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Macrocausality,, Unitarity and
Discontinuity Formulae in 5-Matrix Theory

by

D. IAGOLNITZER*

Introduction

The purpose of this lecture is to present the general physical-region

properties of multiparticle scattering amplitudes in relativistic quantum

theory. The emphasis will be on recent developments. S-matrix theory

has been mainly developed for systems of massive particles with short-

range interactions (i.e. the strong interactions) and we only consider here

this case.

The key notion which has appeared to be of basic importance, at the

begining of the sixties, in the study of collision amplitudes is that of analyti-

city. In this lecture, I am concerned only with momentum-space analyti-

city properties in the physical region. (The physical region of a process

is the real mass-shell region associated with this process. Precise defini-

tions will be recalled later). Besides its own interest, the knowledge of

the physical region structure of multiparticle amplitudes will give precise

indications on the general analyticity properties which can be expected

away from the physical region, on the "complex mass-shell", as explained

in the lectures by Professor Stapp.

Historically, the derivation of analyticity properties has been based

in the first part of the sixties on the idea that "the scattering functions

should have the maximal analyticity consistent with unitarity". With re-

gard to the physical-region, the program is then to determine the analytic

structure of the S-matric from unitarity and a certain "ze postulate". Al-

though this approach still keeps its own interest, it has not been possible

so far to establish S-matrix theory on firm and precise bases in this
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framework, and we are going here to present the alternative framework,

developed more recently, which starts, besides unitarity, from the physical

principle of macroscopic causality, or macrocausality.

The S-matrix is introduced in section 1, in which general properties,

such as unitarity and energy momentum conservation are briefly reviewed.

Macrocausality is then described in section 2, where we shall see

that it directly provides a basic essential support, or singular spectrum

property of multiparticle amplitudes. This property ensures in particular

the existence, for each given physical process, of a unique analytic func-

tion, defined in a domain of the complex mass-shell, to which the physical-

region (connected) ^-matrix is equal at all points which do not lie on

+ a-Landau surfaces, and from which it is a boundary value, from certain

"plus ze" directions, at almost all + <2-Landau points. (These analytic

functions are those which will be later analytically continued away from

the physical region, on the complex mass-shell: see Stapp's lectures).

A second important step in the development of the theory is then

the derivation from unitarity of discontinuity formulae around the -\-QL-

Landau surfaces. These formulae are described in section 4a) and a

somewhat more general form in terms of essential support is briefly outlin-

ed in section 4b). They give information on the nature of the + <2-Lan-

dau singularities and also account, as indicated in section 4c), for the

macroscopic space-time description of processes. Their derivation is based

on a preliminary result, presented in section 3, which follows from macro-

causality and unitarity, and gives information on the essential support, or

singular spectrum, of the "bubble diagrams functions" which arise in

equations derived from unitary.

To achieve the proof of the discontinuity formulae it has been neces-

sary so far, in general, to use, besides macrocausality and unitarity, an

assumption according to which the "mixed-a" singularities of the various

bubble diagram functions involved in these latter equations should cancel

among themselves (assumption of mixed-<2 cancellation): see subsection

4a). In a broad framework of S-matrix theory ideas, it is natural to

expect such a cancellation and the internal consistency of this assumption

has been checked in many cases. On the other hand, if one wishes to

establish the discontinuity formulae on the basis only of general physical
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principles, it appears as an ad hoc assumption, which it would be satis-

factory to remove. A first step in this direction has been carried out

in a work by H. P. Stapp and the present author, in which the simplest

of the discontinuity formulae, namely the "pole-factorization theorem",

is proved (below the 4-particle threshold) on the basis of macrocausality,

unitarity and two weak regularity conjectures, which in contrast to mixed-a

cancellation, apply directly to the individual scattering or bubble diagram

functions. This work is briefly presented in section 5.

The general problems which arise in connection with this study are

outlined in the conclusion (section 6).

For more complete explanations and details on the contents of this

lecture, see [1] and the references quoted therein.

Essential support theory

From the mathematical view point, the results presented are based

essentially on the theory of the essential support which originated (in

the analytic sense) in 1968 in a work on macrocausality by Professor

Stapp and the present author [2] and was developed in various directions

by Professor Bros and the present author: see [3] and the references

quoted therein for details.

Being given a distribution f defined on RN or more generally on a

real analytic manifold <3il, we recall, for the purposes of the present lec-

ture, that the essential support of f at a given point P of JVi is the closed

cone (with apex at the origin in the cotangent space TP*<3tt at P to c_5K)

composed of the "singular directions" of fat P along which the generaliz-

ed Fourier transfom of f at P does not decrease exponentially (in a well

specified sense).

