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On Continuation of Regular Solutions
of Linear Partial Differential Equations

by

Akira KANEKO*

Here we briefly introduce the speaker's recent works on continuation

of regular solutions of linear partial differential equations with real anal-

ytic coefficients. The method of argument is deeply concerned with the

non-characteristic boundary value problem for hyperfunction solutions.

First ~w& intuitively compare this new method with the old one which

owes much to Grusin [2] and was employed in the case of constant

coefficients. Then we give results on hyperfunction boundary value prob-

lem as our main tool. Finally we give the main results and prospects

on continuation of real analytic solutions.

la For comparison we cite one typical result from the case of con-

stant coefficients. Others may be found in [2], [4], [6], [7], [8].

Theroem A ([4]). Let p(D) be a single linear partial differ-

ential operator 'with constant coefficients. Then the folio-wing are

equivalent.

1) Every real analytic solution of p(D)u = Q defined outside a coin-

pact convex set K is continued analytically to K.

2) p has no elliptic factor.

Let us shortly review the method of proof of the main part 2) =4>1)

of this theorem. For the sake of simplicity we assume that p is irre-

ducible. Let u be a real analytic solution of p(D)u = 0 defined on U\K,

where U is a neighborhood of K. We can extend u to U as a hyper-

function. Let [&] be one of such extension. Then p (D) \u\ is a hyper-
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function with support in K and is determined only modulo p(D) 33\_K~\.

Here we let &[K] denote the hyperfunctions with support in K. To

prove the theorem we must show that under the given condition on p

the set of p(D) [u] mod p(D)33\_K~] contains zero as a representative.

To annihilate the ambiguity we apply the Fourier transform and restrict

to the variety p(Q = 0. Then we obtain a uniquely defined holomorphic

function -F(C) on the variety. Translating the assumption on p and the

analyticity of u outside K to a kind of growth condition for F(C) and

employing the Phragmen-Lindelof type principle, we nullify this holomor-

phic function. Then the Fundamental Principle of Ehrenpreis-P alamo -

dov assures the existence of [u\ satisfying p (D) \u\ — 0. Finally a result

on propagation of regularity guarantees the analyticity of [u\ even on K.

(For further interesting interpretation see [5].)

If we attack the problem in the case of variable coefficients, we must

translate each of these steps to a method applicable to such operators.

Recent works of the speaker have suggested the following procedure

when the singularity K is contained in a noncharacteristic hyperplane:

Let Xi^Q be the one containing K and let u be a real analytic solution

of p (x, D) u = 0 defined on U\K. Then we can take a unique extension

[u] of u to U characterized by the identity

y=o

where m is the order of p and {Uj(x')} are the difference of the boundary

values of u to the hyperplane xl = Q from both sides. Here the boundary

value means that of Komatsu-Kawai [12]. Therefore we only have to

examine whether {%(.r')} vanish or not, and thus we have bypassed

the Fourier transform and the Fundamental Principle. Instead of the

growth condition on the Fourier image, the assumption on p and the

analyticity of u reflect on the analytic singular spectrum (analytic wave

front set) of the boundary values {HJ (x') } . Then, instead of the Phrag-

men-Lindelof type principle we can employ the Holmgren type theorem

of Kashiwara-Kaivai (see [13]) concerning the unique continuation

property for analytic parameters. The above is the outline of the story

in the case of variable coefficients.

Thus we examine in this paragraph the analytic singular spectrum
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of boundary values of solutions. Let p(x,D) be a given operator of

m-ih order with real analytic coefficients. Assume that S={x1 = 0} is

non-characteristic with respect to p.

Definition B. Consider the set of points (x, V — l?'<ir'oo) <E {xl

>0} X V — IS*71"2 such that the characteristic equation pm (x, Ci, ?') =0 for

Ci has a root with positive (resp. non-negative) imaginary part. (Here

pm denotes the principal part of p.} Take its closure in RnX v7 — IS*71"2

and restrict to ^ = 0. We let V$iA(p) (resp. VJ *(/>)) denote the set

of points (x, V^f'J-r'oo^JT-'X V^S*71"2 obtained in this way.

Then we have ([10])

Theorem C. Let u be a real analytic (resp. hyp erf unction) solu-

tion of p (x, D) u — 0 on x^>Q. Then the analytic singular spectrum

of the boundary values of u to xl = 0 is contained in VsiA(p) (resp.

VS,B(P)') • (The analytic singular spectrum of boundary values of solu-

tions on xl<^ can be estimated in the same -way by VS,A(P) (resp.

