) is equal to

(A. 7) a-



ASYMPTOTICS OF THE SCATTERING MATRIX 81

Let Hdxi/\"* /\dxn-i be the curvature form of the surface of the obstacle

at the point on the surface corresponding to (xl9 •••,.rn_1). Then

(A- 8)

(by the formula for the curvature as the Jacobian of the Gauss map.)

Now

where K is the scalar curvature and dA the area form on the surface.

Moreover

dxl A • • • A dx»-i =(n'CO)dA= (c/2) dA

since a) is the unit vector pointing along the positive .rn-axis. Thus H

= (2/c)K. Substituting this into (A -7) and (A -2) we get J=4cn~*K

as asserted. Q.E.D.

We mention one consequence of this theorem (pointed out by Majda

in [8].) Take (DQ=—dQ in the theorem. This means that the ray fo

is reflected off the surface at yQ in the normal direction; so £ = 1 and the

scattering cross-section is equal to 4 times the curvature of the surface

at yQ. Thus (3-4) becomes

(A- 9) lim |S(<r, a), -co)

Now (JL* = n(yo) is just the image of yQ under the Gauss map, so we have

proved that the asymptotic behavior of the scattering matrix at (a),

— a)) determines the Gaussian curvature of the surface dG at the

preimage of a) under the Gauss map. By an old result of Hermann

Weyl a convex surface is determined uniquely up to Euclidean motions

by the values of the curvature at the pre-image points of the Gauss map;

so this result can be restated as follows: the asymptotic behavior of

the scattering amplitude determines the shape of the scatterer.

Appendix B

This appendix is devoted to the proof of theorem 3. We begin by
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recalling the following familiar fact.

Lemma. Geodesies on the upper half-plane consist either of

a) The half -lines Re£ = c, Im £>0

or

b) the half -circles \z — c\ = d 'with c and d real, d positive, and

(See for example Spivak [10] , pg 430.)

Corollary 1. Geodesies on the manifold X=H/F are projections of

half -lines of type a) or half -circles of type V) .

Corollary 2. A scattered geodesic has the property that for large

negative and positive times it corresponds to a vertical line in figure

5 (i.e. after we have mapped the appropriate cusp neighborhoods onto

the standard cusp neighborhood exhibited in figure 5.)

Now choose a fundamental domain for T in H such that the ith

cusp, Vi, is at oo and ~Ki is the standard cusp neighborhood defined by

y^>a, — i^^^i- The jth cusp Vj=(xQjO) will then be one of the

vertices of the fundamental domain lying on the real axis, and its cusp

neighborhood will be bounded by two geodesies which are perpendicular

to the .r-axis at XQ. (See the figure below.)

Figure 7.

The lines x— —\ and x = \ are, of course, identified by the parabolic

transformation z —>£ + ! which by assumption belongs to F, and the two

bounding geodesies ft and ft are identified by a parabolic transformation,

, having Vj as a fixed point. We will assume that none of these
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four boundary curves represents a scattered ray.*

We "will now describe a way of constructing scattered rays. The

construction we're about to describe in fact gives all of them in a more

or less unambigous way. Let A^F. Let 7 be a geodesic on Hwhich

is perpendicular to the real axis at XQ and lies between ft and ft as in

figure 8.

Since 7" is a geodesic it is a half-circle with center on the .r-axis.

Theorefore, Ay will also be a half-circle with center on the .r-axis. Of

course the center of Af can be at infinity; i.e. Af can be a straight

line perpendicular to the .r-axis. We claim that if this is the case then

projection of 7* onto the manifold X=H/r is a scattered ray joining

the ith to the jth cusp neighborhood.

Proof: 7" and A? get identified on X. Avj is a point on the real

axis which can't be oo, since 00= vt and v^Vj mod/1. Let 7 be para-

metrized so that 7"( — oo)= vj and 7" ( +oo )=•«;. (See figure 8). Then

Af(t) will tend to oo as t tend to +00; and, by applying an appropriate

iterate of the map z —»£ + ! to it, A f ( f ) will tend to infinity along a

straight line lc: x = c, — \^c<^\. That is its image in X=H/F will

scatter into the ith cusp neighborhood as £^» + oo. This proves the above

claim.

Arguing backwards one can show that all scattered rays associated

with the j-iih cusp neighborhoods can be constructed this way. Note,

however, that not every A^F 'will give rise to a scattered ray', because

* It causes no essential problems if one of the bounding curves is a scattered ray but
does slightly complicate the argument below.
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it can happen that none of the geodesies, Ar, for 7 lying between ft and

7*2 as in figure 4, are straight lines. Note also that for a given A there

is at most one y 'which 'works. For if f is a half-circle centered on

the .r-axis with vertices at Vj and a) as in figure 8, then *w = AT^oo); so 7*

is uniquely determined by A. From the forgoing we can already conclude

Theorem Bl. There are only a countable number of scattered

rays.

Proof'. F is a discrete subgroup of SL (2, B) ; so it is countable.

(Exhaust SL(2,K) by a countable number of compacts.) Hence the

set of A^F which give rise to scattered rays is countable. Q.E.D.

It can also happen that A and B^F give rise to the same scattered

ray. We claim that this can happen if and only if A = PB -where P

is an iterate of the translation 2— »2 + l. In fact suppose A and B map

7* as in figure 8 onto straight lines representing the same scattered geodesic

in the ith cusp neighborhood. Then there exists a P such that PA and

B map 7 onto the same straight line. Replacing A by PA we can assume

that A and B map f onto the same straight line, and that this straight

line lies in the fundamental strip — i<C-^<^i- BA~l leaves this straight

line fixed and maps infinity to infinity. Since points sufficiently far out

on this line lie in the fundamental region and can't be conjugated one

into the other by elements of F other than the identity, BA~l must be

the identity. Q.E.D.