It is known that f is analytic at P, resp. is at P the boundary value

of an analytic function from the directions of an open cone F, if and only

if the essential support of f at P is empty (apart from the origin), resp.

is contained in the closed convex salient dual cone C of F. More general-

ly, decomposition theorems allow one to write f as a sum of distributions

fj which are boundary value of analytic functions /}, at P or over real

domains £} of <_5K. (In this latter case, the directions from which the

boundary values are obtained will depend in general on the real point
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P of $). Finally, we note that results on products of distributions,

integrals, etc... are also directly proved in terms of essential supports.

In view of a similar equivalence with analyticity properties, the sin-

gular spectrum [4] of a distribution is necessarily contained in its essen-

tial support. (The boundary values f3 involved in singular spectrum

theory may be general hyperfunctions, and not distributions, even iff is

a distribution). It is moreover proved by Professor Bony in his lecture

that the two notions do coincide. Hence, all results obtained can be equiv-

alently stated in terms of singular spectrum and this leads to hopes of

further developments in connection with holonomy theory: see the lectures

by Professors Sato and Kawai. The framework of essential support the-

ory remains however the best adapted and the most direct for the results

that we discuss here: this is because causality, or other related properties

(see section 2 and subsection 4c)) are physically naturally expressed in

the form of exponential fall-off properties in space-time, and hence, as we

shall see, in terms of essential support properties.

§ le General Properties of the S-matrix

Details on this section can be found in chapter I of [1] and references

quoted there. For simplicity we consider here a theory with only one

type of particle, a "boson" of mass m and spin zero. All results of section

1 to 4 are however stated in a form whch is fully valid (with only

straightforward modifications) in the more general case.

It is assumed in the theory that before and after interaction the

physical systems under consideration are represented by vectors of a

Hibert space M=- 0 M^ of free particle states, where 0 denotes a
g=l,2,3...

direct sum of Hilbert spaces M^ of q particles, each of which is in turn

the symmetrized tensorial product of q spaces MI. Finally, MI is the

space of the functions (j) of an energy-momentum on-mass-shall 4-vector

variable P=(Po,p), pz=pQ
2 — p2 = m2

9 A>0, which are square integrable

with respect to the invariant measure

2jp2+m2

It follows from general quantum principles that there exists a linear,
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unitary operator S from M to M such that | <02| S\ </^| z is the "transition

probability" from an initial free particle state (before interaction) repre-

sented by a unit-norm vector | 0j)> e M, to a final free particle state (after

interaction) represented by a unit-norm vector 1 02)>. (i.e. \ ((p2\ S\ &y\z is

the probability of detecting | 02^ after interaction if the system is represent-

ed before interaction by 1 0^1 ) .

Unitarity (which includes linearity) can be derived from a principle of

"conservation of probabilities" that we shall not discuss here.

The operator S induces corresponding functionals Smjn which act on

pairs fm, gn, fm(=J{m, gn^SCn and are linear with respect to fm and gn.

It follows from the probabilistic interpretation of the jS-matrix that those

functionals are bounded in L2-norm with respect to fm and gn and hence

are in particular tempered distributions on the space of the m + n on-mass-

shell initial and final 4-momentum variables pk(pk
2 = m2, A0>0> v&)« A

first general property of the ^-matrix is then energy-momentum conser-

vation, which can be derived for instance from Poincare invariance of

transition probabilities, and can be written, if the 4-vectors pk are not

all parallel, in the form:

(1) S».»G>1- 'Pn',P* + l,- 'Pm + n} ^m.nXfl'CSA-SA)

where the sums ]T] run over the initial and final 4-momenta respectively,

and sm>n is a tempered distribution defined on the space <_5K of all initial

and final 4-vectors pk such that PicZ==mz, A0!>0, V& and ^Pt = ^Pjm, <3& is

called the physical region of the process m^>n.

In view of stability requirements, Smin = 0 if m = l, n^>1 or w>l,

n = ~L. On the other hand Sltl is the kernel of the identity operator

For reasons which will appear later, it is finally useful to associate

with the family of functionals Sm>n a corresponding family of functionals

Sm.n called their connected parts. They are defined by induction in a way

such that each Sm,n is a sum, over all possible partitions of the sets of

initial and final particles, of the symmetrized tensorial products of the

corresponding connected functionals. These relations are usually written

in a diagrammatical form on the momentum-space kernels:
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(2)

(3)

(4) ^ ^ ^^_ ^ _^

etc ...

where E3 + |:̂ i and ^yjV)1^ denote respectively the non connected and

connected kernels of the jS-matrix. The sums ^ refer to the various

ways of assigning sets of initial and final 4-momenta to each bubble.

It is easily checked by induction that S^n can also be written in

the same form as (1) (if all pk are not all parallel):

(5) Si.n(fc-/O =fm,n(Pl' 'Pm+n) X

where fm,n is again a tempered distribution, defined on the physical region

of the process m—*n, and is called the scattering function of this process.

§ 20 Macrocausallty and Essential support

of Scattering Functions1-5-1

a) Preliminary definitions.