VS,B(P}) 'which is defined exchanging the sign of the characteristic

roots in the above definition^)

For example, consider the ultrahyperbolic operator p(D) =D1
z-\ ----

+ A2 - £>i+i ----- Dn
2. We have

Vf.A(/0={(^/^^^

On the other hand, Vs^s(p) agrees with the whole cosphere bundle.

This suggests the possibility of the mixed problem only for the non-

analytic boundary data. Next consider the generalized Lewy-Mizohata

operator p(x, D) =Dl + ̂  — lx1
2k+1D2. Then we have

From this estimate we conclude that we cannot find a hyperfunction

solution E of p (x, U) E = d (x) . In fact the difference of the boundary

values of E would then become a constant multiple of 8(x') contrary

to the above estimate.



116 AKIRA KANEKO

The proof of Theorem C is carried out employing Green's formula

with the solution of the dual boundary value problem whose boundary

data consist of the component of the curved wave decomposition of d(x'}.

Its solvability follows from the following theorem ([10]) extending the

result of Bony-Schapira [1].

Definition D. Let Id IT'1 X /̂ S*71"2 be an open subset of the

cosphere bundle of Rn~l. We say that p is I-semihyperbolic (resp. I-

semitonnel) to the positive side of xl = (^ if for every compact subset Z/C J

there exists eL^>0 such that all the roots of the characteristic equation

Pm(x, Ci» £') = 0 f°r Ci have non-negative (resp. positive) imaginary parts

when (x'9 J^l? dx' ao) eL and

Theorem E. Assume that p is I-semihyperbolic (resp. I-semi-

tonnel) to the positive side of xl = Q. Then for every boundary data

{uj(x')}™~t 'whose analytic singular spectrum is contained in /, *we

can find a unique local hyperf unction (resp. real analytic} solution

of the boundary value problem

ip(xD)u = 0 on

'where {Bj} denotes a normal system of boundary operators -with real

analytic coefficients.

2. Employing the result and the reasoning of the preceding section

we can give the following results ([10]).

Definition F. Vs,A(p) = V^(/>) U Vj.^(#),

Theorem G. Let K be a closed set in the non- char act eristic

hyperplane S={xl = G}. Assume that K is contai?ied in one side of

an analytic hyper surf ace tp(x'} =0 in ^ = 0 passing through the origin,

that is, <^(0)=0 and ^(0)^0. Assume that either of the points
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(0, ±/:rL^(0)oo) lies outside the set VStA(p) (resp. VStB(p)}. Then

every real analytic (resp. hyp erf unction) solution u ofp(x,D)u = 0

defined on a neighborhood of the origin except on K can be uniquely

continued as a hyperf unction solution to K in a smaller neighborhood.

In the extreme case K=S={x1 = 0} we have

Theorem H. // V^O) c [CV^)]' (resp. V+
s,B(p) c

[C Vj^C^XT), then every real analytic (resp. hyp erf unction) solution of

p(x,D^)u = Q on x^>Q can be uniquely continued to xl'<S5 as a hyper-

function solution. If ive can take VsiA(P) instead of VS,B(P) , then

the continued solution is real analytic on xl<^§. (Here C denotes the

complement in I?71"1 X V — IS*71"2 and a denotes the antipodal map.}

Let us consider a few examples. The first is DI + \/ — Ix1
2k+1D2 on

R2. Theorem H asserts that every solution of this operator on Xj^>0

(.Tj^O) can be uniquely continued to ^^0 (^i^O). The second is

the Tricomi operator Df — x^D?. Since VS,A(P) =(f> for this operator, it

follows that every real analytic solution on x^>0 can be uniquely con-

tinued to .Ti<^0 (even real analytically) . This latter case was independ-

ently discussed by P. Schapira by a different method (private communi-

cation) .

In the case of Theorem G separate consideration on propagation of

analyticity is needed in order to assure the analyticity of the continued

solution on K. As a special case we have the following theorem on

removable isolated singularity ([9]).

Theorem I. Assume that the principal part pm (x, D) is of prin-

cipal type and has real coefficients. Assume that there exists a direc-

tion £' ̂ Rn~l such that the algebraic equation pm(x, Ci, ?') =0 for Ci

has real distinct roots on a neighborhood of the origin. Then every

real analytic (infinitely differ ejitiable) solution u ofp(x,D)u = Q, de-

fined on a neighborhood of the origin except the origin itself, can be

continued to the origin as a real analytic (an infinitely differentiate)

solution.
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In this case the propagation of regularity is readily shown by employing

the fundamental solution. In the case of infinitely differentiable solutions

we must make a suitable consideration of the Phragmen-Lindelof type

replacing the Holmgren type theorem with respect to analytic parameters.