Suppose now we are given an AEiP which defines a scattered ray

according to the prescription outlined above. Let TA be the sojourn time

of this ray. It turns out that there is a very simple procedure for comput-

ing TA. Let <p be an isometry of the strip — i^s-^SSi onto the ith cusp

neighborhood mapping oo onto Vj. Then A°(p is a linear fractional trans-

formation of the form

c d

We will prove

(B-2) TA =
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the "a" here being the "a" in figure 2.

Proof: Let 7 be the geodesic through the cusp Vj representing the

given scattered ray as in figure 8, and let f = c p ~ l ( j ) . By construction

7"' is a straight line perpendicular to the .r-axis; in other words, 7' is

an infinite half-circle with one vertex at oo and the other vertex at

(Ao(p)~l(vo) = —d/c. In terms of the coordinate system associated with

cp this ray enters the compact region when it intersects the line y = a,

i.e. it enters at the point ZQ = — — -\- ^/ — la. It leaves the compact region
c

when A? intersects the line y = a; i.e. when Im((azJr0')/(cz-}-d)) =a,

the z here being a point on the line (p~l(^f)9
 z= — d/c-\-s^~ 1. Substi-

tuting — d/c-\-s*J — 1 for z in this equation we get

/ ji , m / ad— Be 1a=(-ad/c + P)/sc = - ±- = —
sc sc

so s = I/ac2. This proves that in the coordinate system of the jth cusp

neighborhood the portion of the scattered ray which lies in the compact

region is just the line segment:

Since this line segment is vertical, the Poincare metric restricted to it is

dy/y, and the sojourn time is easily computed to be Log c2a + Log a = 2Log

ca, proving (B-2).

We will now compute the z-z'th entry of the scattering matrix fol-

lowing the prescription of Lax-Phillips [6], Chapter 8. Here Lax-Phillips

prove that the i-jih entry of the scattering matrix is a~ziff times the

zero Fourier coefficient in the j'-th cusp neighborhood of the Eisenstein

series e* ((T, z} associated with the z"-th cusp neighborhood. If we use the

coordinates introduced in the discussion above (with vt at oo) and as

above let (p be an isometry of the fundamental strip — i^^^i onto the

j-ih cusp neighborhood then

(B-3) e{(z,ff-)=ZA*y1/2+ia

the sum taken over the left cosets FQ\r where F0 is the cyclic subgroup

of F generated by z-*z + \. The A's are representative elements of

the cosets. It is clear that (B-3) is independent of the choice of these

representatives. The zero Fourier coefficient of e* (z, (f) in the j-th cusp
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neighborhood Is

Jl/2
<?V(>, <f)dx

-1-1/2

and the theorem of Lax-Phillips alluded to above says that

l/2

(p*e<(Z,ff}dx = siJ-(ff)y^-{'!
-1/2

%(<T) being the z-jthTentry of the scattering matrix. The contribution

of the A-th term of (B-3) to (B-4) is

l/2

q>*A*yl't+'dx .
-1/2

Jl/

-1

Jl

-

Let A°(p be^the linear fractional transformation,

Then

cz+d ~~~ cz-\-d\2

$c)y __ y

If we let r = — d/c and q = (x — r) /y we get

1 1
(B-6) 0,*A*y = ——— .

c2y 1 + g2

Therefore, the contribution of the term involving A to (B-4) is

or

where A = — and /(A) is the integral in brackets. Dividing this expression
y

by y1/2~lff we get for the contribution of the A-th term to the scattering

matrix

(B-7) ae-zlosca(l^iff}I($.

Each of these terms individually depends on A, but the sum is independent
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of A so it will be unaffected if we let /I tend to oo. What happens if

we interchange the summation and limit operations ignoring for the moment

questions of convergence? For lim J(/i) we get

(B-8)

dq .r d r . / 1 1* if r=—— lies in ——, —
r \ 9 9O ^ £J £j

0 if r doesn't lie in ( — — , — ).
2 2

Let us now interpret this result geometrically. First of all given A^F

when does A determine a scattered ray? As we've seen the answer is

if and only if some geodesic 7" lying between ft and ft as in figure 8

gets mapped onto a vertical line by A. This happens if and only if A°(p

maps one of the lines lp:x = p, — i<Cp<Ci onto a vertical line, and this

happens if and only if the point (Ao<^) ̂ (oo) = —d/c lies on the interval

(~~ i> i ) - Thus the A's making non-trivial contributions to the scattering

matrix are precisely the A's that account for the scattered rays. We

showed above that two A's define the same scattered ray if and only if

they belong to the same left coset with respect to /V Since the Eisenstein

series (B • 3) is defined by taking precisely one representative from each

coset the non-trivial summands correspond in a 1-1 fashion to the scattered

rays. Finally the exponent occuring in (B-7) is, by (B-2), just the

sojourn time, TA, of the corresponding scattered ray. To justify the inter-

change of summation and limits in the argument above we note that by

Lehner [7] (p. 159) and Lax-Phillips [6] (p. 8.12, formula 8.26) the

sum of the terms \c\~T converges absolutely for ?%>4, so for Im ff<! — 3/2

the sum of the terms (B-7) converges absolutely. Thus our final result

is that, for Imff<^ —

summed over all the sojourn times of rays which are scattered from the

z-th to the j-ih cusp neighborhood. This is what we set out to prove.
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