Being given a process m->n and the corresponding physical-region <_5K,

the cotangent space Tp*c_3K to <_3K at point P={pk}^<jM is the quotient

space lT(m+n)/2V(P) of I?4(m+7l) by the conormal space at P to M. The

scalar product p-u of a point p= {pk} cl?4(m+7l) with a point u= {uk} in

the dual space is defined by convention as:

(6) P-u = ̂ pi-ui-^pru3- ; pk-uk=pkoukQ — pk-uk
i£l JGJ

where the sums ]£] run over the sets I,J of initial and final particles

respectively. The space N(P) is, in view of the definition of 3tt in

J?4(m"n), the space of vectors n= {nk} eH4Cm+n) of the form tf* = AfcPfc + a,

V^, where Xk is an arbitrary real scalar and a is a 4-vector independent

of k.

Being given a point P={Pk}<^3tt and a point u= {uk} <=R4(m+n\ it

is useful to consider the set of m-\-n "trajectories" in 4-dimensional space-

time, which are for each k the lines passing through uk and parallel to
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Pk. It is clear that the relative configuration of these trajectories does

not change if u replaced by u + n, n^N(P). A point in T^Jtt is then

uniquely characterized by a relative configuration in space-time of m-^n

line respectively parallel to the 4-vectors Pk.

A classical multiple scattering diagram 3) in space-time is a dia-

gram with oriented external and internal lines. Each external line is

either initial or final. Each initial (resp. final) line k ends at (resp. is issued

from) a given space-time vertex vk. Each internal line issues from a vertex

(^i)in and ends at another vertex (vi)f (which is different from (vi)in in

space-time). Finally, each external or internal line possesses a 4-momen-

tum pk, or pi and the following classical laws must be satisfied:

i) mass-shell constraints on all 4-momenta.

ii) energy-momentum conservation at each vertex v.

iii) each line is oriented in space-time in the direction of its 4-momentum.

With each line k, or I, is associated its "trajectory" which is the

full straight line in space-time which is parallel to pk, resp. pl9 and passes

through vk, resp. through (v^)in and (t>0/- In the case when all incoming

and outgoing 4-momenta involved at a vertex v are parallel, the vertex

v is allowed to be possibly an infinity in space-time in some direction.

All trajectories involved at v must then be parallel, but are not required

to coincide. A condition of "angular momentum conservation" will how-

ever be required as proposed by Professor Stapp, in this case (It is

automatically satisfied if v is not at infinity).

A diagram 3) associated with a process m-^>n is a diagram, possessing

the above properties, with m initial and n final (external) lines. We

shall denote by D the topological graph which characterizes its topological

structure. Being given a point P in <_5K, P is said to belong to the +ot

— Landau surface Z/(Z) + ), if there exists a diagram 3) whose topological

structure is D and whose set of external 4-momenta is P.

b) Macrocausality.

Macroscopic causality is an expression of the physical idea that any

energy-momentum transfer over macroscopic distances that cannot be at-

tributed to stable physical particles in accordance with classical ideas gives

effects that are damped exponentially with distance (short range of the
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interactions).

More precisely, it is useful to consider for each initial of final particle

k a family of possible "wave functions" (see section 1) of the form:

(7) (^)r..,,P.(#) =&V)e-t"*>e-'"<*pt

where Pk is an on mass-shell 4-vector, uk is a space-time 4-vector, r and

y are positive scalars, fa is locally analytic at Pk (and has at most slow

increase at infinity), and 0 is for instance of the form ($ — PkY~^^(pQ

— PkoY> ^^0 (i.e. has the properties of the functions 0 of essential sup-

port theory).

The multiplication by e~lrujc'p corresponds to a space-time translation

of the state by the 4-vector ruk.

Although quantum states are in general very different from point

particles of classical physics, it turns out [5] that, in the limit when

r—»oo, the free particle state whose wave function is given by (7) is

asymptotically localized, up to exponential fall-off with r, around a clas-

sical trajectory. More precisely, it is localized in momentum-space around

the 4-momentum Pk, and in a space-time coordinate system scaled to r,

around the trajectory (Pk, %) (i.e. parallel to Pk and passing through

«o.
Macrocausality is then first expressed as a certain exponential fall-off

property, when r—>oo, of the transition probability W between the dis-

placed initial and final particles whose wave functions are given by (7)

if (P, zf) is not causal (P={Pk}, u={uk}}, i.e. if there is no diagram

3) whose external trajectories are (Pk, uk}-(or in exceptional cases, if

(P, &) is not a limit of such points). Exponential fall-off follows physi-

cally on the one hand from the above mentioned localization properties

of the particles involved, and on the otherhand from the "short range"

of interactions.