For, in this case the difference of the boundary values is only a hyper-

function with infinitely differentiable parameters in a very weak sense.

The same technique allows us to show that classical solutions can be

continued to the origin as distribution solutions. As for the continuation

of infinitely differentiable solutions, Theorem I may be extended to more

general operators and more general singularities by introducing a kind

of Levi condition.

The results of this paragraph are almost best except one crucial

point that the irreducibility of the operator is not discussed at all. Hence

Theorem A is not covered. We hope that in future a theory of a kind

of monodromy groups or Galois groups acting on the boundary data will

overcome this difficulty.

3. The problem of continuation of solutions to a given set is re-

phrased conversely as the problem of determining whether the given

set may contain a singularity of a solution of the equation. Thus the

problem may be solved completely if we determine the whole singularity

of the solutions of a given equation. In such an approach it is important

to consider the most elementary singularity, or the singularity with mini-

mal dimension. General singularity may be given by composing them

by integration. For example, consider the single elliptic equation. It

never appeared in our consideration. The reason is that it has a solution

with an isolated singularity, that is, an analytic set of dimension equal to

zero. Thus it has a solution with singularity of any given shape. As

for the general operator p(x, D), we conjecture that there exists a natural

number r(p) such that every singularity of real analytic solution of

p(x,D^u = Q has dimension not less than r(p) and that the singularity

of dimension r(p) becomes an analytic set.

For the singularity contained in a non-characteristic analytic hyper-

surface S, we can apply the result of 2° and support this conjecture.

By a suitable real analytic coordinate transformation we can assume that
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S—{x1 = Q}. First we give

Definition J. A submanifold C of S of class C1 is called -weakly

timelike with respect to p if its conormal elements are contained in

VS,A(P)> It is called timelike with respect to p if its conormal elements

are contained in

VI.4C/0 = {(*', V^lf'dr'oo)e T^O); A.(0, *', £„ f')^0 if ftelZ}.

The latter definition agrees with the one given by John [1] in the

general case

Definition K. We define rs(p) (resp. r,°(/>)) to be the minimal

value of the codimension in V —IS*71"2 of concentric subsphere contained

in the general fibre of VStA(p) (resp. V°SiA(p)).

We have ([11])

Theorem L0 Assume that there exists a real analytic solution

u of p(x, D)u = 0 such that C is a -weak singularity (that is, u can

be extended as a distribution on a neighborhood of C) and unremovable

as a hyperfunction solution. Then C is -weakly timelike and the di-

mension of C is not less than rs(p). If dimC = rs(/>), then C is an

analytic submanifold.

The first part follows directly from Theorem G. The last part fol-

lows from Theorem C and the following

Lemma M* Let v(t,x) be a distribution on a neighborhood of

the origin of Rn+1- Assume that supp v is non-void and contained

in a continuous hyper surf ace C—{t — (p(x)} passing through the origin

and that v contains x as real analytic parameters. Then C is a real

analytic hypersurface on that neighborhood.

We believe that in this lemma distribution can be replaced by hyper-

functions hence in Theorem L the assumption of the weakness of the
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singularity is superfluous.

Conversely we have

Theorem N. Given an r$ (p)-dimensional real analytic submanifold

CdS timelike with respect to p, -we can construct a real analytic

solution u ofp(x,D)u = Q -which has C just as the singularity and

unremovable as a hyp erf unction solution.

In fact it suffices to find a solution u of p(x, D)u = d(x1)5c(x') real

analytic outside C, where dc denotes the (n — 1) -dimensional standard

measure supported by C. This is possible because p is elliptic at the

conormal elements of CcHre.

The gap between rs(p) and rs°(p) or between Theorem L and The-

orem N has also to do with the lack of the theory of the irreducible

decomposition of p.

In the above we treated the most generic case. We expect that in

more degenerate cases the shape of the singularity may be more restricted

and interesting relation with analytic geometry may occur. For those

singularity not contained in an analytic hypersurface we have no tool

at present. We only remark that the example of the ultrahyperbolic

operator p = D1
2-{ \-Dk

2 — Dl+i Dn
2 shows that the minimal dimen-

sion rs(p) — rs°(P) —n~k depends on the choice of S. It is very probable

that r (/>) = min {&, n — k}.
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