If (P, u) is causal, but corresponds only to diagrams 3) composed

of several disconnected parts linking together respectively the particles

of various subgroups K, than the same exponential fall-off property is

now assumed (for the same physical reasons) to hold for W— JJ W&
K

where each WK is the transition probability of the process whose initial

and final wave functions are those of the subgroup K. This factorization
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property can in turn be shown (up to problems, in particular cases, which

we shall not discuss here) to be equivalent to an exponential fall-off

property of the connected amplitudes Sc({(<pk)TtUKiPk}) when (P, 11) is

not causal, or also when (P, 11) is causal, but cannot correspond to a

connected 3) (composed of only one connected part).

The connected amplitude S^n({((f)k)T!Uk>plc}} appears to be a genera-

lized Fourier transform of the type introduced in essential support theory

and the above mentioned exponential fall-off properties derived from mac-

rocausality can then be expressed in the form:

Essential support property of scattering functions

"The essential support of a scattering function f at any point P of

the physical region Jft is contained in the set C+ (P) of points u = {uk}

(denned modulo AT(P)) such that (P, u) is causal and corresponds at

least to one connected diagram <2)".

This property was postulated independently in terms of singular spec-

trum by Professors Pham and Sato [6].

The set C+ (P) is clearly empty apart from the origin if P does

not lie on the + a — Landau surface L(D+) of at least one connected

graph D. These surfaces are known to be analytic condimension 1 sub-

manifolds of 3ft and are not dense in 3ft. At a + a — Landau point P,

C+ (P) is in general composed of only one direction, which is conormal

at P to the surface Z/(Z>+) which contains P, and is oriented towards

the "physical side" of this surface (The latter is always well determined

by certain convexity properties of the + Ct — Landau surfaces).

If P lies on several -{-a — Landau surfaces L(D+'), jL(D+"), ••• such

that D', D", •" are all various "contractions" of a common "parent graph"

D and if P lies also on the closure of L(D+), then CT(P) is a closed

convex salient cone (with apex at the origin) obtained by positive linear

combinations of vectors which lie in the various directions associated as

before with each surface L(Z)+'), Z/(D+"), ••• involved at P.

The points P which have not yet been covered are either points

which lie in the interaction of several +CK — Landau surfaces with no

"common parent" (C+ (P) is then the union of the sets associated with
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each graph or parent graph involved at P), or points P= {Pk} such

that two or more intial, or two or more final Pk are parallel. In this

case, the possibility of vertices at infinity mentioned in the definition of

the diagrams 2), and of corresponding displacements of parallel initial,

or parallel final, trajectories, has to be considered in the specification of

At the points of these last two classes, C+ (P) is no longer in general

always contained in a closed convex salient cone. They however belong

to low dimension submanifolds of <_5K and if they are excluded, the basic

result announced in the introduction, follows: there is a unique function

f, analytic in a domain of the complexified manifold J5K, to which f is

equal at all points which do not lie on + a — Landau surfaces (of con-

nected graphs) and from which it is a "plus z'e" boundary value at -{-a

— Landau points (The plus is directions at a point P are those of the

open dual cone of C+ (P) ) .

§ 3. Essential Support of Bubble Diagram Functions

(Structure Theorem) (7)

A bubble diagram functio?i FB is an integral, over internal on mass-

shell 4-momenta, of a product of connected momentum-space kernels of

S or S~1 = S\ associated with the bubbles of a "bubble diagram" B. The

bubbles of B are connected by directed lines, which always run from left

to right. FB is usually written in the same diagrammatical form as B.

r
— 1 S13 (Pi > Pz ; Ps, Pd, Pio) $2,z(Pz, PlQ J Pj, Pll)

J

X (53%)- (p8, p9, Pn ; Pi, p5, A)

X
1=8-11

(The factor 1/2! associated with the set of two lines 8, 9 between

two bubbles arises from appropriate conventions).

A bubble diagram function FB can be defined, as S itself, as the
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kernel of a bounded operator in L2-norm and is therefore known to be

a well defined tempered distribution on the space of all initial and final

(external) on mass-shell 4-momenta of B. As easily checked, it also

satisfies energy-momentum conservation, i.e. one has in the same way as

in (5):

(9) ^=
A connected graph DB associated with a bubble diagram B is a

graph obtained by replacing each bubble b of B by a connected subgraph

Db and by moreover attributing a + sign to each external line of Db if

b is a + bubble and a — sign to each internal line of Db if b is a — bubble.

(Each Db is allowed to be a trivial graph, consisting of only one vertex

replacing b, with no internal lines).

An example of a DB associated with the bubble diagram already

mentioned is:

A Space-time representation 3)B of DB is a space-time diagram which

obeys the same laws than the diagrams S) introduced in section 2 except

that property iii) is modified as follows.

iii) Each internal line Z of S)B is oriented in the direction of its

4-momentum, resp. in the opposite direction, if I has a + sign, resp. a — sign.

It is oriented in the direction of its 4-momentum, or in the opposite

direction, or has zero length (i.e. the vertices from which it is issued

and to which it ends are represented by the same space-time point) if

I is an original internal (unsigned) line of B.

A "u = 0 point jP<Ec_5K of E is by definition such that there exists a S)B

whose external trajectories have the 4-momenta Pk and all meet at a

common point in space-time, while at least one internal trajectory does

not pass through this point. (This definition is to be slighly completed

if all such internal trajectories are associated with internal lines of sub-
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diagrams 5)&).

The following theorem then holds:

Essential support property of bubble diagram functions.

"If P is not a u = 0 point, then the essential support of fB at P is

contained in the set CB(P) at points u= {uk} (defined modulo JV(jP))

which ensure the existence of at least one 3)B whose external trajectories

are (Pk,uk)"

This result is a direct consequence of the general results on products

and integrals of distributions of essential support theory (The essential

support of a + bubble is given in section 2. The essential support of —bub-

ble is opposite to that of the corresponding + bubble by virtue of unitarity).

At u — § points P, no information is obtained. These points correspond

in fact to situations when the general theorems on products of distributions

cannot be applied, and all directions in TP*JK may a priori be singular

at P. However, we shall see in section 5 that it is necessary to have

information at these points in order to derive discontinuity formulae with-

out ad hoc assumptions of mixed-a cancellation. In fact all points P^Jtt

are u = Q points for certain bubble diagram functions involved there, such

as Fs= S3̂ 3ô S • If DB is the graph

-4
-5
6

and if A, B, C, D denote the space-time points representing a, b, c, d in

a corresponding 2)B, then, for any given values of the external 4-momenta,

a 3)B can always be constructed with A^=B on the one hand, C and D

at infinity on the other hand:there always exist on mass-shell 4-vectors

ki, kz, kz such that ki = k2, k1-}-k2
Jrks=p1-\-p2

Jrps. The trajectories of the

two lines from a to c, resp. of the two lines from d to b, are parallel

lines in space-time, oriented in the direction of kl = kz, resp. in the opposite

direction, and passing through A = B. Since C and D are at infinity,

the trajectories of the two internal original lines of B from c to d, which

must also be parallel to k1 = k2) do not need however to pass through

A = B.
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For the purposes of section 5, we shall assume a general regularity

property which seems reasonable, but goes beyond macrocausality. A

u = Q point P will be said to be of the first type if all internal trajectories

of corresponding diagrams 3)B which do not pass through the meeting

point of the external trajectories are associated, as in the example given

above, with original internal lines of B and join vertices which are at

infinity. We then state:

Regularity conjecture at (first type} u = Q points

"The essential support of fB at a (first type) u = Q point Pis contai-

ned, as before, in the set CB(P)".

We note that, in view of the definitions, the consideration of limiting

procedures does not change this conjecture. By limiting procedures, we

mean the replacement of CB(P) by the fiber at P of the closure CB of

CB — U (p, CB(p)) in T*<_5K, or more refined procedures, such as those
p

proposed in the lecture by Professors Stapp and Kawai, in which modified

diagrams 3)B are considered (The 4-momenta are no longer required to

be on mass-shell, although they must tend to on shell values in the

limit). A regularity conjecture covering all u = 0 points is presented in

their lecture. These points seem however more exceptional and we shall

not need this conjecture here.

§ 4. Discontinuity Formulae and Space-Time

Description of Processes

a) General derivation of discontinuity formulae [8]

We consider in this section a given process m—>n, its physical region

Jyl and its scattering function f, and for simplicity we first consider a

point P^Jtt which lies on only one + a — Landau surface L (£>+), as-

sociated with a given (connected) graph D. To be more precise it is

assumed moreover that P does not lie in the closure of any other -\-OL

— Landau surface and that the initial, resp. the final, 4-momenta Pk cannot

be parallel.

The surface L(D+) then divides JM locally into two parts, one of
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which is the "physical side" of this surface (and is, as already mentioned,

well characterized by certain convexity properties).

physical side

L(D+)

From the result of section 2, the essential support of f at P is

composed of only one direction and f is known to be at P the boundary

value of the analytic function f associated with the process considered,

from "plus is" directions. Moreover, f is known to be locally analytic

on each (real) side of L (£>+).

Algebraic manipulations of equations of the form *5*S~1 = 1, ••• are

then used (see illustration in section 5) to "write f locally as a sum of

two terms:

(10) f=d+r

which have the following properties:

i) d=Q on the non physical side of L(Z>+)

ii) r is a sum of bubble diagram functions fB, associated with var-

ious types of bubble diagrams B, which have all a common property .'there

exists no 3)B coinciding with the causal 3) associated at P with D (up

to dilation or space-time translation), or even coinciding with it after

removing zero length lines.

Under the conditions mentioned above on P (P lies on no other

+ a — Landau surface, • • • ) , property ii) ensures that there is no 3)B with

only + or zero internal lines (i.e. lines oriented in the direction of their

4-momentum, or with zero length) whose external lines have the 4-mo-

menta Pk.

On the other hand, there exist in general many possible graphs DB

and space-time representations S)B at P, associated with the above fB9

which include +, — or zero lines, or —and zero lines. Under the con-

ditions on P, it is easily checked that in the latter case (— and zero

lines), the only possible singular direction of fB at P is the direction
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C- (P), opposite to the direction C+ (P). Then, if one just ignores, as

a consequence of mixed-a cancellation assumptions, the remaining pos-

sibility of S)B including both + and — (and possibly zero) lines (mixed a-

Landau diagrams), one concludes that the essential support of r at P is

(contained in) C_(P). As a consequence, r is at P the "minus z'e"

boundary value of an analytic function r (The minus is directions are

those of the open dual cone to C_ (P) and are opposite to the is ones).

Since d=0 on the non physical side of L(D+) (see property z"))

f=d there; hence r is a "minus is" analytic continuation of f around

jL(Z)+), and d—f—r appears explicitly as the discontinuity of /across

L(D+), i.e. as the difference between the boundary values of its plus is

and minus is analytic continuations around Z/(Z)+).

Let us describe the results obtained:

Discontinuity formulae

If Z) is a graph with no set of more than one line between two

vertices, dxd*(^lpt — '£pj) *s tne bubble diagram function obtained by

replacing all vertices of D by -f bubbles. For instance, if

D= <-~ \ / J . then

/ - j - j \ 7 *., <>4 x vt. x~~i. \ ^ ~~*" v~-< ^ r\ y~^ " ^

= J £2% Oi, A ; A, A) ^2
C,2 (Pa, ps ; A, A)

1 = 7,8,9

If the graph D involves sets of more than one line between two

vertices, for instance D= >>«^K^ , the formula is to be slightly
^

modified. We shall not discuss this here. (In this latter case, the derivation

makes use in general so far of algebraic manipulations involving infinite

series, rather than finite number of terms, and is therefore not fully rigorous).
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We conclude with some remarks:

i) In a number of cases (see example in section 5), the essential

support of d at P is known to be composed of only C+ (P) and C_ (P).

Hence, if it is shown that the essential support of r does not contain

C+ (P), this will be sufficient to ensure that it is (contained in) C_ (P)

(since r=f—cT).

The assumption of mixed-o: cancellation can be restricted correspond-

ingly.

ii) No assumption would be necessary if mixed-C£ Landau diagrams

S)B were not involved at P, or in the cases of remark i), if the relative

configurations of their external trajectories could not correspond to C+ (P).

We shall see however on the example of section 5 that C+ (P) is

expected in general to be in the essential support of some functions fB

involved in r, (because of some mixed-C£ diagrams).

b) More general "discontinuity formulae"

The discussion of paragraph a) has excluded cases when P lies on

the closure of several + a — Landau surfaces. In such cases, the term d

associated with a given graph D involved at P cannot be expected in

general to be a discontinuity of f in the sense of paragraph a).

If D is a "parent graph" involved at P (i.e. lies on the -\-Ot — Landau

surfaces of one or several graphs which are contratioiis of D and lies

in the closure of L(Z)^)), then one is led to introduce a term d which

is analogous to d, but is obtained by replacing each vertex of D by the

kernel of the S matrix itself, rather than by its connected part.

General results which cover such cases follow from the work of

Coster and Stapp cited in [8], with assumptions similar to above. They

can be stated by saying that the essential support at P of s — d does not

contain appropriate directions (s is the non connected kernel of the S-

matrix, after factorization of 54(XjA~~Z]/v) : see section 1).

c) Physical significance of discontinuity formulae [10].

The discontinuity formulae discussed in paragraphs a) and b) have

in usual cases a very satisfactory physical interpretation.

Consider, as in section 2, a set of initial and final wave functions

of the form (7). Macrocausality says that there is exponential fall of the

connected amplitudes between these wave functions if (P, 11) is non-causal,
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but gives no information in the opposite case, when (P, u} is causal.

The discontinuity formula of paragraph a) ensures that C+ (P) does not

belong to the essential support at P of r=f—d. It therefore says that

the connected amplitudes Sc ( { (0fc) r> Uki PJ ) is then equal, up to a remainder

which has an appropriate exponential decrease in the r^oo limit, to the

integral, over internal on-mass-shell 4-momenta of D, of the product of

scattering amplitudes associated with each vertex of D. i.e. there is a

factorization (up to exponential fall off) corresponding precisely to the

classical multiple scattering diagram 3) involved at P.

For graphs D with sets of multiple lines, the physical interpretation

is somewhat more subtle, but still satisfactory.

The same type of conclusions holds in the situations of paragraph &).

Finally, in usual cases, there is moreover equivalence between dis-

continuity formulae and the above mentioned factorization properties of

scattering amplitudes for causal configurations.

§ 50 The Pole-Factorization Theorem [II]

In this section we consider the following graph D:

and we shall assume that (P^P^ P3)
2<16m2.

The causal diagram 3) at P, whose relative configuration of external

trajectories is C+ (P) is by definition (see section 2) such that 1, 2, 4,

resp. 3, 5, 6 meet at a space-time representative point A of a, resp. B

of b, with AB = kK, A>0, K=

a) Decomposition of the form (10)

By using the developments of S and S'1 into connected parts, the

equation SS~1 = ~L can be written (below the 4-particle threshold) in the

form:
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^ 4
(12) ^=T?p= = R

3-H+J

where

In these equations, —J^JE™ represents minus the connected kernel

of S"1, according to a usual convention. The sums ]T], resp. £]', in

(14) refer to the various ways of assigning sets of external (initial or

final) 4-momenta to each bubble, resp. corresponding sums from which

the term
__> x S— > 4 —> /^\ »— 4

~^\ +J> ^CY~^— j or ~^~^\*Y^r*~ ' •^las been removed. Finally,

by definition, the kernel of H 53®*: is 2

(with notations similar to above).

A simple examination of (12) shows that it is (after factorization

to 54(XlA~~Zj£/) a decomposition of f of the form (10) where d and

r have the properties i) and ii) (R =

If the assumption of mixed-a cancellation is used, then d appears,

as explained in section 4a) as the discontinuity of f, and hence, in this

particular case, f can be locally written in the form:

/ • I C N /-__ 1 a(Pi'~pB)
k1D; / ~~ 77: — 7; - o , .

2z7T k' — m+iQ

where k=p1
Jrp2—p4 and a is a locally analytic function such that:

(16) a (A • • -A) I f c 2 = m 2 =/2, 2 (A, Pz ; A, &)/2,2 (A, ^ ; A, A)

The set of relations (15) (16) is called the pole-factorization theorem.

(Similar results hold in the case of subsection 4b)).
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b) Examination of mixed-<2 diagrams.

The essential support of d at P is composed only, as easily checked,

of C+ (P) and C_ (P). According to remark i) at the end of section

4a), we first wish to check if there are at P mixed-Q^ diagrams 3)B

(for some of the functions fB involved in r) whose relative configuration

of external trajectories is C+ (P). If not, the discontinuity formula would

be proved without need of any extra assumption and without extra work:

see remark ii) at the end of section 4a). The detailed study shows that

this hope is completely unjustified.

The complete study of all possible mixed-a diagrams is too long to

be presented here, and we shall only describe the main facts. The term

R in (12) is the sum of H and of H->-f7\ > • ^e first examine H

in paragraphs i), ii), hi) and give in iv) an example of a further difficulty
- * - 4

arising from the "multiplication" of H by

i) Consider the term ~^~(jy~ f~~\^~jF • We have seen in section

3 that Pis always a "& = 0" point (associated with a mixed-O^ 3)B which has

been described) . Hence, all directions, including C+ (P) , can a priori be

singular at P (on the basis of macrocausality and unitarity alone).

Throughout the remainder of this text, we shall admit the regularity

conjecture at u = 0 points stated at the end of section 3, in which case

the present difficulty is removed.

ii) Other difficulties occur however for the same term

Consider the graph DB=

and possible space-time representation 2)B, if they exist, in which the

line b d has zero length.

Let us define a subset J2+ of jL(Z)+) as follows. Being given p€E.

jL(D,-), we choose a point A. in space-time, draw through it two lines

respectively parallel to p4 and k=p1
Jrp2 — p±, and choose B on the second

one, with (AB)0^>Q. Then p^Q+ if it is possible to find two on mass-

shell 4-momenta &1? kz(ki2 = m2, &io>0, £ = 1,2) such that k1
J
rk2 = k+pz

(— Ps+Po) and such that the line parallel to ki and passing through B
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meets the line passing through A and parallel to p4 at a point C such

that (AC)0>0, CBC)0>0:

* P«—7C

time

If (and only if) p^@+, one checks easily that there exists a 3)B

at ^ and that its relative configuration of external trajectories corresponds

to C+(/0.

An elementary analysis shows that S^. is a full open subset of Z/(Z)+).

iii) In a number of cases, C+ (P) appears as a possible singular

direction of certain fB, associated with mixed-CK diagrams, but only when

P lies on certain lower dimensional subsets of

Consider for instance the term

One checks easily that there is a S)B corresponding to C+ (P) if for

instance pz=p5. The line a c has then zero length (A = C). Hence

1,2,4 pass through A. Since A=A+A~~A> the trajectory of line 6

meets those of 3, 5 at B and AJ3 is directed along Pi+Pz—p*.

iv) Although the situations of paragraph iii) occur only for points

p which lie in lower dimensional subsets of L(D+), they may lead, after

"multiplication" of H by -^ffr^: to cases when C+ (P) will be a possible

singular directions at all points of !/(£)+).

Consider for instance the term -*^-J+{ — L^_. "* and

The above mentioned fact arises from the possibility of putting p7 =pz

in the subdiagram associated with ^C±/->--( —/-p- : it corresponds to the case
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described in paragraph iii), but there is now no constraint on the actual

external 4-momenta of the complete bubble diagram function.

c) New derivation of the pole factorization theorem.

The more refined proof of the pole factorization that we briefly out-

line now does not use the mixed-<2 cancellation assumption, but uses in-

stead two weak regularity conjectures on scattering and bubble diagram

functions. The first one is the conjecture already mentioned on u = 0

points. The second one is a slight refinement of the analyticity properties

associated with macrocausality. We describe it below for simplicity in

a form which is slightly stronger than that really needed and at points

p which lie on no -fa-Landau surface other than L(D+). Otherwise,

the conjecture applies to the appropriate contribution to f which appears

when the decomposition theorems of essential support, or singular spec-

trum, theory are used.

Macrocausality entails that /is at p the boundary value of an analytic

f from the "plus is" directions of the open half-space dual to C+ (p).

Let 0 be a real analytic function such that Z/(Z)+) is represented locally

in Jtt by the equation 0 = 0, and chosen such that 0^>0 on the physical

side of Z/(Z)+) (for instance, in the case under study, <j) = kz — m*). If

0 is one of a system of real analytic local coordinates of JA around p,

the open half space dual to C+ (p) is represented in this system by Im

0>0 (in the space of imaginary parts) and the above property off means

that being given any open cone T with apex at the origin whose closure

is contained (apart from the origin) in this open half-space, there exists

a complex neighbourhood © of p such that all points in CD fi {Im 0 e jT}

belong to the analyticity domain of f. We then state:

Regularity conjecture on f

"f is moreover analytic in a domain of the form G> f) {Im 0>0} (where

ct> is a given complex neighbourhood of p)."

This conjecture (and its extension to cases when p lies on other

+ OL — Landau surfaces) first allows one to remove the problems of para-

graph iii) of subsection b) in the study of h, i.e. to show that C+(p)
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is not a singular direction of h at points p which do not lie in J2+. (To prove
_9->__^_ 4 -flS-^- 4

this result, one uses the fact that H= igQji _ 2^)^Y^fc - ^>(^r*- '

It is shown that ^-A-^-/̂ .̂ and ~^ ̂ "f^y»- have analyticity properties

analogous to those of ""̂ ^F "̂ itself, and Bremerman's continuity theorem

is then used to exclude "isolated" singularities of h along subsets of jL(Z)+)

of codimension larger than one.) The above result is then extended

from h to r. Finally, the same conjecture as above (or alternatively a

refined use of unitarity) entails that C+ (p) is not a singular direction of

r even at J2+ points. (The fact that R =

at this stage.) Note the result is not proved, and not expected to be true,

for H itself.

§ 6. Conclusion

The discontinuity formulae are certainly believed to be satisfed by

the actual 5-matrix, on the basis of many arguments. Is it however

possible to derive them on the basis only of physical principles, such as

macrocausality and unitarity? The latter implies strong links between

various multiparticle amplitudes which maybe have not yet been fully

exploited, and the results of section 5 are a step in this direction, even

though two (weak) regularity conjectures have been used, besides macro-

causality and unitarity.

A first program would be to extend these latter results to more

general cases, and to determine what are the minimal and mathematically

neat conjectures needed.

The work accounted in section 5 gives the hope that it might be

possible to introduce a slightly refined notion of essential support, or

singular spectrum, which would contain a small information on the nature

of singularities (and not only on the location of singular directions), and

would possibly allow one to prove all needed results from a slightly

refined statement of macrocausality.

One would then hope also to have a satisfactory physical interpreta-

tion of such a statement. It would probably have to contain some infor-
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mation in the causal directions. Hopefully this information will be very

limited. In fact, -we already know (see section 4c)) that the factorization

properties for causal configurations are equivalent and hence do imply

the discontinuity formulae, in a number of cases. However, our feeling

(confirmed by section 5) is that much less is needed; i.e. the discontinuity

formulae should be derived "essentially" from macrocausality and unitarity,

and they in turn imply the factorization properties for causal configura-

tions.

Another approach to these problems would be to study if a weak

form of the conjecture by Professor Sato (according to which the *S-matrix

should be holomonic) would allow one to derive the discontinuity for-

mulae. The strong form of Sato's conjecture, which includes information

on orders, etc.. is probably too strong for our present purpose, and we

prefer to consider it as a consequence of the discontinuity formulae, as

has been proved already in various cases :see the lecture by Professor

Kawai.
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